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Abstract 

 StarGAN, which uses three important loss 

(adversarial loss, classification loss, 

reconstruction loss), has shown impressing 

performance in image-to-image translation. 

However, StarGAN has three important 

hyperparameters in loss (adversarial weight, 

classification weight, reconstruction weight), so 

it takes too much time to search for optimal 

hyperparameters. I propose an attribute loss, 

improved version of conditional GAN loss, 

which is like having multiple GANs, and 

simplified reconstruction loss, which uses the 

generator only once, to reduce 

hyperparameters and improve training speed. I 

also suggest image framing, not to distort the 

background, and bi-directional progressive-

growing architecture, to improve training speed. 

 

 

 

 

1. Introduction 

 

StarGAN [1] uses an adversarial loss of WGAN-

GP [2], reconstruct on the loss of CycleGAN [3] 

and classification loss of conditional GAN [4] to 

transfer the image to target domain without 

much distortion. 

𝐿𝐷 = −𝐿𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑟  

𝐿𝑐𝑙𝑠
𝑟 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[−log⁡(𝐷𝑐𝑙𝑠(att|x))] 

𝐿𝐺 = 𝐿𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠𝐿𝑐𝑙𝑠
𝑔

 

𝐿𝑐𝑙𝑠
𝑔

= 𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)[− log(𝐷𝑐𝑙𝑠(𝑎𝑡𝑡

′|𝑥′))] 

 In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), x means real data, and att 

is the binary vector that expresses the attribute 

of real data. In 𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥
′, 𝑎𝑡𝑡′) , 𝑥′  means 

generated data and 𝑎𝑡𝑡′ is the target binary 

vector to make 𝑥′ . 

 

 In the conditional GAN, adversarial loss trains 

model well because there are well known the 

loss such as LSGAN [5] or WGAN-GP that can 

produce meaningful gradients even if real data 

distribution and generated data distribution are 

far from each other. However, classification loss 

of conditional GAN, which is using cross-

entropy is hard to produce meaningful 

gradients because of cross-entropy measures 

only the KL-divergence.  
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Fig1. Data distribution at the beginning of 

training 

 

 In the above figure, the circle containing Real 

A and Real B is the distribution of the real data, 

and the circle containing Generated A and 

Generated B is the distribution of the generated 

data. Real A is real data with attribute A and 

Generated A is data generated by the generator 

with condition A. In the early stage of learning, 

the classification loss does not produce 

meaningful gradients because the distance 

between the real data distribution and the 

generated data distribution is far. Only 

adversarial loss produces meaningful gradients. 

Intuitively, when GAN generates only noise-like 

images at the beginning of the training, 

reducing classification loss will not help GAN to 

train.  
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Fig2. After long training 

 

 As the learning progresses to some extent, the 

actual data distribution and the generated data 

distribution are somewhat similar, and 

classification loss starts to produce meaningful 

gradients when each conditional data 

distribution overlap (Real A with Generated A, 

Real B with Generated B). 

 To solve the problem that classification loss 

does not have meaning at the beginning of 

learning, I propose attribute loss, which is 

similar to having many GANs that each GAN 

learns only one attribute. Each Generator only 

generates data with each attribute. Each 

Discriminator determines that it is true only for 

the real data with each attribute and that it is a 

fake for the data that the generator generates 

for each attribute. Attribute loss can replace 

adversarial loss and classification loss of 

StarGAN. 

 



 

Fig3. Multi-GAN loss 

 

 Attribute loss is the sum of each GAN loss. 

Each GAN has its adversarial loss. Therefore, 

using LSGAN loss or WGAN-GP loss for each 

GAN can generate meaningful gradients at the 

beginning of learning. Since each discriminator 

shares all layers except the output layer, and 

each generator shares all layers except the 

input layer, the training time does not increase 

significantly.  

 Also, attribute loss can replace adversarial loss 

and classification loss. Original StarGAN needs 

three important hyperparameters (adversarial 

weight, classification weight, reconstruction 

weight). Reducing one hyperparameter by 

replacing adversarial loss and classification loss 

with attribute loss can dramatically reduce the 

time to search for optimal hyperparameters 

(only need to search for attribute weight and 

reconstruction weight). 

 

 In the original StarGAN paper uses 

reconstruction loss from CycleGAN. 

𝐿𝑟𝑒𝑐 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[||𝐺(𝐺(𝑥,  𝑎𝑡𝑡
′), 𝑎𝑡𝑡) − 𝑥||1] 

In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), att is the original attribute 

of real image x, and 𝑎𝑡𝑡′ is the target attribute. 

Generally, use a random binary vector for 

training. 

 

 

Fig4. Original reconstruction loss of StarGAN 

 

 To ensure that the generated data is not too 

different from the original data, StarGAN uses 

the Reconstruction loss of CycleGAN. 

Reconstructed data should be similar to original 

data. 

 However, since the original image and the 

generated image need only be somewhat 

similar, the real data does not have to go 

through the generator twice. 
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Fig5. Simplified content loss 

 

 The amount of computation can be reduced 

by simplifying the reconstruction loss as fig5. 

 

 

2. Improved Star GAN 

 

First, it is assumed that attribute information is 

matched with real data. 

 

2.1 Loss 

Overall Loss is as follows. 

𝐿𝐷 = 𝐿𝑎𝑡𝑡
𝐷  

𝐿𝐺 = 𝐿𝑎𝑡𝑡
𝐺 + 𝛾𝑐𝑛𝑡𝐿𝑐𝑛𝑡 

 

Attribute Loss 

 Attribute loss is as follows. 

 

𝐿𝑎𝑡𝑡
𝐷 = ∑𝐿𝑐

𝐷

𝑎𝑡𝑡

𝑐

 

𝐿𝑎𝑡𝑡
𝐺 = ∑𝐿𝑐

𝐺

𝑎𝑡𝑡

𝑐

 

 

𝐿𝑐
𝐷 = 𝐸𝑥,𝑐~𝑃𝑟(𝑥,𝑐)[(𝐷𝑐(𝑥) − 1)2]

+ 𝐸𝑥′~𝑃𝐺𝑐(𝑥
′,1)[𝐷𝑐(𝑥

′)2] 

𝐿𝑐
𝐺 = 𝐸𝑥~𝑃𝑟(𝑥)[(𝐷𝑐(𝐺𝑐(𝑥, 1)) − 1)2] 

 

 c means one specific attribute among several 

attributes. 𝐿𝑐
𝐷  and 𝐿𝑐

𝐺  are the losses of one 

discriminator and one generator that 

discriminate against a particular attribute c. 𝐿𝑎𝑡𝑡
𝐷  

is the sum of the attribute losses of all 

discriminators and 𝐿𝑎𝑡𝑡
𝐺  is the sum of the 

attribute losses of all generators. 

 𝐺𝑐 is a generator that converts an image x to 

have an attribute c when the image x and 

binary value 1 are received as inputs. 𝐺𝑐 tries 

to trick 𝐷𝑐 only if binary value 1 is entered with 

x, and does not care if 0 is entered (not learn). 

 𝐷𝑐  determines only about attribute c. 𝐷𝑐 

discriminates real only for real data with 

attribute c and doesn’t care about real data 

without attribute c and determines fake when 

received the fake image from 𝐺𝑐 that receives 

real image x and 1. 

𝐿𝑎𝑡𝑡
𝐷  is the sum of each discriminator. Each 

discriminator shares all layers with other 

discriminators except the output layer. By 

considering a set of discriminators as one 

discriminator, the loss can be changed like 

below. 

𝐿𝑎𝑡𝑡
𝐷 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[(𝐷(𝑥)− 1)2 ∙ 𝑎𝑡𝑡] 

+𝐸𝑥′,𝑎𝑡𝑡′~𝑃𝑔(𝑥
′,𝑎𝑡𝑡′)[𝐷(𝑥

′)2 ∙ 𝑎𝑡𝑡′] 

In 𝑥, 𝑎𝑡𝑡~𝑃𝑟(𝑥, 𝑎𝑡𝑡), x is the real image, and att 

is attribute binary vector. ‘ ∙ ’ means inner 

product. 
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Real Data
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Constructed 
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 In ⁡𝑥′, 𝑎𝑡𝑡′~𝑃𝑔(𝑥
′, 𝑎𝑡𝑡′) , 𝑥′  is generated 

image and 𝑎𝑡𝑡′ is a binary attribute vector 

input generator to make 𝑥′. 

 Since each generator also shares all layers 

except the input layer, 𝐿𝑎𝑡𝑡
𝐺  can be written as 

the following by considering a set of generators 

as one. 

𝐿𝑎𝑡𝑡
𝐺 = 𝐸𝑥~𝑃𝑟(𝑥)[(𝐷(𝐺(𝑥, 𝑎𝑡𝑡

′)) − 1)
2
∙ 𝑎𝑡𝑡′] 

𝑎𝑡𝑡′  is a binary vector representing the 

attribute you want to change in the real image 

x. Use random binary vectors for training. 

 This is an example of using the least square 

loss as an adversarial loss. Wasserstein-GP or 

other adversarial loss can be used for attribute 

loss. 

 Incidentally, 𝐺𝑐(𝑥, 0) does not convert x to 𝑥′ 

that doesn’t have attribute c but simply disables 

𝐺𝑐 . Therefore, if you want to remove attribute c 

from image x, you need to add the attribute 

‘not c’ while training. 

 

 

Fig6. Discriminator output of StarGAN example 

 

 

Fig7. Discriminator output with attribute loss 

example 

(Assume P(Black Hair) + P(Blond Hair) + P(Bald) 

= 1, P(Male) + P(Not Male) = 1) 

 

Content Loss 

The original reconstruction loss of StarGAN is 

as follows. 

𝐿𝑟𝑒𝑐 = 𝐸𝑥~𝑃𝑟(𝑥)[||𝐺(𝐺(𝑥,  𝑎𝑡𝑡
′), 𝐷(𝑥)) − 𝑥||1] 

In 𝑥~𝑃𝑟(𝑥) , x is the real image. 𝑎𝑡𝑡′  is a 

random binary attribute vector. 

 To calculate original reconstruction loss of 

StarGAN, original data should pass generator 

two times. I used simplified content loss, which 

is a simplified version of reconstruction loss to 

reduce calculation. 

𝐿𝑐𝑛𝑡 = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)[||(𝐺(𝑥,  𝑎𝑡𝑡)) − 𝑥||1] 

In 𝑃𝑟(𝑥, 𝑎𝑡𝑡) , x is real image. att is binary 

attribute vector of real image x. 
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Image Framing 

 As image completion imply [10], while training, 

framing the generated image with the original 

image makes generated image match to the 

background of the original image. 

 

Fig8. Image Framing 

 

 

 

 

 

 

 

 

 

2.2 Architecture 

Generator 

 

Fig9. Generator Architecture 

 

 In generator architecture, AdaIN module and 

embedder of Style-based generator [6], mask of 

CAGAN [7], and convolution block attention 

module of CBAM [8] was used. There is no 

batch normalization in generator. 

 To improve the learning speed, I suggest a bi-

directional progressive growing generator, 

which grows in both input and output 

directions, not just in one direction.  
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Fig10. Discriminator Architecture 

 

 Discriminator has attribute outputs that each 

output discriminates whether real image with 

each attribute or generated image with each 

attribute. Batch normalization was applied 

between each layer.  

 

Mixed data training 

 Recently, using batch normalization has 

become orthodox. However, using batch 

normalization in discriminator could be 

dangerous because the attribute distribution of 

generated data and real data could be different. 

Suppose the ratio of attribute A and attribute 

not A in real data is 3:7. If the ratio of attribute 

A and not-A is 5:5 in the target attribute for the 

generator, the generator will be trained to 

generate the ratio of attribute A and not A 

become 3:7 if there is batch normalization in 

the discriminator. This means some generated 

data with target attribute A input could have 

attribute not-A. To avoid this problem, I suggest 

using a mixed batch of real data and fake data 

entered into the discriminator. 

 

3. Experiments 

 

 Used celeb_a [9] training dataset (162,770 

pictures with attribute label) while training. 

Used celeb_a test dataset (19,962 pictures with 

attribute label) for test. 

Model was trained almost four hours on two 

rtx2080ti. Resolution of all image is 72 by 88. 

All left pictures are original pictures and right 

pictures are generated pictures 

 

Target Attribute: black hair, mouth slightly open, 

smiling. 

 

 

Target attribute: black hair, not mouth slightly 

open, smiling 
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Target attribute: blond hair, mouth slightly open, 

smiling 

 

 

Target attribute: black hair, mouth slightly open, 

smiling 

 

 

Target attribute: black hair, not mouth slightly 

open, smiling 
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