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Somsikov A.I. 

Historical problem of mathematics. Complex numbers 

The description of the complex number which is not containing a concept of the complex 

plane is offered.  

If the XOY coordinate system contains vectors 𝐴  and 𝐵  , so that the difference in their 

arguments is equal to φ, and the origins coincide, vector 𝐵   can be obtained from vector 𝐴  by a 

simple summation: 

𝐵  =  𝐴 +  𝐶  

where 𝐶  is the vector connecting the ends of vectors 𝐴  and 𝐵   (closing vector). 

If modules of vectors 𝐴  and 𝐵   are changed with unchanged arguments, the module and 

the argument of vector 𝐶  change. 

However, it is possible to perform vector summation so that the closing vector argument 

does not depend on the modules of vectors 𝐴  and 𝐵  . To do this, let's project vector 𝐵   on vector 𝐴  

and perpendicular to vector 𝐴  and write down the vector sum:  

𝐵 cos φ
𝐴

𝐴
+ 𝐵 sin

𝐶 ′

𝐶′
= 𝐵    (1) 

Vector 𝐶 ′  is perpendicular to vector 𝐴 . 

So, if we take the vector 
𝐵

𝐴
cos φ𝐴  instead of the vector 𝐴  inside the vector sum, i.e. 

simply multiply the vector 𝐴  by the coefficient, the closing vector acquires a certain argument, 

which does not depend on the modules of vectors 𝐴  and 𝐵  , namely, it is perpendicular to the 

vector 𝐴 . 

This circumstance can be symbolically written as follows: if vector 𝐴  should be rotated 
𝜋

2
 

counterclockwise to get equality of arguments of vectors 𝐶 ′  and 𝐴 : 

𝐶 ′

𝐶′
= 𝑖

𝐴 

𝐴
 

if vector 𝐴  should be rotated 
𝜋

2
 clockwise to get equality of arguments of vectors 𝐶 ′  and 

𝐴 :  

𝐶 ′

𝐶′
= −𝑖

𝐴 

𝐴
 

So, the symbol i next to the vector means that this vector is rotated 
𝜋

2
 counterclockwise. 

Considering the entered designations, vector equation (1) will be rewritten:  

𝐵

𝐴
cos φ𝐴 ± 𝑖

𝐵

𝐴
sin φ𝐴 = 𝐵   

Let us assume that 
𝐵

𝐴
cos φ = 𝑎; 

𝐵

𝐴
sin φ = 𝑏. 

𝑎𝐴 ± 𝑖𝑏𝐴 = 𝐵   
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The last equation means: to get vector 𝐵  , the vector 𝐴  must be multiplied by the 

coefficient a, then the vector 𝐴  must be multiplied by the coefficient b and rotated 
𝜋

2
 clockwise or 

counter-clockwise, and the vectors must be added together. 

The operations that need to be made on vector 𝐴  to get vector 𝐵   can be written as 

follows:  

(𝑎 ± 𝑏𝑖)𝐴 = 𝐵   

The operator (𝑎 ± 𝑏𝑖) is called a complex number. 

So, the symbolic operator (𝑎 ± 𝑏𝑖) serves for transition from one vector to another on the 

plane. 

To show where such a transition may be needed, let's consider a system of vector 

equations:  

𝑋1
     + 𝑋2

     = 𝐴 , 

 𝑎1 + 𝑏1𝑖 𝑋1
     +  𝑎2+𝑏2𝑖 𝑋2

     = 𝐵  =  𝑎3+𝑏3𝑖 𝐴 , 

where 𝑋1
      and 𝑋2

      are vectors with unknown modules and arguments, and 𝐴  and 𝐵   are 

known vectors. 

Note that since 𝐴  and 𝐵   are known, 𝐵  =  𝑎3+𝑏3𝑖 𝐴  can be found: 

𝑋1
     + 𝑋2

     = 𝐴 ,  (2) 

 𝑎1 + 𝑏1𝑖 𝑋1
     +  𝑎2+𝑏2𝑖 𝑋2

     = 𝐵  =  𝑎3+𝑏3𝑖 𝐴 ,  (3) 

 If equation (2) had a vector  𝑎1 + 𝑏1𝑖 𝑋1
      instead of 𝑋1

     , we would have subtracted 

equation (3) from equation (2) and the vector  𝑎1 + 𝑏1𝑖 𝑋1
      would have disappeared. We would 

get the equation with one unknown 𝑋2
     . The systems of first degree algebraic equations with two 

unknowns are solved in a similar way. 

So, it is necessary to be able to apply the operator  𝑎 + 𝑏𝑖  to vector equations. It is 

necessary to learn how to apply the operator  𝑎 + 𝑏𝑖  to the sum (difference) of vectors and to 

apply the operator  𝑎 + 𝑏𝑖  to the vector to which the operator of this kind is already applied. 

Consider:  𝑎 + 𝑏𝑖 𝐴 . 

Let us assume that 𝐴 + 𝐵  = 𝐶 . 
By definition:  

 𝑎 + 𝑏𝑖 𝐴 = 𝑎𝐴 + 𝑏𝑖𝐴 = 𝑎(𝐵  + 𝐶 ) + 𝑏𝑖(𝐵  + 𝐶 ). 

And then 𝑖𝐵  + 𝑖𝐶 = 𝑖𝐴 = 𝑖(𝐵  + 𝐶 )  (4) 

(vectors 𝐴 , 𝐵   and 𝐶 , as well as i𝐴 , i𝐵   and i𝐶  perpendicular to them form closed 

triangles). 

Then: 𝑏𝑖(𝐵  + 𝐶 ) = 𝑖(𝑏𝐵  + 𝑏𝐶 ) = 𝑏𝑖𝐵  + 𝑏𝑖𝐶 . 

So:  𝑎 + 𝑏𝑖  𝐵  + 𝐶  = 𝑎𝐵  + 𝑎𝐶 + 𝑏𝑖𝐵  + 𝑏𝑖𝐶 = (𝑎 + 𝑏𝑖)𝐵  + (𝑎 + 𝑏𝑖)𝐶 . 
Consequently, equation (2) is easily converted to the desired form:  

 𝑎1 + 𝑏1𝑖 (𝑋1
     + 𝑋2

     ) =  𝑎1+𝑏1𝑖 𝐴 ; 

 𝑎1 + 𝑏1𝑖 𝑋1
     +  𝑎1 + 𝑏1𝑖 𝑋2

     =  𝑎1+𝑏1𝑖 𝐴 . 

Consider:  

𝐴 ± 𝐵  =  𝑎1 + 𝑏1𝑖 𝐶 ±  𝑎2 + 𝑏2𝑖 𝐶 = 𝑎1𝐶 + 𝑏1𝑖𝐶 ± 𝑎2𝐶 ± 𝑏2𝑖𝐶 =(𝑎1 ± 𝑎2)𝐶 +

 𝑏1 ± 𝑏2 𝑖𝐶 = [(𝑎1 ± 𝑎2) +  𝑏1 ± 𝑏2 𝑖]𝐶 . 
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This result can be symbolically written down as follows:  

 𝑎1 + 𝑏1𝑖 ±  𝑎2 + 𝑏2𝑖 = (𝑎1 ± 𝑎2) +  𝑏1 ± 𝑏2 𝑖. 
This symbolic operation corresponding to summation (subtraction) of vectors is called 

summation (subtraction) of complex numbers. 

Let's finally consider  𝑎1 + 𝑏1𝑖 𝐴 , if 𝐴 =  𝑎2 + 𝑏2𝑖 𝐵  = 𝑎2𝐵  + 𝑏2𝑖𝐵  . 

According to (4): 𝑖 𝑏1𝑎2𝐵  + 𝑏1𝑏2𝑖𝐵   = 𝑏1𝑎2𝑖𝐵  + 𝑏1𝑏2𝑖𝑖𝐵  . 

Repeated application of i means that the vector 𝑏1𝑏2𝑖𝐵   already rotated 
𝜋

2
 

counterclockwise with respect to vector 𝑏1𝑏2𝐵   is additionally rotated 
𝜋

2
 in the same direction, 

which is equivalent to entering the vector opposite to 𝑏1𝑏2𝐵  . 

Then: 𝑏1𝑏2𝑖𝑖𝐵  = −𝑏1𝑏2𝐵  . 

So:  𝑎1 + 𝑏1𝑖 𝐴 = 𝑎1𝑎2𝐵  + 𝑎1𝑏2𝑖𝐵  + 𝑏1𝑎2𝑖𝐵  − 𝑏1𝑏2𝐵  =  𝑎1𝑎2 − 𝑏1𝑏2 𝐵  +

 𝑎1𝑏2 − 𝑏1𝑎2 𝑖𝐵  = [ 𝑎1𝑎2 − 𝑏1𝑏2 +  𝑎1𝑏2 − 𝑏1𝑎2 𝑖]𝐵  . 

Or:  𝑎1 + 𝑏1𝑖  𝑎2 + 𝑏2𝑖 𝐵  = [ 𝑎1𝑎2 − 𝑏1𝑏2 +  𝑎1𝑏2 − 𝑏1𝑎2 𝑖]𝐵  . 
This result written symbolically:  𝑎1 + 𝑏1𝑖  𝑎2 + 𝑏2𝑖 =  𝑎1𝑎2 − 𝑏1𝑏2 +  𝑎1𝑏2 −

𝑏1𝑎2𝑖  
is called multiplication of complex numbers. 

The division of complex numbers is the search for a complex number, which, being 

multiplied by a given complex number, gives the second given complex number. 

In the example above, this problem occurs when the coefficient at 𝑋1
      is not equal to one, 

but is also a complex number, and still needs to be turned into  𝑎1 + 𝑏1𝑖 . 
So, given:  

𝛼1 = 𝑎 + 𝑏𝑖, 
𝛼2 = 𝑐 + 𝑑𝑖. 

Find a 𝛼3, so that 𝛼1𝛼3 = 𝛼2. 

Let us assume that 𝛼3 = 𝑥 + 𝑦𝑖. 
Then, taking by definition: 𝛼1𝛼3 =  𝑎 + 𝑏𝑖  𝑥 + 𝑦𝑖 =  𝑎𝑥 − 𝑏𝑦 +  𝑎𝑦 + 𝑏𝑥 𝑖, 
we find:  𝑎𝑥 − 𝑏𝑦 +  𝑎𝑦 + 𝑏𝑥 𝑖 = 𝑐 + 𝑑𝑖. 
The equality of complex numbers means the equality of the resulting vectors, if the initial 

vectors are equal. 

Hence, the requirement to perform the equality of actual and imaginary parts of equal 

complex numbers is clear. 

In fact, the real part gives the projection of the resulting vector on the initial one, and the 

imaginary part gives the projection on the perpendicular to the initial vector, and the projections 

of equal vectors on the same axis are equal. 

So: 

𝑎𝑥 − 𝑏𝑦 = 𝑐, 

𝑎𝑦 + 𝑏𝑥 = 𝑑. 

Solution of this system:  

𝑥 =
𝑎𝑐 + 𝑏𝑑

𝑎2 + 𝑏2
, 

𝑦 =
𝑎𝑑 − 𝑏𝑐

𝑎2 + 𝑏2
. 

Formally, the same result can be obtained by representing the desired complex number as 

a fraction and producing actions similar to liberation from the irrationality of the denominator: 

𝑥 + 𝑦𝑖 =
𝑐 + 𝑑𝑖

𝑎 + 𝑏𝑖
=

(𝑐 + 𝑑𝑖)(𝑎 − 𝑏𝑖)

(𝑎 + 𝑏𝑖)(𝑎 − 𝑏𝑖)
=

 𝑎𝑐 + 𝑏𝑑 +  𝑎𝑑 − 𝑏𝑐 𝑖

𝑎2 + 𝑏2
. 

So, the system of vector equations is given:  



4 

 

𝛼1𝑋1
     + 𝛼2𝑋2

     = 𝐴 ,  (5) 

𝛼3𝑋1
     + 𝛼4𝑋2

     = 𝐵  ,  (6) 

where 𝛼1, 𝛼2, 𝛼3, 𝛼4 are complex numbers;  

𝐴 , 𝐵   are vectors, modules and arguments of which are known. 

Find vectors 𝑋1
      and 𝑋2

     . 

Let us assume that 𝐵  =  𝑎 + 𝑏𝑖 𝐴 = 𝛼𝐴 . 

𝛼1𝑋1
     + 𝛼2𝑋2

     = 𝐴 , 

𝛼3𝑋1
     + 𝛼4𝑋2

     = 𝛼𝐴 . 

Apply a complex number 𝛼5 to one of the equations, for example (5), so that, for 

example, 𝛼1𝛼5 = 𝛼3          (𝛼5 =
𝛼3

𝛼1
). 

Then: 

𝛼3𝑋1
     + 𝛼2𝛼5𝑋2

     = 𝛼5𝐴 , 

𝛼3𝑋1
     + 𝛼4𝑋2

     = 𝛼𝐴 . 
 

Let's deduct equation (6) from equation (5):  

𝛼3𝑋1
     + 𝛼2𝛼5𝑋2

     − 𝛼3𝑋1
     − 𝛼4𝑋2

     = 𝛼5𝐴 − 𝛼𝐴 . 

Then: (𝛼2𝛼5 − 𝛼4)𝑋2
     = (𝛼5 − 𝛼)𝐴 . 

Or finally:  

𝑋2
     =

𝛼5 − 𝛼

𝛼2𝛼5 − 𝛼4
𝐴 . 

Similarly, systems of n vector equations with n unknown vectors are solved in the same 

way as systems of linear algebraic equations. 

Complex numbers arise when solving systems of integro-differential equations from 

harmonic functions in the following order:  

- the integro-differential equations are solved, after which the system turns into a system 

of trigonometric equations from harmonic functions,  

- transition from the system of trigonometric functions to the vector diagram,  

- a system of vector equations corresponding to the obtained vector diagram is compiled. 

We have just described the solution of the vector equation system. 


