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Abstract 

Some modifications of orthodox quantum mechanics were suggested. These modifications can 

solve the measurement problem. Base on these modifications, this paper also proposes a quantum reality 

with non-intuitive properties. From the suggested quantum reality, the classical picture was re-evaluated. 
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I. Introduction 

Quantum mechanics has a long history and it has been used to explain many experiments 

results. Quantum mechanics passed through countless testing experiment [1] [4] and even 

the most rigorous experiment [2]. However, the controversy on the foundation of quantum 

mechanics has been never stopped [1][4]. The most outstanding debate is how does the wave 

function collapse happen [3] [5]? What properties are found in a particular experiment [6]? 

What is a quantum reality [7]? 

This paper introduces a hypothesis to answer the questions above.  To understand the 

wave function collapse I suggest to modify the axiom system in [8] of the orthodox quantum 

mechanics. In this modification, axioms of operators and their possible values are removed. 

Then I propose an axiom about the possible states. This modification can determine which 

property is revealed from a particular experiment. From this modification, I propose an 

uncertain complex wave is quantum reality. The uncertain complex wave is non-intuitive but 

it can drive the classical picture as an average of the quantum reality. On other words, a 

classical reality isn’t considered a real reality. 

II. Theory and discussion 

1. Axiom system 

In this section, I show an axiom system which is a modification from the orthodox 

quantum mechanics. The axiom system of the orthodox quantum mechanics is stated by 

E. G. Harris in [8]. The new axiom system includes two axioms from Harris’s statement. I 

suggest a new axiom about the possible states. And I give a new form of Born rule. 

The first axiom in the E. G. Harris’s statement: State of a physical system is 

characterized by a vector 𝜓 in Hilbert space. The vector 𝜓 and 𝜆. 𝜓 (𝜆 is a complex number) 

describe the same state. In general, 𝜓 is normalized to the unit. 

In Hilbert space, we can define operators. Example, operators coordinate 𝑥=x; 

�̂� = 𝑦; �̂� = 𝑧 and �̂� = 𝑡. Operators momentum 𝑝𝑥 = −𝑖. ℏ.
𝑑

𝑑𝑥
; 𝑝𝑦 = −𝑖. ℏ.

𝑑

𝑑𝑦
; 𝑝𝑧 =

−𝑖. ℏ.
𝑑

𝑑𝑧
. Operator Hamilton for a particle: 𝐻 =

𝑝𝑥
2+𝑝𝑦

2+𝑝𝑧
2

2.𝑚
+ 𝑉(𝑥, 𝑦, 𝑧, 𝑡). In which, 

𝑉(𝑥, 𝑦, 𝑧, 𝑡) is operator potential energy, it is a function of coordinate and time. And 𝑚 

is mass of the particle. Relativity Hamilton operator has the form: 𝐻 = 𝛼𝑥 . 𝑝𝑥 +
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𝛼𝑦. 𝑝𝑦 + 𝛼𝑧 . 𝑝𝑧 + 𝛽. 𝑚. 𝑐2. In which 𝛼𝑥 = (
0 𝜎𝑥

−𝜎𝑥 0
), 𝛼𝑦 = (

0 𝜎𝑦

−𝜎𝑦 0
), 𝛼𝑧 =

(
0 𝜎𝑧

−𝜎𝑧 0
), 𝛽 = (

𝐼2 0
0 −𝐼2

); 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 are Pauli matrices. 𝐼2 is rank 2 unit matrix. 

The second axiom from E. G. Harris’s statement: Wave function satisfies the 

Schrodinger equation: 𝑖. ℏ.
𝑑

𝑑𝑡
𝜓 = 𝐻𝜓 

The wave function also satisfies some boundary conditions. They are continuous 

and single-valued conditions. The continuous property of wave function relates to 

possible states and their possible values. If the potential energy 𝑉(𝑥, 𝑦, 𝑧, 𝑡) is not 

continuous, the Schrodinger equation has to be investigated in many space domains. To 

introduce an axiom about the possible state I will define some concepts. I divide space 

into the largest possible domains 𝐷𝑖 (i=1,.n) such that the potential energy 𝑉(𝑥, 𝑦, 𝑧, 𝑡) is 

continuous in 𝐷𝑖. Then the domain 𝐷𝑖 is called a continuous domain of the system. The 

Schrodinger equation has the largest symmetry group 𝐺𝑖  in each domain 𝐷𝑖. It is called a 

basic group of the system in 𝐷𝑖. Solution of the Schrodinger equation in 𝐷𝑖 is a linear space 

𝑈𝑖. I symbol 𝑇𝑖𝑛 is an any irreducible represeantation of 𝐺𝑖  in 𝑈𝑖. And 𝑈𝑖𝑛 is a subspace of 

𝑈𝑖  such that it is invariant with 𝑇𝑖𝑛. The space 𝑈𝑖𝑛 is called a irreducible space of 𝐺𝑖. The 

space 𝑈𝑖  equals directly total of spaces 𝑈𝑖𝑛. Vectors in 𝑈𝑖𝑛 are symbolized 𝜓𝑖𝑛. If 𝑈𝑖𝑛 is a 

many-dimensional space, its basic system is symbolized 𝜓𝑖𝑛𝑟. And the vector 𝜓𝑖𝑛 is 

considered as a combination of 𝜓𝑖𝑛𝑟: 𝜓𝑖𝑛 = ∑ 𝑐𝑖𝑛𝑟𝜓𝑖𝑛𝑟𝑟 . The basis vectors of 𝑈𝑖𝑛 are 

orthogonal, the basis vectors of 𝑈𝑖  are so. From the first axiom, we can consider them as 

an orthonormal system. The axiom about the possible states has suggested the following: 

Possible states of a system in a continuous domain 𝐷𝑖 belong to irreducible spaces 

𝑈𝑖𝑛 of the basic group 𝐺𝑖. 

To see the effect of this axiom, we build a combination 𝜓𝑖 = ∑ 𝑐𝑖𝑘 . 𝜓𝑖𝑘𝑘 . This 

combination, in general, doesn't belong an irreducible representation space of 𝐺𝑖. So it 

isn’t possible states. So, the axiom about the possible states isn't compatible with the 

superposition principle. However, in some cases, the superposition principle is satisfied. 

These cases, the basic group 𝐺𝑖  has many-dimensional irreducible representations. Then 

the combinations of two vectors in 𝑈𝑖𝑛 are still possible states of the system. 

With stationary systems, each space 𝑈𝑖𝑛 corresponds to a stationary energy level. 

Vectors in 𝑈𝑖𝑛 correspond to the same energy level. The degenerate degree of this energy 

level equals the number of dimensions of 𝑈𝑖𝑛. Of course, with a stationary system, 

combinations of two possible states which aren’t the same energy level are not a possible 

state. These combinations, even aren’t stationary states. Note that 𝐷𝑖 is a 4-dimensions 

domain. So the axiom about possible states also helps to choice time-dependent possible 

states. 

Now, we investigate two vicinity domains 𝐷1 and 𝐷2. In 𝐷1 we build combination 

𝜓1 = ∑ 𝑐1𝑘. 𝜓1𝑘𝑘 . In 𝐷2 we build combination 𝜓2 = ∑ 𝑐2𝑘. 𝜓2𝑘𝑘 . The continuous 

condition for wave function between 𝐷1 and 𝐷2: 

 



∑ 𝑐1𝑘 . 𝜓1𝑘

𝑘

|

𝑆12

= ∑ 𝑐2𝑝. 𝜓2𝑝

𝑝

|

𝑆12

 

In which, 𝑆12 is the boundary between 𝐷1  and 𝐷2. Because of vectors 𝜓1𝑘 are 

orthogonal and vectors 𝜓2𝑝 are too, we can determine 𝑐2𝑝 from 𝑐1𝑘 and vice versa. With 

a specific experiment, coefficients 𝑐1𝑘, 𝑐2𝑝, .. 𝑐𝑖𝑛.. are uniquely determined. They were 

named continuous coefficients. If space 𝑈𝑖𝑛 has N dimensions, the coefficients  𝑐𝑖𝑛 were 

considered as a set of coefficients {𝑐𝑖𝑛1, 𝑐𝑖𝑛2,. . 𝑐𝑖𝑛𝑟,. . 𝑐𝑖𝑛𝑁}. I give the new form of the Born 

rule as follow: 

In each continuous domain 𝐷𝑖, in general, we can’t know exactly state of the 

system. Each possible state 𝜓𝑖𝑛 has a possibility of |𝑐𝑖𝑛|2. In which 𝑐𝑖𝑛 are continuous 

coefficients in domain 𝐷𝑖. 

2. The state during the measurement 

Now, we use the axioms above to discuss the measurement problem in quantum 

mechanics. When the system was observed, it is affected by an apparatus. In this paper, 

the effect of the apparatus is considered as any other interaction. This effect is described 

by a measurement potential energy 𝑉𝑚𝑒𝑎. There is no separation between the micro-

system and macro-system. The apparatus isn’t considered as a classical system. Before 

measurement, the physical system has Hamiltonian 𝐻, during the measurement, the 

physical system has Hamiltonian 𝐻𝑚𝑒𝑎 = 𝐻 + 𝑉𝑚𝑒𝑎. And the continuous domains of the 

system are symbolized 𝐷𝑖_𝑚𝑒𝑎. The basic groups are symbolized 𝐺𝑖_𝑚𝑒𝑎. The possible 

states of the system during the measurement are symbolized 𝜓𝑖𝑛_𝑚𝑒𝑎. These states 

satisfy the equation: 𝑖. ℏ.
𝑑

𝑑𝑡
𝜓𝑖𝑛_𝑚𝑒𝑎 = (𝐻 + 𝑉𝑚𝑒𝑎)𝜓𝑖𝑛_𝑚𝑒𝑎, they belong to the irreducible 

representation space of 𝐺𝑖_𝑚𝑒𝑎. And these spaces are symbolized 𝑈𝑖𝑛_𝑚𝑒𝑎. The directly 

total of 𝑈𝑖𝑛_𝑚𝑒𝑎 are 𝑈𝑖_𝑚𝑒𝑎. If 𝑈𝑖𝑛_𝑚𝑒𝑎 has many dimensions, its basic system is 

symbolized 𝜓𝑖𝑛𝑟_𝑚𝑒𝑎, and the vectors 𝜓𝑖𝑛_𝑚𝑒𝑎 are considered as a combination : 

∑ 𝑐𝑖𝑛𝑟_𝑚𝑒𝑎. 𝜓𝑖𝑛𝑟_𝑚𝑒𝑎𝑟 . During the measurement, the continuous coefficients are 

symbolized 𝑐1𝑘_𝑚𝑒𝑎, 𝑐2𝑝_𝑚𝑒𝑎,.. 𝑐𝑖𝑛_𝑚𝑒𝑎..If the spaces 𝑈𝑖𝑛_𝑚𝑒𝑎 has many dimensions, the 

coefficient  𝑐𝑖𝑛_𝑚𝑒𝑎.. are considered as a set of coefficients { 𝑐𝑖𝑛𝑟_𝑚𝑒𝑎}. 

In general, the state of the system during the measurement 𝜓𝑖𝑛_𝑚𝑒𝑎 is different 

from the state without measurement 𝜓𝑖𝑛. If measurement potential energy 𝑉𝑚𝑒𝑎 and 𝐻 

are commutative, and the system is stationary, then 𝜓𝑖𝑛_𝑚𝑒𝑎is an eigenvector of both 

𝑉𝑚𝑒𝑎 and 𝐻. With observed operator 𝐴 = 𝑓(𝑉𝑚𝑒𝑎) is a function of 𝑉𝑚𝑒𝑎, 𝜓𝑖𝑛_𝑚𝑒𝑎 is also 

an eigenvector of 𝐴. In this case, we see the wave function collapse. Before the 

measurement, the state of the system 𝜓𝑖𝑛, isn’t an eigenvector of 𝐴. During the 

measurement, the state of the system becomes an eigenvector of operator 𝐴. The 

changing from 𝜓𝑖𝑛 to 𝜓𝑖𝑛_𝑚𝑒𝑎 is suddenly and uncertain. However, the effect of the 

apparatus isn’t a bit secret. Like any interaction, the apparatus makes the change 

symmetry group, it due to the change of state of the system. In some case, the 

measurement potential energy 𝑉𝑚𝑒𝑎 breaks the symmetry, it builds a smaller symmetry 

group for the system. So before measurement, the state of the system 𝜓𝑖𝑛 is a 

combination of 𝜓𝑖𝑛_𝑚𝑒𝑎. And during the measurement, the state of the system becomes 



𝜓𝑖𝑛_𝑚𝑒𝑎. This process is like the wave function collapse of the orthodox quantum 

mechanics. 

If the system is stationary, 𝑉𝑚𝑒𝑎 and 𝐻 are commutative, 𝐴 and 𝑉𝑚𝑒𝑎 aren’t 

commutative, then the state 𝜓𝑖𝑛_𝑚𝑒𝑎 is not eigenvector of 𝐴. From the orthodox quantum 

mechanics, during measurement, the state of the system has been always eigenvector of 

observed operator 𝐴 [8]. In this case, the suggestion in this paper and the orthodox 

quantum mechanics give predictions different from each other. If the measurement 

potential energy 𝑉𝑚𝑒𝑎 and 𝐻 aren’t commutative, or 𝑉𝑚𝑒𝑎 is time-dependent, or the 

system is time-dependent, the prediction from the orthodox quantum mechanics and 

from the suggestion in this paper are also different. 

3. Information from measurement 

We can divide the measurement into two kinds. The first kind, the system affects 

directly on the detector. Experiment Stern-Gerlach [9], double slits [10] belong this kind. 

The second, the system affects on a medium system, then this medium system effect on 

the detector. Example, the measurement of the radiative spectrum of the atom [11], the 

atoms affect the radiative field, then this field affects the detector. 

The possibility density of the system can be got from the first kind of 

measurement directly. To get any other information about the system, we have to 

combine the result of the measurement and a mathematical model of the system. To get 

quantum properties of the system, we have to combine the result of measurement and 

the Schrodinger equation. Example, the combination between the perturbation solution 

of the Schrodinger equation and experimental spectrum of the atom, we can find the 

structure of energy levels of the atom. In some cases, because of the difficulty to analyze 

the Schrodinger equation, we get a little information. Example, from the result of 

measurement the visible radiative spectrum of solid materials [12], we drive a little 

information about the system. 

Qualitative quantum properties can get from the combination between the 

experiment and the qualitative solution of the Schrodinger equation. Example, 

information about the number of spin levels of an electron can be gotten qualitative 

solution of the Schrodinger equation for an electron. 

Quantitative quantum properties only get from the combination between 

experiment and quantitative solution of the Schrodinger equation. There are two kinds of 

quantitative properties. The first are constants as mass or charge of micro-particle. The 

second, in a stationary system, are the eigenvalues of the operator 𝐴 which it commutes 

with 𝐻. We can drive the value of the eigenvalues 𝑎𝑖  of operator 𝐴 because they appear 

in the quantitative solution of the Schrodinger equation. So we can define: “quantitative 

quantum properties of the system can be described by operators, possible values of each 

quantity equal eigenvalues of the operator”. For sure that possible values are real, the 

operator has to be hermitic. 

With the suggested axiom system in this paper, the observable quantities in a 

special experiment are indicated clearly. They correspond to operators that commute 

with the Hamiltonian H and 𝑉𝑚𝑒𝑎. The state of the system during the measurement 

depends on the property of the system and the 𝑉𝑚𝑒𝑎 but it doesn’t depend on thinking of 

the observer. 



4. Quantum reality 

From the Born rule, it is easy to find the average value of the operator 〈𝐴〉 =

⟨𝜓|𝐴𝜓⟩ = ∫ 𝜓∗𝐴𝜓. 𝑑𝑥𝜇. Here, the integration is determined in 4-dimensional space. We 

define 〈𝐴〉𝑡 = ∫ 𝜓∗𝐴𝜓. 𝑑𝑉 is 3-dimensions average. From the Schrodinger equation, the 

3-dimension average satisfies Heisenberg equation: 

𝑖. ℏ.
𝑑

𝑑𝑡
〈𝐴〉𝑡 =

𝜕〈𝐴〉𝑡

𝜕𝑡
+ 〈[𝐻, 𝐴]〉𝑡 

With coordination operator we have: 
𝑑

𝑑𝑡
〈𝑥〉𝑡 =

〈𝑝𝑥〉𝑡

𝑚
 

With momentum operator we have: 
𝑑

𝑑𝑡
〈𝑝𝑥〉𝑡 = −

𝜕〈𝑉〉𝑡

𝜕𝑥
 

Two equations above are the motion equations in classical mechanics. It shows 

clearly that the classical properties are averages of the quantum properties. And the laws 

of the macro-world are only average of quantum laws. It is also suitable to consider that 

the classical picture is only average of the quantum reality. I suggest that the “uncertain, 

complex wave” is the quantum reality. The uncertain, complex wave is non-intuitive, but 

I consider as real reality. The classical picture is only a reflection image of reality on human 

senses. In general, reality offers an image corresponding to each sensing structure. 

However, the uncertain, complex wave reality is the unique origin of all images. 

III. Conclusion 

The measurement problem is solved elegantly by a new axiom system which is a 

modification of orthodox quantum mechanics. I consider that this new axiom system is a 

complete description of quantum reality. The quantum reality is suggested as the uncertainly 

complex wave. It is non-intuitive, but it covers the classical picture as a reflection image of 

real reality on human senses. 
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