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Abstract 
We derived the field equations of ( )f R  gravity using Euler-Poisson 
equation, which allows the boundary term to vanish in a natural way from 
the principle of Calculus of variation in contrary to the original theory of 
H. A. Buchdahl 1970, in which the boundary term was not treated. 
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1. Introduction 
In his paper "Non-Linear Lagrangians and Cosmological Theory" [1] H. 
A. Buchdahl, proposed his generalization to the Einstein field equations 
by considering a generalization of the gravitational Lagrangian ( )R  to be 
a general function the Riemanian scalar tensor rather than just a linear 
function proportional to the Riemanian curvature tensor. Nowadays it is 
called ( )f R  gravity. Most references that discuss ( )f R  gravity rarely 
refer to H. A. Buchdahl as the first to propose such non-linear Lagrangian 
functional model.  
He suggested a Lagrangian functional of the form 
 

( )L R  (1.0)
  

Where ( )R  is unspecified. 
He has given the generalization to the Einstein field equations as a tensor 
equation, which contains derivatives of ( )R  with respect to the Ricci 
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scalar as well as derivatives of the Ricci scalar with respect to space-time 
coordinates, which reads 
 

;
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He has given the result of variation of ( )g R  as 
 

( ) kl klg g P g      (1.2)
  

Where the sign   denotes equality to within additive divergence, and klP  
is given by 
 

;
; ; ; ;

1( ) ( )
2

m
k l kl m kl kl kl klR R g R R R g R R g             (1.3)

  
Without treating the boundary term. 
 
2. Euler-Poisson equation of the calculus of Variation 
The Euler-Poisson equation of a general Lagrangian functional L  is 
given by the following expression [2], [3] 
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With the boundary term given by 
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Which vanishes if q  and q   vanish at the two end points 1x  and 2x . 
To derive field equations for any functional of the fundamental metric 
tensor ( )e

mpg x  we make into the Euler-Poisson equation the following 
change of variables 
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The Lagrangian of the ( )f R  gravity is [4-6], 
 

, ,( , , )ab ab c ab cd GravityL g g g g L   (2.4)
  

Where 
 

, ,( , , ) ( )Gravity ab ab c ab cdL g g g f R  (2.5) 
 
Substituting Eq. (2.3), (2.4) and (2.5) in Eq. (2.1), the Euler-Poisson 
equation of the Lagrangian of ( )f R  gravity may be written explicitly as 
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This is our Euler-Poisson equation, which produces the same equation of 
motion of ( )f R  gravity as Buchdahl equation. 
Recalling that the Ricci scalar R  may written in terms of the metric 
tensor and its partial derivatives by 
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This in local coordinates like a geodesic coordinate system [4], a local 
inertial frame [5], or a Riemann Normal Coordinates system [7], which 
are characterized by 
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Where abc  is the Christoffel symbol of the first kind so, the Ricci Scalar 
in Eq. (2.7) may be rewritten as 
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In which the first partial derivate of the metric tensor vanishes. 
Since ( , , , )a b c h are dummy indices ( summed over), the Ricci Scalar 
R  may be rewritten as 
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This is resulting from making the indices changes

 

( , )a c b h   in the 
first term and ( , )a b c h  in the second term, respectively.  
To determine the various differentiations in three terms in brackets in Eq. 
(2.6) in the Euler-Lagrange equation we make use of the derivation of 
Einstein field equation from Einstein-Hilbert [4-7] in which 
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When written as 
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It implies 
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Since we are using the covariant metric tensor, we may transform the 
above equation to be rewritten in terms of the contra-variant metric tensor 
as 
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Using the identity 
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This is resulting from differentiating 
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With respect to mpg . 
We get the differentiation of the Ricci scalar with respect to the covariant 
metric tensor as 
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Since we are considering local coordinates in which the Christoffel 
symbols of both kinds and the first derivative of the metric tensor vanish 
and do not appear in R  expression in Eq. (2.7), we get 
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The derivative of Ricci scalar with respect to second derivative of the 
metric tensor with respect to coordinates is given by 
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Now we have at our disposal all the derivatives needed to derive our field 
equations of ( )f R  gravity. We summarize these as 
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Having derived the main terms needed we are now ready to derive the 
field equations of the ( )f R  gravity. 
 
3. Derivation of the field equation of ( )f R  gravity 
We derive the field equations of ( )f R  gravity in absence of external 
energy-momentum source by applying the Euler-Poisson equation to 

( )f R  gravity 
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Make use of the following identities 
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Then Eq. (3.1) becomes 
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Using the chain rule of differentiation 
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Substituting Eq. (3.5) into Eq. (3.4), we get 
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disappears from the equation of motion, so we are left with 
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Where we have substituted 
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Performing the first partial differentiation - the s   differentiation - in the 
third term of Eq. (3.7) we get 
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Writing partial derivative with respect to space-time coordinates of the 
derivative of ( )f R  with respect to Ricci scalar explicitly as  
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Substituting Eq. (3.12) into Eq. (3.11) yields 
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Performing the r  partial derivative in Eq. (3.13) becomes 
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Substituting the identities in Eq. (3.10) into Eq. (3.14), we get 
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Using the Leibniz rule of differentiation 
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Substituting Eq. (3.16) into Eq. (3.15), we get 
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Multiplying the two brackets in the second term in Eq. (3.17), we arrive 
at 
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Since 0g  , the form of the field equations of ( )f R  gravity in a local 
coordinate system in absence of external energy-momentum source 
would be 
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Rearranging in the descending order of the derivative of ( )f R  with 
respect to Ricci scalar R  yields our completed derivation of the field 
equations of the ( )f R  absence of external energy-momentum source as 
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Using the principle of general covariance Eq. (3.20) can be made to be 
valid in any general coordinate system by replacing the partial derivatives 
with covariant derivatives; in simple language the commas (,) in the Eq. 
(3.20) will be replaced by semicolon (; ) , i.e.  (, ) (;) . 
So, our equation of motion of the ( )f R  in the covariant form in absence 
of external energy-momentum source may be written as 
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Which is exactly the same as the Eq. (1.1) derived by H. A. Buchdahl. 
It may clearly be seen that it requires both the metric tensor components 
and the form of the function ( )f R  as an explicit function of the Ricci 
scalar R  as its basic ingredients for it applications. 
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4. Trace of the field equation of the ( )f R  gravity 
Contracting Eq. (3.21) (i.e. multiplying by mpg  and sum) and notice that 
in a 4dimensions space-time and for the diagonal metric tensor mpg  
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Where we have made use of the identities 
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Then the contracted field equations of ( )f R  in absence of external 
energy-momentum source is
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It is important to notice that in our case in which 0abT   (i.e. in absence of 
external energy-momentum source) no longer implies 0R   or even a 
constant Ricci curvature denoted by ( 0R R ) as in contracted Einstein 
field equations. 
The tensor form of the field equations of ( )f R  gravity in Eq. (3.21) is a 
set of four equations -since we are working in space-time of four 
dimensions - we may write these equations explicitly as 
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The Eq. (4.6) becomes 
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In addition, the contacted form in Eq. (4.5) becomes 
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In some gravitational models, the metric tensor is a function of one space-
time coordinates such that the Ricci scalar is a function only of the 
derivatives of the metric tensor with respect to that space-time coordinate. 
As examples, the time independent spherically symmetric metric [4-7], 
and the FLWR metric in Cosmology [4-7], are functions of one space-
time coordinate only - r  coordinate in the former and t   coordinate in 
the latter- so that there is only one surviving term in the brackets 
containing the derivatives of the Ricci scalar with respect to the space-
time coordinate in Eq. (4.9) and (4.10). 
 
5. Conclusion 
Derivation of the field equations of the ( )f R  gravity in absence of 
energy-momentum directly from Euler-Poisson equation by assuming the 
vanishing of the metric tensor and its first derivative at the boundary is 
straightforward and enlightening. The resulting field equations are the 
same with all its predictions as those derived by H. A. Buchdahl in 
absence of energy-momentum tensor. 
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