The characteristic of primes

Ihsan Raja Muda Nasution

December 9, 2019

Abstract

In this paper, we propose the axiomatic regularity of prime numbers.

MSC: 11A41
Keywords: prime numbers, distribution of primes, Riemann zeta-function, structure of primes

1 Introduction

In 1859, Riemann [Rie59] showed a deep connection between non-trivial zeros of the Riemann zeta-function and the prime numbers. Our motivation is to axiomatize the structure of primes.

2 Results

These below are some patterns of number.
Let t_{n} denote the nth triangular number. Then

$$
t_{n}=\binom{n+1}{2} \quad n \geq 1
$$

where $\binom{n}{k}$ is the binomial coefficients.
Let F_{n} be the nth Fibonacci number. Then

$$
F_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}
$$

where n is a positive integer.

Let B_{n} be the nth Bernoulli number. Then

$$
B_{n}=(-1)^{n+1} n \zeta(1-n),
$$

where $\zeta(1-n)$ is the Riemann zeta-function.
If $p(n)$ denotes the total number of partitions of n, then

$$
p(n) \sim \frac{e^{\pi \sqrt{2 n / 3}}}{4 n \sqrt{3}}
$$

where n is a positive integer.
Postulate 2.1 (Peano Postulates). Given the number 0, the set \mathbf{N}, and the function σ. Then:

1. $0 \in \mathbf{N}$.
2. $\sigma: \mathbf{N} \rightarrow \mathbf{N}$ is a function from \mathbf{N} to \mathbf{N}.
3. $0 \notin \operatorname{range}(\sigma)$.
4. The function σ is one-to-one.
5. If $I \subset \mathbf{N}$ such that $0 \in I$ and $\sigma(n) \in I$ whenever $n \in I$, then $I=\mathbf{N}$.

We define $1=\sigma(0), 2=\sigma(1), 3=\sigma(2)$, etc. Next, we propose the fundamental properties of prime numbers.
Definition 2.2. Given a positive integer n, let $\chi(n)$ denote the number of third positive divisor of n and $\Delta(n)$ denote the number of positive divisors of n besides 1 and n.

Indeed, $\chi(1)=0$ and $\Delta(1)=0$.
Postulate 2.3. Given a prime number $p, \sigma(n)$ denotes the sum of positive divisors of n. Then:

1. $2 \leq p$.
2. $4 \nmid p$.
3. $(-1)^{\chi(p)}=1$.
4. $3 \leq \sigma(p)$.
5. $\Delta(p)=0$.

By our observation, we get the estimation. Let p_{n} be the nth prime, where n is a positive integer. Then

$$
p_{n} \sim(1+\sin 19 \mathrm{rad}) n \log n .
$$

References

[Rie59] B. Riemann. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse. Monatsber. Akad. Berlin, pages 671-680, 1859.

