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Abstract 
 
Feature optics is a new proposal for modeling diffraction and interference in 
terms of simple elements called features.  We combine features to form 
composite systems by taking the outer product of the individual features’ state 
vectors.  The Fourier transform takes on a surprisingly simple form.  We apply the 
new method to the beam and the diffraction grating. 
 

1 Introduction 
 
This article introduces feature optics (FO), a new framework for analyzing some diffraction and 
interference phenomena that ordinarily fall within the purview of Fourier optics. 
 
The most elementary system in Fourier optics is the lens along with its two focal planes1,2, 
referred to here as the 2f system because its total length is two times the focal length f of the 
lens.  We refer to the front focal plane as the input plane, and the rear focal plane as the output 
plane.  Any pattern of monochromatic light may be thought of as a complex function vs position 
in the plane – a magnitude and a phase factor at each point.  When such a pattern is placed in 
the input plane, the 2f system naturally acts to perform the Fourier transform (FT) of that 
complex function and project it onto the output plane.  (Note that the output is not an image of 
the input.  Imaging occurs between a different pair of planes, and is beyond the scope of this 
work). 
 
We will consider only two simple model patterns as inputs: the beam and the grating.  The beam 
describes a single-mode laser, which is used ubiquitously in optics as a coherent light source.  
The diffraction grating is an opaque screen with a periodic pattern of apertures; when it is 
illuminated by a wide beam, the transmitted light carries the shape of the apertures.  The grating 
is often used to separate polychromatic light into its component wavelengths, but it is also 
studied as a paradigm of interference from periodic monochromatic sources.  We will consider 
each of these systems twice – first in terms of established theory to provide a benchmark for 
comparison, and second in terms of FO. 
 



2 Preview 
 
Before introducing the foundational concepts of FO in the following section, we first orient the 
reader with a brief preview.  The easiest entry point to the subject is to consider the example of 
the beam from two perspectives: first the conventional Gaussian beam model, then the FO 
model. 
 
The Gaussian beam is shown in figure 2.1.  It begins with a small diameter and a flat wavefront in 
the input plane.  As it propagates forward, it grows by diffraction and becomes much wider.  The 
lens intercepts the beam and changes its curvature.  After further propagation and a tiny 
decrease in diameter, a second flat wavefront forms in the output plane. 
 
figure 2.1, the Gaussian beam 

 
 
The system is parameterized by three independent numbers: 
 

 Dinput, the diameter of the beam in the input plane, measured at 1/e2 of the maximum power 

 , the wavelength of the light 

 f, the focal length of the lens 
 
The remaining parameters are calculated from these.  We calculate the far-field divergence 

angle  of the beam3 
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The lens converts the divergence angle into the linear width Doutput, by multiplying the angle by 

the lens focal length 
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Up to this point, we have been reviewing a conventional model of the beam.  Now we will 
analyze it in terms of Feature Optics.   
 
We begin by introducing a new set of parameters.  All the parameters above have units of 
length.  Our new parameters are dimensionless, and specify the number of wavelengths that 
make up various sizes: 
 

 A, the number of wavelengths in the input diameter 

 B, the number of wavelengths in the output diameter 

 V, the number of wavelengths in the lens focal length 

 , a Gaussian correction factor of 4/, or roughly 1.27.  This value often appears as a small 
discrepancy between the FO model and the Gaussian beam.  We note that feature optics is 
only approximately accurate, because it frequently neglects minor inaccuracies such as this 
for the sake of having a simpler model. 

 
Using these parameters, the previous equation can be re-expressed as 
 

A ∙ B  =  V  ∙   
 
This equation is manifested in the system shown in figure 2.2.  The 2f system acts to perform the 
discrete FT on an input vector of length V.  Each element of the vector is a ‘sample’ of the 

wavefunction taken at each discrete (-sized) patch.  Note that in addition to the area occupied 
by the beam, this vector also includes enough empty space adjacent to the beam to make up the 

full space V (we neglect ).  This dark space (magnitude = 0) is typically many times larger than 
the beam diameter. 
 



figure 2.2, the beam in feature optics 

 
 
In the example in the figure, A=3 and B=5, meaning that the input beam is 3 wavelengths wide 
and is embedded in a space 5 times its width.  Comparing the output against the input, we see 
that the FT has reversed the roles of A and B; i.e. a beam 5 wavelengths wide is now embedded 
in a space 3 times its width.  In the conventional understanding, this coincidence carries no 
particular significance.  However, in FO this is the very essence of how light transforms by 
propagation, as the next section will describe. 
 

3 Principles of feature optics 
 

3.1 Dark and bright features 
 
In FO, patterns of light are composed of smaller, simpler patterns.  The most elementary 
patterns are called features and exist in two types.  The first type, shown in figure 3.1a, is the 

dark feature.  It consists of a single bright patch of monochromatic light one wavelength  wide, 
embedded in a space of 5 available positions (or in general, any positive integer n); in other 
words, the single bright patch is surrounded by n-1 dark patches of adjacent empty space.  A 
second parameter p indicates which of the available positions the bright patch is located in. 
 



figure 3.1, the dark feature 

 
 
A feature is expressed mathematically by a state vector, as in quantum mechanics, see figure 
3.1b.  The squared magnitude at each point of the vector represents the probability of detecting 
a photon there.  Alternatively, we may interpret it as the amplitude of the electric field. 
 
The state vector |D0⟩ indicates that the bright patch is located at the central position, labeled 
p=0.  The zeros in the vector indicate that four other dark states |D−2⟩, |D−1⟩, |D+1⟩, and |D+2⟩ 
also exist in which the bright patch is located elsewhere within the space, but these other states 
lie beyond the scope of this work.   
 
The second type of feature is called the bright feature; an example is shown in figure 3.2a.  It 
consists of 3 adjacent bright patches of light, or n in general.  The light fills all of the available 
positions; there is no empty space.  As with the dark feature, there are n possible states, because 
the bright feature can be tilted at any angle a out of n possible angles; however, the present 
work will consider only the zero angle.  Choosing the zero angle allows us to write the state 
vector using real numbers; if we choose any other angle, we must use complex numbers. 
 
figure 3.2, the bright feature 

 
 



The corresponding state vector is equally distributed in amplitude across the n patches, but is 
normalized to an overall modulus of 1 (see figure 3.2b). 
 

3.2 Combining features 
 
Dark and bright features act as elemental building blocks which can be combined to form 
composite patterns.  Again following the methods of quantum mechanics, we treat the states of 
the two features as two commuting observables.  In other words, it is possible to observe both 
the position of the dark feature and the angle of the bright feature simultaneously, without 
being limited by uncertainty relations.  We therefore represent the state of the combined 
system by forming the outer product of the individual state vectors. 
 

|D0B0⟩ = |D0⟩ ⊗ |B0⟩ = 
1

√3
∙

[
 
 
 
 
0 0 0
0 0 0
1 1 1
0 0 0
0 0 0]

 
 
 
 

 

 
A physical interpretation is drawn in figure 3.3.  The feature diagram in figure 3.3a shows the 
two separate features described above, written one above the other with the outer-product 
symbol ⨂ between them.  They are also labeled as high and low features, respectively. 
 
figure 3.3, the physical meaning of the outer product 

 
 
As figure 3.3b shows, an entire copy of the low feature is nested inside each patch of the high 
feature, and the high feature ‘expands’ accordingly.  By convention, the feature nested inside is 
considered to be at lower rank.  Each of the 15 positions is a unique pairing of one of the 3 
positions of the low feature and one of the 5 positions of the high feature.  The value at each 
point is then the product of the two features’ values.  Where either one is dark, the product is 



dark; if both are bright, the product is bright.  The final result is a shown in figure 3.3c, a spatial 
diagram which shows how the pattern actually looks in physical space.  
 
For some applications beyond the scope of this work, we may also write the state as a single 
vector which matches the spatial diagram. 
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Note that this is a low-fidelity model, in that it does not match experiment precisely.  In FO, the 
intensity is uniform inside the beam and falls abruptly to zero outside of it.  Actual beams 
typically have a Gaussian (normal distribution) profile, but FO accepts this discrepancy for the 
sake of simplicity. 
 

3.3 FT from input to output 
 
We next consider the behavior of a single feature in the 2f system, as drawn in figure 3.4.  The 
feature begins at the input plane as a dark feature.  It propagates forward in a cone 1 radian in 
divergence, which is the maximum that may be captured by the lens.  The lens approximately 
collimates the expanded beam, projecting to a bright feature in the output plane. 
 



figure 3.4, the feature in two planes of the 2f system 

 
 
The overall effect is to perform the discrete FT, which changes the dark feature to a bright 
feature. 
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0
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0
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The system also exists in the mirror-image configuration, i.e. the bright feature is the input and 
the dark feature is the input.  The entire system is simply reversed, including the FT. 
 

FT( 
1

√3
∙ [

1
1
1
] ) = [

0
1
0
] 

 
Returning now to the overall beam in the 2f system (shown once more in figure 3.5b), we see 
that the overall FT process consists of two parts:  Firstly, each individual component feature 
undergoes the FT as seen in figure 3.5a.  Secondly, the nesting rank of the features is reversed – 
the high feature becomes the low feature, and vice-versa. 
 



figure 3.5, the beam as the product of two features 

 
 
When representing the beam as an outer product, we actually calculate a 2-d FT which is 
equivalent to an independent 1-d FT on each of the two features.  We express it as 
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However, this does not account for the reversal of the nesting rank.  To complete the FT we 
must flip our interpretation of the axes of the array, so that the rows refer to the positions of the 
low feature while the columns refer to the positions of the high feature. 
 
It is puzzling that a 2-d FT takes place on a pattern that is physically arranged along only 1 
dimension, by a 2f system which ordinarily performs a simple 1-d FT.  After all, the 2f system has 
no obvious way of ‘recognizing’ that the state vector is factorable into two components. 
 

4 The Gaussian grating 
 
We now turn from the beam to a second, more complex model system: the Gaussian grating, 
whose transmitted light has a pattern like the one shown in figure 4.1d.  Like the Gaussian beam, 
this is a conventional model which we will later treat with FO.  It is a composite of three separate 
functions4,5 which we refer to as the array, the texture, and the form. 
 



figure 4.1, the Gaussian grating as a composite of functions 

 
 
The Gaussian grating is parameterized by 5 independent numbers: 

 

 DformInput, the width of the form in the input plane 

 DtextureInput, the width of the texture in the input plane 

 DarrayInput, the period of the array in the input plane  

 , the wavelength of the light 

 f, the focal length of the lens (not shown in the figure) 
 

The array a(x) (see figure 4.1a) is the sum of an infinite set of delta functions spaced period Darray 

apart.  Each individual delta function is a rectangle of infinitesimally small width and infinitely tall 
height, which multiply to unit area.  The array describes the period and translational symmetry of 
the pattern, which extends infinitely in either direction. 
 

a(x) =  ∑ δ(x − Darray ∙ n)

+∞

n= −∞

 

 
The texture t(x) (see figure 4.1b) is a narrow Gaussian beam which is convolved with the array, so 
that a replicate of the texture appears in place of each delta function in the array.  Physically, it 
describes the small beams which emerge from the individual slits in a grating screen.  It is a 
single degree of freedom, because all of these small beams are constrained to share a common 
shape by virtue of the grating’s symmetry. 



 
The form f(x) (see figure 4.1c) is a wide Gaussian function which is multiplied by the array and 
texture.  The form scales the amplitude and acts like an invisible ‘boundary’ constraining the 
periodic function inside it.  Without the form to modulate its amplitude, the grating would 
extend forever along with the infinite array function.  In practice, the envelope is often set by the 
width of the source that illuminates the grating optic. 
 
The combination of the three component functions yields the equation of the grating (see figure 
4.1d) 
 

g(x) = f(x) ∙ [ t(x) ∗ a(x) ]  
 
When the grating is placed in a 2f system (see figure 4.2b), the output has the same basic array-
texture-form structure as the input but with different parameters.  A simple set of rules governs 
the transformation: 
 

 The output form is the FT of the input texture 

 The output texture is the FT of the input form 

 The output array is the FT of the input array 
 
figure 4.2, the Gaussian grating in two planes of the 2f system 

 
 
The FTs of the texture and array beams are calculated individually following the formulas used 
above in the discussion of the Gaussian beam.  Note that while the array is not actually a beam, 
it can be treated like one for the purpose of computing the period in the output plane (see figure 
4.2a). 
 
Designating the output grating function as h(x), 



 

h(x) = FT(g(x)) = FT(t(x)) ∙ [ FT(f(x)) ∗ FT(a(x)) ]  
 

5 The Grating in FO 
 
We describe the grating in FO by extending the principles used earlier for the beam, and re-
express its equations in terms of dimensionless parameters.  Here, we define all parameters in 
the input plane: 
 

 A, the number of wavelengths in the input texture 

 B, the number of input textures in the input period 

 C, the number of input periods in the input form 

 D, the number of input forms in the focal length of the lens (take care not to confuse the 

dimensionless parameter D with the various width parameters such as DformInput, which have 

units of length). 

 V, the number of wavelengths in the focal length of the lens 
 
We view the grating pattern as the outer product of 4 different features: a bright feature, nested 
under a dark feature, nested under a second bright feature, nested under a second dark feature.  
The feature diagram for such a grating is shown in figure 5.1a, and the corresponding spatial 
diagram is shown in figure 5.1b (the direction of propagation is upwards). 
 
figure 5.1, the grating in feature optics 

 
 
When we express the grating transformation rules with the new parameters, they appear as 
 

A∙B∙C ∙ (DtexOut/)  =  V ∙   FT( input form ) = output texture 



 

A ∙ (DformOut/)  =  V ∙    FT( input texture ) = output form 

 

A∙B ∙ (DarrayOut/)  =  V ∙    FT( input array ) = output array 

 
From these we deduce the structure of the output plane, as show in figure 5.2 in terms of a 
nested chain of features.  The grating undergoes the FT following the same principles that apply 
to the beam:  1. Each individual feature flips from bright to dark or vice-versa, and  2. The nesting 
rank of the features is reversed.  Indeed, these principles can be seen even more clearly in the 
grating than in the beam, because the grating contains more features and the rules are seen to 

apply consistently for them all.  Again, we approximate by neglecting . 
 
figure 5.2, feature diagram of the grating in the 2f system 

 
 
A spatial diagram of this grating is shown in figure 5.3.  We can draw some simple physical 
interpretations: B is the dark factor of the input, i.e. the ratio of total space to bright space 
within each period.  C is the aperture count of the input, i.e. the number of times the aperture is 
repeated in the pattern.  We see that under the FT of the grating, these two values exchange 
physical meaning in the output plane.  Note that values A and D can vary arbitrarily with no 
effect on this rule. 
 



figure 5.3, spatial diagram of the grating in the 2f system 

 
 

6 Conclusions 
 
FO is a set of practical rules for finding the FT of an input pattern.  At present, its scope of 
applicability is limited to the beam and grating systems which we have analyzed.  Curiously, it 
makes no explicit use of wave optics or Gaussian beam theory, yet it yields the same results. 
 
FO has not been reduced to a set of fundamental axioms; it is a matter for future research to 
determine whether any such axioms exist.  However, the remarkable fact that such simple rules-
of-thumb actually work suggests that a deeper explanation may be possible. 
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