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Abstract

The orders of the perturbation approximation to the Schrödinger-picture time evolution operator in
powers of the presumed-small perturbation part of the Hamiltonian operator are developed by the it-
eration of an identity; the possibly confusing switch to the “interaction picture” isn’t needed. Those
time-evolution operator approximations are sandwiched between two orthogonal, normalized eigenstates
of the “unperturbed” part of the Hamiltonian operator to produce the transition amplitude approxima-
tions, whose calculation is reduced to quadrature when every occurrence of the perturbation part of the
Hamiltonian operator in them is expanded in the “unperturbed” basis. That expansion also reveals the
time-dependent parts of those approximations to be multiply nested integrals which in the long-time limit
approach simple products of non-singular inverses (principle value plus delta function) of differences of
“unperturbed” energy eigenvalues. Closely related to the long-time limits of transition amplitudes are the
long-time averages of transition rates. When the “unperturbed” basis is that of free-particle states, sums
over relevant final states of transition rates from an initial state, divided by the initial state’s particle
flux, produce cross sections. Here the perturbation approximations to generic quantum transition rates
are parlayed to the corresponding approximations to differential cross sections for nonrelativistic-particle
potential scattering.

Introduction

Given a Hamiltonian operator Ĥ of the form Ĥ = Ĥ0+V̂ , where all of the eigenvectors ψ
(0)
j and corresponding

eigenvalues E
(0)
j of the “unperturbed” Hamiltonian operator Ĥ0 are known in analytic form, and where the

additional operator term V̂ is a small perturbation of Ĥ0, the time-dependent transition amplitudes,(
ψ

(0)
l , e−iĤ(t−t0)/h̄ ψ

(0)
i

)
where

(
ψ

(0)
l , ψ

(0)
i

)
= 0, (1)

can be reduced to quadrature when they are calculated to only a finite order in the small perturbation V̂ .
To show in detail the reductions to quadrature of the perturbation approximations to finite orders in V̂

of the Eq. (1) time-dependent transition amplitudes, we need to work out the expansion in orders of V̂ of

the crucial time-evolution operator exp(−iĤ(t− t0)/h̄) which is present in Eq. (1). If it should happen that

the operators Ĥ0 and V̂ commute, expanding exp(−iĤ(t− t0)/h̄) in orders of V̂ is straightforward,

e−iĤ(t−t0)/h̄ = e−i(Ĥ0+V̂ )(t−t0)/h̄ = e−iĤ0(t−t0)/h̄ e−iV̂ (t−t0)/h̄ =

e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)V̂ (t− t0) +

∑∞
k=2(−i/h̄)k(V̂ )k(t− t0)k/k!

)
.

(2)

When the operators Ĥ0 and V̂ don’t commute, the expansion in orders of V̂ of exp(−iĤ(t − t0)/h̄) will
of course be much more complicated than the Eq. (2) result, but its form can still be expected to have
recognizable similarities to Eq. (2). Motivated by the form of Eq. (2), we write,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
e+iĤ0(t−t0)/h̄ e−iĤ(t−t0)/h̄

)
. (3a)

We now note that,

d
(
e+iĤ0(t−t0)/h̄ e−iĤ(t−t0)/h̄

)/
dt = (−i/h̄)

(
e+iĤ0(t−t0)/h̄

(
−Ĥ0 + Ĥ

)
e−iĤ(t−t0)/h̄

)
=

(−i/h̄)
(
e+iĤ0(t−t0)/h̄ V̂ e−iĤ(t−t0)/h̄

)
,

(3b)

and we also note that, (
e+iĤ0(t−t0)/h̄ e−iĤ(t−t0)/h̄

)
t=t0 = Î . (3c)

∗Retired, American Physical Society Senior Life Member, E-mail: SKKauffmann@gmail.com

1



Eqs. (3b) and (3c) together imply that,(
e+iĤ0(t−t0)/h̄ e−iĤ(t−t0)/h̄

)
=
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ(t(1)−t0)/h̄

)
. (3d)

Eqs. (3a) and (3d) yield that the time evolution operator exp(−iĤ(t− t0)/h̄) satisfies the identity ,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ(t(1)−t0)/h̄

)
. (3e)

Inserting the Eq. (3e) identity for exp(−iĤ(t− t0)/h̄) into itself yields the more elaborate identity ,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ +

(−i/h̄)
∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄(−i/h̄)

∫ t(1)
t0

dt(2)e+iĤ0(t(2)−t0)/h̄ V̂ e−iĤ(t(2)−t0)/h̄
)
,

(3f)

which shows that the first-order in V̂ perturbation approximation to exp(−iĤ(t− t0)/h̄) is,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ +O

(
V̂ 2
))
. (3g)

Inserting the Eq. (3e) identity for exp(−iĤ(t− t0)/h̄) into its Eq. (3f) identity yields the yet more elaborate,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ +

(−i/h̄)
∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄(−i/h̄)

∫ t(1)
t0

dt(2)e+iĤ0(t(2)−t0)/h̄ V̂ e−iĤ0(t(2)−t0)/h̄ +

(−i/h̄)
∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄(−i/h̄)

∫ t(1)
t0

dt(2)e+iĤ0(t(2)−t0)/h̄ V̂ e−iĤ0(t(2)−t0)/h̄ ×

(−i/h̄)
∫ t(2)
t0

dt(3)e+iĤ0(t(3)−t0)/h̄ V̂ e−iĤ(t(3)−t0)/h̄
)
,

(3h)

which shows that the second-order in V̂ perturbation approximation to exp(−iĤ(t− t0)/h̄) is,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ + (−i/h̄)×∫ t

t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄(−i/h̄)

∫ t(1)
t0

dt(2)e+iĤ0(t(2)−t0)/h̄ V̂ e−iĤ0(t(2)−t0)/h̄ +O
(
V̂ 3
))
.

(3i)

Continuing in this way can be proved by induction to, for n = 2, 3, 4, . . ., generate the sequence of identities,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ +

∑n
k=2

[
(−i/h̄)×∫ t

t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ · · · (−i/h̄)

∫ t(k−1)

t0
dt(k)e+iĤ0(t(k)−t0)/h̄ V̂ e−iĤ0(t(k)−t0)/h̄

]
+ (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ · · · (−i/h̄)

∫ t(n−1)

t0
dt(n)×

e+iĤ0(t(n)−t0)/h̄ V̂ e−iĤ0(t(n)−t0)/h̄(−i/h̄)
∫ t(n)

t0
dt(n+1)e+iĤ0(t(n+1)−t0)/h̄ V̂ e−iĤ(t(n+1)−t0)/h̄

)
.

(3j)

which shows that the nth-order in V̂ perturbation approximation to exp(−iĤ(t− t0)/h̄) is,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ +∑n

k=2

[
(−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ · · ·

(−i/h̄)
∫ t(k−1)

t0
dt(k)e+iĤ0(t(k)−t0)/h̄ V̂ e−iĤ0(t(k)−t0)/h̄

]
+O

(
V̂ n+1

))
.

(3k)

Eqs. (3j) and (3k) suggest that exp(−iĤ(t− t0)/h̄) may have the formal perturbation series representation,

e−iĤ(t−t0)/h̄ = e−iĤ0(t−t0)/h̄
(
Î + (−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ +∑∞

k=2

[
(−i/h̄)

∫ t
t0
dt(1)e+iĤ0(t(1)−t0)/h̄ V̂ e−iĤ0(t(1)−t0)/h̄ · · ·

(−i/h̄)
∫ t(k−1)

t0
dt(k)e+iĤ0(t(k)−t0)/h̄ V̂ e−iĤ0(t(k)−t0)/h̄

])
.

(3l)
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When the operators Ĥ0 and V̂ commute, it is easily worked out that Eq. (3l) is exactly the same as Eq. (2).

However, if the operators Ĥ0 and V̂ don’t commute, it isn’t guaranteed that the Eq. (3l) putative formal

perturbation series representation of exp(−iĤ(t− t0)/h̄) converges.

Using the Eq. (3k) perturbation approximation of nth order in V̂ to exp(−iĤ(t − t0)/h̄), we now wish
to reduce to quadrature the corresponding perturbation approximation to the time-dependent transition am-

plitude described by Eq. (1). Since Eq. (1) specifies that (ψ
(0)
l , ψ

(0)
i ) = 0, and since Ĥ0 ψ

(0)
j = E

(0)
j ψ

(0)
j , we

obtain by application of Eq. (3k) to the Eq. (1) transition amplitude that,(
ψ

(0)
l , e−iĤ(t−t0)/h̄ ψ

(0)
i

)
=

e−iE
(0)

l
(t−t0)/h̄

(
(−i/h̄)

∫ t
t0
dt(1)e+iE

(0)

l
(t(1)−t0)/h̄

(
ψ

(0)
l , V̂ ψ

(0)
i

)
e−iE

(0)
i

(t(1)−t0)/h̄ +∑n
k=2

[
(−i/h̄)

∫ t
t0
dt(1)e+iE

(0)

l
(t(1)−t0)/h̄

(
ψ

(0)
l , V̂ e−iĤ0(t(1)−t0)/h̄ · · ·

(−i/h̄)
∫ t(k−1)

t0
dt(k)e+iĤ0(t(k)−t0)/h̄ V̂ ψ

(0)
i

)
e−iE

(0)
i

(t(k)−t0)/h̄
]

+O
(
V̂ n+1

))
.

(4a)

To reduce each term on the right side of Eq. (4a) to quadrature, every occurrence of the V̂ operator in that

term is expanded in the ψ
(0)
j basis, i.e.,(
φ1, V̂ φ2

)
=
∑
j(1) j(2)

(
φ1, ψ

(0)
j(1)

)(
ψ

(0)
j(1)

, V ψ
(0)
j(2)

)(
ψ

(0)
j(2)

, φ2

)
, (4b)

after which the following two transparently true relations are applied,

e±iĤ0(t−t0)/h̄ ψ
(0)
j = e±iE

(0)
j

(t−t0)/h̄ ψ
(0)
j and

(
ψ

(0)
j , ψ

(0)
j′

)
= δjj′ . (4c)

Upon completion of the ψ
(0)
j -basis expansion procedure described by Eqs. (4b) and (4c), Eq. (4a) reads,

(
ψ

(0)
l , e−iĤ(t−t0)/h̄ ψ

(0)
i

)
=

e−iE
(0)

l
(t−t0)/h̄

(
(−i/h̄)

∫ t
t0
dt(1)e+iE

(0)

l
(t(1)−t0)/h̄

(
ψ

(0)
l , V̂ ψ

(0)
i

)
e−iE

(0)
i

(t(1)−t0)/h̄ +

∑n
k=2

∑
j(1)···j(k−1)

[
(−i/h̄)

∫ t
t0
dt(1)e+iE

(0)

l
(t(1)−t0)/h̄

(
ψ

(0)
l , V̂ ψ

(0)
j(1)

)
e
−iE(0)

j(1)
(t(1)−t0)/h̄

· · ·

(−i/h̄)
∫ t(k−1)

t0
dt(k)e

+iE
(0)
j(k−1)

(t(k)−t0)/h̄(
ψ

(0)
j(k−1)

, V̂ ψ
(0)
i

)
e−iE

(0)
i

(t(k)−t0)/h̄
]

+O
(
V̂ n+1

))
,

(4d)

whose terms it is very useful to separate into time-dependent and time-independent factors as follows,(
ψ

(0)
l , e−iĤ(t−t0)/h̄ ψ

(0)
i

)
=

e−iE
(0)

l
(t−t0)/h̄

([
(−i/h̄)

∫ t
t0
dt(1)e+i(E

(0)

l
−E(0)

i
)(t(1)−t0)/h̄

][(
ψ

(0)
l , V̂ ψ

(0)
i

)]
+

∑n
k=2

∑
j(1)···j(k−1)

[
(−i/h̄)

∫ t
t0
dt(1)e

+i(E
(0)

l
−E(0)

j(1)
)(t(1)−t0)/h̄

· · ·

(−i/h̄)
∫ t(k−1)

t0
dt(k)e

+i(E
(0)
j(k−1)

−E(0)
i

)(t(k)−t0)/h̄ ][(
ψ

(0)
l , V̂ ψ

(0)
j(1)

)
· · ·
(
ψ

(0)
j(k−1)

, V̂ ψ
(0)
i

)]
+O

(
V̂ n+1

))
.

(4e)

The nested-integral time-dependent factors which occur in Eq. (4e) are of the general form,

(−i/h̄)
∫ t
t0
dt(1)e+i(∆Ek)(t(1)−t0)/h̄ · · · (−i/h̄)

∫ t(k−1)

t0
dt(k)e+i(∆E1)(t(k)−t0)/h̄. (5)

Here we are interested in the long-time t → +∞ behavior of the Eq. (1) transition amplitudes, to which
Eq. (4e) gives the perturbation approximations. We specifically wish to calculate perturbation approxima-
tions to long-time averaged transition rates (asymptotic transition rates), which are,

lim
t→+∞

{∣∣(ψ(0)
l , e−iĤ(t−t0)/h̄ ψ

(0)
i

)∣∣2/(t− t0)
}
. (6)
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Therefore we wish to obtain the t→ +∞ limiting behavior of the Eq. (5) time-dependent entities. We begin
with the simplest k = 1 instance of Eq. (5),

lim
t→+∞

{
(−i/h̄)

∫ t
t0
dt(1)e+i(∆E1)(t(1)−t0)/h̄

}
= lim
t→+∞

{(
1− e+i(∆E1)(t−t0)/h̄

)/
(∆E)

}
=

lim
t→+∞

{((
1− cos

(
(∆E1)(t− t0)/h̄

))/
(∆E1)

)
− i
(
sin
(
(∆E1)(t− t0)/h̄

)/
(∆E1)

)}
=

P (1/(∆E1))− iπ δ(∆E1),

(7a)

where P (1/(∆E1)) in Eq. (7a) stands for the principal value of (1/(∆E1)). An alternative approach to
obtaining this limiting behavior, which proves to be of decisive importance for dealing with arbitrary values
of k in Eq. (5) is,

lim
t→+∞

{
(−i/h̄)

∫ t
t0
dt(1)e+i(∆E1)(t(1)−t0)/h̄

}
= lim
ε→0+

{
(−i/h̄)

∫ +∞
t0

dt(1)e+i(∆E1+iε)(t(1)−t0)/h̄
}

=

lim
ε→0+

{
(∆E1 + iε)−1

}
= lim
ε→0+

{(
(∆E1)

/(
(∆E1)2 + ε2

))
− i
(
ε
/(

(∆E1)2 + ε2
))}

=

P (1/(∆E1))− iπ δ(∆E1).

(7b)

Eqs. (7b) and (7a) show, inter alia, that the limit entities,

lim
ε→0+

{
(−i/h̄)

∫ +∞
t0

dt(1)e+i(∆E+iε)(t(1)−t0)/h̄
}

= lim
ε→0+

{
((∆E) + iε)−1

}
, (7c)

and,

lim
t→+∞

{
(−i/h̄)

∫ t
t0
dt(1)e+i(∆E)(t(1)−t0)/h̄

}
= lim
t→+∞

{(
1− e+i(∆E)(t−t0)/h̄

)/
(∆E)

}
, (7d)

are interchangeable, a fact that will be very useful further on.
We now apply the approach used in Eq. (7b) to the evaluation of the t → +∞ behavior of the general

Eq. (5) time-dependent entity,

lim
t→+∞

{
(−i/h̄)

∫ t
t0
dt(1)e+i(∆Ek)(t(1)−t0)/h̄ · · · (−i/h̄)

∫ t(k−1)

t0
dt(k)e+i(∆E1)(t(k)−t0)/h̄

}
=

lim
ε→0+

{
(−i/h̄)

∫ +∞
t0

dt(1)e+i(∆Ek+iε)(t(1)−t0)/h̄ · · · (−i/h̄)
∫ t(k−1)

t0
dt(k)e+i(∆E1)(t(k)−t0)/h̄

}
,

(7e)

which motivates us to attempt to evaluate all of the nested integrals which are defined as,

Iεk(∆Ek, ∆Ek−1, . . . , ∆E1)
def
= (−i/h̄)

∫ +∞
t0

dt(1)e+i(∆Ek+iε)(t(1)−t0)/h̄ ×

(−i/h̄)
∫ t(1)
t0

dt(2)e+i(∆Ek−1)(t(2)−t0)/h̄ · · · (−i/h̄)
∫ t(k−1)

t0
dt(k)e+i(∆E1)(t(k)−t0)/h̄.

(7f)

From Eq. (7b) we of course already know that Iε1(∆E1) = (∆E1 + iε)−1. By carrying out an integration
by parts on Iεk+1(∆Ek+1, ∆Ek, . . . , ∆E1), we obtain a recurrence relation which, along with the value of
Iε1(∆E1), leads to a closed-form result for Iεk(∆Ek, ∆Ek−1, . . . , ∆E1). The terms of the integration by parts
that are evaluated at the endpoints t(1) = t0 and t(1) → +∞ turn out to both vanish,

Iεk+1(∆Ek+1, ∆Ek, . . . , ∆E1) =

(−i/h̄)
∫ +∞
t0

dt(1)e+i(∆Ek+1+iε)(t(1)−t0)/h̄(−i/h̄)
∫ t(1)
t0

dt(2)e+i(∆Ek)(t(2)−t0)/h̄×

(−i/h̄)
∫ t(2)
t0

dt(3)e+i(∆Ek−1)(t(3)−t0)/h̄ · · · (−i/h̄)
∫ t(k)

t0
dt(k+1)e+i(∆E1)(t(k+1)−t0)/h̄ =

(∆Ek+1 + iε)−1(−i/h̄)
∫ +∞
t0

dt(1)e+i(∆Ek+1+∆Ek+iε)(t(1)−t0)/h̄ ×

(−i/h̄)
∫ t(1)
t0

dt(2)e+i(∆Ek−1)(t(2)−t0)/h̄ · · · (−i/h̄)
∫ t(k−1)

t0
dt(k)e+i(∆E1)(t(k)−t0)/h̄ =

(∆Ek+1 + iε)−1 Iεk(∆Ek+1 + ∆Ek, ∆Ek−1, . . . , ∆E1).

(7g)
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The relation Iεk+1(∆Ek+1, ∆Ek, . . . , ∆E1) = (∆Ek+1 + iε)−1Iεk(∆Ek+1 +∆Ek, ∆Ek−1, . . . , ∆E1) of recur-
rence obtained in Eq. (7g) yields, starting from Iε1(∆E1) = (∆E1 + iε)−1, that,

Iε2(∆E2, ∆E1) = (∆E2 + iε)−1Iε1(∆E2 + ∆E1) =

(∆E2 + iε)−1(∆E2 + ∆E1 + iε)−1,

Iε3(∆E3, ∆E2, ∆E1) = (∆E3 + iε)−1Iε2(∆E3 + ∆E2, ∆E1) =

(∆E3 + iε)−1(∆E3 + ∆E2 + iε)−1(∆E3 + ∆E2 + ∆E1 + iε)−1,

Iε4(∆E4, ∆E3, ∆E2, ∆E1) = (∆E4 + iε)−1Iε3(∆E4 + ∆E3, ∆E2, ∆E1) =

(∆E4 + iε)−1(∆E4 + ∆E3 + iε)−1(∆E4 + ∆E3 + ∆E2 + iε)−1(∆E4 + ∆E3 + ∆E2 + ∆E1 + iε)−1,

so obviously, Iεk(∆Ek, ∆Ek−1, . . . , ∆E1) = (∆Ek + iε)−1(∆Ek + ∆Ek−1 + iε)−1 · · · ×

(∆Ek + ∆Ek−1 + · · ·+ ∆E2 + iε)−1(∆Ek + ∆Ek−1 + · · ·+ ∆E1 + iε)−1,

(7h)

where the final (general) result given in Eq. (7h) can easily be proved by induction using the Eq. (7g)
recurrence relation. The nested-integral time-dependent factors which occur in the Eq. (4e) perturbation
approximations to Eq. (1) correspond to the Eq. (5) nested-integral form via the following relations,

(∆Ek) = (E
(0)
l − E

(0)
j(1)

), (∆Ek−1) = (E
(0)
j(1)
− E(0)

j(2)
), · · · ,

(∆E2) = (E
(0)
j(k−2)

− E(0)
j(k−1)

) and (∆E1) = (E
(0)
j(k−1)

− E(0)
i ),

(7i)

which implies that,

(∆Ek) = (E
(0)
l − E

(0)
j(1)

), (∆Ek + ∆Ek−1) = (E
(0)
l − E

(0)
j(2)

), · · · ,

(∆Ek + ∆Ek−1 + · · ·+ ∆E2) = (E
(0)
l − E

(0)
j(k−1)

) and (∆Ek + ∆Ek−1 + · · ·+ ∆E1) = (E
(0)
l − E

(0)
i ).

(7j)

Inserting the results given by Eqs. (7h) and (7j) into Eq. (4e) yields,

lim
t→+∞

{
e+iE

(0)

l
(t−t0)/h̄

(
ψ

(0)
l , e−iĤ(t−t0)/h̄ ψ

(0)
i

)}
= lim
ε→0+

{((
E

(0)
l − E

(0)
i

)
+ iε

)−1 ×[(
ψ

(0)
l , V̂ ψ

(0)
i

)
+
∑n
k=2

∑
j(1)···j(k−1)

(((
ψ

(0)
l , V̂ ψ

(0)
j(1)

)((
E

(0)
l − E

(0)
j(1)

)
+ iε

))−1 · · ·((
E

(0)
l − E

(0)
j(k−1)

)
+ iε

))−1((
ψ

(0)
j(k−1)

, V̂ ψ
(0)
i

))
+O

(
V̂ n+1

)]}
.

(7k)

The Eq. (7k) result also formally yields what we are specifically interested in, namely the perturbation
approximations to the Eq. (6) long-time averaged transition rate (the asymptotic transition rate), as,

lim
t→+∞

{∣∣(ψ(0)
l , e−iĤ(t−t0)/h̄ ψ

(0)
i

)∣∣2/(t− t0)
}

=

lim
t→+∞

lim
ε→0+

{(((
E

(0)
l − E

(0)
i

)2
+ ε2

)
(t− t0)

)−1 ×∣∣∣(ψ(0)
l , V̂ ψ

(0)
i

)
+
∑n
k=2

∑
j(1)···j(k−1)

(((
ψ

(0)
l , V̂ ψ

(0)
j(1)

)((
E

(0)
l − E

(0)
j(1)

)
+ iε

))−1 · · ·((
E

(0)
l − E

(0)
j(k−1)

)
+ iε

))−1((
ψ

(0)
j(k−1)

, V̂ ψ
(0)
i

))
+O

(
V̂ n+1

)∣∣∣2},
(7l)

but the Eq. (7l) mixed limit entity,

lim
t→+∞

lim
ε→0+

{(((
E

(0)
l − E

(0)
i

)2
+ ε2

)
(t− t0)

)−1}
, (7m)

seems ill-defined at first glance. Eqs. (7c) and (7d), however, tell us that limε→0+{(∆E + iε)−1} is inter-
changeable with limt→+∞{(1− exp(+i(∆E)(t− t0)/h̄))/(∆E)}, which resolves the mixed limit puzzle,
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lim
t→+∞

lim
ε→0+

{(((
E

(0)
l − E

(0)
i

)2
+ ε2

)
(t− t0)

)−1}
=

lim
t→+∞

{∣∣1− e+i(E
(0)

l
−E(0)

i
)(t−t0)/h̄

∣∣2/((E(0)
l − E

(0)
i

)2
(t− t0)

)}
=

lim
t→+∞

{
2
(
1− cos

((
E

(0)
l − E

(0)
i

)
(t− t0)/h̄

))/((
E

(0)
l − E

(0)
i

)2
(t− t0)

)}
= (2π/h̄) δ

(
E

(0)
l − E

(0)
i

)
,

(7n)

so more transparently, the perturbation approximations to the Eq. (6) asymptotic transition rate are,

lim
t→+∞

{∣∣(ψ(0)
l , e−iĤ(t−t0)/h̄ ψ

(0)
i

)∣∣2/(t− t0)
}

= (2π/h̄) δ
(
E

(0)
l − E

(0)
i

)
×

lim
ε→0+

{∣∣∣(ψ(0)
l , V̂ ψ

(0)
i

)
+
∑n
k=2

∑
j(1)···j(k−1)

(((
ψ

(0)
l , V̂ ψ

(0)
j(1)

)((
E

(0)
l − E

(0)
j(1)

)
+ iε

))−1 · · ·((
E

(0)
l − E

(0)
j(k−1)

)
+ iε

))−1((
ψ

(0)
j(k−1)

, V̂ ψ
(0)
i

))
+O

(
V̂ n+1

)∣∣∣2}.
(7o)

Perturbation approximations in nonrelativistic-particle potential scattering

The total cross section σ for a free-particle collision interaction is an asymptotic transition rate of the type
approximated to nth order in the perturbation V̂ by Eq. (7o), divided by the initial free-particle flux and

summed over all final states ψ
(0)
l . A variety of partial cross sections are defined by omitting selected parts

of the sum over the final states ψ
(0)
l . In this section we use the nth-order perturbation approximation to the

asymptotic transition rate that is given by Eq. (7o) to obtain the corresponding perturbation approximation
to the cross section for the scattering of a nonrelativistic free particle—whose “unperturbed” Hamilton
operator is Ĥ0 = |p̂|2/(2m)—by a localized static potential-energy operator V (r̂). Since Eq. (7o) implicitly

deals with “unperturbed” states ψ
(0)
j which are normalized to unity , we definitely cannot use the familiar

continuum plane-wave momentum eigenstates of a free nonrelativistic particle whose Hamiltonian operator
is Ĥ0 = |p̂|2/(2m). We therefore replace the continuum plane-wave momentum eigenstates by momentum
eigenstates which adhere to periodic boundary conditions in a cubical box of finite, but arbitrarily large, volume
V. The detailed form of the discrete cubical-box-periodic normalized-to-unity momentum eigenstates is,

ψ(nx, ny, nz)(r) = V− 1
2 exp

(
2πi(xnx + yny + znz)/V

1
3

)
= V− 1

2 eip·r/h̄, (8a)

where nx, ny and nz are integers. Eq. (8a) yields that the momentum eigenvalue p of ψ(nx, ny, nz)(r) is,

p = (2πh̄/V 1
3 )(nx, ny, nz), (8b)

which shows that these discrete momentum eigenvalues tend toward a continuum as the box volume V → ∞.

Eq. (7o) features sums over the quantum numbers j of the “unperturbed” states ψ
(0)
j , and of course

such a sum (over all final states) is fundamental to the definition of the total cross section σ. In the
nonrelativistic potential scattering case, we see from Eq. (8a) that those sums over j are sums over all of
the integer triplets (nx, ny, nz), and since the “unperturbed” free particle’s momentum p = (px, py, pz) =
(2πh̄/V 1

3 )(nx, ny, nz), of course (nx, ny, nz) = (V 1
3 /(2πh̄))(px, py, pz), and since the momentum eigenvalues

(px, py, pz) approach a continuum as the box volume V → ∞, then for a sufficiently large box volume V,∑
(nx, ny, nz) =

∑
nx

∑
ny

∑
nz

=(
V 1

3 /(2πh̄)
)∫
dpx

(
V 1

3 /(2πh̄)
)∫
dpy

(
V 1

3 /(2πh̄)
)∫
dpz =

(
V/(2πh̄)3

)∫
d3p.

(8c)

Thus, in the nonrelativistic potential scattering case,
∑
j in Eq. (7o) becomes,∑

j −→ (V/(2πh̄)3)
∫
d3pj . (8d)

Furthermore, since Eq. (8a) tells us that in the nonrelativistic potential scattering case the ψ
(0)
j of Eq. (7o) is

V− 1
2 exp(ipj ·r/h̄), and also, since in that case the V̂ of Eq. (7o) is the static potential energy operator V (r̂),

we see that in the nonrelativistic potential scattering case the entities (ψ
(0)
m , V̂ ψ

(0)
j ) of Eq. (7o) become,

(ψ
(0)
m , V̂ ψ

(0)
j ) −→ V−1 VF (pm − pj), where VF (q)

def
=
∫
d3r exp(−iq · r/h̄)V (r). (8e)
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Also the E
(0)
j of Eq. (7o) is of course |pj |2/(2m) in the nonrelativistic potential scattering case,

E
(0)
j −→ |pj |2/(2m). (8f)

Finally, the flux of the initial nonrelativistic free particle of momentum pi is its speed (|pi|/m) divided by its
wave-function normalization volume V. Dividing Eq. (7o) by that flux, specializing the rest of Eq. (7o) to
nonrelativistic potential scattering by applying Eqs. (8d)–(8f) to it, and summing the result over all of the

final states ψ
(0)
l yields the perturbation approximation of nth order in the localized static potential operator

V (r̂) to the total cross section σ for the scattering of a nonrelativistic free particle by that potential,

σ = (m/|pi|)(2πh̄)−3
∫
d3pl(2π/h̄)(2m)δ

(
|pl|2 − |pi|2

)∣∣∣VF (pl − pi) +

lim
ε→0+

{∑n
k=2(2πh̄)−3

∫
d3pj(1) · · · (2πh̄)−3

∫
d3pj(k−1)

VF (pl − pj(1))(2m)
(
|pl|2 − |pj(1) |2 + iε

)−1 · · ·

(2m)
(
|pl|2 − |pj(k−1)

|2 + iε
)−1

VF (pj(k−1)
− pi)

}
+O

(
(V (r̂))n+1

)∣∣∣2.
(8g)

The box volume V has canceled out in the Eq. (8g) perturbation approximations to the total cross section
σ for nonrelativistic potential scattering, as physical reasoning very strongly indeed suggests that it must in
the limit of V → ∞. The “unperturbed-energy” conserving delta-function factor (2m) δ

(
|pl|2 − |pi|2

)
that

is present in Eq. (8g) makes it possible to immediately evaluate the
∫∞

0
|pl|2d|pl| · · · part of the

∫
d3pl · · ·

integral that occurs in the Eq. (8g) expression. The integration over the differential solid angle dΩpl
of

the final particle momentum pl remains to be carried out , but if we choose to simply omit that differential
solid-angle integration, we will have obtained the perturbation approximations to the very useful differential
cross section dσ/dΩpl

for nonrelativistic potential scattering; it is easily worked out from Eq. (8g) to be,

dσ/dΩpl
=
∣∣∣(m/(2πh̄2

))(
VF (pl − pi) + lim

ε→0+

{∑n
k=2(2πh̄)−3

∫
d3pj(1) · · · (2πh̄)−3

∫
d3pj(k−1)

×

VF (pl − pj(1))(2m)
(
|pi|2 − |pj(1) |2 + iε

)−1 · · · (2m)
(
|pi|2 − |pj(k−1)

|2 + iε
)−1 ×

VF (pj(k−1)
− pi)

})
|pl|=|pi|

+O
(
(V (r̂))n+1

))∣∣∣2.
(8h)

A specific simple example of Eq. (8h) is the lowest-order perturbation approximation to the differential cross
section for scattering from a Yukawa potential V (r) = ε2 exp(−|r|/r0)/|r|, where the coupling strength ε2

has the dimension of energy times length. The lowest-order perturbation approximation to the “scattering
length” for this Yukawa potential—the absolute square of which is the corresponding approximation to the
differential cross section—is, from Eq. (8h),(

m/
(
2πh̄2

))
V

(Yukawa)
F (pl − pi), (9a)

where,

V
(Yukawa)
F (q) = ε2

∫
d3r exp(−iq · r/h̄) exp(−|r|/r0)/|r| =

ε2
∫∞

0
dr r e−r/r0 (2π)

∫ π
0
dθ sin θ e−i|q|r cos θ/h̄ = ε2(2π)

∫∞
0
dr r e−r/r0

∫ 1

−1
dα e−i|q|rα/h̄ =

ε2(4πh̄/|q|)
∫∞

0
dr e−r/r0 sin(|q|r/h̄) = ε2 (4πh̄/|q|) Im

(∫∞
0
dr e−r((1/r0)−i(|q|/h̄))

)
=

ε2(4π)
(
(|q|/h̄)2 + (1/r0)2

)−1
.

(9b)

Therefore this Yukawa potential’s lowest-order “scattering length” comes out to be,(
m/
(
2πh̄2

))
V

(Yukawa)
F (pl − pi) = ε2(2m)

(
|pl − pi|2 + (h̄/r0)2

)−1
, where |pl| = |pi|. (9c)

This Yukawa potential becomes a nuclear Coulomb scattering potential when r0 →∞ and ε2 = Z1Z2e
2, in

which case the lowest-order perturbation approximation to the “scattering length” is,

Z1Z2e
2m
/(
|pi|2(1− cos θ(li))

)
, (9c)
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and the corresponding approximation to the differential cross section is of course the square of Eq. (9c).
Ernest Rutherford obtained exactly that differential cross section result classically by relating the final
asymptote of the classical particle’s hyperbolic trajectory to its initial impact parameter. Although we have
only calculated this result quantum mechanically in the lowest-order perturbation approximation, it has
been established that the higher-order corrections to this “scattering length” result are the perturbation
expansion of a pure phase factor, which of course becomes exactly unity upon taking the absolute square
of the “scattering length” to obtain the differential cross section. Thus nonrelativistic Coulomb potential
scattering presents the unusual circumstance of perfect agreement of exact quantum mechanics with its
lowest-order perturbation approximation, and also with the classical result.
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