
Semantic Web 1 (0) 1–5 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

A Performance Study of RDF Stores for
Linked Sensor Data
Hoan Nguyen Mau Quoc a,*, Martin Serrano b, Han Nguyen Mau c, John G. Breslin d , Danh Le Phuoc e

a Insight Centre for Data Analytics, National University of Ireland Galway, Ireland
E-mail: hoan.quoc@insight-centre.org
b Insight Centre for Data Analytics, National University of Ireland Galway, Ireland
E-mail: martin.serrano@insight-centre.org
c Information Technology Department, Hue University, Viet Nam
E-mail: nmhan@hueuni.edu.vn
d Confirm Centre for Smart Manufacturing and Insight Centre for Data Analytics, National University of Ireland
Galway, Ireland
E-mail: john.breslin@nuigalway.ie
e Open Distributed Systems, Technical University of Berlin, Germany
E-mail: danh.lephuoc@tu-berlin.de

Editors: First Editor, University or Company name, Country; Second Editor, University or Company name, Country
Solicited reviews: First Solicited Reviewer, University or Company name, Country; Second Solicited Reviewer, University or Company name,
Country
Open reviews: First Open Reviewer, University or Company name, Country; Second Open Reviewer, University or Company name, Country

Abstract. The ever-increasing amount of Internet of Things (IoT) data emanating from sensor and mobile devices is creating
new capabilities and unprecedented economic opportunity for individuals, organisations and states. In comparison with tradi-
tional data sources, and in combination with other useful information sources, the data generated by sensors is also providing a
meaningful spatio-temporal context. This spatio-temporal correlation feature turns the sensor data become even more valuables,
especially for applications and services in Smart City, Smart Health-Care, Industry 4.0, etc. However, due to the heterogeneity
and diversity of these data sources, their potential benefits will not be fully achieved if there are no suitable means to support
interlinking and exchanging this kind of information. This challenge can be addressed by adopting the suite of technologies
developed in the Semantic Web, such as Linked Data model and SPARQL. When using these technologies, and with respect to
an application scenario which requires managing and querying a vast amount of sensor data, the task of selecting a suitable RDF
engine that supports spatio-temporal RDF data is crucial. In this paper, we present our empirical studies of applying an RDF
store for Linked Sensor Data. We propose an evaluation methodology and metrics that allow us to assess the readiness of an RDF
store. An extensive performance comparison of the system-level aspects for a number of well-known RDF engines is also given.
The results obtained can help to identify the gaps and shortcomings of current RDF stores and related technologies for managing
sensor data which may be useful to others in their future implementation efforts.

Keywords: IoT, Semantic Web, Linked Data, Sensor, Triple store

*Corresponding author.

1. Introduction

The Internet of Things(IoT) is a network of physical
objects embedded with sensors that are providing real-
time observations about the world as it happens. With

1570-0844/0-1900/$35.00 c© 0 – IOS Press and the authors. All rights reserved

2 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

an estimation of there being 50 billion connected IoT
objects by 2020[16], there will be an enormous amount
of sensor observation data being continuously gener-
ated per second. Connecting these sensor observation
data sources to the rest of the digital world, and turn-
ing this data into meaningful actionable information,
will create new capabilities, richer experiences and un-
precedented economic opportunity for individuals, or-
ganisations and states. However, deriving trends, pat-
terns, outliers and unanticipated relationships in such
an enormous amount of dynamic data with unprece-
dented speed and adaptability is extremely challeng-
ing.

When trying to fully exploit the huge potential of
these sensor data sources, deriving insights from dy-
namic raw observation data poses various challenges
in terms of data integration. Fortunately, a suite of
technologies developed through the Semantic Web
[6] effort, such as the RDF model, Linked Data [8],
SPARQL [36], and RDF stores, can be used as some
of the principal solutions to help relieve sensor data
sources from the challenge of poor integration [12,
30]. Among these technologies, the RDF store is one
that was developed that allows management of RDF
data. Additionally, an RDF store typically also pro-
vides a public SPARQL endpoint such that data can
be queried from RDF-enabled applications via the
SPARQL query language.

In the Linked Sensor Data context, the usage of
an RDF store is relatively recent. This is due to sev-
eral specific requirements which are required in or-
der to enable querying and storage of sensor data. In
fact, sensor data is always associated with some spatio-
temporal contexts, i.e, they are produced in specific lo-
cations at specific points in time. Therefore, all sensor
data items can be represented in three dimensions: se-
mantic, spatial and temporal. As a result, to enable effi-
cient (and accurate) querying and storage of this multi-
dimensional sensor data, spatio-temporal computation
support becomes a mandatory requirement for an RDF
store or database. Moreover, the "big data" nature of
sensor data also requires that these systems need to
scale to millions of sensor sources and years of data.

In this paper, the requirements and constraints to
adopt an RDF store as a fundamental back-end solu-
tion for semantic sensor-based applications and ser-
vices are analyzed. Moreover, an extensive perfor-
mance comparison of the most used and well-known
RDF store engines that can be utilised for Linked Sen-
sor Data are presented. A requirements analysis, along
with detailed evaluation results, can be used to assess

the readiness of current RDF database technologies for
managing Linked Sensor Data. In summary, the main
contributions of this paper are:

1. A detailed analysis on the fundamental require-
ments for an RDF processing engine that can be
applied for Linked Sensor Data.

2. An extensive performance assessment of five se-
lected and well-known RDF stores for managing
Linked Sensor Data. In comparison with exist-
ing works, our performance study also focuses
on evaluating the spatial, temporal and text data
indexing performance of these systems.

3. A set of important findings about the gaps and
shortcomings of current RDF stores in support-
ing spatio-temporal computation and full-text
searches.

4. Identification of a query optimization challenge
for executing a complex spatio-temporal query
over Linked Sensor Data.

The remainder of this paper is organized as follows.
Section 2 reviews the related work as regards the study
and evaluation of existing RDF stores. In Section 3, we
analyze the fundamental requirements of RDF stores
for Linked Sensor Data. Section 4 describes the gen-
eral architectural design of current RDF databases that
support spatio-temporal querying. A selected set of
five popular RDF stores for our analysis is introduced
in Section 5. Section 6 presents the general evalua-
tion methodology for assessing the RDF stores (RDF
engines) for Linked Sensor Data. Section 7 describes
the experimental setting. Section 8 reports on the eval-
uation results when the evaluation methodology de-
scribed in Section 6 is carried out. A discussion and
our main findings are also given in this section. Finally,
we conclude our work in the last section.

2. Related work

During the last decade, we have witnessed a rapid
increase in the number of RDF store implementations
that have been proposed [2, 7, 15, 20, 33, 37, 41].
Along with this growth is a corresponding increase
in studies interested in looking into their performance
and data processing behaviours. For that reason, a
number of performance assessment techniques specific
to these RDF stores have been introduced. For exam-
ple, in [31], the authors provide a performance com-
parison of seven selected RDF stores over the synthetic
Lehigh University Benchmark (LUBM) dataset [19].

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

This evaluation aims to test the data loading and query
performance of these stores with respect to a large data
application. Similarly, Rohloff et al. [38] present a per-
formance evaluation over the LUBM dataset of Alle-
groGraph, Jena and Sesame with various storage back-
ends (such as MySQL, DAML DB[34], BigIOWLIM,
etc). In this work, a set of evaluation metrics is pre-
sented such as the data loading time, query execution
performance, query completeness and soundness, and
storage size requirements. Unlike [31, 38] that com-
pares the performance of different RDF stores, the
evaluation described in [39] focuses on the experimen-
tal comparison of a single native triple store (Sesame)
and a vertically partitioned scheme for storing RDF
data in a relational database on top of the SP2Bench
SPARQL benchmark [40]. In [9], the authors introduce
the Berlin SPARQL Benchmark (BSBM) for compar-
ing the performance of native RDF stores, non-RDF
relational databases and SPARQL-to-SQL rewriters.
The benchmark provides valuable insights into sys-
tem behaviour by comparing the data loading time, the
number of mixed queries executed per hour, etc.

Regarding an performance study of RDF stores
over spatial RDF data, Kolas [26] presents a state-
of-the-art assessment for querying geospatial data en-
coded in RDF. In this work, the author extends the
LUBM dataset by adding spatial entities so that they
were able to evaluate a spatial search on the geo-
enabled RDF stores. Along the same lines, Garbis et
al. [18] developed a benchmark, called Geographica,
which uses both real-world and synthetic datasets to
test the offered functionality and the performance of
some prominent geospatial RDF stores. Despite the
wide range of performance assessments between RDF
stores, to the best of our knowledge, there is no ex-
isting approach that focuses on studying the readiness
of RDF stores as regards Linked Sensor Data. In com-
parison with traditional RDF data, sensor data is usu-
ally associated with spatial and temporal contexts. This
distinctive characteristic therefore poses challenges for
the current RDF store implementations due to the re-
quirements of geospatial supports, temporal filtering
and full-text search. In this regard, rather than provid-
ing another benchmarking effort, our paper should be
read as an empirical study to find the gaps and short-
comings with current RDF store technologies so that
they can be properly applied for the management of
Linked Sensor Data. Following this direction, our eval-
uation and analysis aims to help guide the development
of RDF stores, rather than serving as a comparison of
existing ones.

3. Fundamental requirements of a processing
engine for linked sensor data

Sensor data has distinctive characteristics that make
traditional RDF engines an obsolete solution. This is
due to the limited capability of such engines to process
the massive amount of linked sensor data available, as
well as the lack of spatio-temporal index support. In
general, when providing an RDF processing engine for
linked sensor data, there are some important features
that should be provided. These features are as follows:

– Geospatial search: This mandatory feature plays
an important role for processing sensor data. Hav-
ing spatial search support will help to not only
provide the spatial information of a spatial object,
but will also help to compute the spatial relation-
ships between the two geometries of objects (i.e,
within, intersecting, etc). For example, this can be
used for finding all the weather stations that are
operating within a given area.

– Temporal filter: Most of the queries from end-
user or sensor-based applications require filtering
on the temporal aspect of sensor observation data.
This task is very expensive due to the high fre-
quency updates of sensor observation data. Fur-
thermore, this is also the main reason behind a
dramatic increase in the required storage size.
Therefore, several enhancements should be made
to the temporal filter by the query processing en-
gine so that observation data can be easily re-
trieved.

– Full-text search: This is an advanced feature that
aims to improve performance of full-text search
queries. Essentially, these kind of searches are
mostly based on finding given keywords embed-
ded in literal values such as descriptions, street
names, location names, etc.

– Scalability: This is also another advanced fea-
ture that allows the engine to deal with the "big
data" processing challenge of sensor data. Also,
this can help the engine to address a perfor-
mance issue when executing a high volume of
user queries. Thus, either a scalable solution or
an efficient index mechanism are needed [5]. One
possible solution that can be considered is one
that will duplicate the same service so as to al-
low many concurrent queries while also provid-
ing suitable fault tolerance capabilities. Alterna-
tively, another solution is to split the data across
different servers and to provide a middleware

4 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

component that can coordinate data transactions
amongst these underlying servers.

– Spatio-temporal query language: It is impor-
tant to note that the standard SPARQL query lan-
guage does not support spatio-temporal queries
(nor full-text queries). For this reason, to enable
this feature, the RDF database creators must pro-
vide spatio-temporal querying by either defining
a new language in their own specific syntax or by
extending the SPARQL query language.

4. Architectural Design

The general architectural design of RDF stores that
support spatio-temporal query processing over Linked
Sensor Data can be classified into two categories,
namely native architectures and hybrid architectures.
In this section, we will discuss the details for each ar-
chitecture and analyze the features that might affect the
query performance of each.

4.1. Native architectural design

The native architectural design of RDF stores for
Linked Sensor Data is illustrated in Figure 1. This ar-
chitecture needs to implement the data indexing sys-
tem, the query engine, and physical storage.

4.1.1. Data index
The data index has a vital role and can significantly

affect the performance of data insertion. This is one
of the primary design elements for storage systems.
Additionally, an efficient data indexing system also
helps to improve query performance. In the Linked
Sensor Data context, along with the triple index, defin-
ing spatio-temporal data indices is an essential require-
ment for engines that follow native architectural de-
sign principles. This multidimensional index feature
not only helps with triple-based retrieval requirements
but also with supporting spatio-temporal queries. For
example, Virtuoso uses RTrees for spatial indexing and
bitmap indices for RDF triples. Meanwhile, Jena uses
a Lucene spatial index along with B/B+ and three ad-
vanced triple indexes on spo, pos and osp to accommo-
date different triple patterns.

Another important feature of the data index compo-
nent is to define the triple patterns that are used to ex-
tract the spatial, temporal or text values from the in-
put data. The extracted values will be indexed properly
based on their characteristics and implied context. For

example, spatial data are indexed by an R/R+ trees al-
gorithm while the text literals are analyzed by a string
index algorithm.

4.1.2. Query engine
The query engine is used for data retrieval which is

generally comprised of three sub-modules, namely a
query parser, query optimizer and query executor.

Query parser The query parser is responsible for
parsing the input query from a user or an applica-
tion program to an algebraic expression. Unlike the
standard SPARQL query parser, the one for spatio-
temporal queries over Linked Sensor Data has to
adapt to its associated spatio-temporal query language
syntax. As SPARQL does not cover spatio-temporal
queries, so the query language that supports spatio-
temporal or full-text search can be defined either by
the RDF engines in their own syntax or by extend-
ing the SPARQL language. For example, Virtuoso and
Jena define their own spatial query language by adding
spatial built-in functions to SPARQL. These addi-
tional functions are assigned along with dedicated pre-
fixes, such as <bif:> and <spatial:>, for Virtuoso and
Jena, respectively. In the meantime, instead of defin-
ing a new query syntax, Strabon and Stardog adopt the
WGS84 and OGC’s GeoSPARQL vocabularies, which
have been widely used and have become the standard
W3C recommendation.

Query optimizer This module is used to determine
the most efficient way to execute a given query by
considering all the possible query execution plans.
The proper execution plan will be represented as an
execution-order tree that consists of algebraic opera-
tors. A good execution plan will help to prune all the
redundant intermediate results, and thus will improve
the query performance by reducing the memory con-
sumption as well as result materialization.

Obviously, each query plan leads to different query
performance. Finding the proper execution plan that
can balance the resource-consuming cost and the query
response time is always an ultimate goal of the query
optimizer. In the Linked Sensor Data context, this pro-
cess becomes more complex and expensive due to the
difficulties in building a comprehensive cost model
that can reflect all the spatial and temporal aspects
of Linked Sensor Data. In addition, the lack of sta-
tistical information on spatio-temporal data and ac-
cess patterns also makes the join order optimization
challenging and resource consuming. Currently, most
RDF query optimizers can only collect limited statis-

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Predicates
Definition

Algebra
expression

Query
execution
plan

Data
access

Physical Storage

Bu
ffe

r/
Ca

ch
e

indexing
Data loading/

Triple
index

Text
index

Spatial
index

Data Indices

Query
Optimizer

Query
Executor

Query
Parser

Query Engine

Files

Files

Query

Fig. 1. The native architectural design

tics, such as Jena and Strabon, which collects the num-
ber of times a predicate appears. Furthermore, other
systems (i.e., Virtuoso and Stardog) cache query plans
for later use.

Query executor The query executor is responsible
for taking the query execution plan handed back by the
query optimizer, recursively processing it by accessing
the physical storage, and returning the query results.

4.1.3. Physical storage
The final component is the physical storage which

includes the database files, a buffer or its own file cache
manager that manages the buffering of data to reduce
the number of disk accesses. The physical storage can
be classified into two types, namely native and non-
native storage [14].

Native storage The native storage treats RDF triples
as first-class citizens and stores them in a way that
is close to the RDF data model. There are two ap-
proaches to implement a native storage: persistent
disk-based and main memory-based. The persistent
disk-based systems store the RDF data permanently in
files [22, 32, 33]. The advantage of these implemen-
tations is that the data is safe during a system restart.
However, it should be considered that the data writing
and reading operations can be slow due to a perfor-
mance bottleneck.

In contrast to the disk-based approaches, the main
memory-based ones keep data in the system mem-
ory. All the data reading and writing operations oc-
cur there, thereby improving the overall system per-
formance. However, due to the limited size of the
memory, this solution requires a memory-efficient data
representation as well as composite index-based tech-

niques so that there will be enough space to not only
store the data but also for the other operations associ-
ated with query processing and data management [17].
Some implementations falling into this category are
Jena, Hexastore[43], Bitmap[3], etc.

Non-native storage The non-native storage relies on
the relational database system to store RDF data per-
manently [11, 15, 20, 21, 44]. In this type of storage,
data is either stored in a single table (schema-free ap-
proach) or in a set of relational tables (schema-based
approach) such as a subject table, predicate table, ob-
ject table, etc. The advantage of the non-native storage
is the less demanding efforts in terms of design and im-
plementation. Nevertheless, in order to achieve good
system performance, an efficient mapping solution of
SPARQL-to-SQL and graph-to-relational schema have
to be taken into consideration [14].

4.2. Hybrid architectural design

The hybrid architecture uses existing systems as
sub-components for the processing needed. The com-
mon architecture of a hybrid solution is illustrated
in Figure 2. In this architecture, the chosen sub-
components are accessed with different query lan-
guages and different input data formats. Hence, the hy-
brid approach needs a Query Rewriter, a Query Del-
egator and a Data Transformer. The Query Rewriter
rewrites a SPARQL-like query to sub-queries that the
underlying systems can understand. The Query Del-
egator is used to delegate the execution process by
externalizing the processing to sub-systems with the
rewritten sub-queries. In some cases, the Query Del-
egator also includes some components for correlating

6 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and aggregating partial results returned from the hy-
brid databases if they support this. The Data Trans-
former is responsible for converting input data to the
compatible formats of the access methods used in the
hybrid databases. It also has to transform the query re-
sults from these systems to the format that the Query
Delegator requires.

By delegating the processing to available systems,
building a system following the hybrid architecture
takes less effort than using the native approach. How-
ever, the disadvantage of this approach include the lim-
ited control over the sub-components as well as the
challenges involved to efficiently coordinate them.

5. Analyzing existing RDF stores for Linked
Sensor Data

In this section, we will briefly analyze the most pop-
ular and mature existing RDF stores that qualify for the
required features which have been identified and dis-
cussed in Section 3. Table 1 summarizes the features
supported by these selected stores. Please be aware that
the selection process has been carried out with the tar-
get of identifying suitable RDF stores that can be used
for efficiently processing Linked Sensor Data with re-
spect to the provided features. A detailed systematic-
level evaluation of these stores will be presented later
in Section 7.

5.1. Virtuoso Open Source

Virtuoso Open Source (v7.2.4) [15] is an example of
the native architecture type and is also a widely-used
RDF store in the Semantic Web community. It is the
storage system that is hosting the DBPedia database
[4]. Virtuoso is a general purpose RDBMS with ex-
tensive RDF adaptations that are comprised of RDF-
oriented data types and a SPARQL-to-SQL front-end
compiler. In Virtuoso, RDF data can be stored as
RDF quads which are indexed properly in SQL tables.
The engine supports the SPARQL 1.1 language. A
SPARQL query will be translated properly to SQL via
the SPARQL-to-SQL compiler. Virtuoso’s user com-
munity is quite active and the software is updated reg-
ularly.

The current version of Virtuoso Open Source does
not support clustering features. However, it supports
advanced spatial indexing (using RTrees) and full-text
search. The engine provides its own spatial and text
search query language via SPARQL built-in functions.

Virtuoso does not have a dedicated temporal index. In-
stead, the value with a timestamp is indexed as an RDF
literal value. Therefore, a temporary query is processed
via the provided built-in SPARQL date-time functions.
For RDF data, Virtuoso’s index scheme consists of five
indices (psog, pogs, sp, op, gs) that have two full in-
dices over RDF quads plus three partial indices.

Virtuoso serves SPARQL queries via a pre-assigned
public SPARQL endpoint. The query modules will
then translate an input, SPARQL query to the cor-
responding SQL query referring to the five triple
store tables mentioned above. Virtuoso is backed by a
RDBMS and can adopt to all SQL optimization tech-
niques. For example, it provides a cost-based SQL op-
timizer which performs several types of query transfor-
mation, such as join order, index selection, selection of
join algorithms, etc. The Virtuoso cost model is based
on table row counts, defined indices and uniqueness
constraints, and column cardinalities, i.e. counts of dis-
tinct values in columns. Additionally, histograms can
be made for value distribution of individual columns.

5.2. Stardog

Stardog1 is a knowledge graph platform that sup-
ports RDF storage. Stardog follows the native architec-
ture design solution. Originally, it was implemented by
the developers of a well-known OWL reasoner (Pel-
let) [42]. At the time of writing, the latest version of
Stardog is v6.0.1 which supports full-text search, spa-
tial and basic temporal filters. As a graph database,
Stardog supports ACID transactions and SPARQL 1.1
[14]. Unlike Virtuoso, this engine does not define its
own spatio-temporal query language. Instead, it adopts
the WGS84 and OGC’s GeoSPARQL vocabularies
[35].

There are two indexing modes supported in Stardog,
one based only on triples and another one for quads.
Indexing data are stored on-disk for both cases. How-
ever, "in-memory" mode is also available. No other de-
tails in terms of index mechanisms are provided in any
publications.

Stardog follows the bottom-up approach to evalu-
ate the query execution plans generated from a given
SPARQL query [25]. In the query plan tree, leaf nodes
without input are evaluated first, and their results are
then sent to their parent nodes up the plan. Typical
examples of leaf nodes include scans, i.e. evaluations

1http://stardog.com

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Physical Storage

Bu
ffe

r/
Ca

ch
e

indexing
Data loading/

Data Indices

Query
Optimizer

Query
Delegator

Query
Parser

Query Engine

Files

Files Spatial
value

RDF
triples

Text
value

Triple Router

Data
Transformer

Query
Rewriter

Data
Transformer

Query Triple Store

Spatial DB

Text DB

Fig. 2. The hybrid architectural design

of triple patterns, evaluations of full-text search pred-
icates, and VALUES operators. Parent nodes, such as
joins, unions, or filters, take the results produced by
the leaf nodes as inputs, process them and send their
results further towards the root of the tree. The root
node of the plan tree, which is typically one of the solu-
tion modifiers2, produces the final results of the query
which are then encoded and sent to the client.

Another important feature of Stardog is clustering
support which allows horizontal scaling. However, this
feature is only available in the commercial version.
According to a recent platform report, Stardog can pro-
cess 10 billion triples stored on a single server.

5.3. Apache Jena

Apache Jena3 is an open source SPARQL 1.1 frame-
work for Java. It provides an API to extract data from
and write to RDF graphs. Jena implements the native
architecture design which includes the optional quads
RDF storage layers, namely TDB (file system), SDB
(SQL DBMS), and in memory. Jena also provides in-
ference support (supporting RDFS, OWL-Lite or us-
ing custom rules), but it works only on triple stores and
not on quadruples stores. From version 3, Jena sup-
ports full-text search and basic spatial index through
the use of Lucene or Solr. No clustering solution has
been mentioned.

Regarding the indexing architecture, the one in Jena
is built around three concepts, namely a node table,
triple/quad indexes, and a prefixes table. Among them,
the node table is responsible for storing the dictio-
nary which provides two mappings for the RDF terms,

2https://www.w3.org/TR/sparql11-query/#solutionModifiers
3https://jena.apache.org/

namely string-to-id and id-to-string. The default stor-
age of the former is implemented using B+ trees, and
the latter is based on a sequential access file. Triples
and quads are stored in specialized structures. Triples
are held as thre identifiers in the node table while quads
are assigned as four. Again, B+ trees are used to persist
these indices.

Query execution in Jena involves both static and dy-
namic optimizations [1]. Static optimizations aim to
transform the algebras of the execution tree into new,
equivalent and optimized algebra forms. This transfor-
mation process is performed in advance of the query
execution. Meanwhile, dynamic optimizations involve
deciding on the best execution approach during the ex-
ecution phase and can take into account the actual data
so far retrieved.

A number of optimization strategies are provided:
a statistics-based strategy, a fixed strategy and a strat-
egy of no reordering. For the statistics-based strategy,
the Jena optimizer uses information captured in a per-
database statistics file to specify the join order of the
query triple patterns. For that, the statistics file takes
the form of a number of rules for approximate match-
ing counts for triple patterns. The file can be automat-
ically generated when the engine starts. Users can up-
date it manually by adding and modifying rules to tune
the database based on higher-level knowledge, such as
inverse function properties.

5.4. RDF4J

RDF4J4 (formerly known as Sesame [10]) is an
open source Java framework for processing RDF data.
It is a native RDF processing engine which includes

4http://rdf4j.org

8 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

parsing, storing, inferencing and querying over RDF.
Similar to Apache Jena, RDF4J also supports two
out-of-the-box RDF databases (in-memory and native
store) along with third party storage solutions. It also
fully supports SPARQL 1.1, full-text search and spatial
index in conjunction with the GeoSPARQL language.
RDF4J has no clustering feature.

The key component of RDF4J is a “Storage And
Inference Layer” (SAIL). In short, SAIL is an appli-
cation programming interface that offers RDF-specific
methods to its client and translates these methods to
calls to its specific underlying DBMS. The benefit of
the introduction of SAIL is the flexible implementa-
tion of RDF4J on top of a wide variety of repositories
without changing other RDF4J’s components. Conse-
quently, in addition to its own in-memory and disk-
based repositories, RDF4J can be easily attached to
other DBMS such as MySQL, PostgreSQL, etc. The
repository used in this paper is the default native disk-
based repository, which originally provided by RDF4J.
Regarding the query optimization used in RDF4J, no
detailed information are publicly provided.

5.5. Strabon

Strabon[28] is an open-source semantic DBMS that
can be used to store linked geospatial data expressed
in stRDF format and query it using the stSPARQL
language [27]. It follows the hybrid architecture de-
sign and is backed by a PostGIS extension of Post-
gres RDBMS plus RDF4J, allowing it to manage
both semantic and spatial RDF data. Strabon supports
SPARQL 1.1. It provides spatial, temporal search and
basic text search. In contrast to other engines, Strabon
provides an advanced temporal search which allows
users to query Allen’s temporal relationship between
two temporal objects. In terms of indexing capability,
the developers of Strabon reported that it can scale up
to 500 million triples. No clustering solution is avail-
able for Strabon.

When data is imported into to Strabon, the data is
firstly decomposed into stRDF triples and each triple
is processed separately. Data is stored using dictio-
nary encoding that follows a “per-predicate” scheme.
The “per-predicate” scheme uses vertical partitioning
to store triples in different tables based on their pred-
icate, and one table per predicate is maintained. The
B-Tree algorithm is then applied on these predicate ta-
bles. For spatial literals found during the data loading,
Strabon stores them in a dedicated geo_values table.

A spatial index is then created by applying an R-tree-
over-GiST algorithm [23].

Query processing in Strabon is implemented by
modifying the RDF4J components. The query engine
consists of a parser, an optimizer, an evaluator and a
transaction manager. Moreover, besides the standard
formats offered by Sesame, Strabon offers the KML
and GeoJSON encodings, which are widely used for
representing the spatial data. Strabon applies exactly
the same as Sesame’s query optimization techniques
for the standard SPARQL part of a stSPARQL query.
For the spatial extension functions, an additional opti-
mization step is introduced. In this step, the cost of the
spatial functions presented in the query will be eval-
uated by PostGIS. Based on the cost estimated, the
query tree is then optimized and executed.

6. Evaluation methodology and metrics

The previous sections give insight to the architec-
ture and available features of selected RDF stores that
can be applied for Linked Sensor Data. This section
will describe in detail the methodology and the met-
rics used to evaluate the performance of these systems.
We have triggered the performance of Jena, RDF4J
and Strabon by modifying their source code. Virtuoso
and Stardog already provide some metrics themselves,
which we retrieve by using the Virtuoso JDBC/CLI
and Stardog APIs, respectively.

Our evaluation methodology is carried out within
two phases. In the first phase, we will evaluate the data
loading performance of the RDF stores over the linked
sensor dataset. In this experiment, we evaluated sepa-
rately the loading performance of semantic, spatial and
text data.

The second phase is to evaluate the query execution
performance. We firstly define a benchmark queries
set which is performed over our linked meteorological
dataset. These queries and dataset are described later
in Section 7. After having these benchmark queries de-
fined, we evaluate the query performance by executing
these queries. In addition to the overall query execu-
tion time, we also measure the execution performance
of query parsing, query optimization and query exe-
cution. The query parsing time is calculated from the
time the system retrieves the query string to the time
the query algebra tree is generated. Similarly, the query
optimization process is considered starting from the
time the query tree and it is finished when an execution
plan is delivered. For simplicity, any other run-time de-

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 1
RDF stores comparison

Technical characteristics

Query language Spatial filter Full-text search Temporal filter License Clustering
Latest release

Date
Virtuoso 7 SPARQL, SQL Y Y Y (basic) Cm,OS N Oct 2018
Stardog 6 SPARQL, SQL Y Y Y (basic) Cm,OS Y Jan 2019
Apache Jena SPARQL Y Y Y (basic) OS N March 2019
RDF4J SPARQL Y Y Y (basic) OS N April 2019
Strabon SPARQL Y N Y (advance) OS N Jan 2018

cisions are considered as part of the query execution
rather than part of the query optimization. The query
execution is finished when the last result has been re-
ceived.

7. Experimental Settings

7.1. Benchmark dataset

Our experiments are conducted over the linked me-
teorological dataset, a sub-set of our GoT dataset [29].
The meteorological dataset consists of over 30 years
of meteorological data for over the world. The dataset
is categorized into two parts, namely static and dy-
namic dataset. The static one describes the station and
sensor descriptions, such as spatial information, text
data, etc, and is not frequently updated. The dynamic
dataset contains the observation data generated by the
sensor station described in the static dataset. The dy-
namic dataset is frequently updated.

Due to the large size of the meteorological dataset
and also because of our limited infrastructure re-
sources, only a subset of this dataset is used in our ex-
periments. As described in Table 2, this subset con-
tains the static dataset and the observation data from
year 2016 to 2018, results in a set of 2.5B triples.

The spatial and text data loading performance are
evaluated over the static dataset. To provide a more
comprehensive evaluation, we enlarge this dataset by
generating more spatial and text objects on the ba-
sis of the SOSA/SSN data model [13, 24], same data
model used for our linked meteorological data. The
static dataset is described in Table 3.

The dynamic dataset presenting the observation data
is used to evaluate the query performance in the sec-
ond phase of our experiment. The observation data are
extracted within the time period from Jan 2016 to May
2016 (250M triples), as described in Table 4, which we
believe could indicate a general performance measure
for this test.

Table 2
Benchmark Linked Meteorological Dataset

Year Num. Observation Num. Triples (billion) Size (Gb)
2016 79,305,738 0.555 112
2017 194,748,696 1.363 274
2018 357,237,456 2.5 503

Sum 631,291,890 4.419 889

Table 3
Static datasets description

Dataset Static dataset

Num. spatial/text object (million) 20

Num. triples (million) 120

Raw Data size 20G

7.2. Benchmark queries

We have selected a set of 11 queries that performs
over our benchmark dataset. In general, our bench-
mark queries aim to test the engine processing ca-
pability with respect to their provided features for
querying Linked Sensor Data. As previously men-
tioned, because the standard SPARQL 1.1 language
does not support spatio-temporal queries nor the full-
text queries, some RDF stores have to extend the
SPARQL language with their own specific syntax.
Therefore, some of these queries need to be rewritten
so that they are compatible with the engine under test.

We summarized some highlight features of the
benchmark queries as follows: (i) if the query has in-
put parameter; (ii) if it requires geo-spatial search; (iii)
if it uses temporal filter; (iv) if it uses full-text search
on string literal; (v) if it has Group By feature; (vi) if
the results needs to be ordered via ORDER By oper-
ator; (vii) if the results are using the LIMIT operator;
(viii) the number of variables in the query; and (ix) the
number of triples patterns in the query. The group-by,
order-by and limit operators imply the effectiveness of
the query optimization techniques used by the engine

10 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 4
Datasets description for query performance evaluation (from 01/2016 to 05/2016)

Dataset Num. observation (million) Num. Triples (million) Size
2 months 17.5 122.4 2.8G

3 months 22.2 155.6 4.3G

4 months 25.8 180.9 6.5G

5months 30.5 213.3 7.1G

Static A 0.75 135Mb

(e.g., parallel unions, ordering or grouping using in-
dexes, etc.), and the number variables and triples pat-
terns give a measure of query complexity. These sum-
mary of highlight features are described in Table 5 and
their SPARQL representations are presented in the Ap-
pendix 9.

7.3. Platform

We conducted our experiments on a physical server
which has following configuration: 2x E5-2609 V2 In-
tel Quad-Core Xeon 2.5GHz 10MB Cache, Hard Drive
3x 2TB Enterprise Class SAS2 6Gb/s 7200RPM - 3.5"
on RAID 0, Memory 128GB 1600MHz DDR3 ECC
Reg w/Parity DIMM Dual Rank.

7.4. Setup

We have experimented on Jena v3.9.0, RDF4J
v2.6.5, Stardog v6.0.1 and Virtuoso Open Source
v7.2.5. For Virtuoso, the system parameters Num-
berOfBuffers and MaxDirtyBuffers were set to 40GB.
Java heap size for Jena and RDF4J is also set to 40GB.
Besides, for Jena, we have enabled its optimization
strategy option to statistic strategy. Regarding RDF4J
configuration, we have configured the index mecha-
nism to spoc, posc and opsc. For Stardog, as we will
not evaluate the inference capability, we disable this
option when importing data. The spatial and textual
index options were enabled. Similar to other engines,
Stardog memory size was also set to 40 GB. The rest
of the parameters were left to the default values.

8. Results and Discussion

In this section we present and discuss the experi-
mental results following the evaluation methodology
and metrics described in Section 6.

8.1. Data loading throughput

8.1.1. Triple loading performance
The triple loading performance of the test stores is

depicted in Figure 3. We can see how the performance
is affected when the size of the RDF dataset increases.
According to the results, Virtuoso is the fastest, fol-
lowed by Stardog and Jena with about 2 times and 6
times slower than Virutoso, respectively . RDF4J is the
slowest being about 10 times slower than Virtuoso. Ac-
cording to our observation, there are two possible ex-
planations for the poor loading performance of RDF4J:
(1) The high frequent index updates due to the rela-
tively small page size used by RDF4J; (2) The HTTP
communication latency between the RDF4J client and
server components. Note that, RDF4J does not support
bulk data import. Instead, it provides a set of REST
API functions for client to access the RDF database
either for reading, writing or querying data. This con-
sequently leads to the dramatical increase in the net-
work communication latency time when the number of
request access to the database goes up. This reason is
also explained for the poor data loading performance
of Strabon.

Regarding the required repository size, it can be ob-
served in Table 6 that this metric has a linear increase
with respect to the dataset size. Unfortunately, due to
the complex hybrid architecture of Strabon, its repos-
itory size metric can not be measured. For Virtuoso,
its index compression methods pay off, resulting in
the smallest index size. Stardog uses 80% more space
than Virtuoso. Jena and RDF4J generate much larger
indexes about 4 times larger than those of Virtuoso,
though they have less indexes.

8.1.2. Spatial and text data loading performance
Unlike the existing performance studies that only fo-

cus on general data loading performance, our evalua-
tion also measures the loading performance on spatial
and text data. In this regard, we measure the loading
speed via the number of object can be indexed per sec-
ond, instead of the number of triples. An object con-

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Table 5
Benchmark queries characteristics

Query Parametric Spatial filter Temporal filter Text search Group By Order By LIMIT Num. variables Num. triple patterns
1 X X 3 3
2 X 3 4
3 X X 7 8
4 X X X X X X 7 8
5 X X X X 4 5
6 X X 5 8
7 X X X X X 7 8
8 X X 3 4
9 X X 6 7
10 X X X X 7 9
11 X 2 1

Table 6
Required repository capacity (in GB) with respect to dataset size

RDF Engine/Data size 500 (mil) 750 (mil) 1000 (mil) 1250 (mil) 1500 (mil) 1750 (mil) 2000 (mil)
RDF4j 60 79 99 121 142 NA NA
Virtuoso 7 14 19 23 32 39 47 56
Stardog 24 43 64 82 102 125 146
Apache Jena 62 89 117 135 164 NA NA
Strabon NA NA NA NA NA NA NA

0

20

40

60

80

100

120

140

160

180

200

500 750 1000 1250 1500 1750 2000

Lo
ad

in
g

tim
e

(h
ou

r)

Number of loaded triples (million)

Chart Title

RDF4j Virtuoso 7 Stardog Apache Jena Strabon

Fig. 3. RDF stores performance of RDF data loading

sists of spatial and text description. This evaluation
helps us to have a better understanding about the in-
dexing behaviour of the test engines for specific types
of data such as geo spatial and text.

The spatial and text data loading time with respect
to dataset size is shown in Figure 4. Figure 5 depicts
the average loading speed. As described, RDF4J and
Strabon perform poorly - their average loading speed
is less then 1000 object/sec when loading 20 millions
objects. Apache Jena has a better performance and its

loading speed can reach to 1306 object/sec. Its loads
20 (mil) dataset in about 5.6 hours. Stardog performs
better than Jena, results in 4 hours for loading the same
dataset and the average speed is almost 14k object/sec.
In comparison, Virtuoso achieves much faster loading
speed than others, which can reach to 3287 object/sec.
However, a drawback of the impressive loading speed
is the increase of number triples stored in Virtuoso
with respect to the original data provided. This is be-
cause the additional geo:geometry spatial triples which
are generated during the transformation of the geo:lat
and geo:long triples to enable the geo-spatial indexing.

8.2. Query performance

The set of figures 6 to 16 presents the average query
response time concerning Jena, Virtuoso, RDF4J, Star-
dog and Strabon with respect to the different time hori-
zons of two, three, four and five months observation
data of year 2016, respectively. The datasets used to
evaluate the query performance are described in Table
4. The benchmark queries have been executed by per-
forming a pseudo-random sequence of these queries
repeated ten times in order to minimize the caching ef-
fect. Beside, we also empty the system cache before
running the query of each test execution.

12 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0

5000

10000

15000

20000

25000

1 5 10 15 20

In
de

xi
ng

 ti
m

e
(s

ec
on

d)

Number of loaded objects (million)

RDF4j Virtuoso 7 Stardog Apache Jena Strabon

Fig. 4. Spatial/text data indexing time

0

1000

2000

3000

4000

5000

6000

1 5 10 15 20

N
um

. o
bj

ec
t/

se
c

Number of loaded objects (million)

Spatial/text object average loading/indexing performance

RDF4j Virtuoso 7 Stardog Apache Jena Strabon

Fig. 5. Average spatial/text data indexing speed

Looking at the evaluation results, unsurprisingly, the
query performance of all systems decreases with the
growth of dataset. However, in the cases of no spatio-
temporal nor full-text searches are involved (Q2, Q11),
the query performances remain stable and are weakly
effected by the increase of dataset size. This is un-
derstandable because these queries are only performed
over the static dataset, which is unchanged and not in-
fluenced by the dynamic data. Virtuoso and Stardog
perform closely and require less execution time, in the
order of ms. For example, in the case of 5 months
dataset, Virtuoso takes 83 (ms) to execute the Q2 while
it is 137 (ms) in Stardog. Regarding the others, the per-
formances of RDF4j and Strabon are comparable, fol-
lowed by Jena.

For the query that has only spatial filter and ba-
sic triple matching such as Q1, Virtuoso executes this
query in about 80(ms) for 5 months dataset. Following
this is Stardog with 112(ms). Jena and RDF4J appear
to have the worst performance with average response
times are 50128(ms) and 1761(ms), respectively. We
attribute this to the effectiveness of the query optimizer
in each system. Wrong execution plan might lead to
a catastrophic performance. We will discuss this fur-
ther in the following subsection that is about the cost
breakdown of query performance.

Another aspect to be considered is the mixing of
spatial filter, time filter and full-text search queries
(Q3, Q4, Q5, Q9, Q10). According to the evaluation
results, Virtuoso is still best ranked with less then 1(s)
of execution time for 5 months dataset, followed by
Stardog. With Jena, RDF4J and Strabon, we obtained
an extremely high query execution time, greater than
50(s). Analyzing the cost breakdown of these queries,
we derive two possible explanations: (1) The growth of
the observation dataset size, which certainly requires
more data processing operations (look up, read, etc)

and resource-consuming, results in the considerable
increase of the query execution time. (2) The ineffi-
cient query execution strategies that have been applied.
Inappropriate execution plan also consequently effects
to the query performance.

8.3. Cost breakdown

Table 7 shows the cost breakdown between query
parsing, query optimization and execution, across all
stores and queries for 5 months dataset. It is easy to
realize that, except Virtuoso, for most stores, the query
run-time cost is mostly dominated by the execution
time. For example, looking at the Q3 cost breakdown,
the execution costs of Jena and Stardog are 48,833
(ms) and 11410 (ms), taking over 97% and 78% of
query response time, respectively. Meanwhile, Virtu-
oso dominates only 74 (ms) which takes about 12% the
total cost.

The query parsing time only takes a small fraction
of the total cost. This is applied for all stores. Regard-
ing the cost of query optimization, we observe that this
cost is different across the systems. Specifically, Virtu-
oso spends significantly more time with respect to oth-
ers. An example of this is the Q6, Virtuoso spends 48
(ms) over the total time 49 (ms) for the query optimiza-
tion, taking almost 100%. In contrast, the optimization
cost of Q6 is 80 (ms) in Stardog, about 55% of the total
cost.

In the following, for further analyzing the cost
breakdown, we choose the Q10 as the representative
for all queries. The reason for this is due to its high
complexity, that covers almost all query characteristics
and also demands a heavy computation. Analyzing the
results in Figure 17, we observes that: (1) Optimiza-
tion costs of this query in Virtuoso, Stardog and Jena
are fairly consistent and are not significantly affected

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Ta
bl

e
7:

C
os

tb
re

ak
do

w
n

of
ev

al
ua

te
d

qu
er

ie
s

fo
r5

m
on

th
s

da
ta

se
t

Q
ue

ry
Je

na
V

ir
tu

os
o

R
D

F4
j

St
ar

do
g

St
ra

bo
n

Pa
rs

.
(m

s)
O

pt
.

(m
s)

E
xe

.
(m

s)
Pa

rs
.

(m
s)

O
pt

.
(m

s)
E

xe
.

(m
s)

Pa
rs

.
(m

s)
O

pt
.

(m
s)

E
xe

.
(m

s)
Pa

rs
.

(m
s)

O
pt

.
(m

s)
E

xe
.

(m
s)

Pa
rs

.
(m

s)
O

pt
.

(m
s)

E
xe

.
(m

s)
Q

1
10

18
14

48
30

4
1

75
4

9
54

2
12

10
2

10
1

9
11

55
1

88
Q

2
7

10
5

53
1

70
12

6
11

00
12

7
1

94
42

8
10

0
12

03
Q

3
15

13
20

48
83

3
1

50
0

74
16

25
00

22
64

14
1

30
85

11
41

0
20

31
40

59
83

0
Q

4
13

18
40

48
30

5
2

56
0

27
15

14
32

30
95

28
1

31
15

10
88

3
19

48
59

55
42

7
Q

5
14

14
10

48
73

9
1

50
4

15
90

14
2

73
66

21
85

6
Q

6
13

16
3

10
1

48
0

16
81

3
35

6
1

80
64

23
90

81
5

Q
7

20
17

31
48

41
5

2
72

4
21

14
30

22
74

04
1

20
4

3
30

21
47

56
81

7
Q

8
10

15
9

37
3

1
65

4
8

11
00

86
8

1
71

41
15

14
25

56
8

Q
9

16
17

74
48

38
8

1
11

0
8

12
21

13
15

16
53

1
10

5
13

6
17

35
49

76
97

7
Q

10
22

16
77

48
47

0
2

63
5

8
21

15
46

14
41

41
2

30
93

11
20

1
33

11
87

71
63

6
Q

11
5

37
41

0
1

15
0

4
20

4
1

46
67

6
19

3

14 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Q1

60

12000

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 6. Q1 execution time

Q2

60
160
260
360
460
560
660
760
860
960

1060
1160
1260
1360

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 7. Q2 execution timeQ3

500

100000

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 8. Q3 execution time

Q4

60

12000

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 9. Q4 execution timeQ5

50

500

5000

50000

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 10. Q5 execution time

Q6

30

230

430

630

830

1030

1230

1430

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 11. Q6 execution time

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Q7

60

12000

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 12. Q7 execution time

Q8

30

230

430

630

830

1030

1230

1430

1630

1830

2030

2230

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 13. Q8 execution timeQ9

60

12000

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 14. Q9 execution time

Q10

60

12000

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 15. Q10 execution timeQ11

10

60

110

160

210

260

310

360

410

460

2 months 3 months 4 months 5 months

Q
ue

ry
 E

xe
cu

tio
n

tim
e

(m
s)

Dataset

Jena Virtuoso RDF4j Stardog Strabon

Fig. 16. Q11 execution time

16 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

by the dataset size. We attribute this to the effective-
ness of query execution plan caching and the statistical
approach taken in these systems. (2) On the contrary,
RDF4J and Strabon clearly present a growth in opti-
mization costs with respect to the dataset size. This in-
dicates that these two systems have applied different
optimization techniques in the presence of different
workloads.

Following these two observations mentioned above,
it still lacks of evidences to conclude which strategy
performs better. It is evidenced by the unpredictable
query processing behaviour that draws our attention
on Q1. Note that, the complexity of this query is low
as it only requires simple spatial computation in con-
junction with semantic triple matching. Among the
four stores, Virtuoso spends 98% query run-time for
query optimization. For Q1, the total query run-time
is 80(ms) and Virtuoso takes 75(ms) for query opti-
mization. However, the significant effort for optimiza-
tion pays off. Figure 18 illustrates Q1 execution costs
across different stores, where Virtuoso significantly
outperforms other stores. In the meanwhile, RDF4J
spends only 30% time for query optimization on Q1,
much less than Virtuoso, but the execution time is ex-
tremely high, which is 1210(ms), far worse than Virtu-
oso.

In the same case of Q1, Apache Jena spends more
time than RDF4J for query optimization, 1814(ms)
in comparison with 542(ms). However, it results in a
catastrophic performance. Analyzing the Jena query
processing log, we attribute this to the inappropriate
query execution plan generated for Q1. According to
the data statistic, a most efficient way to execute Q1 is
that the spatial filter with the low selectivity should be
executed first. Thereafter the results will be joined with
the semantic triple matching with higher selectivity.
This execution plan helps to eliminate all unnecessary
intermediate results so that it will reduce the number
of join operations. Unfortunately, Jena executes this
query in the opposite way, as shown in Listing 1, that
requires a lot of join operations. This results in the dra-
matical increase of query processing time. We attribute
this to a lack of spatio-temporal statistical information
about the dataset. Although Jena already provided a
function to generate the statistic of a specified dataset,
however, it only works for standard RDF dataset, not
for spatio-temporal dataset.

(join
(quadpattern
(quad <urn:x-arq:DefaultGraphNode>
?station rdf:type got:ontology/WeatherStation)
(quad <urn:x-arq:DefaultGraphNode>

?station geo:hasGeometry ?geoFeature)
(propfunc spatial:withinCircle
?geoFeature (59.783 5.35 20 "miles")
(table unit)

))

Listing 1: Jena optimization plan for Q1

8.4. Discussion

Our performance study addresses a number of well-
know RDF stores such as Virtuoso, RDF4J, Apache
Jena, Stardog and Strabon in terms of data loading
performance and query execution behaviours on pro-
cessing over Linked Sensor Data. In order to analyze
the systems strengths and weakness of these stores,
we first carefully assess their data loading performance
on sensor data. In this regards, along with the general
RDF data loading evaluation, we also study the spa-
tial and text data loading speed. Generally, Virtuoso
and Stardog perform better than others. Moreover, we
also learn that they have better supports on bulk and
near real-time data import. In our opinion, this is an
advanced feature that should be considered when se-
lecting a RDF engine for sensor data.

Along with the different data aspects loading assess-
ment, corresponding query performance evaluations
are also discussed. Unlike the existing approaches that
only observe the overall query performance, we also
analyze the dynamics and query processing behaviours
of the test stores at a deeper detailed level. We split the
query execution process into a series of sub processes,
which are query parsing, query optimization and exe-
cution. Each sub process is then evaluated separately.
Through the evaluation results, with the general as-
sessment, Virtuoso outperforms all other stores. It is
followed by Stardog and Strabon. Moreover, we also
learn that the time cost for each process is different
across these stores. For example, Virtuoso dedicates
significantly most time for query optimization process
with respect to the others. On the contrary, Jena and
RDF4J mostly focus on the execution process.

Beside the judgments about the overall engines per-
formance, several further findings related to data in-
dex and query optimization have been derived: (1) Due
to the poor performance of the queries that requires
analytical computing on sensor observation data, such

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0

500

1000

1500

2000

2500

3000

3500

2 months 3 months 4 months 5 months

Q
ue

ry
 o

pt
im

iza
tio

n
tim

e
(m

s)

Dataset
Jena Virtuoso RDF4J Stardog Strabon

Fig. 17. The optimization time of Query 10 by varying increasing dataset

1

10

100

1000

10000

100000

RDF4j Virtuoso 7 Stardog Apache Jena Strabon

Q
ue

ry
 e

xe
cu

tio
n

tim
e

(m
s)

RDF engines

Q1 execution time

Fig. 18. Q1 execution costs for 5 months dataset (in logscale)

as aggregation, a proper time series index approach
is needed. Strabon has a dedicated temporal index for
data with time-stamp, but it just focuses on querying
temporal relations of two temporal objects rather than
on supporting efficient analytical functions . (2) Select-
ing a wrong query execution plan is potentially catas-
trophic. In our experiments, for Jena, failure in query
planning results in the worse performance. (3) There
is a lack of statistic data on spatial and temporal as-
pects of sensor dataset. This is evidenced by the in-
efficient query planning (Q1,Q3, Q4, Q5) of the RDF
stores that use statistic optimization strategy such as
Jena and RDF4J.

9. Conclusion and Future Work

This paper presents our recent efforts to provide a
comprehensive performance study of RDF stores for
Linked Sensor Data. One of the goals of our paper
is to summarize the list of fundamental requirements
of RDF stores so that they can be used for managing
and querying sensor data. We have also described the
abstract architecture design of current RDF database
technologies that support spatio-temporal queries. An-
other main contribution of our work is to provide a
comparative analysis of data loading and query perfor-
mance of a representative set of RDF stores, namely
Apache Jena, Virtuoso, RDF4J, Stardog and Strabon.
In our evaluation, particular attentions have been given
on evaluating the performance of geo-spatial search,
temporal filter and full-text search over sensor data.
Since such assessment aspects have not been fully con-
sidered and addressed by the existing works, our pa-
per gives valuable insights about the strengths and

weaknesses of the currents RDF stores implementation
when applying for Linke Sensor Data.

For future work, we are currently planning more ex-
periments on spatio-temporal distributed RDF stores.
We want to have a more comprehensive understanding
about the spatio-temporal query processing behaviours
in a distributed environment. Our long-term goal is to
develop of a scalable spatio-temporal query processing
engine for Linked Sensor Data.

Acknowledgements

This paper has been funded in part by Science Foun-
dation Ireland under grant numbers SFI/12/RC/2289
and SFI/16/RC/3918 (co-funded by the European Re-
gional Development Fund), the BIG-IoT project un-
der grant number 688038, and the Marie Skłodowska-
Curie Programme SMARTER project under grant
number 661180.

Appendix - Benchmark Queries SPARQL
Representations

PREFIXES

PREFIX sosa: <http://www.w3.org/ns/sosa/>
PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX wgs84: <http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX got:<http://graphofthings.org/ontology/>
PREFIX geoname: <http://www.geonames.org/ontology#>

18 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Query 1. Given the latitude and longitude position, it
retrieves the nearest weather station within 10 miles

SELECT ?station ?coor
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature wgs84:geometry ?coor.
FILTER (<bif:st_intersects>

(?coor, <bif:st_point>($long$, lat),$radius$)).
}

Query 2. Given the country name, it retrieves the total
number of weather station deployed in this country

SELECT (count(?station) as ?total)
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature wgs84:geometry ?coor.
?geoFeature geoname:parentCountry "$country name$".

}

Query 3. Given the country name and year, it detects
the minimum temperature value that has been observed
for that specified year

SELECT min(?value) as ?min ?station
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature geoname:parentCountry "$country name$".
?sensor sosa:isHostedBy ?station.
?sensor sosa:observes got:SurfaceTemperatureProperty.
?obs sosa:madebySensor ?sensor;

sosa:resultTime ?time;
sosa:hasSimpleResult ?value.

filter (year(?time)=$year$).
}

Query 4. Given the area location and radius, it detects
the hottest month of that area in given year

SELECT ?month (avg(?value) as ?avgTemp)
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature wgs84:geometry ?coor.
FILTER (<bif:st_intersects>(?coor, <bif:st_point>

($long$,lat),$radius$)).
?sensor sosa:isHostedBy ?station.
?sensor sosa:observes got:SurfaceTemperatureProperty.
?obs sosa:madebySensor ?sensor;

sosa:resultTime ?time;
sosa:hasSimpleResult ?value.

filter (year(?time)=$year$).
}
GROUP BY (month(?time) as ?month)
ORDER BY DESC (avg(?value)) limit 1

Query 5. Given the station URI and year, it retrieves
the average wind speed for each month of year

SELECT ?month (avg(?value) as ?avgTemp)
WHERE
{

?sensor sosa:isHostedBy <$station URI$>.
?sensor sosa:observes got:WindSpeedProperty.
?obs sosa:madebySensor ?sensor;

sosa:resultTime ?time;
sosa:hasSimpleResult ?value.

filter (year(?time)=$year$)
}
GROUP BY (month(?time) as ?month)
ORDER BY ?month

Query 6. Given a date, it retrieves the total number of
observation that were observed in California state

SELECT count(?obs) as ?number
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature geoname:parentADM1 "California".
?geoFeature geoname:parentCountry "United States".
?sensor sosa:isHostedBy ?station.
?sensor sosa:observes got:SurfaceTemperatureProperty.
?obs sosa:madebySensor ?sensor;

sosa:resultTime ?time.
filter (year(?time)=$year$ && month(?time)=$month$

&& day(?time)=day).
}

Query 7. Given the latitude, longitude and radius , it
retrieves the latest visibility observation value of that
area

SELECT ?value ?time
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature wgs84:geometry ?coor.
FILTER (<bif:st_intersects>(?coor, <bif:st_point>

($long$,lat),$radius$)).
?sensor sosa:isHostedBy ?station.
?sensor sosa:observes got:AtmosphericVisibilityProperty.
?obs sosa:madebySensor ?sensor;

sosa:resultTime ?time;
sosa:hasSimpleResult ?value.

}
ORDER BY DESC (?time)
LIMIT 1

Query 8. Given a keyword, it retrieves all the places
matching a keyword

SELECT ?station ?place ?sc
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature geoname:parentADM1 ?place.
?place bif:contains "’$keyword$’" OPTION (score ?sc).

}ORDER BY ?sc

Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Query 9. Given a place name prefix, it summaries the
number of observation of places that match a given
keyword. The results are grouped by place and ob-
served property

SELECT count(?obs) as ?totalNumber ?place ?observedType
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature geoname:parentCountry ?place.
?place bif:contains "’$name prefix$’*" OPTION (score ?sc).
?sensor sosa:isHostedBy ?station.
?sensor sosa:observes ?observedType.
?obs sosa:madebySensor ?sensor.

}GROUP BY ?place ?observedType

Query 10. Given a keyword, it retrieves the average
humidity value for places that matches a keywords
since 2016

SELECT avg(?value) as ?avgValue ?place
WHERE
{

?station a got:WeatherStation.
?station geo:hasGeometry ?geoFeature.
?geoFeature geoname:parentCountry ?place.
?place bif:contains "’$keyword$*’" OPTION (score ?sc).
?sensor sosa:isHostedBy ?station.
?sensor sosa:observes got:AtmosphericPressureProperty.
?obs sosa:madebySensor ?sensor;

sosa:resultTime ?time;
sosa:hasSimpleResult ?value.

filter(year(?time)>=2016)
}GROUP BY ?place

Query 11. It retrieves the total number of sensor for
each observed properties

SELECT (count(?sensor) as ?number) ?obsType
WHERE
{

?sensor sosa:observes ?obsType
}GROUP BY ?obsType

References

[1] Tdb optimizer. https://jena.apache.org/documentation/tdb/
optimizer.html.

[2] Jans Aasman. Allegro graph: Rdf triple database. Cidade:
Oakland Franz Incorporated, 17, 2006.

[3] Medha Atre, Jagannathan Srinivasan, and James A Hendler.
Bitmat: A main memory rdf triple store. Tetherless World Con-
stellation, Rensselar Plytehcnic Institute, Troy NY, 2009.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann,
Richard Cyganiak, and Zachary Ives. Dbpedia: A nucleus for
a web of open data. In The semantic web, pages 722–735.
Springer, 2007.

[5] Pierfrancesco Bellini and Paolo Nesi. Performance assessment
of rdf graph databases for smart city services. Journal of Visual
Languages & Computing, 45:24–38, 2018.

[6] Tim Berners-Lee, James Hendler, and Ora Lassila. The seman-
tic web. Scientific american, 2001.

[7] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan
Peikov, Zdravko Tashev, and Ruslan Velkov. Owlim: A family
of scalable semantic repositories. Semantic Web, 2(1):33–42,
2011.

[8] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim
Berners-Lee. Linked data on the web (ldow2008). In Proceed-
ings of the 17th World Wide Web. ACM, 2008.

[9] Christian Bizer and Andreas Schultz. The berlin sparql bench-
mark. International Journal on Semantic Web and Information
Systems (IJSWIS), 5(2):1–24, 2009.

[10] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen.
Sesame: A generic architecture for storing and querying rdf
and rdf schema. In International semantic web conference,
pages 54–68. Springer, 2002.

[11] Eugene Inseok Chong, Souripriya Das, George Eadon, and
Jagannathan Srinivasan. An efficient sql-based rdf querying
scheme. In Proceedings of the 31st international conference on
Very large data bases, pages 1216–1227. VLDB Endowment,
2005.

[12] Michael Compton, Cory Andrew Henson, Laurent Lefort, Hol-
ger Neuhaus, and Amit P Sheth. A survey of the semantic
specification of sensors. 2009.

[13] Michael Compton et al. The ssn ontology of the w3c seman-
tic sensor network incubator group. Web Semantics: Science,
Services and Agents on the World Wide Web, 17:25–32, 2012.

[14] Olivier Curé and Guillaume Blin. RDF database systems:
triples storage and SPARQL query processing. Morgan Kauf-
mann, 2014.

[15] Orri Erling and Ivan Mikhailov. Virtuoso: Rdf support in a na-
tive rdbms. In Semantic Web Information Management, pages
501–519. Springer, 2010.

[16] D. Evans. The internet of things: How the next evolution of the
internet is changing everything. 2011.

[17] David C Faye, Olivier Cure, and Guillaume Blin. A survey of
rdf storage approaches. Revue Africaine de la Recherche en
Informatique et Mathématiques Appliquées, 15:11–35, 2012.

[18] George Garbis, Kostis Kyzirakos, and Manolis Koubarakis.
Geographica: A benchmark for geospatial rdf stores (long ver-
sion). In International Semantic Web Conference, pages 343–
359. Springer, 2013.

[19] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. Lubm: A
benchmark for owl knowledge base systems. Web Semantics:
Science, Services and Agents on the World Wide Web, 3(2-
3):158–182, 2005.

[20] Stephen Harris and Nicholas Gibbins. 3store: Efficient bulk rdf
storage. 2003.

[21] Stephen Harris and Nigel Shadbolt. Sparql query processing
with conventional relational database systems. In International
Conference on Web Information Systems Engineering, pages
235–244. Springer, 2005.

[22] Andreas Harth and Stefan Decker. Yet another rdf store: Per-
fect index structures for storing semantic web data with con-
texts. Technical report, DERI Technical Report, 2004.

[23] Joseph M Hellerstein, Jeffrey F Naughton, and Avi Pfeffer.
Generalized search trees for database systems. September,
1995.

[24] Krzysztof Janowicz, Armin Haller, Simon JD Cox, Danh
Le Phuoc, and Maxime Lefrançois. Sosa: A lightweight ontol-

20 Hoan Nguyen et al. / A Performance Study of RDF Stores for Linked Sensor Data

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

ogy for sensors, observations, samples, and actuators. Journal
of Web Semantics, 56:1–10, 2019.

[25] Pavel Klinov. How to read stardog query plans. https://www.
stardog.com/blog/how-to-read-stardog-query-plans/.

[26] Dave Kolas. A benchmark for spatial semantic web systems. In
International Workshop on Scalable Semantic Web Knowledge
Base Systems, 2008.

[27] M. Koubarakis and K. Kyzirakos. Modeling and querying
metadata in the semantic sensor web: the model strdf and the
query language stsparql. In Proc. ESWC, volume 12, pages
425–439, 2010.

[28] Kostis Kyzirakos et al. Strabon: a semantic geospatial dbms.
In ISWC. Springer, 2012.

[29] Danh Le-Phuoc et al. The graph of things: A step towards
the live knowledge graph of connected things. Journal of Web
Semantics, 37, 2016.

[30] Danh Le-Phuoc, Hoan Nguyen Mau Quoc, Josiane Xavier Par-
reira, and Manfred Hauswirth. The linked sensor middleware–
connecting the real world and the semantic web. Proceedings
of the Semantic Web Challenge, 152:22–23, 2011.

[31] Baolin Liu and Bo Hu. An evaluation of rdf storage systems for
large data applications. In 2005 First International Conference
on Semantics, Knowledge and Grid, pages 59–59. IEEE, 2005.

[32] Akiyoshi Matono, Said Mirza Pahlevi, and Isao Kojima. Rd-
fcube: A p2p-based three-dimensional index for structural
joins on distributed triple stores. In Databases, Informa-
tion Systems, and Peer-to-Peer Computing, pages 323–330.
Springer, 2006.

[33] Thomas Neumann and Gerhard Weikum. Rdf-3x: a risc-
style engine for rdf. Proceedings of the VLDB Endowment,
1(1):647–659, 2008.

[34] Zhengxiang Pan and Jeff Heflin. Dldb: Extending relational
databases to support semantic web queries. Technical report,
LEHIGH UNIV BETHLEHEM PA DEPT OF COMPUTER
SCIENCE AND ELECTRICAL ENGINEERING, 2004.

[35] Matthew Perry and John Herring. Ogc geosparql-a geographic
query language for rdf data. OGC implementation standard,
2012.

[36] Eric Prud, Andy Seaborne, et al. Sparql query language for rdf.
2006.

[37] Roshan Punnoose, Adina Crainiceanu, and David Rapp. Rya: a
scalable rdf triple store for the clouds. In Proceedings of the 1st
International Workshop on Cloud Intelligence, page 4. ACM,
2012.

[38] Kurt Rohloff, Mike Dean, Ian Emmons, Dorene Ryder, and
John Sumner. An evaluation of triple-store technologies for
large data stores. In OTM Confederated International Confer-
ences" On the Move to Meaningful Internet Systems", pages
1105–1114. Springer, 2007.

[39] Michael Schmidt, Thomas Hornung, Norbert Küchlin, Georg
Lausen, and Christoph Pinkel. An experimental comparison of
rdf data management approaches in a sparql benchmark sce-
nario. In International Semantic Web Conference, pages 82–
97. Springer, 2008.

[40] Michael Schmidt, Thomas Hornung, Georg Lausen, and
Christoph Pinkel. Spˆ 2bench: a sparql performance bench-
mark. In 2009 IEEE 25th International Conference on Data
Engineering, pages 222–233. IEEE, 2009.

[41] Michael Sintek and Malte Kiesel. Rdfbroker: A signature-
based high-performance rdf store. In European Semantic Web
Conference, pages 363–377. Springer, 2006.

[42] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya
Kalyanpur, and Yarden Katz. Pellet: A practical owl-dl rea-
soner. Web Semantics: science, services and agents on the
World Wide Web, 5(2):51–53, 2007.

[43] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein.
Hexastore: sextuple indexing for semantic web data manage-
ment. Proceedings of the VLDB Endowment, 1(1):1008–1019,
2008.

[44] Kevin Wilkinson and Kevin Wilkinson. Jena property table
implementation, 2006.

