Coordinate Transformation and Static Charged Sphere in General Relativity

Karl De Paepe*

Abstract

We consider a static charged sphere in general relativity. We make a coordinate transformation of a specific form. The electromagnetic energy-momentum tensor in the transformed coordinates is shown to be zero contrary to what is expected.

1 Electromagnetic potential and field

Let $A_{\mu}(t, x, y, z)$ and $g_{\mu \nu}(t, x, y, z)$ be the electromagnetic potential and metric tensor respectively. The electromagnetic field is

$$
\begin{equation*}
F_{\mu \nu}(t, x, y, z)=A_{\nu, \mu}(t, x, y, z)-A_{\mu, \nu}(t, x, y, z) \tag{1}
\end{equation*}
$$

For a scalar function $\phi(t, x, y, z)$ define

$$
\begin{equation*}
\hat{A}^{\mu}(t, x, y, z)=A^{\mu}(t, x, y, z)+\left(g^{\mu \alpha} \phi_{, \alpha}\right)(t, x, y, z) \tag{2}
\end{equation*}
$$

We have by (1) and (2)

$$
\begin{align*}
F_{\mu \nu} & =A_{\nu, \mu}-A_{\mu, \nu}=A_{\nu, \mu}-A_{\mu, \nu}+\phi_{, \nu \mu}-\phi_{, \mu \nu}=\left(A_{\nu}+\phi_{, \nu}\right)_{, \mu}-\left(A_{\mu}+\phi_{, \mu}\right)_{, \nu} \\
& =\left(g_{\nu \alpha}\left[A^{\alpha}+g^{\alpha \beta} \phi_{, \beta}\right]\right)_{, \mu}-\left(g_{\mu \alpha}\left[A^{\alpha}+g^{\alpha \beta} \phi_{, \beta}\right]\right)_{, \nu}=\left(g_{\nu \alpha} \hat{A}^{\alpha}\right)_{, \mu}-\left(g_{\mu \alpha} \hat{A}^{\alpha}\right)_{, \nu} \tag{3}
\end{align*}
$$

2 Static charged sphere and Einstein field equations

Let there be a static charged sphere of total charge Q and mass M centred at the origin. Let the charge and mass densities be spherically symmetric. For this charged sphere let the metric $g_{\mu \nu}(r)$ of isotropic coordinate form

$$
\begin{equation*}
-a(r) d t^{2}+b(r)\left(d x^{2}+d y^{2}+d z^{2}\right) \tag{4}
\end{equation*}
$$

satisfy the Einstein field equations

$$
\begin{equation*}
G_{\mu \nu}=8 \pi\left[g^{\sigma \tau} F_{\mu \sigma} F_{\nu \tau}-\frac{1}{4} g_{\mu \nu} g^{\sigma \alpha} g^{\tau \beta} F_{\sigma \tau} F_{\alpha \beta}\right]+8 \pi T_{\mu \nu} \tag{5}
\end{equation*}
$$

where $T^{\mu \nu}(r)$ is the energy-momentum tensor of matter. Require the electromagnetic energy-momentum tensor is not zero and

$$
\begin{equation*}
A_{0}(r) \quad A_{1}(r)=A_{2}(r)=A_{3}(r)=0 \tag{6}
\end{equation*}
$$

Define $h_{\mu \nu}(r)=g_{\mu \nu}(r)-\eta_{\mu \nu}$. Require $r A_{\mu}(r)$ and $r h_{\mu \nu}(r)$ have finite limits as r goes to infinity. Consequently $r\left[a^{-1}(r)-1\right]$ and $r\left[b^{-1}(r)-1\right]$ have finite limits as r goes to infinity. Require also for small Q and M that

$$
\begin{equation*}
\left|A_{0}(r)\right| \ll 1 \quad\left|h_{\mu \nu}(r)\right| \ll 1 \tag{7}
\end{equation*}
$$

[^0]
3 Coordinate transformation

Let

$$
\begin{equation*}
\phi(t, x, y, z)=x \tag{8}
\end{equation*}
$$

hence by (2), (6), and (8)

$$
\begin{equation*}
\hat{A}^{0}(r)=-\left(a^{-1} A_{0}\right)(r) \quad \hat{A}^{1}(r)=b^{-1}(r) \quad \hat{A}^{2}(r)=\hat{A}^{3}(r)=0 \tag{9}
\end{equation*}
$$

Let Q and M be small so that $b(r)$ is approximately one. Consider the tranformation from x, y, z coordinates to $x^{\prime}, y^{\prime}, z^{\prime}$ coordinates given by

$$
\begin{equation*}
x^{\prime}=\int_{0}^{x} b\left(\sqrt{u^{2}+y^{2}+z^{2}}\right) d u \quad y^{\prime}=y \quad z^{\prime}=z \tag{10}
\end{equation*}
$$

From the inverse of this transformation define the function φ by $x=\varphi\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. Define the coordinate transformation from $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ coordinates to t, x, y, z coordinates by

$$
\begin{equation*}
t=t^{\prime}-\int_{0}^{x^{\prime}}\left(a^{-1} A_{0}\right)\left(\sqrt{\varphi^{2}\left(u^{\prime}, y^{\prime}, z^{\prime}\right)+y^{\prime 2}+z^{\prime 2}}\right) d u^{\prime} \quad x=\varphi\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \quad y=y^{\prime} \quad z=z^{\prime} \tag{11}
\end{equation*}
$$

The inverse of this transformation tranforms $\hat{A}^{\mu}(r)$ of (9) to $\hat{A}^{\prime \mu}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ so that

$$
\begin{equation*}
\hat{A}^{\prime 0}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=0 \quad \hat{A}^{\prime 1}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=1 \quad \hat{A}^{\prime 2}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=0 \quad \hat{A}^{\prime 3}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=0 \tag{12}
\end{equation*}
$$

4 Size of metric perturbation

We have by (10) that

$$
\begin{equation*}
\frac{\partial x}{\partial y^{\prime}}=-y^{\prime} b^{-1}\left(\sqrt{\varphi^{2}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)+y^{\prime 2}+z^{\prime 2}}\right) \int_{0}^{\varphi\left(x^{\prime}, y^{\prime}, z^{\prime}\right)} \frac{\frac{d b}{d r}\left(\sqrt{u^{\prime 2}+y^{\prime 2}+z^{\prime 2}}\right)}{\sqrt{u^{\prime 2}+y^{\prime 2}+z^{\prime 2}}} d u^{\prime} \tag{13}
\end{equation*}
$$

Now $r[b(r)-1]$ and $r\left[b^{-1}(r)-1\right]$ have finite limits as r goes to infinity hence $r^{2}(d b / d r)(r)$ has finite limit as r goes to infinity. Consequently the integral is finite as x^{\prime} goes to infinity and goes to zero as $\sqrt{y^{\prime 2}+z^{\prime 2}}$ goes to infinity. For small Q and M since $b(r)-1$ is small we then have $\partial x / \partial y^{\prime}$ is small. We have by (11) that

Now $r\left(a^{-1} A_{0}\right)(r)$ has finite limit as r goes to infinity. Consequently $r^{2}\left(d\left(a^{-1} A_{0}\right) / d r\right)(r)$ has a finite limit as r goes to infinity. Also we just showed $\partial \varphi / \partial y^{\prime}=\partial x / \partial y^{\prime}$ is small for small Q and M. Consequently the integral is finite as x^{\prime} goes to infinity. Also $\partial t / \partial y^{\prime}$ will go to zero as $\sqrt{y^{\prime 2}+z^{\prime 2}}$ goes to infinity. For small Q and M we then have $\partial t / \partial y^{\prime}$ is small. Also we have

$$
\begin{array}{ll}
\frac{\partial t}{\partial t^{\prime}}=1 & \frac{\partial t}{\partial x^{\prime}}=-\left(a^{-1} A_{0}\right)\left(\sqrt{\varphi^{2}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)+y^{\prime 2}+z^{\prime 2}}\right) \\
\frac{\partial x}{\partial t^{\prime}}=0 & \frac{\partial x}{\partial x^{\prime}}=b^{-1}\left(\sqrt{\varphi^{2}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)+y^{\prime 2}+z^{\prime 2}}\right) \quad \frac{\partial y}{\partial y^{\prime}}=1 \tag{15}
\end{array}
$$

We can then conclude for small Q and M that

$$
\begin{equation*}
\left|\frac{\partial x^{\mu}}{\partial x^{\prime \nu}}-\delta_{\nu}^{\mu}\right| \ll 1 \tag{16}
\end{equation*}
$$

Now

$$
\begin{equation*}
g_{\mu \nu}^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\frac{\partial x^{\alpha}}{\partial x^{\prime \mu}} \frac{\partial x^{\beta}}{\partial x^{\prime \nu}} g_{\alpha \beta}\left(\sqrt{\varphi^{2}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)+y^{\prime 2}+z^{\prime 2}}\right) \tag{17}
\end{equation*}
$$

and define $h_{\mu \nu}^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=g_{\mu \nu}^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)-\eta_{\mu \nu}$. By (7) and (16) we have for small Q and M that

$$
\begin{equation*}
\left|h_{\mu \nu}^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right| \ll 1 \tag{18}
\end{equation*}
$$

5 Contradiction

We have by (3) transformed to $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ coordinates and (12) that

$$
\begin{equation*}
F_{\mu \nu}^{\prime}=A_{\nu, \mu}^{\prime}-A_{\mu, \nu}^{\prime}=\left(g_{\nu \alpha}^{\prime} \hat{A}^{\prime \alpha}\right)_{, \mu}-\left(g_{\mu \alpha}^{\prime} \hat{A}^{\prime \alpha}\right)_{, \nu}=g_{\nu 1, \mu}^{\prime}-g_{\mu 1, \nu}^{\prime}=h_{\nu 1, \mu}^{\prime}-h_{\mu 1, \nu}^{\prime} \tag{19}
\end{equation*}
$$

Assuming the Principal of General Covariance and transforming (5) to $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ coordinates and using (19) we have $h_{\mu \nu}^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ satisfies

$$
\begin{equation*}
G_{\mu \nu}^{\prime}=8 \pi g^{\prime \sigma \tau}\left[h_{\sigma 1, \mu}^{\prime}-h_{\mu 1, \sigma}^{\prime}\right]\left[h_{\tau 1, \nu}^{\prime}-h_{\nu 1, \tau}^{\prime}\right]-2 \pi g_{\mu \nu}^{\prime} g^{\prime \alpha \sigma} g^{\prime \beta \tau}\left[h_{\tau 1, \sigma}^{\prime}-h_{\sigma 1, \tau}^{\prime}\right]\left[h_{\beta 1, \alpha}^{\prime}-h_{\alpha 1, \beta}^{\prime}\right]+8 \pi T_{\mu \nu}^{\prime} \tag{20}
\end{equation*}
$$

By (18) and (20) we have $h_{\mu \nu}^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ approximately satisfies

$$
\begin{equation*}
G_{\mu \nu}^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=8 \pi T_{\mu \nu}\left(r^{\prime}\right) \tag{21}
\end{equation*}
$$

From (21) we can conclude that the electromagnetic energy-momentum tensor in $t^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}$ coordinates is zero. This is a contradiction since we started with a charged sphere with nonzero electromagnetic energy-momentum tensor.

References

[1] K. De Paepe, Physics Essays, September 2007

[^0]: *k.depaepe@utoronto.ca

