

In a Cartesian coordinate system for a three-dimensional space of an ordered triplet of axes: $\mathbf{O X}, \mathbf{O Y}, \mathbf{O Z}$ that go through the origin \mathbf{O}, let the angle $\mathbf{A O X}=\alpha$, the angle $\mathbf{X O B}=\beta$.

Let us find the angle $\mathbf{A O B}=\gamma$.
Solution. Let OM be a unit vector in the direction of OA, let $\mathbf{O L}$ be a unit vector in the direction of $\mathbf{O B}$.
$\mathbf{O M}=(\cos \alpha, \sin \alpha, 0), \mathbf{O L}=(\cos \beta, 0, \sin \beta)$
Since the dot product of vectors $\mathbf{O M}$ and $\mathbf{O L}$ is:
$\mathbf{O M} * \mathbf{O L}=|\mathbf{O M}||\mathbf{O L}| \cos \gamma=\cos \gamma$,
finally: $\cos \gamma=\cos \alpha \cos \beta$.

