Definitive Proof of Beal's Conjecture

Abdelmajid Ben Hadj Salem
To my wife Wahida, my daughter Sinda and my son Mohamed Mazen

Abstract

In 1997, Andrew Beal announced the following conjecture: Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If $A^{m}+B^{n}=C^{l}$ then A, B, and C have a common factor. We begin to construct the polynomial $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=$ $x^{3}-p x+q$ with p, q integers depending of A^{m}, B^{n} and C^{l}. We resolve $x^{3}-p x+q=0$ and we obtain the three roots x_{1}, x_{2}, x_{3} as functions of p, q and a parameter θ. Since $A^{m}, B^{n},-C^{l}$ are the only roots of $x^{3}-p x+q=0$, we discuss the conditions that x_{1}, x_{2}, x_{3} are integers and have or not a common factor. Three numerical examples are given.

\section*{Contents} (A table of contents should normally not be included) 1 Introduction 1 1.1 Trivial Case 2 2 Preliminaries 2 2.1 Expressions of the roots 4 3 Preamble of the Proof of the Main Theorem 6 $3.1 \quad$ Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$ 6 3.2 Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$. 7 4 Hypothesis : $\{3 \mid a$ and $b \mid 4 p\}$ 7 4.1 Case $b=2$ and $3 \mid a$: 8 $4.2 \quad$ Case $b=4$ and $3 \mid a$: 8 4.3 Case $b=p$ and $3 \mid a$ 8 4.4 Case $b \mid p \Rightarrow p=b . p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a$: 11 4.5 Case $b=2 p$ and $3 \mid a$; 14 $4.6 \quad$ Case $b=4 p$ and $3 \mid a$ 14 4.7 Case $3 \mid a$ and $b=2 p^{\prime} \quad b \neq 2$ with $p^{\prime} \mid p$: 18 $4.8 \quad$ Case $3 \mid a$ and $b=4 p^{\prime} b \neq 2$ with $p^{\prime} \mid p$ 21 4.9 Case $3 \mid a$ and $b \mid 4 p$ 24 5 Hypothèse: $\{3 \mid p$ and $b \mid 4 p\}$ 27 $5.1 \quad$ Case $b=2$ and $3 \mid p$: 27

Abdelmajid Ben Hadj Salem

5.2 Case $b=4$ and $3 \mid p$: 27
5.3 Case: $b \neq 2, b \neq 4, b \neq 3, b \mid p$ and $3 \mid p:$ 27
5.4 Case $b=3$ and $3 \mid p$: 30
5.5 Case $3 \mid p$ and $b=p$: 31
5.6 Case $3 \mid p$ and $b=4 p$: 31
5.7 Case $3 \mid p$ and $b=2 p$: 32
5.8 Case $3 \mid p$ and $b \neq 3$ a divisor of p : 32
5.9 Case $3 \mid p$ and $b \mid 4 p$: 39
6 Numerical Examples 50
6.1 Example 1: 50
6.2 Example 2: 51
6.3 Example 3: 51
7 Conclusion 51
References 52

1. Introduction

In 1997, Andrew Beal [1] announced the following conjecture :
Conjecture 1.1. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{1}
\end{equation*}
$$

then A, B, and C have a common factor.

In this paper, we give a complete proof of the Beal Conjecture. Our idea is to construct a polynomial $P(x)$ of three order having as roots A^{m}, B^{n} and $-C^{l}$ with the condition (1). The paper is organized as follows. In Section 1, we begin with the trivial case where $A^{m}=B^{n}$. In Section 2, we consider the polynomial $P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-p x+q$. We express the three roots of $P(x)=x^{3}-p x+q=0$ in function of two parameters ρ, θ that depend of A^{m}, B^{n}, C^{l}. The Sections 3,4 and 5 are the main parts of the paper. We write that $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}$. As $A^{2 m}$ is a natural integer, it follows that $\cos ^{2} \frac{\theta}{3}$ must be written as $\frac{a}{b}$ where a, b are two positive coprime integers. We discuss the conditions of divisibility of p, a, b so that the expression of $A^{2 m}$ is a natural integer. Depending of each individual case, we obtain that A, B, C have or not a common factor. We present three numerical examples in section 6 and we give the conclusion in the last Section.

1.1 Trivial Case

We consider the trivial case when $A^{m}=B^{n}$. The equation (1) becomes:

$$
\begin{equation*}
2 A^{m}=C^{l} \tag{2}
\end{equation*}
$$

then $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow \exists c \in \mathbb{N}^{*} / C=2 c$, it follows $2 A^{m}=2^{l} c^{l} \Longrightarrow A^{m}=2^{l-1} c^{l}$. As $l>2$, then $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow 2\left|B^{n} \Longrightarrow 2\right| B$. The conjecture (1.1) is verified.

We suppose in the following that $A^{m}>B^{n}$.

Definitive Proof of Beal's Conjecture

2. Preliminaries

Let $m, n, l \in \mathbb{N}^{*}>2$ and $A, B, C \in \mathbb{N}^{*}$ such:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{3}
\end{equation*}
$$

We call:

$$
\begin{gather*}
P(x)=\left(x-A^{m}\right)\left(x-B^{n}\right)\left(x+C^{l}\right)=x^{3}-x^{2}\left(A^{m}+B^{n}-C^{l}\right) \\
+x\left[A^{m} B^{n}-C^{l}\left(A^{m}+B^{n}\right)\right]+C^{l} A^{m} B^{n} \tag{4}
\end{gather*}
$$

Using the equation (3), $P(x)$ can be written:

$$
\begin{equation*}
P(x)=x^{3}+x\left[A^{m} B^{n}-\left(A^{m}+B^{n}\right)^{2}\right]+A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{5}
\end{equation*}
$$

We introduce the notations:

$$
\begin{array}{r}
p=\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n} \\
\quad q=A^{m} B^{n}\left(A^{m}+B^{n}\right) \tag{7}
\end{array}
$$

As $A^{m} \neq B^{n}$, we have :

$$
\begin{equation*}
p>\left(A^{m}-B^{n}\right)^{2}>0 \tag{8}
\end{equation*}
$$

Equation (5) becomes:

$$
\begin{equation*}
P(x)=x^{3}-p x+q \tag{9}
\end{equation*}
$$

Using the equation (4), $P(x)=0$ has three different real roots : A^{m}, B^{n} and $-C^{l}$.

Now, let us resolve the equation:

$$
\begin{equation*}
P(x)=x^{3}-p x+q=0 \tag{10}
\end{equation*}
$$

To resolve (10) let:

$$
\begin{equation*}
x=u+v \tag{11}
\end{equation*}
$$

Then $P(x)=0$ gives:

$$
\begin{equation*}
P(x)=P(u+v)=(u+v)^{3}-p(u+v)+q=0 \Longrightarrow u^{3}+v^{3}+(u+v)(3 u v-p)+q=0 \tag{12}
\end{equation*}
$$

To determine u and v, we obtain the conditions:

$$
\begin{align*}
& u^{3}+v^{3}=-q \tag{13}\\
& u v=p / 3>0 \tag{14}
\end{align*}
$$

Then u^{3} and v^{3} are solutions of the second order equation:

$$
\begin{equation*}
X^{2}+q X+p^{3} / 27=0 \tag{15}
\end{equation*}
$$

Its discriminant Δ is written as:

$$
\begin{equation*}
\Delta=q^{2}-4 p^{3} / 27=\frac{27 q^{2}-4 p^{3}}{27}=\frac{\bar{\Delta}}{27} \tag{16}
\end{equation*}
$$

Let:

$$
\begin{align*}
\bar{\Delta}=27 q^{2}-4 p^{3} & =27\left(A^{m} B^{n}\left(A^{m}+B^{n}\right)\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \\
& =27 A^{2 m} B^{2 n}\left(A^{m}+B^{n}\right)^{2}-4\left[\left(A^{m}+B^{n}\right)^{2}-A^{m} B^{n}\right]^{3} \tag{17}
\end{align*}
$$

Abdelmajid Ben Hadj Salem

Noting :

$$
\begin{array}{r}
\alpha=A^{m} B^{n}>0 \\
\beta=\left(A^{m}+B^{n}\right)^{2} \tag{19}
\end{array}
$$

we can write (17) as:

$$
\begin{equation*}
\bar{\Delta}=27 \alpha^{2} \beta-4(\beta-\alpha)^{3} \tag{20}
\end{equation*}
$$

As $\alpha \neq 0$, we can also rewrite (20) as :

$$
\begin{equation*}
\bar{\Delta}=\alpha^{3}\left(27 \frac{\beta}{\alpha}-4\left(\frac{\beta}{\alpha}-1\right)^{3}\right) \tag{21}
\end{equation*}
$$

We call t the parameter :

$$
\begin{equation*}
t=\frac{\beta}{\alpha} \tag{22}
\end{equation*}
$$

$\bar{\Delta}$ becomes :

$$
\begin{equation*}
\bar{\Delta}=\alpha^{3}\left(27 t-4(t-1)^{3}\right) \tag{23}
\end{equation*}
$$

Let us calling :

$$
\begin{equation*}
y=y(t)=27 t-4(t-1)^{3} \tag{24}
\end{equation*}
$$

Since $\alpha>0$, the sign of $\bar{\Delta}$ is also the sign of $y(t)$. Let us study the sign of y. We obtain $y^{\prime}(t)$:

$$
\begin{equation*}
y^{\prime}(t)=y^{\prime}=3(1+2 t)(5-2 t) \tag{25}
\end{equation*}
$$

$y^{\prime}=0 \Longrightarrow t_{1}=-1 / 2$ and $t_{2}=5 / 2$, then the table of variations of y is given below:

Figure 1. The table of variation
The table of the variations of the function y shows that $y<0$ for $t>4$. In our case, we are interested for $t>0$. For $t=4$ we obtain $y(4)=0$ and for $t \in] 0,4[\Longrightarrow y>0$. As we have $t=\frac{\beta}{\alpha}>4$ because as $A^{m} \neq B^{n}$:

$$
\begin{equation*}
\left(A^{m}-B^{n}\right)^{2}>0 \Longrightarrow \beta=\left(A^{m}+B^{n}\right)^{2}>4 \alpha=4 A^{m} B^{n} \tag{26}
\end{equation*}
$$

Then $y<0 \Longrightarrow \bar{\Delta}<0 \Longrightarrow \Delta<0$. Then, the equation (15) does not have real solutions u^{3} and v^{3}. Let us find the solutions u and v with $x=u+v$ is a positive or a negative real and $u . v=p / 3$.

Definitive Proof of Beal's Conjecture

2.1 Expressions of the roots

Proof. The solutions of (15) are:

$$
\begin{align*}
X_{1} & =\frac{-q+i \sqrt{-\Delta}}{2} \tag{27}\\
X_{2}=\overline{X_{1}} & =\frac{-q-i \sqrt{-\Delta}}{2} \tag{28}
\end{align*}
$$

We may resolve:

$$
\begin{align*}
& u^{3}=\frac{-q+i \sqrt{-\Delta}}{2} \tag{29}\\
& v^{3}=\frac{-q-i \sqrt{-\Delta}}{2} \tag{30}
\end{align*}
$$

Writing X_{1} in the form:

$$
\begin{equation*}
X_{1}=\rho e^{i \theta} \tag{31}
\end{equation*}
$$

with:

$$
\begin{align*}
& \rho=\frac{\sqrt{q^{2}-\Delta}}{2}=\frac{p \sqrt{p}}{3 \sqrt{3}} \tag{32}\\
& \text { and } \sin \theta=\frac{\sqrt{-\Delta}}{2 \rho}>0 \tag{33}\\
& \qquad \cos \theta=-\frac{q}{2 \rho}<0 \tag{34}
\end{align*}
$$

Then $\theta[2 \pi] \in]+\frac{\pi}{2},+\pi[$, let:

$$
\begin{equation*}
\frac{\pi}{2}<\theta<+\pi \Rightarrow \frac{\pi}{6}<\frac{\theta}{3}<\frac{\pi}{3} \Rightarrow \frac{1}{2}<\cos \frac{\theta}{3}<\frac{\sqrt{3}}{2} \tag{35}
\end{equation*}
$$

and:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \tag{36}
\end{equation*}
$$

hence the expression of X_{2} :

$$
\begin{equation*}
X_{2}=\rho e^{-i \theta} \tag{37}
\end{equation*}
$$

Let:

$$
\begin{array}{r}
u=r e^{i \psi} \\
\text { and } j=\frac{-1+i \sqrt{3}}{2}=e^{i \frac{i \pi}{3}} \\
j^{2}=e^{i \frac{4 \pi}{3}}=-\frac{1+i \sqrt{3}}{2}=\bar{j} \tag{40}
\end{array}
$$

j is a complex cubic root of the unity $\Longleftrightarrow j^{3}=1$. Then, the solutions u and v are:

$$
\begin{array}{r}
u_{1}=r e^{i \psi_{1}}=\sqrt[3]{\rho} e^{i \frac{\theta}{3}} \\
u_{2}=r e^{i \psi_{2}}=\sqrt[3]{\rho} j e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{\theta+2 \pi}{3}} \\
u_{3}=r e^{i \psi_{3}}=\sqrt[3]{\rho} j^{2} e^{i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{i i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{\frac{\theta+4 \pi}{3}} \tag{43}
\end{array}
$$

Abdelmajid Ben Hadj Salem

and similarly:

$$
\begin{array}{r}
v_{1}=r e^{-i \psi_{1}}=\sqrt[3]{\rho} e^{-i \frac{\theta}{3}} \\
v_{2}=r e^{-i \psi_{2}}=\sqrt[3]{\rho} j^{2} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi}{3}} e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{4 \pi-\theta}{3}} \\
v_{3}=r e^{-i \psi_{3}}=\sqrt[3]{\rho} j e^{-i \frac{\theta}{3}}=\sqrt[3]{\rho} e^{i \frac{i \pi-\theta}{3}} \tag{46}
\end{array}
$$

We may now choose u_{k} and v_{h} so that $u_{k}+v_{h}$ will be real. In this case, we have necessary :

$$
\begin{align*}
& v_{1}=\overline{u_{1}} \tag{47}\\
& v_{2}=\overline{u_{2}} \tag{48}\\
& v_{3}=\overline{u_{3}} \tag{49}
\end{align*}
$$

We obtain as real solutions of the equation (12):

$$
\begin{gather*}
x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3}>0 \tag{50}\\
x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)<0 \tag{51}\\
x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)>0 \tag{52}
\end{gather*}
$$

We compare the expressions of x_{1} and x_{3}, we obtain:

$$
\begin{align*}
& 2 \sqrt[3]{p} \cos \frac{\theta}{3} \overbrace{\gg}^{?} \sqrt[3]{p}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
& 3 \cos \frac{\theta}{3} \overbrace{>}^{?} \sqrt{3} \sin \frac{\theta}{3} \tag{53}
\end{align*}
$$

As $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$, then $\sin \frac{\theta}{3}$ and $\cos \frac{\theta}{3}$ are >0. Taking the square of the two members of the last equation, we get:

$$
\begin{equation*}
\frac{1}{4}<\cos ^{2} \frac{\theta}{3} \tag{54}
\end{equation*}
$$

which is true since $\left.\frac{\theta}{3} \in\right]+\frac{\pi}{6},+\frac{\pi}{3}\left[\right.$ then $x_{1}>x_{3}$. As A^{m}, B^{n} and $-C^{l}$ are the only real solutions of (10), we consider, as A^{m} is supposed great than B^{n}, the expressions:

$$
\left\{\begin{array}{l}
A^{m}=x_{1}=u_{1}+v_{1}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \tag{55}\\
B^{n}=x_{3}=u_{3}+v_{3}=2 \sqrt[3]{\rho} \cos \frac{\theta+4 \pi}{3}=\sqrt[3]{\rho}\left(-\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right) \\
-C^{l}=x_{2}=u_{2}+v_{2}=2 \sqrt[3]{\rho} \cos \frac{\theta+2 \pi}{3}=-\sqrt[3]{\rho}\left(\cos \frac{\theta}{3}+\sqrt{3} \sin \frac{\theta}{3}\right)
\end{array}\right.
$$

Definitive Proof of Beal's Conjecture

3. Preamble of the Proof of the Main Theorem

Theorem 3.1. Let A, B, C, m, n, and l be positive integers with $m, n, l>2$. If:

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{56}
\end{equation*}
$$

then A, B, and C have a common factor.

$$
\begin{gather*}
A^{m}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \text { is an integer } \Rightarrow A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3} \text { is also an integer. But : } \\
\sqrt[3]{\rho^{2}}=\frac{p}{3} \tag{57}
\end{gather*}
$$

Then:

$$
\begin{equation*}
A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cdot \cos ^{2} \frac{\theta}{3}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3} \tag{58}
\end{equation*}
$$

As $A^{2 m}$ is an integer and p is an integer, then $\cos ^{2} \frac{\theta}{3}$ must be written under the form:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{1}{b} \quad \text { or } \quad \cos ^{2} \frac{\theta}{3}=\frac{a}{b} \tag{59}
\end{equation*}
$$

with $b \in \mathbb{N}^{*}$; for the last condition $a \in \mathbb{N}^{*}$ and a, b coprime.
Notations: In the following of the paper, the scalars $a, b, \ldots, z, \alpha, \beta, \ldots, A, B, C, \ldots$ and Δ, Φ, \ldots represent positive integers except the parameters θ, ρ, or others cited in the text, are reals.
3.1 Case $\cos ^{2} \frac{\theta}{3}=\frac{1}{b}$

We obtain:

$$
\begin{equation*}
A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3 \cdot b} \tag{60}
\end{equation*}
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}<\frac{3}{4} \Rightarrow \frac{1}{4}<\frac{1}{b}<\frac{3}{4} \Rightarrow b<4<3 b \Rightarrow b=1,2,3$.
3.1.1 $b=1 \quad b=1 \Rightarrow 4<3$ which is impossible.
3.1.2 $\left.b=2 \quad b=2 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{2}=\frac{2 \cdot p}{3} \Rightarrow 3 \right\rvert\, p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, we obtain:

$$
\begin{gather*}
\left.A^{2 m}=\left(A^{m}\right)^{2}=\frac{2 p}{3}=2 \cdot p^{\prime} \Longrightarrow 2 \right\rvert\, p^{\prime} \Longrightarrow p^{\prime}=2^{\alpha} p_{1}^{2} \\
\text { with } 2 \nmid p_{1}, \quad \alpha+1=2 \beta \\
A^{m}=2^{\beta} p_{1} \tag{61}\\
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=p^{\prime}=2^{\alpha} p_{1}^{2} \tag{62}
\end{gather*}
$$

From the equation (61), it follows that $2 \mid A^{m} \Longrightarrow A=2^{i} A_{1}, i \geqslant 1$ and $2 \nmid A_{1}$. Then, we have $\beta=i . m=i m$. The equation (62) implies that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.

Abdelmajid Ben Hadj Salem

Case $2 \mid B^{n}$: If $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$. The expression of $B^{n} C^{l}$ becomes:

$$
B_{1}^{n} C^{l}=2^{2 i m-1-j n} p_{1}^{2}
$$

- If $2 i m-1-j n \geqslant 1,2\left|C^{l} \Longrightarrow 2\right| C$ according to $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture 1.1) is verified.
- If $2 i m-1-j n \leqslant 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.

Case $2 \mid C^{l}$: If $2 \mid C^{l}$: with the same method used above, we obtain the identical results.
3.1.3 $\left.b=3 \quad b=3 \Rightarrow A^{2 m}=p \cdot \frac{4}{3} \cdot \frac{1}{3}=\frac{4 p}{9} \Rightarrow 9 \right\rvert\, p \Rightarrow p=9 p^{\prime}$ with $p^{\prime} \neq 1$, as $9 \ll p$ then $A^{2 m}=4 p^{\prime}$. If p^{\prime} is prime, it is impossible. We suppose that p^{\prime} is not a prime, as $m \geqslant 3$, it follows that $2 \mid p^{\prime}$, then $2 \mid A^{m}$. But $B^{n} C^{l}=5 p^{\prime}$ and $2 \mid\left(B^{n} C^{l}\right)$. Using the same method for the case $b=2$, we obtain the identical results.
3.2 Case $a>1, \cos ^{2} \frac{\theta}{3}=\frac{a}{b}$

We have:

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b} ; \quad A^{2 m}=p \cdot \frac{4}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p \cdot a}{3 \cdot b} \tag{63}
\end{equation*}
$$

where a, b verify one of the two conditions:

$$
\begin{array}{|lll}
\hline\{3 \mid a & \text { and } \quad b \mid 4 p\} & \text { or } \tag{64}\\
\{3 \mid p & \text { and } & b \mid 4 p\} \\
\hline
\end{array}
$$

and using the equation (36), we obtain a third condition:

$$
\begin{equation*}
b<4 a<3 b \tag{65}
\end{equation*}
$$

For these conditions, $A^{2 m}=4 \sqrt[3]{\rho^{2}} \cos ^{2} \frac{\theta}{3}=4 \frac{p}{3} \cos ^{2} \frac{\theta}{3}$ is an integer.
Let us study the conditions given by the equation (64) in the following two sections.
4. Hypothesis : $\{3 \mid a$ and $b \mid 4 p\}$

We obtain :

$$
\begin{equation*}
3 \mid a \Longrightarrow \exists a^{\prime} \in \mathbb{N}^{*} / a=3 a^{\prime} \tag{66}
\end{equation*}
$$

4.1 Case $b=2$ and $3 \mid a$:

$A^{2 m}$ is written as:

$$
\begin{equation*}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{4 p}{3} \cdot \frac{a}{2}=\frac{2 \cdot p \cdot a}{3} \tag{67}
\end{equation*}
$$

Using the equation 66, $A^{2 m}$ becomes :

$$
\begin{equation*}
A^{2 m}=\frac{2 \cdot p \cdot 3 a^{\prime}}{3}=2 \cdot p \cdot a^{\prime} \tag{68}
\end{equation*}
$$

but $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2}>1$ which is impossible, then $b \neq 2$.

Definitive Proof of Beal's Conjecture

4.2 Case $b=4$ and $3 \mid a$:
$A^{2 m}$ is written :

$$
\begin{array}{r}
A^{2 m}=\frac{4 \cdot p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot p}{3} \cdot \frac{a}{4}=\frac{p \cdot a}{3}=\frac{p \cdot 3 a^{\prime}}{3}=p \cdot a^{\prime} \\
\text { and } \cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 \cdot a^{\prime}}{4}<\left(\frac{\sqrt{3}}{2}\right)^{2}=\frac{3}{4} \Longrightarrow a^{\prime}<1 \tag{70}
\end{array}
$$

which is impossible. Then the case $b=4$ is impossible.
4.3 Case $b=p$ and $3 \mid a$:

We have :

$$
\begin{equation*}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{p} \tag{71}
\end{equation*}
$$

and:

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{p}=4 a^{\prime}=\left(A^{m}\right)^{2} \\
\exists a^{\prime \prime} / a^{\prime}=a^{\prime \prime 2} \\
\text { and } \quad B^{n} C^{l}=p-A^{2 m}=b-4 a^{\prime}=b-4 a^{\prime \prime} \tag{74}
\end{array}
$$

The calculation of $A^{m} B^{n}$ gives :

$$
\begin{align*}
& A^{m} B^{n}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a^{\prime} \\
\text { or } \quad & A^{m} B^{n}+2 a^{\prime}=p \cdot \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{75}
\end{align*}
$$

The left member of $\sqrt{75}$ is an integer and p also, then $2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}$ is written under the form :

$$
\begin{equation*}
2 \frac{\sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}} \tag{76}
\end{equation*}
$$

where k_{1}, k_{2} are two coprime integers and $k_{2} \mid p \Longrightarrow p=b=k_{2} . k_{3}, k_{3} \in \mathbb{N}^{*}$.
** A-1- We suppose that $k_{3} \neq 1$, we obtain :

$$
\begin{equation*}
A^{m}\left(A^{m}+2 B^{n}\right)=k_{1} \cdot k_{3} \tag{77}
\end{equation*}
$$

Let μ a prime with $\mu \mid k_{3}$, then $\mu \mid b$ and $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** A-1-1- If $\mu\left|A^{m} \Longrightarrow \mu\right| A$ and $\mu \mid A^{2 m}$, but $A^{2 m}=4 a^{\prime} \Longrightarrow \mu \mid 4 a^{\prime} \Longrightarrow\left(\mu=2\right.$, but $\left.2 \mid a^{\prime}\right)$ or $\left(\mu \mid a^{\prime}\right)$. Then $\mu \mid a$ it follows the contradiction with a, b coprime.
** A-1-2- If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n}$. We write $\mu \mid\left(A^{m}+2 B^{n}\right)$ as:

$$
\begin{equation*}
A^{m}+2 B^{n}=\mu \cdot t^{\prime} \tag{78}
\end{equation*}
$$

It follows :

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Abdelmajid Ben Hadj Salem

Using the expression of p :

$$
\begin{equation*}
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right) \tag{79}
\end{equation*}
$$

As $p=b=k_{2} . k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime}$ and $b=\mu \mu^{\prime}$, so we can write:

$$
\begin{equation*}
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right) \tag{80}
\end{equation*}
$$

From the last equation, we obtain $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** A-1-2-1- If $\mu \mid B^{n}$ which is in contradiction with $\mu \nmid B^{n}$.
** A-1-2-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using that $\mu \mid\left(A^{m}+2 B^{n}\right)$, we arrive to :

$$
\mu \left\lvert\, 3 B^{n}\left\{\begin{array}{l}
\mu \mid B^{n} \tag{81}\\
o r \\
\mu=3
\end{array}\right.\right.
$$

** A-1-2-2-1- If $\mu\left|B^{n} \Longrightarrow \mu\right| B$, it is the contradiction with $\mu \nmid B$ cited above.
** A-1-2-2-2- If $\mu=3$, then $3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
** A-2- We assume now $k_{3}=1$, then :

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{82}\\
b & =k_{2} \tag{83}\\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{b} \tag{84}
\end{align*}
$$

Taking the square of the last equation, we obtain:

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{b^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{b^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
4^{2} a^{\prime}(p-a)=k_{1}^{2} \tag{85}
\end{equation*}
$$

but $a^{\prime}=a^{" 2}$, then $p-a$ is a square. Let:

$$
\begin{equation*}
\lambda^{2}=p-a=b-a=b-3 a^{\prime \prime 2} \Longrightarrow \lambda^{2}+3 a^{\prime \prime 2}=b \tag{86}
\end{equation*}
$$

The equation (85) becomes:

$$
\begin{equation*}
4^{2} a^{\prime \prime} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=4 a^{\prime \prime} \lambda \tag{87}
\end{equation*}
$$

taking the positive root, but $k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=2 a^{\prime \prime}\left(A^{m}+2 B^{n}\right)$, then :

$$
\begin{equation*}
A^{m}+2 B^{n}=2 \lambda \Longrightarrow \lambda=a "+B^{n} \tag{88}
\end{equation*}
$$

** A-2-1- As $A^{m}=2 a " \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$, with $i \geqslant 1$ and $2 \nmid A_{1}$, then $A^{m}=2 a "=2^{i m} A_{1}^{m} \Longrightarrow a "=2^{i m-1} A_{1}^{m}$, but $i m \geqslant 3 \Longrightarrow 4 \mid a "$. As $p=b=A^{2 m}+A^{m} B^{n}+B^{2 n}=$

Definitive Proof of Beal's Conjecture

$\lambda=2^{i m-1} A_{1}^{m}+B^{n}$. Taking its square, then :

$$
\lambda^{2}=2^{2 i m-2} A_{1}^{2 m}+2^{i m} A_{1}^{m} B^{n}+B^{2 n}
$$

As $i m \geqslant 3$, we can write $\lambda^{2}=4 \lambda_{1}+B^{2 n} \Longrightarrow \lambda^{2} \equiv B^{2 n}(\bmod 4) \Longrightarrow \lambda^{2} \equiv B^{2 n} \equiv 0(\bmod 4)$ or $\lambda^{2} \equiv B^{2 n} \equiv 1(\bmod 4)$.
** A-2-1-1- We suppose that $\lambda^{2} \equiv B^{2 n} \equiv 0(\bmod 4) \Longrightarrow 4\left|\lambda^{2} \Longrightarrow 2\right|(b-a)$. But $2 \mid a$ because $a=$ $3 a^{\prime}=3 a^{\prime \prime}=3 \times 2^{2(i m-1)} A_{1}^{2 m}$ and $i m \geqslant 3$. Then $2 \mid b$, it follows the contradiction with a, b coprime.
** A-2-1-2- We suppose now that $\lambda^{2} \equiv B^{2 n} \equiv 1(\bmod 4)$. As $A^{m}=2^{i m-1} A_{1}^{m}$ and $i m-1 \geqslant 2$, then $A^{m} \equiv 0(\bmod 4)$. As $B^{2 n} \equiv 1(\bmod 4)$, then B^{n} verifies $B^{n} \equiv 1(\bmod 4)$ or $B^{n} \equiv 3(\bmod 4)$ which gives for the two cases $B^{n} C^{l} \equiv 1(\bmod 4)$.

We have also $p=b=A^{2 m}+A^{m} B^{n}+B^{2 n}=4 a^{\prime}+B^{n} . C^{l}=4 a^{\prime 2}+B^{n} C^{l} \Longrightarrow B^{n} C^{l}=$ $\lambda^{2}-a^{" 2}=B^{n} . C^{l}$, then $\lambda, a " \in \mathbb{N}^{*}$ are solutions of the Diophantine equation :

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{89}
\end{equation*}
$$

with $N=B^{n} C^{l}>0$. Let $Q(N)$ the number of the solutions of 89 and $\tau(N)$ is the number of suitable factorization of N, then we announce the following result concerning the solutions of the equation (89) (see theorem 27.3 in [2]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$;
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$;
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.
$[x]$ is the integral part of x for which $[x] \leqslant x<[x]+1$.
Let $(u, v), u, v \in \mathbb{N}^{*}$ another pair, solution of the equation 89), then $u^{2}-v^{2}=x^{2}-y^{2}=N=$ $B^{n} C^{l}$, but $\lambda=x$ and $a^{"}=y$ verify the equation given by $x-y=B^{n}$, it follows u, v verify also $u-v=B^{n}$, that gives $u+v=C^{l}$, then $u=x=\lambda=a "+B^{n}$ and $v=a "$. We have given a proof of the uniqueness of the solutions of the equation (89) with the condition $x-y=B^{n}$. As $N=B^{n} C^{l} \equiv 1(\bmod 4) \Longrightarrow Q(N)=[\tau(N) / 2]>1$. But $Q(N)=1$, then the contradiction.

Hence, the case $k_{3}=1$ is impossible.

Let us verify the condition (65) given by $b<4 a<3 b$. In our case, the condition becomes :

$$
\begin{equation*}
p<3 A^{2 m}<3 p \text { with } \quad p=A^{2 m}+B^{2 n}+A^{m} B^{n} \tag{90}
\end{equation*}
$$

and $3 A^{2 m}<3 p \Longrightarrow A^{2 m}<p$ that is verified. If :

$$
p<3 A^{2 m} \Longrightarrow 2 A^{2 m}-A^{m} B^{n}-B^{2 n} \overbrace{>}^{?} 0
$$

Studying the sign of the polynomial $Q(Y)=2 Y^{2}-B^{n} Y-B^{2 n}$ and taking $Y=A^{m}>B^{n}$, the condition $2 A^{2 m}-A^{m} B^{n}-B^{2 n}>0$ is verified, then the condition $b<4 a<3 b$ is true.

In the following of the paper, we verify easily that the condition $b<4 a<3 b$ implies to verify that $A^{m}>B^{n}$ which is true.

Abdelmajid Ben Hadj Salem

4.4 Case $b \mid p \Rightarrow p=b \cdot p^{\prime}, p^{\prime}>1, b \neq 2, b \neq 4$ and $3 \mid a$:

$$
\begin{equation*}
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot b \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{3 \cdot b}=4 \cdot p^{\prime} a^{\prime} \tag{91}
\end{equation*}
$$

We calculate $B^{n} C^{l}$:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) \tag{92}
\end{equation*}
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$ we obtain:

$$
\begin{equation*}
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=p^{\prime}\left(b-4 a^{\prime}\right) \tag{93}
\end{equation*}
$$

As $p=b . p^{\prime}$, and $p^{\prime}>1$, so we have :

$$
\begin{align*}
& B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right) \tag{94}\\
& \text { and } \quad A^{2 m}=4 . p^{\prime} \cdot a^{\prime} \tag{95}
\end{align*}
$$

** B-1- We suppose that p^{\prime} is prime, then $A^{2 m}=4 a p^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow p^{\prime} \mid a$. But $B^{n} C^{l}=$ $p^{\prime}\left(b-4 a^{\prime}\right) \Longrightarrow p^{\prime} \mid B^{n}$ or $p^{\prime} \mid C^{l}$.
** B-1-1- If $p^{\prime}\left|B^{n} \Longrightarrow p^{\prime}\right| B \Longrightarrow B=p^{\prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Hence : $p^{\prime n-1} B_{1}^{n} C^{l}=b-4 a^{\prime}$. But $n>2 \Rightarrow(n-1)>1$ and $p^{\prime} \mid a^{\prime}$, then $p^{\prime} \mid b \Longrightarrow a$ and b are not coprime, then the contradiction.
** B-1-2- If $p^{\prime}\left|C^{l} \Longrightarrow p^{\prime}\right| C$. The same method used above, we obtain the same results.
** B-2- We consider that p^{\prime} is not a prime.
** B-2-1- p^{\prime}, a are supposed coprime: $A^{2 m}=4 a p^{\prime} \Longrightarrow A^{m}=2 a^{\prime} . p_{1}$ with $a=a^{\prime 2}$ and $p^{\prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} \cdot p_{1}$ then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** B-2-1-1- $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$. But $p^{\prime}=p_{1}^{2}$.
** B-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} \cdot p_{1}$.
** B-2-1-1-2- We suppose that p_{1} is not prime, we can write it as $p_{1}=\omega^{m} \Longrightarrow p^{\prime}=\omega^{2 m}$, then: $B^{n} C^{l}=\omega^{2 m}\left(b-4 a^{\prime}\right)$.
${ }^{* *}$ B-2-1-1-2-1- If ω is prime, it is different of 2 , then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** B-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega^{2 m-n j}\left(b-4 a^{\prime}\right)$.
** B-2-1-1-2-1-1-1- If $2 m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=b-4 a^{\prime}$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega \mid C^{l} \Longrightarrow$ $\omega \mid C$, and $\omega \mid\left(b-4 a^{\prime}\right)$. But $\omega \neq 2$ and ω is coprime with a^{\prime} then coprime with a, then $\omega \nmid b$. The conjecture (1.1) is verified.
** B-2-1-1-2-1-1-2- If $2 m-n j \geqslant 1$, in this case with the same method, we obtain $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid\left(b-4 a^{\prime}\right)$ and $\omega \nmid a$ and $\omega \nmid b$. The conjecture (1.1) is verified.

Definitive Proof of Beal's Conjecture

** B-2-1-1-2-1-1-3- If $2 m-n j<0 \Longrightarrow \omega^{n \cdot j-2 m} B_{1}^{n} \cdot C^{l}=b-4 a^{\prime}$. As $\omega \mid C$ using $C^{l}=A^{m}+B^{n}$ then $C=\omega^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=b-4 a^{\prime}$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$, it follows the contradiction that $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. Then if $n . j-2 m+h . l>0$ and $\omega \mid\left(b-4 a^{\prime}\right)$ with ω, a, b coprime and the conjecture (1.1) is verified.

B-2-1-1-2-1-2- We obtain the same results if $\omega \mid C^{l}$.
** B-2-1-1-2-2- Now, $p^{\prime}=\omega^{2 m}$ and ω not a prime, we write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} prime $\nmid \Omega$ and $f \geqslant 1$ an integer, and $\omega_{1} \mid A$. Then $B^{n} C^{l}=\omega_{1}^{2 f . m} \Omega^{2 m}\left(b-4 a^{\prime}\right) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
** B-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega_{1}^{2 m f-n j} \Omega^{2 m}(b-$ $4 a^{\prime}$):
** B-2-1-1-2-2-1-1- If $2 f . m-n \cdot j=0$, we obtain $B_{1}^{n} \cdot C^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow$ $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C \Longrightarrow \omega_{1} \mid\left(b-4 a^{\prime}\right)$. But $\omega_{1} \neq 2$ and ω_{1} is coprime with a^{\prime}, then coprime with a, we deduce $\omega_{1} \nmid b$. Then the conjecture (1.1) is verified.
** B-2-1-1-2-2-1-2- If $2 f . m-n . j \geqslant 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C \Longrightarrow \omega_{1} \mid\left(b-4 a^{\prime}\right)$ and $\omega_{1} \nmid a$ and $\omega_{1} \nmid b$. The conjecture (1.1) is verified.
** B-2-1-1-2-2-1-3- If $2 f . m-n . j<0 \Longrightarrow \omega_{1}^{n . j-2 m . f} B_{1}^{n} . C^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. As $\omega_{1} \mid C$ using $C^{l}=A^{m}+B^{n}$, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n . j-2 m \cdot f+h . l} B_{1}^{n} \cdot C_{1}^{l}=\Omega^{2 m}\left(b-4 a^{\prime}\right)$. If $n . j-2 m . f+h . l<$ $0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, it follows the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid\left(b-4 a^{\prime}\right)$ with ω_{1}, a, b coprime and the conjecture (1.1) is verified.
** B-2-1-1-2-2-2- We obtain the same results if $\omega_{1} \mid C^{l}$.
** B-2-1-2- If $2 \mid p_{1}$, then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$. But $p^{\prime}=p_{1}^{2}$.
** B-2-1-2-1- If $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with a, b coprime.
** B-2-1-2-2- We suppose that p_{1} is not a prime and $2 \mid p_{1}$, as $A^{m}=2 a^{\prime} p_{1}, p_{1}$ is written as $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p^{\prime}=2^{2 m-2} \omega^{2 m}$. It follows $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}\left(b-4 a^{\prime}\right) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** B-2-1-2-2-1- If $2\left|B^{n} \Longrightarrow 2\right| B$, as $2 \mid A$, then $2 \mid C$. From $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}\left(b-4 a^{\prime}\right)$, it follows if $2\left|\left(b-4 a^{\prime}\right) \Longrightarrow 2\right| b$ but as $2 \nmid a$, there is no contradictions with a, b coprime and the conjecture (1.1) is verified.
** B-2-1-2-2-2- If $2 \mid C^{l}$, using the same method as above, we obtain the identical results.
** B-2-2- p^{\prime}, a are supposed not coprime. Let ω be a prime so that $\omega \mid a$ and $\omega \mid p^{\prime}$.
** B-2-2-1- We suppose firstly $\omega=3$. As $A^{2 m}=4 a p^{\prime} \Longrightarrow 3 \mid A$, but $3\left|p^{\prime} \Longrightarrow 3\right| p$, as $p=$ $A^{2 m}+B^{2 n}+A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}$,

Abdelmajid Ben Hadj Salem

$C=3^{h} C_{1}$ and 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{k} . g$ with $k=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid p^{\prime}$ that gives $a=3^{\alpha} a_{1}=3 a^{\prime} \Longrightarrow a^{\prime}=3^{\alpha-1} a_{1}, 3 \nmid a_{1}$ and $p^{\prime}=3^{\mu} p_{1}, 3 \nmid p_{1}$ with $A^{2 m}=4 a^{\prime} p^{\prime}=3^{2 i m} A_{1}^{2 m}=$ $4 \times 3^{\alpha-1+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \alpha+\mu-1=2 i m$. As $p=b p^{\prime}=b .3^{\mu} p_{1}=3^{\mu} . b \cdot p_{1}$. The exponent of the term 3 of p is k, the exponent of the term 3 of the left member of the last equation is μ. If $3 \mid b$ it is a contradiction with a, b coprime. Then, we suppose that $3 \nmid b$, and the equality of the exponents: $\min (2 i m, 2 j n, i m+j n)=\mu$, recall that $\alpha+\mu-1=2 i m$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right)$ that gives $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)$. We have also $A^{m}+B^{n}=C^{l}$ gives $3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. Let $\epsilon=\min (i m, j n)$, we have $\epsilon=h l=\min (i m, j n)$. Then, we obtain the conditions:

$$
\begin{array}{r}
k=\min (2 i m, 2 j n, i m+j n)=\mu \\
\alpha+\mu-1=2 i m \\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right) \tag{99}
\end{array}
$$

** B-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}=3 a^{\prime}$ and $3 \nmid a_{1}$, the equation (97) becomes:

$$
\mu=2 i m
$$

and the first equation (96) is written as:

$$
k=\min (2 i m, 2 j n, i m+j n)=2 i m
$$

- If $k=2 i m$, then $2 i m \leqslant 2 j n \Longrightarrow i m \leqslant j n \Longrightarrow h l=i m$, and (99) gives $\mu=2 i m=n j+h l=$ $i m+n j \Longrightarrow i m=j n=h l$. Hence $3|A, 3| B$ and $3 \mid C$ and the conjecture (1.1) is verified.
- If $k=2 j n \Longrightarrow 2 j n=2 i m \Longrightarrow i m=j n=h l$. Hence $3|A, 3| B$ and $3 \mid C$ and the conjecture (1.1) is verified.
- If $k=i m+j n=2 i m \Longrightarrow i m=j n \Longrightarrow \epsilon=h l=i m=j n$ case that is seen above and we deduce that $3|A, 3| B$ and $3 \mid C$, and the conjecture (1.1) is verified.
** B-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geqslant 2$ and $a^{\prime}=3^{\alpha-1} a_{1}$.
- If $k=2 i m \Longrightarrow 2 i m=\mu$, but $\mu=2 i m+1-\alpha$ that is impossible.
- If $k=2 j n=\mu \Longrightarrow 2 j n=2 i m+1-\alpha$. We obtain $2 j n<2 i m \Longrightarrow j n<i m \Longrightarrow 2 j n<i m+j n$, $k=2 j n$ is just the minimum of $(2 i m, 2 j n, i m+j n)$. We obtain $j n=h l<i m$ and the equation (99) becomes:

$$
B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)
$$

The conjecture (1.1) is verified.

- If $k=i m+j n \leqslant 2 i m \Longrightarrow j n \leqslant i m$ and $k=i m+j n \leqslant 2 j n \Longrightarrow i m \leqslant j n \Longrightarrow i m=j n \Longrightarrow$ $k=i m+j n=2 i m=\mu$ but $\mu=2 i m+1-\alpha$ that is impossible.
- If $k=i m+j n<2 i m \Longrightarrow j n<i m$ and $2 j n<i m+j n=k$ that is a contradiction with $k=\min (2 i m, 2 j n, i m+j n)$.

B-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $p^{\prime}=\omega^{\mu} p_{1}$ with $\omega \nmid p_{1}$. As $A^{2 m}=4 a p^{\prime}=4 \omega^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}, \omega \nmid A_{1}$. But $B^{n} C^{l}=p^{\prime}\left(b-4 a^{\prime}\right)=$ $\omega^{\mu} p_{1}\left(b-4 a^{\prime}\right) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** B-2-2-2-1- $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=\omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)$ with $k=\min (2 i m, 2 j n, i m+$

Definitive Proof of Beal's Conjecture

$j n)$. Then :

- If $\mu=k$, then $\omega \nmid b$ and the conjecture (1.1) is verified.
- If $k>\mu$, then $\omega \mid b$, but $\omega \mid a$ we deduce the contradiction with a, b coprime.
- If $k<\mu$, it follows from :

$$
\omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ that is a contradiction with the hypothesis.
** B-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega \mid\left(C^{l}-\right.$ $\left.A^{m}\right) \Longrightarrow \omega \mid B$. Then, we obtain the same results as B-2-2-2-1- above.
4.5 Case $b=2 p$ and $3 \mid a$:

We have :

$$
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{2 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{2 p}=2 a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a
$$

Then $2 \mid a$ and $2 \mid b$ that is a contradiction with a, b coprime.
4.6 Case $b=4 p$ and $3 \mid a$:

We have :

$$
\begin{array}{r}
\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{3 a^{\prime}}{4 p} \Longrightarrow A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 p}{3} \cdot \frac{3 a^{\prime}}{4 p}=a^{\prime}=\left(A^{m}\right)^{2}=a^{\prime \prime 2} \\
\text { with } \quad A^{m}=a "
\end{array}
$$

Let us calculate $A^{m} B^{n}$, we obtain:

$$
\begin{array}{r}
A^{m} B^{n}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{2 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}-\frac{a^{\prime}}{2} \Longrightarrow \\
A^{m} B^{n}+\frac{A^{2 m}}{2}=\frac{p \sqrt{3}}{3} \cdot \sin \frac{2 \theta}{3}
\end{array}
$$

Let:

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3} \tag{100}
\end{equation*}
$$

The left member of 100 is an integer and p is an integer, then $\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}$ will be written as :

$$
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}}
$$

where k_{1}, k_{2} are two integers coprime and $k_{2} \mid p \Longrightarrow p=k_{2} . k_{3}$.
** C-1- Firstly, we suppose that $k_{3} \neq 1$. Then :

$$
A^{2 m}+2 A^{m} B^{n}=k_{3} \cdot k_{1}
$$

Let μ be a prime and $\mu \mid k_{3}$, then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
${ }^{* *}$ C-1-1- If $\mu\left|\left(A^{m}=a "\right) \Longrightarrow \mu\right|\left(a^{\prime 2}=a^{\prime}\right) \Longrightarrow \mu \mid\left(3 a^{\prime}=a\right)$. As $\mu\left|k_{3} \Longrightarrow \mu\right| p \Longrightarrow \mu \mid(4 p=b)$, then the contradiction with a, b coprime.

Abdelmajid Ben Hadj Salem

** C-1-2- If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$, then:

$$
\begin{equation*}
\mu \neq 2 \quad \text { and } \quad \mu \nmid B^{n} \tag{101}
\end{equation*}
$$

$\mu \mid\left(A^{m}+2 B^{n}\right)$, we write:

$$
A^{m}+2 B^{n}=\mu \cdot t^{\prime}
$$

Then:

$$
\begin{array}{r}
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n} \\
\Longrightarrow p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)
\end{array}
$$

As $b=4 p=4 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid b \Longrightarrow \exists \mu^{\prime}$ so that $b=\mu \cdot \mu^{\prime}$, we obtain:

$$
\mu^{\prime} . \mu=\mu\left(4 \mu t^{2}-8 t^{\prime} B^{n}\right)+4 B^{n}\left(B^{n}-A^{m}\right)
$$

The last equation implies $\mu \mid 4 B^{n}\left(B^{n}-A^{m}\right)$, but $\mu \neq 2$ then $\mu \mid B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** C -1-1-1- If $\mu \mid B^{n} \Longrightarrow$ then the contradiction with 101 .
** C-1-1-2- If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we have :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \\
\text { or } \\
\mu=3
\end{array}\right.\right.
$$

** C-1-1-2-1- If $\mu \mid B^{n}$ then the contradiction with 101 .
${ }^{* *}$ C-1-1-2-2- If $\mu=3$, then $3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
${ }^{* *}$ C-2- We assume now that $k_{3}=1$, then:

$$
\begin{align*}
A^{2 m}+2 A^{m} B^{n} & =k_{1} \tag{102}\\
p & =k_{2} \\
\frac{2 \sqrt{3}}{3} \sin \frac{2 \theta}{3} & =\frac{k_{1}}{p}
\end{align*}
$$

We take the square of the last equation, we obtain :

$$
\begin{gathered}
\frac{4}{3} \sin ^{2} \frac{2 \theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cos ^{2} \frac{\theta}{3}=\frac{k_{1}^{2}}{p^{2}} \\
\frac{16}{3} \sin ^{2} \frac{\theta}{3} \cdot \frac{3 a^{\prime}}{b}=\frac{k_{1}^{2}}{p^{2}}
\end{gathered}
$$

Finally:

$$
\begin{equation*}
a^{\prime}\left(4 p-3 a^{\prime}\right)=k_{1}^{2} \tag{103}
\end{equation*}
$$

but $a^{\prime}=a^{\prime \prime}{ }^{2}$, then $4 p-3 a^{\prime}$ is a square. Let :

$$
\lambda^{2}=4 p-3 a^{\prime}=4 p-a=b-a
$$

Definitive Proof of Beal's Conjecture

The equation (103) becomes:

$$
\begin{equation*}
a^{\prime \prime} \lambda^{2}=k_{1}^{2} \Longrightarrow k_{1}=a^{\prime \prime} \lambda \tag{104}
\end{equation*}
$$

taking the positive root. Using (102), we have:

$$
k_{1}=A^{m}\left(A^{m}+2 B^{n}\right)=a^{\prime \prime}\left(A^{m}+2 B^{n}\right)
$$

Then :

$$
A^{m}+2 B^{n}=\lambda
$$

Now, we consider that $b-a=\lambda^{2} \Longrightarrow \lambda^{2}+3 a^{\prime \prime}=b$, then the pair $(\lambda, a ")$ is a solution of the Diophantine equation:

$$
\begin{equation*}
X^{2}+3 Y^{2}=b \tag{105}
\end{equation*}
$$

with $X=\lambda$ and $Y=a$ ". But using one theorem on the solutions of the equation given by (105), b is written under the form (see theorem 37.4 in [3]):

$$
b=2^{2 s} \times 3^{t} . p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

where p_{i} are prime integers so that $p_{i} \equiv 1(\bmod 6)$, the q_{j} are also prime integers so that $q_{j} \equiv 5(\bmod$ 6). Then, since $b=4 p$:

- If $t \geqslant 1 \Longrightarrow 3 \mid b$, but $3 \mid a$, then the contradiction with a, b coprime.
** C-2-2-1- Hence, we suppose that p is written under the form:

$$
p=p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

with $p_{i} \equiv 1(\bmod 6)$ and $q_{j} \equiv 5(\bmod 6)$. Finally, we obtain that $p \equiv 1(\bmod 6)$. We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of $p=A^{2 m}+A^{m} B^{n}+B^{2 n}$ in function of the value of $A^{m}, B^{n}(\bmod 6)$. We obtain the table below:

A^{m}, B^{n}	0	1	2	3	4	5
0	0	$\mathbf{1}$	4	3	4	$\mathbf{1}$
1	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$
2	4	$\mathbf{1}$	0	$\mathbf{1}$	4	3
3	3	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$
4	4	3	4	$\mathbf{1}$	0	$\mathbf{1}$
5	$\mathbf{1}$	$\mathbf{1}$	3	$\mathbf{1}$	$\mathbf{1}$	3

Table 1. Table of $p(\bmod 6)$
${ }^{* *} \mathrm{C}-2-2-1-1$ - Case $A^{m} \equiv 0(\bmod 6) \Longrightarrow 2\left|\left(A^{m}=a "\right) \Longrightarrow 2\right|\left(a^{\prime}=a^{" 2}\right) \Longrightarrow 2 \mid a$, but $2 \mid b$, then the contradiction with a, b coprime. All the cases of the first line of the table 1 are to reject.
${ }^{* *} \mathrm{C}-2-2-1-2$ - Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$, then $2 \mid B^{n} \Longrightarrow B^{n}=2 B^{\prime}$ and p is written as $p=\left(A^{m}+B^{\prime}\right)^{2}+3 B^{\prime 2}$ with $(p, 3)=1$, if not $3 \mid p$, then $3 \mid b$, but $3 \mid a$, then the contradiction with a, b coprime. Hence, the pair $\left(A^{m}+B^{\prime}, B^{\prime}\right)$ is solution of the Diophantine equation:

$$
\begin{equation*}
x^{2}+3 y^{2}=p \tag{106}
\end{equation*}
$$

Abdelmajid Ben Hadj Salem

The solution $x=A^{m}+B^{\prime}, y=B^{\prime}$ is unique because $x-y$ verify $x-y=A^{m}$. If (u, v) another pair solution of (106), with $u, v \in \mathbb{N}^{*}$, then we obtain:

$$
\begin{gathered}
u^{2}+3 v^{2}=p \\
u-v=A^{m}
\end{gathered}
$$

Then $u=v+A^{m}$ and we obtain the equation of second degree $4 v^{2}+2 v A^{m}-2 B^{\prime}\left(A^{m}+2 B^{\prime}\right)=0$ that gives as positive root $v_{1}=B^{\prime}=y$, then $u=A^{m}+B^{\prime}=x$. It follows that p in (106) has an unique representation under the form $X^{2}+3 Y^{2}$ with $X, 3 Y$ coprime. As p is an odd integer number, we applique one of Euler's theorems on convenient numbers "numerus idoneus" (see [4],(5): Let m be an odd number relatively prime to n which is properly represented by $x^{2}+n y^{2}$. If the equation $m=x^{2}+n y^{2}$ has only one solution with $x, y>0$, then m is a prime number. Then p is prime and $4 p$ has an unique representation (we put $U=2 u, V=2 v$, with $U^{2}+3 V^{2}=4 p$ and $\left.U-V=2 A^{m}\right)$. But $b=4 p \Longrightarrow \lambda^{2}+3 a^{\prime 2}=\left(2\left(A^{m}+B^{\prime}\right)\right)^{2}+3\left(2 B^{\prime}\right)^{2}$ the representation of $4 p$ is unique gives:

$$
\begin{array}{r}
\lambda=2\left(A^{m}+B^{\prime}\right)=2 a^{\prime \prime}+B^{n}=2 a^{\prime \prime}+B^{n} \\
\text { and } a^{\prime \prime}=2 B^{\prime}=B^{n}=A^{m}
\end{array}
$$

But $A^{m}>B^{n}$, then the contradiction.
** C-2-2-1-3- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
** C-2-2-1-4- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 3(\bmod 6)$, then $3 \mid B^{n} \Longrightarrow B^{n}=3 B^{\prime}$. We can write $b=4 p=\left(2 A^{m}+3 B^{\prime}\right)^{2}+3\left(3 B^{\prime}\right)^{2}=\lambda^{2}+3 a^{\prime \prime}{ }^{2}$. The unique representation of b as $x^{2}+3 y^{2}=\lambda^{2}+3 a^{\prime 2} \Longrightarrow a "=A^{m}=3 B^{\prime}=B^{n}$, then the contradiction with $A^{m}>B^{n}$.
** C-2-2-1-5- Case $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$, then $C^{l} \equiv 0(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-
** C-2-2-1-6- Case $A^{m} \equiv 2(\bmod 6) \Longrightarrow 2|a " \Longrightarrow 2| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** C-2-2-1-7- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$, then $C^{l} \equiv 4(\bmod 6) \Longrightarrow 2 \mid C^{l} \Longrightarrow C^{l}=$ $2 C^{\prime}$, we can write that $p=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}$, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-8- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-9- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-10- Case $A^{m} \equiv 3(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$, then $C^{l} \equiv 2(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-.
${ }^{* *}$ C-2-2-1-11- Case $A^{m} \equiv 4(\bmod 6) \Longrightarrow 2|a " \Longrightarrow 2| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** C-2-2-1-12- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 0(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.

Definitive Proof of Beal's Conjecture

** C-2-2-1-13- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$, then $C^{l} \equiv 0(\bmod 6) \Longrightarrow 2 \mid C^{l}$, see C-2-2-1-2-.
** C-2-2-1-14- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 3(\bmod 6)$, then $C^{l} \equiv 2(\bmod 6) \Longrightarrow 2 \mid C^{l} \Longrightarrow C^{l}=$ $2 C^{\prime}, p$ is written as $p=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}$, see C-2-2-1-2-.
** C-2-2-1-15- Case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)$, then B^{n} is even, see C-2-2-1-2-.
We have achieved the study all the cases of the table 1 giving contradictions.

Then the case $k_{3}=1$ is impossible.
4.7 Case $3 \mid a$ and $b=2 p^{\prime} \quad b \neq 2$ with $p^{\prime} \mid p$:
$3 \mid a \Longrightarrow a=3 a^{\prime}, b=2 p^{\prime}$ with $p=k \cdot p^{\prime}$, then:

$$
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{6 p^{\prime}}=2 \cdot k \cdot a^{\prime}
$$

We calculate $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, then using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-2 a^{\prime}\right)
$$

As $p=b . p^{\prime}$, and $p^{\prime}>1$, then we have:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \tag{107}\\
\text { and } \quad A^{2 m}=2 k \cdot a^{\prime} \tag{108}
\end{gather*}
$$

** D-1- We suppose that k is prime.
** D-1-1- If $k=2$, then we have $p=2 p^{\prime}=b \Longrightarrow 2 \mid b$, but $A^{2 m}=4 a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow A^{m}=2 a^{\prime \prime}$ with $a^{\prime}=a^{\prime \prime}$, then $2|a " \Longrightarrow 2|\left(a=3 a^{\prime \prime}\right)$, it follows the contradiction with a, b coprime.
** D-1-2- We suppose $k \neq 2$. From $A^{2 m}=2 k \cdot a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k \mid a^{\prime}$ and $2 \mid a^{\prime} \Longrightarrow a^{\prime}=$ 2.k. $a^{" 2} \Longrightarrow A^{m}=2 . k . a "$. Then $k\left|A^{m} \Longrightarrow k\right| A \Longrightarrow A=k^{i} . A_{1}$ with $i \geqslant 1$ and $k \nmid A_{1}$. $k^{i m} A_{1}^{m}=2 k a " \Longrightarrow 2 a "=k^{i m-1} A_{1}^{m}$. From $B^{n} C^{l}=k\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow k\left|\left(B^{n} C^{l}\right) \Longrightarrow k\right| B^{n}$ or $k \mid C^{l}$.
${ }^{* *}$ D-1-2-1- We suppose that $k\left|B^{n} \Longrightarrow k\right| B \Longrightarrow B=k^{j} . B_{1}$ with $j \geqslant 1$ and $k \nmid B_{1}$. It follows $k^{n j-1} B_{1}^{n} C^{l}=p^{\prime}-2 a^{\prime}=p^{\prime}-4 k a^{\prime \prime 2}$. As $n \geqslant 3 \Longrightarrow n j-1 \geqslant 2$, then $k \mid p^{\prime}$ but $k \neq 2 \Longrightarrow k \mid\left(2 p^{\prime}=b\right)$, but $k\left|a^{\prime} \Longrightarrow k\right|\left(3 a^{\prime}=a\right)$. It follows the contradiction with a, b coprime.

Abdelmajid Ben Hadj Salem

** D-1-2-2- If $k \mid C^{l}$ we obtain the identical results.
** D-2- We suppose that k is not prime. Let ω be a prime so that $k=\omega^{s} . k_{1}$, with $s \geqslant 1, \omega \nmid k_{1}$. The equations 107108) become:

$$
\begin{aligned}
& B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-2 a^{\prime}\right) \\
& \text { and } \quad A^{2 m}=2 \omega^{s} \cdot k_{1} \cdot a^{\prime}
\end{aligned}
$$

** D-2-1- We suppose that $\omega=2$, then we have the equations:

$$
\begin{array}{r}
A^{2 m}=2^{s+1} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=2^{s} \cdot k_{1}\left(p^{\prime}-2 a^{\prime}\right) \tag{110}
\end{array}
$$

** D-2-1-1- Case: $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** D-2-1-2- Case: $2 \nmid a^{\prime}$. As $2 \nmid k_{1}$, the equation gives $2 \mid A^{2 m} \Longrightarrow A=2^{i} A_{1}$, with $i \geqslant 1$ and $2 \nmid A_{1}$. It follows that $2 i m=s+1$.
** D-2-1-2-1- We suppose that $2 \nmid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow 2 \nmid p^{\prime}$. From the equation (110), we obtain that $2\left|B^{n} C^{l} \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$:
** D-2-1-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$ and $j \geqslant 1$, then $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-2 a^{\prime}\right)$:

- If $s-j n \geqslant 1$, then $2\left|C^{l} \Longrightarrow 2\right| C$, and no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$, and the conjecture (1.1) is verified.
- If $s-j n \leqslant 0$, from $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical results if $2 \mid C^{l}$.
** D-2-1-2-2- We suppose now that $2 \mid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow p^{\prime}-2 a^{\prime}=2^{\mu} . \Omega$, with $\mu \geqslant 1$ and $2 \nmid \Omega$. We recall that $2 \nmid a^{\prime}$. The equation (110) is written as:

$$
B^{n} C^{l}=2^{s+\mu} \cdot k_{1} \cdot \Omega
$$

This last equation implies that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** D-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geqslant 1$ and $2 \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{s+\mu-j n} . k_{1} . \Omega:$

- If $s+\mu-j n \geqslant 1$, then $2\left|C^{l} \Longrightarrow 2\right| C$, no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$, and the conjecture (1.1) is verified.
- If $s+\mu-j n \leqslant 0$, from $B_{1}^{n} C^{l}=2^{s+\mu-j n} k_{1} \Omega \Longrightarrow 2 \nmid C^{l}$, then contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** D-2-1-2-2-2- We obtain the identical results If $2 \mid C^{l}$.
** D-2-2- We suppose that $\omega \neq 2$. We have then the equations:

$$
\begin{equation*}
A^{2 m}=2 \omega^{s} \cdot k_{1} \cdot a^{\prime} \tag{111}
\end{equation*}
$$

Definitive Proof of Beal's Conjecture

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s} \cdot k_{1} \cdot\left(p^{\prime}-2 a^{\prime}\right) \tag{112}
\end{equation*}
$$

As $\omega \neq 2$, from the equation 111 , we have $2 \mid\left(k_{1} \cdot a^{\prime}\right)$. If $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $2 \mid b$, then the contradiction with a, b coprime.
** D-2-2-1- Case: $2 \nmid a^{\prime}$ and $2 \mid k_{1} \Longrightarrow k_{1}=2^{\mu} . \Omega$ with $\mu \geqslant 1$ and $2 \nmid \Omega$. From the equation (111), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ with $i \geqslant 1$ and $2 \nmid A_{1}$, then $2 i m=1+\mu$. The equation (112) becomes:

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s} \cdot 2^{\mu} \cdot \Omega \cdot\left(p^{\prime}-2 a^{\prime}\right) \tag{113}
\end{equation*}
$$

From the equation 113), we obtain $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** D-2-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $j \in \mathbb{N}^{*}$ and $2 \nmid B_{1}$.
** D-2-2-1-1-1- We suppose that $2 \nmid\left(p^{\prime}-2 a^{\prime}\right)$, then we have $B_{1}^{n} C^{l}=\omega^{s} 2^{\mu-j n} \Omega\left(p^{\prime}-2 a^{\prime}\right)$:

- If $\mu-j n \geqslant 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $\mu-j n \leqslant 0 \Longrightarrow 2 \nmid C^{l}$ then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** D-2-2-1-1-2- We suppose that $2 \mid\left(p^{\prime}-2 a^{\prime}\right) \Longrightarrow p^{\prime}-2 a^{\prime}=2^{\alpha}$. P, with $\alpha \in \mathbb{N}^{*}$ and $2 \nmid P$. It follows that $B_{1}^{n} C^{l}=\omega^{s} 2^{\mu+\alpha-j n} \Omega . P$:
- If $\mu+\alpha-j n \geqslant 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $\mu+\alpha-j n \leqslant 0 \Longrightarrow 2 \nmid C^{l}$ then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** D-2-2-1-2- We suppose now that $2\left|C^{n} \Longrightarrow 2\right| C$. Using the same method described above, we obtain the identical results.
4.8 Case $3 \mid a$ and $b=4 p^{\prime} b \neq 2$ with $p^{\prime} \mid p$:
$3 \mid a \Longrightarrow a=3 a^{\prime}, b=4 p^{\prime}$ with $p=k \cdot p^{\prime}, k \neq 1$ if not $b=4 p$ this case has been studied (see paragraph 4.6), then we have :

$$
A^{2 m}=\frac{4 \cdot p}{3} \cdot \frac{a}{b}=\frac{4 \cdot k \cdot p^{\prime} \cdot 3 \cdot a^{\prime}}{12 p^{\prime}}=k \cdot a^{\prime}
$$

We calculate $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)
$$

but $\sqrt[3]{\rho^{2}}=\frac{p}{3}$, then using $\cos ^{2} \frac{\theta}{3}=\frac{3 \cdot a^{\prime}}{b}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 \cdot a^{\prime}}{b}\right)=p \cdot\left(1-\frac{4 \cdot a^{\prime}}{b}\right)=k\left(p^{\prime}-a^{\prime}\right)
$$

As $p=b . p^{\prime}$, and $p^{\prime}>1$, we have:

$$
\begin{gather*}
B^{n} C^{l}=k\left(p^{\prime}-a^{\prime}\right) \tag{114}\\
\text { and } \quad A^{2 m}=k \cdot a^{\prime} \tag{115}
\end{gather*}
$$

Abdelmajid Ben Hadj Salem

${ }^{* *}$ E-1- We suppose that k is prime. From $A^{2 m}=k \cdot a^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k \mid a^{\prime}$ and $a^{\prime}=k \cdot a^{"}{ }^{2} \Longrightarrow$ $A^{m}=k . a^{\prime \prime}$. Then $k\left|A^{m} \Longrightarrow k\right| A \Longrightarrow A=k^{i} \cdot A_{1}$ with $i \geqslant 1$ and $k \nmid A_{1} \cdot k^{m i} A_{1}^{m}=k a " \Longrightarrow a "=$ $k^{m i-1} A_{1}^{m}$. From $B^{n} C^{l}=k\left(p^{\prime}-a^{\prime}\right) \Longrightarrow k\left|\left(B^{n} C^{l}\right) \Longrightarrow k\right| B^{n}$ or $k \mid C^{l}$.
** E-1-1- We suppose that $k\left|B^{n} \Longrightarrow k\right| B \Longrightarrow B=k^{j} . B_{1}$ with $j \geqslant 1$ and $k \nmid B_{1}$. Then $k^{n . j-1} B_{1}^{n} C^{l}=p^{\prime}-a^{\prime}$. As $n . j-1 \geqslant 2 \Longrightarrow k \mid\left(p^{\prime}-a^{\prime}\right)$. But $k\left|a^{\prime} \Longrightarrow k\right| a$, then $k\left|p^{\prime} \Longrightarrow k\right|\left(4 p^{\prime}=b\right)$ and we arrive to the contradiction that a, b are coprime.
** E-1-2- We suppose that $k \mid C^{l}$, using the same method with the above hypothesis $k \mid B^{n}$, we obtain the identical results.
** E-2- We suppose that k is not prime.
** E-2-1- We take $k=4 \Longrightarrow p=4 p^{\prime}=b$, it is the case 4.3 studied above.
** E-2-2- We suppose that $k \geqslant 6$ not prime. Let ω be a prime so that $k=\omega^{s} . k_{1}$, with $s \geqslant 1, \omega \nmid k_{1}$. The equations 114 115 become:

$$
\begin{gather*}
B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-a^{\prime}\right) \tag{116}\\
\text { and } A^{2 m}=\omega^{s} \cdot k_{1} \cdot a^{\prime} \tag{117}
\end{gather*}
$$

** E-2-2-1- We suppose that $\omega=2$.
** E-2-2-1-1- If $2\left|a^{\prime} \Longrightarrow 2\right|\left(3 a^{\prime}=a\right)$, but $2 \mid\left(4 p^{\prime}=b\right)$, then the contradiction with a, b coprime.
** E-2-2-1-2- We consider that $2 \nmid a^{\prime}$. From the equation 117 , it follows that $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow$ $A=2^{i} A_{1}$ with $2 \nmid A_{1}$ and:

$$
B^{n} C^{l}=2^{s} k_{1}\left(p^{\prime}-a^{\prime}\right)
$$

** E-2-2-1-2-1- We suppose that $2 \nmid\left(p^{\prime}-a^{\prime}\right)$, from the above expression, we have $2 \mid\left(B^{n} C^{l}\right) \Longrightarrow$ $2 \mid B^{n}$ or $2 \mid C^{l}$.
** E-2-2-1-2-1-1- If $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $2 \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{2 i m-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $2 i m-j n \geqslant 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m-j n \leqslant 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** E-2-2-1-2-1-2- If $2\left|C^{l} \Longrightarrow 2\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-1-2-2- We suppose that $2 \mid\left(p^{\prime}-a^{\prime}\right)$. As $2 \nmid a^{\prime} \Longrightarrow 2 \nmid p^{\prime} .2 \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow p^{\prime}-a^{\prime}=2^{\alpha} . P$ with $\alpha \geqslant 1$ and $2 \nmid P$. The equation (116) is written as:

$$
\begin{equation*}
B^{n} C^{l}=2^{s+\alpha} k_{1} \cdot P=2^{2 i m+\alpha} k_{1} \cdot P \tag{118}
\end{equation*}
$$

then $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.

Definitive Proof of Beal's Conjecture

${ }^{* *}$ E-2-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $2 \nmid B_{1}$. The equation (118) becomes $B_{1}^{n} C^{l}=2^{2 i m+\alpha-j n} k_{1} P$:

- If $2 i m+\alpha-j n \geqslant 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m+\alpha-j n \leqslant 0 \Longrightarrow 2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$.
** E-2-2-1-2-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C$. Using the same method described above, we obtain the identical results.
** E-2-2-2- We suppose that $\omega \neq 2$. We recall the equations:

$$
\begin{array}{r}
A^{2 m}=\omega^{s} \cdot k_{1} \cdot a^{\prime} \\
B^{n} C^{l}=\omega^{s} \cdot k_{1}\left(p^{\prime}-a^{\prime}\right) \tag{120}
\end{array}
$$

** E-2-2-2-1- We suppose that ω, a^{\prime} are coprime, then $\omega \nmid a^{\prime}$. From the equation 119), we have $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} A_{1}$ with $\omega \nmid A_{1}$ and $s=2 \mathrm{im}$.
** E-2-2-2-1-1- We suppose that $\omega \nmid\left(p^{\prime}-a^{\prime}\right)$. From the equation 120 above, we have $\omega \mid\left(B^{n} C^{l}\right) \Longrightarrow$ $\omega \mid B^{n}$ or $\omega \mid C^{l}$.
** E-2-2-2-1-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{2 i m-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $2 i m-j n \geqslant 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradictions with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m-j n \leqslant 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-1-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
${ }^{* *}$ E-2-2-2-1-2- We suppose that $\omega \mid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow \omega \nmid p^{\prime}$ if not $\omega\left|a^{\prime} . \omega\right|\left(p^{\prime}-a^{\prime}\right) \Longrightarrow p^{\prime}-a^{\prime}=\omega^{\alpha} . P$ with $\alpha \geqslant 1$ and $\omega \nmid P$. The equation (120) becomes:

$$
\begin{equation*}
B^{n} C^{l}=\omega^{s+\alpha} k_{1} \cdot P=\omega^{2 i m+\alpha} k_{1} \cdot P \tag{121}
\end{equation*}
$$

then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** E-2-2-2-1-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$, with $\omega \nmid B_{1}$. The equation (121) is written as $B_{1}^{n} C^{l}=2^{2 i m+\alpha-j n} k_{1} P$:

- If $2 i m+\alpha-j n \geqslant 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradictions with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m+\alpha-j n \leqslant 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-1-2-2- We suppose that $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-2- We suppose that ω, a^{\prime} are not coprime, then $a^{\prime}=\omega^{\beta} . a "$ with $\omega \nmid a$ ". The equation

Abdelmajid Ben Hadj Salem

(119) becomes:

$$
A^{2 m}=\omega^{s} k_{1} a^{\prime}=\omega^{s+\beta} k_{1} \cdot a "
$$

We have $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} A_{1}$ with $\omega \nmid A_{1}$ and $s+\beta=2 \mathrm{im}$.
** E-2-2-2-2-1- We suppose that $\omega \nmid\left(p^{\prime}-a^{\prime}\right) \Longrightarrow \omega \nmid p^{\prime} \Longrightarrow \omega \nmid\left(b=4 p^{\prime}\right)$. From the equation (120), we obtain $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** E-2-2-2-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$. Then $B_{1}^{n} C^{l}=2^{s-j n} k_{1}\left(p^{\prime}-a^{\prime}\right)$:

- If $s-j n \geqslant 1 \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradictions with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $s-j n \leqslant 0 \Longrightarrow \omega \nmid C^{l}$, then the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n} \Longrightarrow \omega \mid C^{l}$.
** E-2-2-2-2-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C$, using the same method described above, we obtain the identical results.
** E-2-2-2-2-2- We suppose that $\omega\left|\left(p^{\prime}-a^{\prime}=p^{\prime}-\omega^{\beta} \cdot a^{\prime \prime}\right) \Longrightarrow \omega\right| p^{\prime} \Longrightarrow \omega \mid\left(4 p^{\prime}=b\right)$, but $\omega\left|a^{\prime} \Longrightarrow \omega\right| a$. Then the contradiction with a, b coprime.

The study of the cases of 4.8 is achieved.

4.9 Case $3 \mid a$ and $b \mid 4 p$:

$a=3 a^{\prime}$ and $4 p=k_{1} b$. As $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{3 a^{\prime}}{b}=k_{1} a^{\prime}$ and $B^{n} C^{l}$:

$$
B^{n} C^{l}=\sqrt[3]{\rho^{2}}\left(3 \sin ^{2} \frac{\theta}{3}-\cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{p}{3}\left(3-4 \frac{3 a^{\prime}}{b}\right)=\frac{k_{1}}{4}\left(b-4 a^{\prime}\right)
$$

As $B^{n} C^{l}$ is an integer, we must obtain $4 \mid k_{1}$, or $4 \mid\left(b-4 a^{\prime}\right)$ or $\left(2 \mid k_{1}\right.$ and $\left.2 \mid\left(b-4 a^{\prime}\right)\right)$.
** F-1- If $k_{1}=1 \Rightarrow b=4 p$: it is the case 4.6.
** F-2- If $k_{1}=4 \Rightarrow p=b$: it is the case 4.3.
** F-3- If $k_{1}=2$ and $2 \mid\left(b-4 a^{\prime}\right)$: in this case, we have $A^{2 m}=2 a^{\prime} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a .2 \mid\left(b-4 a^{\prime}\right) \Longrightarrow$ $2 \mid b$ then the contradiction with a, b coprime.
** F-4- If $2 \mid k_{1}$ and $2\left|\left(b-4 a^{\prime}\right): 2\right|\left(b-4 a^{\prime}\right) \Longrightarrow b-4 a^{\prime}=2^{\alpha} \lambda, \alpha$ and $\lambda \in \mathbb{N}^{*} \geqslant 1$ with $2 \nmid \lambda$; $2 \mid k_{1} \Longrightarrow k_{1}=2^{t} k_{1}^{\prime}$ with $t \geqslant 1 \in \mathbb{N}^{*}$ with $2 \nmid k_{1}^{\prime}$ and we have:

$$
\begin{array}{r}
A^{2 m}=2^{t} k_{1}^{\prime} a^{\prime} \\
B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \tag{123}
\end{array}
$$

From the equation (122), we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}, i \geqslant 1$ and $2 \nmid A_{1}$.
** F-4-1- We suppose that $t=\alpha=1$, then the equations 122 123) become:

$$
\begin{gather*}
A^{2 m}=2 k_{1}^{\prime} a^{\prime} \tag{124}\\
B^{n} C^{l}=k_{1}^{\prime} \lambda \tag{125}
\end{gather*}
$$

Definitive Proof of Beal's Conjecture

From the equation (124) it follows that $2\left|a^{\prime} \Longrightarrow 2\right|\left(a=3 a^{\prime}\right)$. But $b=4 a^{\prime}+2 \lambda \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
** F-4-2- We suppose that $t+\alpha-2 \geqslant 1$ and we have the expressions:

$$
\begin{array}{r}
A^{2 m}=2^{t} k_{1}^{\prime} a^{\prime} \\
B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \tag{127}
\end{array}
$$

** F-4-2-1- We suppose that $2\left|a^{\prime} \Longrightarrow 2\right| a$, but $b=2^{\alpha} \lambda+4 a^{\prime} \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
** F-4-2-2- We suppose that $2 \nmid a^{\prime}$. From 126 , we have $2\left|A^{2 m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ and $B^{n} C^{l}=2^{t+\alpha-2} k_{1}^{\prime} \lambda \Longrightarrow 2\left|B^{n} C^{l} \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** F-4-2-2-1- We suppose that $2 \mid B^{n}$. We have $2 \mid B \Longrightarrow B=2^{j} B_{1}, j \geqslant 1$ and $2 \nmid B_{1}$. The equation 127) becomes $B_{1}^{n} C^{l}=2^{t+\alpha-2-j n} k_{1}^{\prime} \lambda$:

- If $t+\alpha-2-j n>0 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$, no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $t+\alpha-2-j n<0 \Longrightarrow 2 \mid k_{1}^{\prime} \lambda$, but $2 \nmid k_{1}^{\prime}$ and $2 \nmid \lambda$. Then this case is impossible.
- If $t+\alpha-2-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{1}^{\prime} \lambda \Longrightarrow 2 \nmid C^{l}$ then it is a contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** F-4-2-2-2- We suppose that $2 \mid C^{l}$. We use the same method described above, we obtain the identical results.
** F-5- We suppose that $4 \mid k_{1}$ with $k_{1}>4 \Rightarrow k_{1}=4 k_{2}^{\prime}$, we have :

$$
\begin{array}{r}
A^{2 m}=4 k_{2}^{\prime} a^{\prime} \\
B^{n} C^{l}=k_{2}^{\prime}\left(b-4 a^{\prime}\right) \tag{129}
\end{array}
$$

${ }^{* *}$ F-5-1- We suppose that k_{2}^{\prime} is prime, from 128$)$, we have $k_{2}^{\prime} \mid a^{\prime}$. From 129$), k_{2}^{\prime} \mid\left(B^{n} C^{l}\right) \Longrightarrow$ $k_{2}^{\prime} \mid B^{n}$ or $k_{2}^{\prime} \mid C^{l}$.
** F-5-1-1- We suppose that $k_{2}^{\prime}\left|B^{n} \Longrightarrow k_{2}^{\prime}\right| B \Longrightarrow B=k_{2}^{\prime \beta}$. B_{1} with $\beta \geqslant 1$ and $k_{2}^{\prime} \nmid B_{1}$. It follows that we have $k_{2}^{\prime n \beta-1} B_{1}^{n} C^{l}=b-4 a^{\prime} \Longrightarrow k_{2}^{\prime} \mid b$ then the contradiction with a, b coprime.
** F-5-1-2- We obtain identical results if we suppose that $k_{2}^{\prime} \mid C^{l}$.
** F-5-2- We suppose that k_{2}^{\prime} is not prime.
** F-5-2-1- We suppose that k_{2}^{\prime} and a^{\prime} are coprime. From (128), k_{2}^{\prime} can be written under the form $k_{2}^{\prime}=q_{1}^{2 j} \cdot q_{2}^{2}$ and $q_{1} \nmid q_{2}$ and q_{1} prime. We have $\overline{A^{2 m}}=4 q_{1}^{2 j} \cdot q_{2}^{2} a^{\prime} \Longrightarrow q_{1} \mid A$ and $B^{n} C^{l}=q_{1}^{2 j} \cdot q_{2}^{2}\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \mid B^{n}$ or $q_{1} \mid C^{l}$.
${ }^{* *}$ F-5-2-1-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{f} . B_{1}$ with $q_{1} \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=$ $q_{1}^{2 j-f n} q_{2}^{2}\left(b-4 a^{\prime}\right)$:

Abdelmajid Ben Hadj Salem

- If $2 j-f . n \geqslant 1 \Longrightarrow q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$ but $C^{l}=A^{m}+B^{n}$ gives also $q_{1} \mid C$ and the conjecture 1.1) is verified.
- If $2 j-f . n=0$, we have $B_{1}^{n} C^{l}=q_{2}^{2}\left(b-4 a^{\prime}\right)$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right)$. As q_{1} and a^{\prime} are coprime, then $q_{1} \nmid b$, and the conjecture (1.1) is verified.
- If $2 j-f . n<0 \Longrightarrow q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \nmid b$ because a^{\prime} is coprime with q_{1}, and $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, and the conjecture (1.1) is verified.
** F-5-2-1-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-5-2-2- We suppose that $k_{2}^{\prime}, a^{\prime}$ are not coprime. Let q_{1} be a prime so that $q_{1} \mid k_{2}^{\prime}$ and $q_{1} \mid a^{\prime}$. We write k_{2}^{\prime} under the form $q_{1}^{j} \cdot q_{2}$ with $j \geqslant 1, q_{1} \nmid q_{2}$. From $A^{2 m}=4 k_{2}^{\prime} a^{\prime} \Longrightarrow q_{1}\left|A^{2 m} \Longrightarrow q_{1}\right| A$. Then from $B^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right)$, it follows that $q_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow q_{1}\right| B^{n}$ or $q_{1} \mid C^{l}$.
** F-5-2-2-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{\beta} . B_{1}$ with $\beta \geqslant 1$ and $q_{1} \nmid B_{1}$. Then, we have $q_{1}^{n \beta} B_{1}^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right) \Longrightarrow B_{1}^{n} C^{l}=q_{1}^{j-n \beta} q_{2}\left(b-4 a^{\prime}\right)$.
- If $j-n \beta \geqslant 1$, then $q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then the conjecture (1.1) is verified.
- If $j-n \beta=0$, we obtain $B_{1}^{n} C^{l}=q_{2}\left(b-4 a^{\prime}\right)$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow$ $q_{1} \mid b$ because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
- If $j-n \beta<0 \Longrightarrow q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$, because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
** F-5-2-2-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-6- If $4 \nmid\left(b-4 a^{\prime}\right)$ and $4 \nmid k_{1}$ it is impossible. We suppose that $4\left|\left(b-4 a^{\prime}\right) \Rightarrow 4\right| b$, and $b-4 a^{\prime}=4^{t} . g, t \geqslant 1$ with $4 \nmid g$, then we have :

$$
\begin{array}{r}
A^{2 m}=k_{1} a^{\prime} \\
B^{n} C^{l}=k_{1} \cdot 4^{t-1} \cdot g
\end{array}
$$

** F-6-1- We suppose that k_{1} is prime. From $A^{2 m}=k_{1} a^{\prime}$ we deduce easily that $k_{1} \mid a^{\prime}$. From $B^{n} C^{l}=k_{1} .4^{t-1} . g$ we obtain that $k_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow k_{1}\right| B^{n}$ or $k_{1} \mid C^{l}$.

[^0]** F-6-1-2- We obtain identical results if we suppose that $k_{1} \mid C^{l}$.
** F-6-2- We suppose that k_{1} is not prime $\neq 4,\left(k_{1}=4\right.$ see case F-2, above $)$ with $4 \nmid k_{1}$.
** F-6-2-1- If $k_{1}=2 k^{\prime}$ with k^{\prime} odd >1. Then $A^{2 m}=2 k^{\prime} a^{\prime} \Longrightarrow 2\left|a^{\prime} \Longrightarrow 2\right| a$, as $4 \mid b$ it follows the contradiction with a, b coprime.

Definitive Proof of Beal's Conjecture

** F-6-2-2- We suppose that k_{1} is odd with k_{1} and a^{\prime} coprime. We write k_{1} under the form $k_{1}=q_{1}^{j} \cdot q_{2}$ with $q_{1} \nmid q_{2}, q_{1}$ prime and $j \geqslant 1 . B^{n} C^{l}=q_{1}^{j} \cdot q_{2} 4^{t-1} g \Longrightarrow q_{1} \mid B^{n}$ or $q_{1} \mid C^{l}$.
** F-6-2-2-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{f} . B_{1}$ with $q_{1} \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=$ $q_{1}^{j-f . n} q_{2} 4^{t-1} g$.

- If $j-f . n \geqslant 1 \Longrightarrow q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives also $q_{1} \mid C$ and the conjecture 1.1) is verified.
- If $j-f . n=0$, we have $B_{1}^{n} C^{l}=q_{2} 4^{t-1} g$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, then $q_{1} \mid\left(b-4 a^{\prime}\right)$. As q_{1} and a^{\prime} are coprime then $q_{1} \nmid b$ and the conjecture (1.1) is verified.
- If $j-f . n<0 \Longrightarrow q_{1} \mid\left(b-4 a^{\prime}\right) \Longrightarrow q_{1} \nmid b$ because q_{1}, a^{\prime} are primes. $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$ and the conjecture (1.1) is verified.
** F-6-2-2-2- We obtain identical results if we suppose that $q_{1} \mid C^{l}$.
** F-6-2-3- We suppose that k_{1} and a^{\prime} are not coprime. Let q_{1} be a prime so that $q_{1} \mid k_{1}$ and $q_{1} \mid a^{\prime}$. We write k_{1} under the form $q_{1}^{j} \cdot q_{2}$ with $q_{1} \nmid q_{2}$. From $A^{2 m}=k_{1} a^{\prime} \Longrightarrow q_{1}\left|A^{2 m} \Longrightarrow q_{1}\right| A$. From $B^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right)$, it follows that $q_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow q_{1}\right| B^{n}$ or $q_{1} \mid C^{l}$.
${ }^{* *}$ F-6-2-3-1- We suppose that $q_{1}\left|B^{n} \Longrightarrow q_{1}\right| B \Longrightarrow B=q_{1}^{\beta} \cdot B_{1}$ with $\beta \geqslant 1$ and $q_{1} \nmid B_{1}$. Then we have $q_{1}^{n \beta} B_{1}^{n} C^{l}=q_{1}^{j} q_{2}\left(b-4 a^{\prime}\right) \Longrightarrow B_{1}^{n} C^{l}=q_{1}^{j-n \beta} q_{2}\left(b-4 a^{\prime}\right)$:
- If $j-n \beta \geqslant 1$, then $q_{1}\left|C^{l} \Longrightarrow q_{1}\right| C$, but $C^{l}=A^{m}+B^{n}$ gives $q_{1} \mid C$, and the conjecture 1.1) is verified.
- If $j-n \beta=0$, we obtain $B_{1}^{n} C^{l}=q_{2}\left(b-4 a^{\prime}\right)$, but $q_{1} \mid A$ and $q_{1} \mid B$ then $q_{1} \mid C$ and we obtain $q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$ because $q_{1}\left|a^{\prime} \Longrightarrow q_{1}\right| a$, then the contradiction with a, b coprime.
- If $j-n \beta<0 \Longrightarrow q_{1}\left|\left(b-4 a^{\prime}\right) \Longrightarrow q_{1}\right| b$, then the contradiction with a, b coprime.
** F-6-2-3-2- We obtain identical results as above if we suppose that $q_{1} \mid C^{l}$.

5. Hypothèse: $\{3 \mid p$ and $b \mid 4 p\}$
5.1 Case $b=2$ and $3 \mid p$:
$3 \mid p \Rightarrow p=3 p^{\prime}$ with $p^{\prime} \neq 1$ because $3 \ll p$, and $b=2$, we obtain:

$$
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4 \cdot 3 p^{\prime} \cdot a}{3 b}=\frac{4 \cdot p^{\prime} \cdot a}{2}=2 \cdot p^{\prime} \cdot a
$$

As:

$$
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{2}<\frac{3}{4} \Rightarrow 1<2 a<3 \Rightarrow a=1 \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{1}{2}
$$

but this case was studied (see case 3.1.2).
5.2 Case $b=4$ and $3 \mid p$:

We have $3 \mid p \Longrightarrow p=3 p^{\prime}$ with $p^{\prime} \in \mathbb{N}^{*}$, it follows :

$$
A^{2 m}=\frac{4 p \cdot a}{3 b}=\frac{4.3 p^{\prime} \cdot a}{3 \times 4}=p^{\prime} \cdot a
$$

Abdelmajid Ben Hadj Salem

and:

$$
\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{4}<\frac{3}{4} \Rightarrow 1<a<3 \Rightarrow a=2
$$

as a, b are coprime, then the case $b=4$ and $3 \mid p$ is impossible.
5.3 Case: $b \neq 2, b \neq 4, b \neq 3, b \mid p$ and $3 \mid p$:

As $3 \mid p$, then $p=3 p^{\prime}$ and :

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} a}{b}
$$

We consider the case: $b \mid p^{\prime} \Longrightarrow p^{\prime}=b p "$ and $p^{\prime \prime} \neq 1$ (if $p "=1$, then $p=3 b$, see paragraph 5.8 Case $k^{\prime}=1$). Finally, we obtain:

$$
A^{2 m}=\frac{4 b p " a}{b}=4 a p " ; \quad B^{n} C^{l}=p^{\prime \prime} .(3 b-4 a)
$$

** G-1- We suppose that $p "$ is prime, then $A^{2 m}=4 a p "=\left(A^{m}\right)^{2} \Longrightarrow p " \mid a$. But $B^{n} C^{l}=$ $p "(3 b-4 a) \Longrightarrow p " \mid B^{n}$ or $p^{"} \mid C^{l}$.
${ }^{* *} \mathrm{G}-1-1$ - If $p "\left|B^{n} \Longrightarrow p "\right| B \Longrightarrow B=p^{"} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Then $p^{"{ }^{n-1}} B_{1}^{n} C^{l}=3 b-4 a$. As $n>2$, then $(n-1)>1$ and $p " \mid a$, then $p " \mid 3 b \Longrightarrow p "=3$ or $p " \mid b$.
${ }^{* *}$ G-1-1-1- If $p^{\prime \prime}=3 \Longrightarrow 3 \mid a$, with a that we write as $a=3 a^{\prime 2}$, but $A^{m}=6 a^{\prime} \Longrightarrow 3 \mid A^{m} \Longrightarrow$ $3 \mid A \Longrightarrow A=3 A_{1}$, then $3^{m-1} A_{1}^{m}=2 a^{\prime} \Longrightarrow 3 \mid a^{\prime} \Longrightarrow a^{\prime}=3 a^{\prime \prime}$. As $p^{" n-1} B_{1}^{n} C^{l}=3^{n-1} B_{1}^{n} C^{l}=$ $3 b-4 a \Longrightarrow 3^{n-2} B_{1}^{n} C^{l}=b-36 a^{\prime 2}$. As $n \geqslant 3 \Longrightarrow n-2 \geqslant 1$, then $3 \mid b$ and the contradiction with a, b coprime.
** G-1-1-2- We suppose that $p " \mid b$, as $p " \mid a$, then the contradiction with a, b coprime.
** G-1-2- If we suppose $p^{"} \mid C^{l}$, we obtain identical results (contradictions).
** G-2- We consider now that $p "$ is not prime.
** G-2-1- $p^{\prime \prime}, a$ coprime: $A^{2 m}=4 a p^{\prime \prime} \Longrightarrow A^{m}=2 a^{\prime} \cdot p_{1}$ with $a=a^{\prime 2}$ and $p^{\prime \prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} . p_{1}$, then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** G-2-1-1- We suppose that $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$, but $p^{\prime \prime}=p_{1}^{2}$.
** G-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} \cdot p_{1}$.
** G-2-1-1-2- We suppose that p_{1} is not prime so we can write $p_{1}=\omega^{m} \Longrightarrow p^{\prime \prime}=\omega^{2 m}$. Then $B^{n} C^{l}=\omega^{2 m}(3 b-4 a)$.
${ }^{* *}$ G-2-1-1-2-1- If ω is prime $\neq 2$, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** G-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega^{2 m-n j}(3 b-4 a)$.

Definitive Proof of Beal's Conjecture

${ }^{* *}$ G-2-1-1-2-1-1-1- If $2 m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=3 b-4 a$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega \mid C^{l} \Longrightarrow$ $\omega \mid C$, and $\omega \mid(3 b-4 a)$. But $\omega \neq 2$ and ω, a^{\prime} are coprime, then ω, a are coprime, it follows $\omega \nmid(3 b)$, then $\omega \neq 3$ and $\omega \nmid b$, the conjecture (1.1) is verified.
** G-2-1-1-2-1-1-2- If $2 m-n j \geqslant 1$, using the method as above, we obtain $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$ and $\omega \nmid a$ and $\omega \neq 3$ and $\omega \nmid b$, then the conjecture (1.1) is verified.
** G-2-1-1-2-1-1-3- If $2 m-n j<0 \Longrightarrow \omega^{n \cdot j-2 m} B_{1}^{n} . C^{l}=3 b-4 a$. From $A^{m}+B^{n}=C^{l} \Longrightarrow$ $\omega\left|C^{l} \Longrightarrow \omega\right| C$, then $C=\omega^{h} . C_{1}$, with $\omega \nmid C_{1}$, we obtain $\omega^{n \cdot j-2 m+h . l} B_{1}^{n} \cdot C_{1}^{l}=3 b-4 a$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$ then the contradiction with $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. It follows $n . j-2 m+h . l>0$ and $\omega \mid(3 b-4 a)$ with ω, a, b coprime and the conjecture (1.1) is verified.
** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if $\omega \mid C^{l}$.
** G-2-1-1-2-2- We suppose that $p^{"}=\omega^{2 m}$ and ω is not prime. We write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} prime $\dagger \Omega, f \geqslant 1$, and $\omega_{1} \mid A$. Then $B^{n} C^{l}=\omega_{1}^{2 f . m} \Omega^{2 m}(3 b-4 a) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
** G-2-1-1-2-2-1- If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega_{1}^{2 . m-n j} \Omega^{2 m}(3 b-$ 4a):
** G-2-1-1-2-2-1-1- If $2 f . m-n \cdot j=0$, we obtain $B_{1}^{n} \cdot C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow$ $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$, and $\omega_{1} \mid(3 b-4 a)$. But $\omega_{1} \neq 2$ and ω_{1}, a^{\prime} are coprime, then ω, a are coprime, it follows $\omega_{1} \nmid(3 b)$, then $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, and the conjecture (1.1) is verified.
** G-2-1-1-2-2-1-2- If $2 f . m-n . j \geqslant 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$ and $\omega_{1} \mid(3 b-4 a)$, as $\omega_{1} \nmid a, \omega_{1} \neq 3$ and $\omega_{1} \nmid b$, it follows the conjecture (1.1) is verified.
${ }^{* *}$ G-2-1-1-2-2-1-3- If $2 f . m-n . j<0 \Longrightarrow \omega_{1}^{n \cdot j-2 m \cdot f} B_{1}^{n} \cdot C^{l}=\Omega^{2 m}(3 b-4 a)$. As $\omega_{1} \mid C$ using $C^{l}=A^{m}+B^{n}$, then $C=\omega_{1}^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m . f+h . l} B_{1}^{n} . C_{1}^{l}=\Omega^{2 m}(3 b-4 a)$. If $n . j-2 m . f+h . l<$ $0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if n.j $-2 m . f+h . l>0$ and $\omega_{1} \mid(3 b-4 a)$ with ω_{1}, a, b coprime and the conjecture (1.1) is verified.
** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if $\omega_{1} \mid C^{l}$.
** G-2-1-2- We suppose that $2 \mid p_{1}$: then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$, but $p^{\prime \prime}=p_{1}^{2}$.
** G-2-1-2-1- We suppose that $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with a, b coprime.
** G-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$. As $A^{m}=2 a^{\prime} p_{1}, p_{1}$ can written as $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p^{\prime \prime}=2^{2 m-2} \omega^{2 m}$. Then $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-4 a) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** G-2-1-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B$. As $2 \mid A$, then $2 \mid C$. From $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-$ $4 a)$ it follows that if $2|(3 b-4 a) \Longrightarrow 2| b$ but as $2 \nmid a$ there is no contradictions with a, b coprime

Abdelmajid Ben Hadj Salem

and the conjecture (1.1) is verified.
** G-2-1-2-2-2- We suppose that $2 \mid C^{l}$, using the same method above, we obtain identical results.
${ }^{* *}$ G-2-2- We suppose that $p^{"}, a$ are not coprime: let ω be a prime number so that $\omega \mid a$ and $\omega \mid p^{\prime \prime}$.
** G-2-2-1- We suppose that $\omega=3$. As $A^{2 m}=4 a p^{\prime \prime} \Longrightarrow 3 \mid A$, or $3 \mid p$, As $p=A^{2 m}+B^{2 n}+$ $A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}, C=3^{h} C_{1}$ with 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{k} . g$ with $k=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid p "$ that gives $a=3^{\alpha} a_{1}$, $3 \nmid a_{1}$ and $p "=3^{\mu} p_{1}, 3 \nmid p_{1}$ with $A^{2 m}=4 a p "=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \alpha+\mu=2 \mathrm{im}$. As $p=3 p^{\prime}=3 b \cdot p "=3 b \cdot 3^{\mu} p_{1}=3^{\mu+1} . b . p_{1}$. The exponent of the factor 3 of p is k, the exponent of the factor 3 of the left member of the last equation is $\mu+1$ added of the exponent β of 3 of the term b, with $\beta \geqslant 0$, let $\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta$ and we recall that $\alpha+\mu=2$ im. But $B^{n} C^{l}=$ $p^{\prime \prime}(3 b-4 a)$, we obtain $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{1}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)=3^{\mu+1} p_{1}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right)$, $3 \nmid b_{1}$. We have also $A^{m}+B^{n}=C^{l} \Rightarrow 3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. We call $\epsilon=\min (i m, j n)$, we have $\epsilon=h l=\min (i m, j n)$. We obtain the conditions:

$$
\begin{array}{r}
k=\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta \\
\alpha+\mu=2 i m \tag{131}\\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{1}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right)
\end{array}
$$

${ }^{* *}$ G-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}$ and $3 \nmid a_{1}$, the equation (131) becomes:

$$
1+\mu=2 i m
$$

and the first equation (130) is written as :

$$
k=\min (2 i m, 2 j n, i m+j n)=2 i m+\beta
$$

- If $k=2 i m \Longrightarrow \beta=0$ then $3 \nmid b$. We obtain $2 i m \leqslant 2 j n \Longrightarrow i m \leqslant j n$, and $2 i m \leqslant i m+j n \Longrightarrow$ $i m \leqslant j n$. The third equation gives $h l=i m$ and the last equation gives $n j+h l=\mu+1=2 i m \Longrightarrow$ $i m=n j$, then $i m=n j=h l$ and $B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture 1.1) is verified.
- If $k=2 j n$ or $k=i m+j n$, we obtain $\beta=0, i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{1}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (1.1) is verified.
** G-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geqslant 2$.
- If $k=2$ im $\Longrightarrow 2 i m=\mu+1+\beta$, but $\mu=2 i m-\alpha$ that gives $\alpha=1+\beta \geqslant 2 \Longrightarrow \beta \neq 0 \Longrightarrow 3 \mid b$, but $3 \mid a$ then the contradiction with a, b coprime.
- If $k=2 j n=\mu+1+\beta \leqslant 2 i m \Longrightarrow \mu+1+\beta \leqslant \mu+\alpha \Longrightarrow 1+\beta \leqslant \alpha \Longrightarrow \beta \geqslant 1$. If $\beta \geqslant 1 \Longrightarrow 3 \mid b$ but $3 \mid a$, then the contradiction with a, b coprime.
- If $k=i m+j n \Longrightarrow i m+j n \leqslant 2 i m \Longrightarrow j n \leqslant i m$, and $i m+j n \leqslant 2 j n \Longrightarrow i m \leqslant j n$, then $i m=j n$. As $k=i m+j n=2 i m=1+\mu+\beta$ and $\alpha+\mu=2 i m$, we obtain $\alpha=1+\beta \geqslant 2 \Longrightarrow$ $\beta \geqslant 1 \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime.
** G-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $p^{"}=\omega^{\mu} p_{1}$ with $\omega \nmid p_{1}$.

Definitive Proof of Beal's Conjecture

As $A^{2 m}=4 a p^{\prime \prime}=4 \omega^{\alpha+\mu} \cdot a_{1} \cdot p_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}, \omega \nmid A_{1}$. But $B^{n} C^{l}=p^{\prime \prime}(3 b-4 a)=$ $\omega^{\mu} p_{1}(3 b-4 a) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
${ }^{* *}$ G-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow$ $\omega\left|C^{l} \Longrightarrow \omega\right| C$. As $p=b p^{\prime}=3 b p^{\prime \prime}=3 \omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)$ with $k=\min (2 i m, 2 j n, i m+j n)$. Then :

- If $k=\mu$, then $\omega \nmid b$ and the conjecture (1.1) is verified.
- If $k>\mu$, then $\omega \mid b$, but $\omega \mid a$ then the contradiction with a, b coprime.
- If $k<\mu$, it follows from :

$$
3 \omega^{\mu} b p_{1}=\omega^{k}\left(\omega^{2 i m-k} A_{1}^{2 m}+\omega^{2 j n-k} B_{1}^{2 n}+\omega^{i m+j n-k} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$, then the contradiction with $\omega \nmid A_{1}$ or $\omega \nmid B_{1}$.
** G-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega \mid\left(C^{l}-\right.$ $\left.A^{m}\right) \Longrightarrow \omega \mid B$. Then, using the same method as for the case G-2-2-2-1-, we obtain identical results.
5.4 Case $b=3$ and $3 \mid p$:

As $3 \mid p \Longrightarrow p=3 p^{\prime}$, We write :

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{4 \times 3 p^{\prime}}{3} \frac{a}{3}=\frac{4 p^{\prime} a}{3}
$$

As $A^{2 m}$ is an integer and a, b are coprime and $\cos ^{2} \frac{\theta}{3}<1$ (see equation 35), then we have necessary $3 \mid p^{\prime} \Longrightarrow p^{\prime}=3 p^{\prime \prime}$ with $p^{\prime \prime} \neq 1$, if not $p=3 p^{\prime}=3 \times 3 p^{\prime \prime}=9$, but $9 \ll(p=$ $A^{2 m}+B^{2 n}+A^{m} B^{n}$), the hypothesis $p^{\prime \prime}=1$ is impossible, then $p^{\prime \prime}>1$, and we obtain :

$$
A^{2 m}=\frac{4 p^{\prime} a}{3}=\frac{4 \times 3 p^{\prime \prime} a}{3}=4 p^{\prime \prime} a ; \quad B^{n} C^{l}=p^{\prime \prime} .(9-4 a)
$$

As $\frac{1}{4}<\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{3}<\frac{3}{4} \Longrightarrow 3<4 a<9 \Longrightarrow$ as $a>1, a=2$ and we obtain:

$$
\begin{equation*}
A^{2 m}=4 p " a=8 p " ; \quad B^{n} C^{l}=\frac{3 p "(9-4 a)}{3}=p " \tag{132}
\end{equation*}
$$

The two equations of (132) imply that p " is not a prime. We can write $p^{\prime \prime}$ as : $p "=\prod_{i \in I} p_{i}^{\alpha_{i}}$ where p_{i} are distinct primes, α_{i} elements of \mathbb{N} and $i \in I$ a finite set of indices. We can write also $p^{\prime \prime}=p_{1}^{\alpha_{1}} . q_{1}$ with $p_{1} \nmid q_{1}$. From (132), we have $p_{1} \mid A$ and $p_{1}\left|B^{n} C^{l} \Longrightarrow p_{1}\right| B^{n}$ or $p_{1} \mid C^{l}$.
** H-1- We suppose that $p_{1} \mid B^{n} \Longrightarrow B=p_{1}^{\beta_{1}} . B_{1}$ with $p_{1} \nmid B_{1}$ and $\beta_{1} \geqslant 1$. Then, we obtain $B_{1}^{n} C^{l}=p_{1}^{\alpha_{1}-n \beta_{1}} \cdot q_{1}$ with the following cases :

- If $\alpha_{1}-n \beta_{1} \geqslant 1 \Longrightarrow p_{1}\left|C^{l} \Longrightarrow p_{1}\right| C$, in accord with $p_{1} \mid\left(C^{l}=A^{m}+B^{n}\right)$, it follows that the conjecture (1.1) is verified.
- If $\alpha_{1}-n \beta_{1}=0 \Longrightarrow B_{1}^{n} C^{l}=q_{1} \Longrightarrow p_{1} \nmid C^{l}$, it is a contradiction with $p_{1}\left|\left(A^{m}-B^{n}\right) \Rightarrow p_{1}\right| C^{l}$. Then this case is impossible.
- If $\alpha_{1}-n \beta_{1}<0$, we obtain $p_{1}^{n \beta_{1}-\alpha_{1}} B_{1}^{n} C^{l}=q_{1} \Longrightarrow p_{1} \mid q_{1}$, it is a contradiction with $p_{1} \nmid q_{1}$. Then this case is impossible.

Abdelmajid Ben Hadj Salem

${ }^{* *} \mathrm{H}$-2- We suppose that $p_{1} \mid C^{l}$, using the same method as for the case $p_{1} \mid B^{n}$, we obtain identical results.
5.5 Case $3 \mid p$ and $b=p$: we have $\cos ^{2} \frac{\theta}{3}=\frac{a}{b}=\frac{a}{p}$ and:

$$
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{p}=\frac{4 a}{3}
$$

As $A^{2 m}$ is an integer, it implies that $3 \mid a$, but $3|p \Longrightarrow 3| b$. As a and b are coprime, then the contradiction and the case $3 \mid p$ and $b=p$ is impossible.
5.6 Case $3 \mid p$ and $b=4 p$:
$3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, then $b=4 p=12 p^{\prime}$.

$$
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{a}{3} \Longrightarrow 3 \right\rvert\, a
$$

as $A^{2 m}$ is an integer. But $3|p \Longrightarrow 3|[(4 p)=b]$, then the contradiction with a, b coprime and the case $b=4 p$ is impossible.
5.7 Case $3 \mid p$ and $b=2 p$:
$3 \mid p \Longrightarrow p=3 p^{\prime}, p^{\prime} \neq 1$ because $3 \ll p$, then $b=2 p=6 p^{\prime}$.

$$
\left.A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \frac{a}{b}=\frac{2 a}{3} \Longrightarrow 3 \right\rvert\, a
$$

But $3|p \Longrightarrow 3|(2 p) \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime and the case $b=2 p$ is impossible.
5.8 Case $3 \mid p$ and $b \neq 3$ a divisor of p :
we have $b=p^{\prime} \neq 3$, and p is written as $p=k p^{\prime}$ with $3 \mid k \Longrightarrow k=3 k^{\prime}$ and :

$$
\begin{array}{r}
A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{4 p}{3} \cdot \frac{a}{b}=4 a k^{\prime} \\
B^{n} C^{l}=\frac{p}{3} \cdot\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=k^{\prime}\left(3 p^{\prime}-4 a\right)=k^{\prime}(3 b-4 a)
\end{array}
$$

** $\mathrm{I}-1-k^{\prime} \neq 1$:
** I-1-1- We suppose that k^{\prime} is prime, then $A^{2 m}=4 a k^{\prime}=\left(A^{m}\right)^{2} \Longrightarrow k^{\prime} \mid a$. But $B^{n} C^{l}=$ $k^{\prime}(3 b-4 a) \Longrightarrow k^{\prime} \mid B^{n}$ or $k^{\prime} \mid C^{l}$.
** I-1-1-1- If $k^{\prime}\left|B^{n} \Longrightarrow k^{\prime}\right| B \Longrightarrow B=k^{\prime} B_{1}$ with $B_{1} \in \mathbb{N}^{*}$. Then $k^{\prime n-1} B_{1}^{n} C^{l}=3 b-4 a$. As $n>2$, then $(n-1)>1$ and $k^{\prime} \mid a$, then $k^{\prime} \mid 3 b \Longrightarrow k^{\prime}=3$ or $k^{\prime} \mid b$.
** I-1-1-1-1- If $k^{\prime}=3 \Longrightarrow 3 \mid a$, with a that we can write it under the form $a=3 a^{\prime 2}$. But $A^{m}=$ $6 a^{\prime} \Longrightarrow 3\left|A^{m} \Longrightarrow 3\right| A \Longrightarrow A=3 A_{1}$ with $A_{1} \in \mathbb{N}^{*}$. Then $3^{m-1} A_{1}^{m}=2 a^{\prime} \Longrightarrow 3 \mid a^{\prime} \Longrightarrow a^{\prime}=3 a$ ". But $k^{\prime n-1} B_{1}^{n} C^{l}=3^{n-1} B_{1}^{n} C^{l}=3 b-4 a \Longrightarrow 3^{n-2} B_{1}^{n} C^{l}=b-36 a^{\prime \prime}{ }^{2}$. As $n \geqslant 3 \Longrightarrow n-2 \geqslant 1$, then $3 \mid b$. Hence the contradiction with a, b coprime.

Definitive Proof of Beal's Conjecture

** I-1-1-1-2- We suppose that $k^{\prime} \mid b$, but $k^{\prime} \mid a$, then the contradiction with a, b coprime.
** I-1-1-2- We suppose that $k^{\prime} \mid C^{l}$, using the same method as for the case $k^{\prime} \mid B^{n}$, we obtain identical results.
** I-1-2- We consider that k^{\prime} is not a prime.
** I-1-2-1- We suppose that k^{\prime}, a are coprime: $A^{2 m}=4 a k^{\prime} \Longrightarrow A^{m}=2 a^{\prime} \cdot p_{1}$ with $a=a^{\prime 2}$ and $k^{\prime}=p_{1}^{2}$, then a^{\prime}, p_{1} are also coprime. As $A^{m}=2 a^{\prime} . p_{1}$ then $2 \mid a^{\prime}$ or $2 \mid p_{1}$.
** I-1-2-1-1- We suppose that $2 \mid a^{\prime}$, then $2 \mid a^{\prime} \Longrightarrow 2 \nmid p_{1}$, but $k^{\prime}=p_{1}^{2}$.
** I-1-2-1-1-1- If p_{1} is prime, it is impossible with $A^{m}=2 a^{\prime} . p_{1}$.
** I-1-2-1-1-2- We suppose that p_{1} is not prime and it can be written as $p_{1}=\omega^{m} \Longrightarrow k^{\prime}=\omega^{2 m}$. Then $B^{n} C^{l}=\omega^{2 m}(3 b-4 a)$.
** I-1-2-1-1-2-1- If ω is prime $\neq 2$, then $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** I-1-2-1-1-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$, then $B_{1}^{n} . C^{l}=\omega^{2 m-n j}(3 b-4 a)$.

- If $2 m-n \cdot j=0$, we obtain $B_{1}^{n} . C^{l}=3 b-4 a$, as $C^{l}=A^{m}+B^{n} \Longrightarrow \omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$. But $\omega \neq 2$ and ω, a^{\prime} are coprime then ω, a are coprime, then $\omega \nmid(3 b) \Longrightarrow \omega \neq 3$ and $\omega \nmid b$. Hence, the conjecture (1.1) is verified.
- If $2 m-n j \geqslant 1$, using the same method, we have $\omega\left|C^{l} \Longrightarrow \omega\right| C$ and $\omega \mid(3 b-4 a)$ and $\omega \nmid a$ and $\omega \neq 3$ and $\omega \nmid b$. Then, the conjecture (1.1) is verified.
- If $2 m-n j<0 \Longrightarrow \omega^{n . j-2 m} B_{1}^{n} \cdot C^{l}=3 b-4 a$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega \mid C$, then $C=\omega^{h} . C_{1} \Longrightarrow \omega^{n . j-2 m+h . l} B_{1}^{n} . C_{1}^{l}=3 b-4 a$. If $n . j-2 m+h . l<0 \Longrightarrow \omega \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega \nmid B_{1}$ or $\omega \nmid C_{1}$. If $n . j-2 m+h . l>0 \Longrightarrow \omega \mid(3 b-4 a)$ with ω, a, b coprime, it implies that the conjecture (1.1) is verified.
** I-1-2-1-1-2-1-2- We suppose that $\omega \mid C^{l}$, using the same method as for the case $\omega \mid B^{n}$, we obtain identical results.
** I-1-2-1-1-2-2- Now, $k^{\prime}=\omega^{2 m}$ and ω not a prime, we write $\omega=\omega_{1}^{f} . \Omega$ with ω_{1} a prime $\nmid \Omega$ and $f \geqslant 1$ an integer, and $\omega_{1} \mid A$, then $B^{n} C^{l}=\omega_{1}^{2 f . m} \Omega^{2 m}(3 b-4 a) \Longrightarrow \omega_{1}\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega_{1}\right| B^{n}$ or $\omega_{1} \mid C^{l}$.
** $\mathrm{I}-1-2-1-1-2-2-1$ - If $\omega_{1}\left|B^{n} \Longrightarrow \omega_{1}\right| B \Longrightarrow B=\omega_{1}^{j} B_{1}$ with $\omega_{1} \nmid B_{1}$, then $B_{1}^{n} \cdot C^{l}=\omega_{1}^{2 . f m-n j} \Omega^{2 m}(3 b-$ $4 a)$.
- If $2 f . m-n . j=0$, we obtain $B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$, and $\omega_{1} \mid(3 b-4 a)$. But $\omega_{1} \neq 2$ and ω_{1}, a^{\prime} are coprime $\Longrightarrow \omega, a$ are coprime, then $\omega_{1} \nmid(3 b) \Longrightarrow$ $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$. Hence, the conjecture (1.1) is verified.
- If $2 f . m-n . j \geqslant 1$, we have $\omega_{1}\left|C^{l} \Longrightarrow \omega_{1}\right| C$ and $\omega_{1} \mid(3 b-4 a)$ and $\omega_{1} \nmid a$ and $\omega_{1} \neq 3$ and $\omega_{1} \nmid b$, then the conjecture (1.1) is verified.

Abdelmajid Ben Hadj Salem

- If $2 f . m-n . j<0 \Longrightarrow \omega_{1}^{n . j-2 m . f} B_{1}^{n} . C^{l}=\Omega^{2 m}(3 b-4 a)$. As $C^{l}=A^{m}+B^{n} \Longrightarrow \omega_{1} \mid C$, then $C=\omega_{1}^{h} \cdot C_{1} \Longrightarrow \omega^{n . j-2 m . f+h . l} B_{1}^{n} . C_{1}^{l}=\Omega^{2 m}(3 b-4 a)$. If $n . j-2 m . f+h . l<0 \Longrightarrow \omega_{1} \mid B_{1}^{n} C_{1}^{l}$, then the contradiction with $\omega_{1} \nmid B_{1}$ and $\omega_{1} \nmid C_{1}$. Then if $n . j-2 m . f+h . l>0$ and $\omega_{1} \mid(3 b-4 a)$ with ω_{1}, a, b coprime, then the conjecture (1.1) is verified.
** I-1-2-1-1-2-2-2- As in the case $\omega_{1} \mid B^{n}$, we obtain identical results if $\omega_{1} \mid C^{l}$.
** I-1-2-1-2- If $2 \mid p_{1}$: then $2 \mid p_{1} \Longrightarrow 2 \nmid a^{\prime} \Longrightarrow 2 \nmid a$, but $k^{\prime}=p_{1}^{2}$.
** I-1-2-1-2-1- If $p_{1}=2$, we obtain $A^{m}=4 a^{\prime} \Longrightarrow 2 \mid a^{\prime}$, then the contradiction with $2 \nmid a^{\prime}$. Case to reject.
** I-1-2-1-2-2- We suppose that p_{1} is not prime and $2 \mid p_{1}$. As $A^{m}=2 a^{\prime} p_{1}, p_{1}$ is written under the form $p_{1}=2^{m-1} \omega^{m} \Longrightarrow p_{1}^{2}=2^{2 m-2} \omega^{2 m}$. Then $B^{n} C^{l}=k^{\prime}(3 b-4 a)=2^{2 m-2} \omega^{2 m}(3 b-4 a) \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** I-1-2-1-2-2-1- If $2\left|B^{n} \Longrightarrow 2\right| B$, as $2|A \Longrightarrow 2| C$. From $B^{n} C^{l}=2^{2 m-2} \omega^{2 m}(3 b-4 a)$ it follows that if $2|(3 b-4 a) \Longrightarrow 2| b$ but as $2 \nmid a$ there is no contradictions with a, b coprime and the conjecture (1.1) is verified.
** I-1-2-1-2-2-2- We obtain identical results as above if $2 \mid C^{l}$.
** I-1-2-2- We suppose that k^{\prime}, a are not coprime: let ω be a prime integer so that $\omega \mid a$ and $\omega \mid p_{1}^{2}$.
** I-1-2-2-1- We suppose that $\omega=3$. As $A^{2 m}=4 a k^{\prime} \Longrightarrow 3 \mid A$, but $3 \mid p$, As $p=A^{2 m}+B^{2 n}+$ $A^{m} B^{n} \Longrightarrow 3\left|B^{2 n} \Longrightarrow 3\right| B$, then $3\left|C^{l} \Longrightarrow 3\right| C$. We write $A=3^{i} A_{1}, B=3^{j} B_{1}, C=3^{h} C_{1}$ with 3 coprime with A_{1}, B_{1} and C_{1} and $p=3^{2 i m} A_{1}^{2 m}+3^{2 n j} B_{1}^{2 n}+3^{i m+j n} A_{1}^{m} B_{1}^{n}=3^{s} . g$ with $s=\min (2 i m, 2 j n, i m+j n)$ and $3 \nmid g$. We have also $(\omega=3) \mid a$ and $(\omega=3) \mid k^{\prime}$ that give $a=3^{\alpha} a_{1}$, $3 \nmid a_{1}$ and $k^{\prime}=3^{\mu} p_{2}, 3 \nmid p_{2}$ with $A^{2 m}=4 a k^{\prime}=3^{2 i m} A_{1}^{2 m}=4 \times 3^{\alpha+\mu} . a_{1} \cdot p_{2} \Longrightarrow \alpha+\mu=2 \mathrm{im}$. As $p=3 p^{\prime}=3 b . k^{\prime}=3 b .3^{\mu} p_{2}=3^{\mu+1} . b . p_{2}$. The exponent of the factor 3 of p is s, the exponent of the factor 3 of the left member of the last equation is $\mu+1$ added of the exponent β of 3 of the factor b, with $\beta \geqslant 0$, let $\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta$, we recall that $\alpha+\mu=2 i m$. But $B^{n} C^{l}=$ $k^{\prime}(4 b-3 a)$ that gives $3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{2}\left(b-4 \times 3^{(\alpha-1)} a_{1}\right)=3^{\mu+1} p_{2}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right)$, $3 \nmid b_{1}$. We have also $A^{m}+B^{n}=C^{l}$ that gives $3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}=3^{h l} C_{1}^{l}$. We call $\epsilon=\min (i m, j n)$, we obtain $\epsilon=h l=\min (i m, j n)$. We have then the conditions:

$$
\begin{array}{r}
s=\min (2 i m, 2 j n, i m+j n)=\mu+1+\beta \\
\alpha+\mu=2 i m \\
\epsilon=h l=\min (i m, j n) \\
3^{(n j+h l)} B_{1}^{n} C_{1}^{l}=3^{\mu+1} p_{2}\left(3^{\beta} b_{1}-4 \times 3^{(\alpha-1)} a_{1}\right) \tag{136}
\end{array}
$$

** I-1-2-2-1-1- $\alpha=1 \Longrightarrow a=3 a_{1}$ and $3 \nmid a_{1}$, the equation (134) becomes:

$$
1+\mu=2 i m
$$

and the first equation (133) is written as :

$$
s=\min (2 i m, 2 j n, i m+j n)=2 i m+\beta
$$

Definitive Proof of Beal's Conjecture

- If $s=2 i m \Longrightarrow \beta=0 \Longrightarrow 3 \nmid b$. We obtain $2 i m \leqslant 2 j n \Longrightarrow i m \leqslant j n$, and $2 i m \leqslant i m+j n \Longrightarrow$ $i m \leqslant j n$. The third equation (135) gives $h l=i m$. The last equation (136) gives $n j+h l=$ $\mu+1=2 i m \Longrightarrow i m=j n$, then $i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{2}\left(b-4 a_{1}\right)$. As a, b are coprime, the conjecture (1.1) is verified.
- If $s=2 j n$ or $s=i m+j n$, we obtain $\beta=0, i m=j n=h l$ and $B_{1}^{n} C_{1}^{l}=p_{2}\left(b-4 a_{1}\right)$. Then as a, b are coprime, the conjecture (1.1) is verified.
** I-1-2-2-1-2- $\alpha>1 \Longrightarrow \alpha \geqslant 2$.
- If $s=i m+j n \Longrightarrow i m+j n \leqslant 2 i m \Longrightarrow j n \leqslant i m$, and $i m+j n \leqslant 2 j n \Longrightarrow i m \leqslant j n$, then $i m=j n$. As $s=i m+j n=2 i m=1+\mu+\beta$ and $\alpha+\mu=2 i m$ that gives $\alpha=1+\beta \geqslant 2 \Longrightarrow \beta \geqslant$ $1 \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime.
** I-1-2-2-2- We suppose that $\omega \neq 3$. We write $a=\omega^{\alpha} a_{1}$ with $\omega \nmid a_{1}$ and $k^{\prime}=\omega^{\mu} p_{2}$ with $\omega \nmid p_{2}$. As $A^{2 m}=4 a k^{\prime}=4 \omega^{\alpha+\mu} \cdot a_{1} \cdot p_{2} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}, \omega \nmid A_{1}$. But $B^{n} C^{l}=k^{\prime}(3 b-4 a)=$ $\omega^{\mu} p_{2}(3 b-4 a) \Longrightarrow \omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** I-1-2-2-2-1- $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow=\omega^{j} B_{1}$ and $\omega \nmid B_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow \omega \mid C^{l} \Longrightarrow$ $\omega \mid C$. As $p=b p^{\prime}=3 b k^{\prime}=3 \omega^{\mu} b p_{2}=\omega^{s}\left(\omega^{2 i m-s} A_{1}^{2 m}+\omega^{2 j n-s} B_{1}^{2 n}+\omega^{i m+j n-s} A_{1}^{m} B_{1}^{n}\right)$ with $s=$ $\min (2 i m, 2 j n, i m+j n)$. Then :
- If $s=\mu$, then $\omega \nmid b$ and the conjecture (1.1) is verified.
- If $s>\mu$, then $\omega \mid b$, but $\omega \mid a$ then the contradiction with a, b coprime.
- If $s<\mu$, it follows from :

$$
3 \omega^{\mu} b p_{1}=\omega^{s}\left(\omega^{2 i m-s} A_{1}^{2 m}+\omega^{2 j n-s} B_{1}^{2 n}+\omega^{i m+j n-s} A_{1}^{m} B_{1}^{n}\right)
$$

that $\omega \mid A_{1}$ or $\omega \mid B_{1}$ that is in contradiction with the hypothesis.
** I-1-2-2-2-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$. From $A^{m}+B^{n}=C^{l} \Longrightarrow$ $\omega\left|\left(C^{l}-A^{m}\right) \Longrightarrow \omega\right| B$. Then, we obtain identical results as the case above I-1-2-2-2-1-.
** I-2- We suppose that $k^{\prime}=1$: then $k^{\prime}=1 \Longrightarrow p=3 b$, then we have $A^{2 m}=4 a=\left(2 a^{\prime}\right)^{2} \Longrightarrow$ $A^{m}=2 a^{\prime} \Longrightarrow a=a^{\prime 2}$ is even and :

$$
A^{m} B^{n}=2 \sqrt[3]{\rho} \cos \frac{\theta}{3} \cdot \sqrt[3]{\rho}\left(\sqrt{3} \sin \frac{\theta}{3}-\cos \frac{\theta}{3}\right)=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-2 a
$$

and we have also :

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 b \sqrt{3} \sin \frac{2 \theta}{3} \tag{137}
\end{equation*}
$$

The left member of the equation 137 is a natural number and also b, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written under the form:

$$
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{k_{2}}
$$

where k_{1}, k_{2} are two natural numbers coprime and $k_{2} \mid b \Longrightarrow b=k_{2} . k_{3}$.
** I-2-1- $k^{\prime}=1$ and $k_{3} \neq 1$: then $A^{2 m}+2 A^{m} B^{n}=k_{3} . k_{1}$. Let μ be a prime so that $\mu \mid k_{3}$. If $\mu=2 \Rightarrow 2 \mid b$, but $2 \mid a$, it is a contradiction with a, b coprime. We suppose that $\mu \neq 2$ and $\mu \mid k_{3}$,

Abdelmajid Ben Hadj Salem

then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** I-2-1-1- $\mu \mid A^{m}$: If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu|4 a \Longrightarrow \mu| a$. As $\mu\left|k_{3} \Longrightarrow \mu\right| b$, then the contradiction with a, b coprime.
** I-2-1-2- $\mu \mid\left(A^{m}+2 B^{n}\right)$: If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n}$. $\mu \mid\left(A^{m}+2 B^{n}\right)$, we can write $A^{m}+2 B^{n}=\mu . t^{\prime}$. it follows :

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain:

$$
p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)
$$

As $p=3 b=3 k_{2} \cdot k_{3}$ and $\mu \mid k_{3}$ then $\mu \mid p \Longrightarrow p=\mu \cdot \mu^{\prime}$, then we have :

$$
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right)
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** I-2-1-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$ that is the contradiction with I-2-1-2-.
** I-2-1-2-2- $\mu \mid\left(B^{n}-A^{m}\right)$: If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain:

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu\left|B^{n} \Longrightarrow \mu\right| B \\
o r \\
\mu=3
\end{array}\right.\right.
$$

** I-2-1-2-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$ that is the contradiction with I-2-1-2- above.
** I-2-1-2-2-2- $\mu=3$: If $\mu=3 \Longrightarrow 3 \mid k_{3} \Longrightarrow k_{3}=3 k_{3}^{\prime}$, and we have $b=k_{2} k_{3}=3 k_{2} k_{3}^{\prime}$, it follows $p=3 b=9 k_{2} k_{3}^{\prime}$ then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$ then:

$$
9 k_{2} k_{3}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write as:

$$
\begin{equation*}
3\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2} \tag{138}
\end{equation*}
$$

then:

$$
3\left|\left(3 k_{2} k_{3}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m} \text { or } 3 \mid B^{n}
$$

** I-2-1-2-2-2-1-3| A^{m} : If $3\left|A^{m} \Longrightarrow 3\right| A$ and we have also $3 \mid A^{2 m}$, but $A^{2 m}=4 a \Longrightarrow 3|4 a \Longrightarrow 3| a$. As $b=3 k_{2} k_{3}^{\prime}$ then $3 \mid b$, but a, b are coprime then the contradiction, then $3 \nmid A$.
** I-2-1-2-2-2-2- $3 \mid B^{m}$: If $3\left|B^{n} \Longrightarrow 3\right| B$, but the equation 138 implies $3 \mid\left(A^{m}-B^{n}\right)^{2} \Longrightarrow$ $3\left|\left(A^{m}-B^{n}\right) \Longrightarrow 3\right| A^{m} \Longrightarrow 3 \mid A$. But using the result of the last case above, we obtain $3 \nmid A$.
then the hypothesis $k_{3} \neq 1$ is impossible.
** I-2-2 - Now, we suppose that $k_{3}=1 \Longrightarrow b=k_{2}$ and $p=3 b=3 k_{2}$, then we have :

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{1}}{b} \tag{139}
\end{equation*}
$$

Definitive Proof of Beal's Conjecture

with k_{1}, b coprime. We write (139) as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{1}}{b}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$, we obtain :

$$
3 \times 4^{2} \cdot a(b-a)=k_{1}^{2} \Longrightarrow k_{1}^{2}=3 \times 4^{2} \cdot a^{\prime 2}(b-a)
$$

it implies that :

$$
b-a=3 \alpha^{2} \Longrightarrow b=a^{\prime 2}+3 \alpha^{2} \Longrightarrow k_{1}=12 a^{\prime} \alpha
$$

As:

$$
k_{1}=12 a^{\prime} \alpha=A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \alpha=a^{\prime}+B^{n}
$$

We consider now that $3 \mid(b-a)$ with $b=a^{\prime 2}+3 \alpha^{2}$. The case $\alpha=1$ gives $a^{\prime}+B^{n}=3$ that is impossible. We suppose $\alpha>1$, then the pair $\left(a^{\prime}, \alpha\right)$ is a solution of the Diophantine equation :

$$
\begin{equation*}
X^{2}+3 Y^{2}=b \tag{140}
\end{equation*}
$$

with $X=a^{\prime}$ and $Y=\alpha$. But using a theorem on the solutions of the equation given by 140), b is written as (see theorem 37.4 in [2]):

$$
b=2^{2 s} \times 3^{t} \cdot p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

where p_{i} are prime numbers verifying $p_{i} \equiv 1(\bmod 6)$, the q_{j} are also prime numbers so that $q_{j} \equiv 5(\bmod 6)$, then :

- If $s \geqslant 1 \Longrightarrow 2 \mid b$, as $2 \mid a$, then the contradiction with a, b coprime,
- If $t \geqslant 1 \Longrightarrow 3 \mid b$, but $3|(b-a) \Longrightarrow 3| a$, then the contradiction with a, b coprime.
** I-2-2-1- We suppose that b is written as :

$$
b=p_{1}^{t_{1}} \cdots p_{g}^{t_{g}} q_{1}^{2 s_{1}} \cdots q_{r}^{2 s_{r}}
$$

with $p_{i} \equiv 1(\bmod 6)$ and $q_{j} \equiv 5(\bmod 6)$. Finally we obtain that $b \equiv 1(\bmod 6)$. We will verify then this condition.
** I-2-2-1-1- We present the table giving the value of $A^{m}+B^{n}=C^{l}$ modulo 6 in function of the value of $A^{m}, B^{n}(\bmod 6)$. We obtain the table below after retiring the lines (respectively the colones) of $A^{m} \equiv 0(\bmod 6)$ and $A^{m} \equiv 3(\bmod 6)$ (respectively of $B^{n} \equiv 0(\bmod 6)$ and $\left.B^{n} \equiv 3(\bmod 6)\right)$, they present cases with contradictions :

A^{m}, B^{n}	1	2	4	5
1	2	3	5	0
2	3	4	0	1
4	5	0	2	3
5	0	1	3	4

Table 2. Table of $C^{l}(\bmod 6)$
** I-2-2-1-1-1- For the cases $C^{l} \equiv 0(\bmod 6)$ and $C^{l} \equiv 3(\bmod 6)$, we deduce that $3 \mid C^{l} \Longrightarrow$ $3 \mid C \Longrightarrow C=3^{h} C_{1}$, with $h \geqslant 1$ and $3 \nmid C_{1}$. It follows that $p-B^{n} C^{l}=3 b-3^{l h} C_{1}^{l} B^{n}=$

Abdelmajid Ben Hadj Salem

$A^{2 m} \Longrightarrow 3\left|\left(A^{2 m}=4 a\right) \Longrightarrow 3\right| a \Longrightarrow 3 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-2- For the cases $C^{l} \equiv 0(\bmod 6), C^{l} \equiv 2(\bmod 6)$ and $C^{l} \equiv 4(\bmod 6)$, we deduce that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} C_{1}$, with $h \geqslant 1$ and $2 \nmid C_{1}$. It follows that $p=3 b=A^{2 m}+B^{n} C^{l}=$ $4 a+2^{l h} C_{1}^{l} B^{n} \Longrightarrow 2|3 b \Longrightarrow 2| b$, then the contradiction with a, b coprime.
** I-2-2-1-1-3- We consider the cases $A^{m} \equiv 1(\bmod 6)$ and $B^{n} \equiv 4(\bmod 6)\left(\right.$ respectively $B^{n} \equiv 2(\bmod$ $6)$): then $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$ with $j \geqslant 1$ and $2 \nmid B_{1}$. It follows from $3 b=A^{2 m}+B^{n} C^{l}=$ $4 a+2^{j n} B_{1}^{n} C^{l}$, then $2 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-4- We consider the case $A^{m} \equiv 5(\bmod 6)$ and $B^{n} \equiv 2(\bmod 6)$: then $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow$ $B=2^{j} B_{1}$ with $j \geqslant 1$ and $2 \nmid B_{1}$. It follows that $3 b=A^{2 m}+B^{n} C^{l}=4 a+2^{j n} B_{1}^{n} C^{l}$, then $2 \mid b$, then the contradiction with a, b coprime.
** I-2-2-1-1-5- We consider the case $A^{m} \equiv 2(\bmod 6)$ and $B^{n} \equiv 5(\bmod 6)$: as $A^{m} \equiv 2(\bmod 6) \Longrightarrow$ $A^{m} \equiv 2(\bmod 3)$, then A^{m} is not a square and also B^{n}. Hence, we can write A^{m} and B^{n} as:

$$
\begin{array}{r}
A^{m}=a_{0} \cdot \mathcal{A}^{2} \\
B^{n}=b_{0} \mathcal{B}^{2}
\end{array}
$$

where a_{0} (respectively b_{0}) regroups the product of the prime numbers of A^{m} with exponent 1 (respectively of B^{n}) with not necessary $\left(a_{0}, \mathcal{A}\right)=1$ and $\left(b_{0}, \mathcal{B}\right)=1$. We have also $p=3 b=$ $A^{2 m}+A^{m} B^{n}+B^{2 n}=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n} \Longrightarrow 3 \mid\left(b-A^{m} B^{n}\right) \Longrightarrow A^{m} B^{n} \equiv b(\bmod 3)$ but $b=a+3 \alpha^{2} \Longrightarrow b \equiv a \equiv a^{\prime 2}(\bmod 3)$, then $A^{m} B^{n} \equiv a^{\prime 2}(\bmod 3)$. But $A^{m} \equiv 2(\bmod 6) \Longrightarrow 2 a^{\prime} \equiv 2(\bmod$ $6) \Longrightarrow 4 a^{\prime 2} \equiv 4(\bmod 6) \Longrightarrow a^{\prime 2} \equiv 1(\bmod 3)$. It follows that $A^{m} B^{n}$ is a square, let $A^{m} B^{n}=\mathcal{N}^{2}=$ $\mathcal{A}^{2} . \mathcal{B}^{2} . a_{0} . b_{0}$. We call $\mathcal{N}_{1}^{2}=a_{0} . b_{0}$. Let p_{1} be a prime number so that $p_{1} \mid a_{0} \Longrightarrow a_{0}=p_{1} . a_{1}$ with $p_{1} \nmid a_{1} \cdot p_{1}\left|\mathcal{N}_{1}^{2} \Longrightarrow p_{1}\right| \mathcal{N}_{1} \Longrightarrow \mathcal{N}_{1}=p_{1}^{t} \mathcal{N}_{1}^{\prime}$ with $t \geqslant 1$ and $p_{1} \nmid \mathcal{N}_{1}^{\prime}$, then $p_{1}^{2 t-1} \mathcal{N}_{1}^{\prime 2}=a_{1} . b_{0}$. As $2 t \geqslant 2 \Longrightarrow 2 t-1 \geqslant 1 \Longrightarrow p_{1} \mid a_{1} \cdot b_{0}$ but $\left(p_{1}, a_{1}\right)=1$, then $p_{1}\left|b_{0} \Longrightarrow p_{1}\right| B^{n} \Longrightarrow p_{1} \mid B$. But $p_{1} \mid\left(A^{m}=2 a^{\prime}\right) . p_{1} \neq 2$ because $p_{1} \mid B^{n}$ and B^{n} is odd, then the contradiction. Hence $p_{1}\left|a^{\prime} \Longrightarrow p_{1}\right| a$. If $p_{1}=3$, from $3|(b-a) \Longrightarrow 3| b$ then the contradiction with a, b primes. Then $p_{1}>3$ a prime that divides A^{m} and B^{n}, then $p_{1}\left|(p=3 b) \Longrightarrow p_{1}\right| b$, it follows the contradiction with a, b primes, knowing that $p=3 b \equiv 3(\bmod 6)$ and we choice the case $b \equiv 1(\bmod 6)$ of our interest.
** I-2-2-1-1-6- We consider the last case of the table above $A^{m} \equiv 4(\bmod 6)$ and $B^{n} \equiv 1(\bmod 6)$. We return to the equation (140) that b verifies:

$$
\begin{array}{rr}
b=X^{2}+3 Y^{2} \tag{141}\\
\text { with } \quad X=a^{\prime} ; \quad Y=\alpha \\
\text { and } \quad 3 \alpha=a^{\prime}+B^{n}
\end{array}
$$

Suppose that it exists another solution of (141):

$$
b=X^{2}+3 Y^{3}=u^{2}+3 v^{2} \Longrightarrow 2 u \neq A^{m}, 3 v \neq a^{\prime}+B^{n}
$$

But $B^{n}=\frac{6 \alpha-A^{m}}{2}=3 \alpha-a^{\prime}$ and b verify also : $3 b=p=A^{2 m}+A^{m} B^{n}+B^{2 n}$, it is impossible that u, v verify :

$$
\begin{array}{r}
6 v=2 u+2 B^{n} \\
3 b=4 u^{2}+2 u B^{n}+B^{2 n}
\end{array}
$$

Definitive Proof of Beal's Conjecture

If we consider that : $6 v-2 u=6 \alpha-2 a^{\prime} \Longrightarrow u=3 v-3 \alpha+a^{\prime}$, then $b=u^{2}+3 v^{2}=\left(3 v-3 \alpha+a^{\prime}\right)^{2}+3 v^{2}$, it gives:

$$
\begin{aligned}
2 v^{2}-B^{n} v+\alpha^{2}-a^{\prime} \alpha & =0 \\
2 v^{2}-B^{n} v-\frac{\left(a^{\prime}+B^{n}\right)\left(A^{m}-B^{n}\right)}{9} & =0
\end{aligned}
$$

The resolution of the last equation gives with taking the positive root (because $A^{m}>B^{n}$), $v_{1}=\alpha$, then $u=a^{\prime}$. It follows that b in (141) has an unique representation under the form $X^{2}+3 Y^{2}$ with $X, 3 Y$ coprime. As b is even, we applique one theorem of Euler's theorems on the convenient numbers as cited above (Case C-2-2-1-2). It follows that b is prime.

We have also $p=3 b=A^{2 m}+A^{m} B^{n}+B^{2 n}=4 a^{2}+B^{n} . C^{l} \Longrightarrow 9 \alpha^{2}-a^{2}=B^{n} . C^{l}$, then $3 \alpha, a^{\prime} \in \mathbb{N}^{*}$ are solutions of the Diophantine equation:

$$
\begin{equation*}
x^{2}-y^{2}=N \tag{142}
\end{equation*}
$$

with $N=B^{n} C^{l}>0$. Let $Q(N)$ be the number of the solutions of 142) and $\tau(N)$ the number of ways to write the factors of N, then we announce the following result concerning the number of the solutions of (142) (see theorem 27.3 in [2]):

- If $N \equiv 2(\bmod 4)$, then $Q(N)=0$;
- If $N \equiv 1$ or $N \equiv 3(\bmod 4)$, then $Q(N)=[\tau(N) / 2]$;
- If $N \equiv 0(\bmod 4)$, then $Q(N)=[\tau(N / 4) / 2]$.

We recall that $A^{m} \equiv 0(\bmod 4)$. Concerning B^{n} : for $B^{n} \equiv 0(\bmod 4)$ or $B^{n} \equiv 2(\bmod 4)$, we find that $2\left|B^{n} \Longrightarrow 2\right| \alpha \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime. For the last case $B^{n} \equiv 3(\bmod$ $4) \Longrightarrow C^{l} \equiv 3(\bmod 4) \Longrightarrow N=B^{n} C^{l} \equiv 1(\bmod 4) \Longrightarrow Q(N)=[\tau(N) / 2]>1$. But $Q(N)=1$, because the unknowns of (142) are also the unknowns of (141) and we have an unique solution of the two Diophantine equations, then the contradiction.

It follows that the condition $3 \mid(b-a)$ is in contradiction.
The study of the case 5.8 is achieved.

5.9 Case $3 \mid p$ and $b \mid 4 p$:

The following cases have been soon studied:

* $3|p, b=2 \Longrightarrow b| 4 p$: case 5.1
* $3|p, b=4 \Longrightarrow b| 4 p$: case 5.2
* $3\left|p \Longrightarrow p=3 p^{\prime}, b\right| p^{\prime} \Longrightarrow p^{\prime}=b p^{\prime \prime}, p^{\prime \prime} \neq 1$: case 5.3
* $3|p, b=3 \Longrightarrow b| 4 p$: case 5.4
* $3\left|p \Longrightarrow p=3 p^{\prime}, b=p^{\prime} \Longrightarrow b\right| 4 p$: case 5.8
** J-1- Particular case : $b=12$. In fact $3 \mid p \Longrightarrow p=3 p^{\prime}$ and $4 p=12 p^{\prime}$. Taking $b=12$, we have $b \mid 4 p$. But $b<4 a<3 b$, that gives $12<4 a<36 \Longrightarrow 3<a<9$. As $2 \mid b$ and $3 \mid b$, the possible values of a are 5 and 7 .

Abdelmajid Ben Hadj Salem

** J-1-1- $a=5$ and $b=12 \Longrightarrow 4 p=12 p^{\prime}=b p^{\prime}$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{5 b p^{\prime}}{3 b}=\frac{5 p^{\prime}}{3} \Longrightarrow 3 \right\rvert\, p^{\prime} \Longrightarrow$ $p^{\prime}=3 p "$ with $p " \in \mathbb{N}^{*}$, then $p=9 p "$, we obtain the expressions:

$$
\begin{align*}
A^{2 m} & =5 p^{\prime \prime} \tag{143}\\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) & =4 p^{\prime \prime} \tag{144}
\end{align*}
$$

As $n, l \geqslant 3$, we deduce from the equation (144) that $2 \mid p " \Longrightarrow p^{\prime \prime}=2^{\alpha} p_{1}$ with $\alpha \geqslant 1$ and $2 \nmid p_{1}$. Then (143) becomes : $A^{2 m}=5 p^{\prime \prime}=5 \times 2^{\alpha} p_{1} \Longrightarrow 2 \mid A \Longrightarrow A=2^{i} A_{1}, i \geqslant 1$ and $2 \nmid A_{1}$. We have also $B^{n} C^{l}=2^{\alpha+2} p_{1} \Longrightarrow 2 \mid B^{n}$ or $2 \mid C^{l}$.
** J-1-1-1- We suppose that $2 \mid B^{n} \Longrightarrow B=2^{j} B_{1}, j \geqslant 1$ and $2 \nmid B_{1}$. We obtain $B_{1}^{n} C^{l}=2^{\alpha+2-j n} p_{1}$:

- If $\alpha+2-j n>0 \Longrightarrow 2 \mid C^{l}$, there is no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$ and the conjecture (1.1) is verified.
- If $\alpha+2-j n=0 \Longrightarrow B_{1}^{n} C^{l}=p_{1}$. From $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n} \Longrightarrow 2 \mid C^{l}$ that implies that $2 \mid p_{1}$ then the contradiction.
- If $\alpha+2-j n<0 \Longrightarrow 2^{j n-\alpha-2} B_{1}^{n} C^{l}=p_{1}$ it implies that $2 \mid p_{1}$ then the contradiction.
** J-1-1-2- We suppose that $2 \mid C^{l}$, using the same method above, we obtain the identical results.
** J-1-2- We suppose that $a=7$ and $b=12 \Longrightarrow 4 p=12 p^{\prime}=b p^{\prime}$. But $A^{2 m}=\frac{4 p}{3} \cdot \frac{a}{b}=\frac{12 p^{\prime}}{3} \cdot \frac{7}{12}=$ $\left.\frac{7 p^{\prime}}{3} \Longrightarrow 3 \right\rvert\, p^{\prime} \Longrightarrow p=9 p \prime$, we obtain:

$$
\begin{aligned}
A^{2 m} & =7 p^{\prime \prime} \\
B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right) & =2 p^{\prime \prime}
\end{aligned}
$$

The last equation implies that $2 \mid B^{n} C^{l}$. Using the same method as for the Case J-1-1- above, we obtain the identical results.

We study now the general case. As $3 \mid p \Rightarrow p=3 p^{\prime}$ and $b \mid 4 p \Rightarrow \exists k_{1} \in \mathbb{N}^{*}$ and $4 p=12 p^{\prime}=k_{1} b$.
** J-2- $k_{1}=1:$ If $k_{1}=1$ then $b=12 p^{\prime},\left(p^{\prime} \neq 1\right.$, if not $\left.p=3 \ll A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$. But $\left.A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{12 p^{\prime}}{3} \frac{a}{b}=\frac{4 p^{\prime} \cdot a}{12 p^{\prime}}=\frac{a}{3} \Rightarrow 3 \right\rvert\, a$ because $A^{2 m}$ is a naturel number, then the contradiction with a, b coprime.
** J-3- $k_{1}=3:$ If $k_{1}=3$, then $b=4 p^{\prime}$ and $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3}=\frac{k_{1} \cdot a}{3}=a=\left(A^{m}\right)^{2}=a^{\prime 2} \Longrightarrow$ $A^{m}=a^{\prime}$. The term $A^{m} B^{n}$ gives $A^{m} B^{n}=\frac{p \sqrt{3}}{3} \sin \frac{2 \theta}{3}-\frac{a}{2}$, then :

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=\frac{2 p \sqrt{3}}{3} \sin \frac{2 \theta}{3}=2 p^{\prime} \sqrt{3} \sin \frac{2 \theta}{3} \tag{145}
\end{equation*}
$$

The left member of 145 is a natural number and also p^{\prime}, then $2 \sqrt{3} \sin \frac{2 \theta}{3}$ can be written under

Definitive Proof of Beal's Conjecture

the form:

$$
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{k_{3}}
$$

where k_{2}, k_{3} are two natural numbers and are coprime and $k_{3} \mid p^{\prime} \Longrightarrow p^{\prime}=k_{3} \cdot k_{4}$.
** J-3-1- $k_{4} \neq 1:$ We suppose that $k_{4} \neq 1$, then :

$$
\begin{equation*}
A^{2 m}+2 A^{m} B^{n}=k_{2} \cdot k_{4} \tag{146}
\end{equation*}
$$

Let μ be a prime natural number so that $\mu \mid k_{4}$. then $\mu\left|A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu\right| A^{m}$ or $\mu \mid\left(A^{m}+2 B^{n}\right)$.
** J-3-1-1- $\mu \mid A^{m}:$ If $\mu\left|A^{m} \Longrightarrow \mu\right| A^{2 m} \Longrightarrow \mu \mid a$. As $\mu\left|k_{4} \Longrightarrow \mu\right| p^{\prime} \Rightarrow \mu \mid\left(4 p^{\prime}=b\right)$. But a, b are coprime then the contradiction.
** J-3-1-2- $\mu \mid\left(A^{m}+2 B^{n}\right):$ If $\mu \mid\left(A^{m}+2 B^{n}\right) \Longrightarrow \mu \nmid A^{m}$ and $\mu \nmid 2 B^{n}$ then $\mu \neq 2$ and $\mu \nmid B^{n}$. $\mu \mid\left(A^{m}+2 B^{n}\right)$, we can write $A^{m}+2 B^{n}=\mu . t^{\prime}$. It follows:

$$
A^{m}+B^{n}=\mu t^{\prime}-B^{n} \Longrightarrow A^{2 m}+B^{2 n}+2 A^{m} B^{n}=\mu^{2} t^{\prime 2}-2 t^{\prime} \mu B^{n}+B^{2 n}
$$

Using the expression of p, we obtain $p=t^{\prime 2} \mu^{2}-2 t^{\prime} B^{n} \mu+B^{n}\left(B^{n}-A^{m}\right)$. As $p=3 p^{\prime}$ and $\mu\left|p^{\prime} \Rightarrow \mu\right|\left(3 p^{\prime}\right) \Rightarrow \mu \mid p$, we can write : $\exists \mu^{\prime}$ and $p=\mu \mu^{\prime}$, then we arrive to:

$$
\mu^{\prime} \mu=\mu\left(\mu t^{\prime 2}-2 t^{\prime} B^{n}\right)+B^{n}\left(B^{n}-A^{m}\right)
$$

and $\mu\left|B^{n}\left(B^{n}-A^{m}\right) \Longrightarrow \mu\right| B^{n}$ or $\mu \mid\left(B^{n}-A^{m}\right)$.
** J-3-1-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$ it is in contradiction with J-3-1-2-.
** J-3-1-2-2- $\mu \mid\left(B^{n}-A^{m}\right):$ If $\mu \mid\left(B^{n}-A^{m}\right)$ and using $\mu \mid\left(A^{m}+2 B^{n}\right)$, we obtain :

$$
\mu \left\lvert\, 3 B^{n} \Longrightarrow\left\{\begin{array}{l}
\mu \mid B^{n} \\
o r \\
\mu=3
\end{array}\right.\right.
$$

** J-3-1-2-2-1- $\mu \mid B^{n}:$ If $\mu\left|B^{n} \Longrightarrow \mu\right| B$ it is in contradiction with J-3-1-2-.
** J-3-1-2-2-2- $\mu=3$: If $\mu=3 \Longrightarrow 3 \mid k_{4} \Longrightarrow k_{4}=3 k_{4}^{\prime}$, and we have $p^{\prime}=k_{3} k_{4}=3 k_{3} k_{4}^{\prime}$, it follows that $p=3 p^{\prime}=9 k_{3} k_{4}^{\prime}$, then $9 \mid p$, but $p=\left(A^{m}-B^{n}\right)^{2}+3 A^{m} B^{n}$, then we obtain :

$$
9 k_{3} k_{4}^{\prime}-3 A^{m} B^{n}=\left(A^{m}-B^{n}\right)^{2}
$$

that we write : $3\left(3 k_{3} k_{4}^{\prime}-A^{m} B^{n}\right)=\left(A^{m}-B^{n}\right)^{2}$, then : $3\left|\left(3 k_{3} k_{4}^{\prime}-A^{m} B^{n}\right) \Longrightarrow 3\right| A^{m} B^{n} \Longrightarrow 3 \mid A^{m}$ or $3 \mid B^{n}$.
** J-3-1-2-2-2-1-3| A^{m} : If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Rightarrow 3 \mid a$, but $3\left|p^{\prime} \Rightarrow 3\right|\left(4 p^{\prime}\right) \Rightarrow 3 \mid b$ then the contradiction with a, b coprime and $3 \nmid A$.
** J-3-1-2-2-2-2-3| B^{n} : If $3 \mid B^{n}$ but $A^{m}=\mu t^{\prime}-2 B^{n}=3 t^{\prime}-2 B^{n} \Longrightarrow 3 \mid A^{m}$, it is a contradiction. Then the hypothesis $k_{4} \neq 1$ is impossible.

Abdelmajid Ben Hadj Salem

** J-3-2- $k_{4}=1$: We suppose now that $k_{4}=1 \Longrightarrow p^{\prime}=k_{3} k_{4}=k_{3}$. Then we have :

$$
\begin{equation*}
2 \sqrt{3} \sin \frac{2 \theta}{3}=\frac{k_{2}}{p^{\prime}} \tag{147}
\end{equation*}
$$

with k_{2}, p^{\prime} coprime, we write 147) as :

$$
4 \sqrt{3} \sin \frac{\theta}{3} \cos \frac{\theta}{3}=\frac{k_{2}}{p^{\prime}}
$$

Taking the square of the two members and replacing $\cos ^{2} \frac{\theta}{3}$ by $\frac{a}{b}$ and $b=4 p^{\prime}$, we obtain:

$$
3 \cdot a(b-a)=k_{2}^{2}
$$

As $A^{2 m}=a=a^{\prime 2}$, it implies that:

$$
3 \mid(b-a), \quad \text { and } \quad b-a=b-a^{\prime 2}=3 \alpha^{2}
$$

As $k_{2}=A^{m}\left(A^{m}+2 B^{n}\right)$ following the equation (146) and that $3\left|k_{2} \Longrightarrow 3\right| A^{m}\left(A^{m}+2 B^{n}\right) \Longrightarrow$ $3 \mid A^{m}$ or $3 \mid\left(A^{m}+2 B^{n}\right)$.
** J-3-2-1- $3 \mid A^{m}$: If $3\left|A^{m} \Longrightarrow 3\right| A^{2 m} \Longrightarrow 3 \mid a$, but $3|(b-a) \Longrightarrow 3| b$, then the contradiction with a, b coprime.
** J-3-2-2-3| $\left(A^{m}+2 B^{n}\right) \Longrightarrow 3 \nmid A^{m}$ and $3 \nmid B^{n}$. As $k_{2}^{2}=9 a \alpha^{2}=9 a^{\prime 2} \alpha^{2} \Longrightarrow k_{2}=3 a^{\prime} \alpha=$ $A^{m}\left(A^{m}+2 B^{n}\right)$, then :

$$
\begin{equation*}
3 \alpha=A^{m}+2 B^{n} \tag{148}
\end{equation*}
$$

As b can be written under the form $b=a^{\prime 2}+3 \alpha^{2}$, then the pair $\left(a^{\prime}, \alpha\right)$ is a solution of the Diophantine equation :

$$
\begin{equation*}
x^{2}+3 y^{2}=b \tag{149}
\end{equation*}
$$

As $b=4 p^{\prime}$, then :
** J-3-2-2-1- If x, y are even, then $2\left|a^{\prime} \Longrightarrow 2\right| a$, it is a contradiction with a, b coprime.
** J-3-2-2-2- If x, y are odd, then a^{\prime}, α are odd, it implies $A^{m}=a^{\prime} \equiv 1(\bmod 4)$ or $A^{m} \equiv 3(\bmod 4)$. If u, v verify 149), $\Longleftrightarrow b=u^{2}+3 v^{2}$, with $u \neq a^{\prime}$ and $v \neq \alpha$, then u, v do not verify 148): $3 v \neq u+2 B^{n}$, if not $u=3 v-2 B^{n} \Longrightarrow b=\left(3 v-2 B^{n}\right)^{2}+3 v^{2}=a^{\prime 2}+3 \alpha$, the resolution of the obtained equation of second degree in v gives the positive root $v_{1}=\alpha$, then $u=3 \alpha-2 B^{n}=a^{\prime}$, then the uniqueness of the representation of b by the equation (149).
** J-3-2-2-2-1- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 0(\bmod 4)$, then B^{n} is even and $B^{n}=$ $2 B^{\prime}$. The expression of p becomes:

$$
\begin{gathered}
p=a^{\prime 2}+2 a^{\prime} B^{\prime}+4 B^{\prime 2}=\left(a^{\prime}+B^{\prime}\right)^{2}+3 B^{\prime 2}=3 p^{\prime} \Longrightarrow 3 \mid\left(a^{\prime}+B^{\prime}\right) \Longrightarrow a^{\prime}+B^{\prime}=3 B^{\prime \prime} \\
p^{\prime}=B^{\prime 2}+3 B^{\prime \prime} \Longrightarrow b=4 p^{\prime}=\left(2 B^{\prime}\right)^{2}+3\left(2 B^{\prime \prime}\right)^{2}=a^{\prime 2}+3 \alpha^{2}
\end{gathered}
$$

that gives $2 B^{\prime}=B^{n}=a^{\prime}=A^{m}$, then the contradiction with $A^{m}>B^{n}$.
** J-3-2-2-2-2- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 1(\bmod 4)$, then C^{l} is even and $C^{l}=$

Definitive Proof of Beal's Conjecture

$2 C^{\prime}$. The expression of p becomes:

$$
\begin{gathered}
p=C^{2 l}-C^{l} B^{n}+B^{2 n}=4 C^{\prime 2}-2 C^{\prime} B^{n}+B^{2 n}=\left(C^{\prime}-B^{n}\right)^{2}+3 C^{\prime 2}=3 p^{\prime} \\
\Longrightarrow 3 \mid\left(C^{\prime}-B^{n}\right) \Longrightarrow C^{\prime}-B^{n}=3 C^{\prime \prime} \\
p^{\prime}=C^{\prime 2}+3 C^{\prime \prime} 2 \Longrightarrow b=4 p^{\prime}=\left(2 C^{\prime}\right)^{2}+3\left(2 C^{\prime \prime}\right)^{2}=a^{\prime 2}+3 \alpha^{2}
\end{gathered}
$$

we obtain $2 C^{\prime}=C^{l}=a^{\prime}=A^{m}$, then the contradiction.
** J-3-2-2-2-3- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 2(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-4- We suppose that $A^{m} \equiv 1(\bmod 4)$ and $B^{n} \equiv 3(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.
** J-3-2-2-2-5- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 0(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-6- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 1(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.
** J-3-2-2-2-7- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 2(\bmod 4)$, then B^{n} is even, see J-3-2-2-2-1-.
** J-3-2-2-2-8- We suppose that $A^{m} \equiv 3(\bmod 4)$ and $B^{n} \equiv 3(\bmod 4)$, then C^{l} is even, see J-3-2-2-2-2-.

We have achieved the study of the case J-3-2-2- giving contradictions.
** J-4- We suppose that $k_{1} \neq 3$ and $3 \mid k_{1} \Longrightarrow k_{1}=3 k_{1}^{\prime}$ with $k_{1}^{\prime} \neq 1$, then $4 p=12 p^{\prime}=$ $k_{1} b=3 k_{1}^{\prime} b \Rightarrow 4 p^{\prime}=k_{1}^{\prime} b . A^{2 m}$ can be written as $A^{2 m}=\frac{4 p}{3} \cos ^{2} \frac{\theta}{3}=\frac{3 k_{1}^{\prime} b}{3} \frac{a}{b}=k_{1}^{\prime} a$ and $B^{n} C^{l}=\frac{p}{3}\left(3-4 \cos ^{2} \frac{\theta}{3}\right)=\frac{k_{1}^{\prime}}{4}(3 b-4 a)$. As $B^{n} C^{l}$ is a natural number, we must have $4 \mid(3 b-4 a)$ or $4 \mid k_{1}^{\prime}$ or $\left[2 \mid k_{1}^{\prime}\right.$ and $\left.2 \mid(3 b-4 a)\right]$.
** J-4-1- We suppose that $4 \mid(3 b-4 a)$.
** J-4-1-1- We suppose that $3 b-4 a=4 \Longrightarrow 4|b \Longrightarrow 2| b$. Then we have:

$$
\begin{aligned}
& A^{2 m}=k_{1}^{\prime} a \\
& B^{n} C^{l}=k_{1}^{\prime}
\end{aligned}
$$

** J-4-1-1-1- If k_{1}^{\prime} is prime, from $B^{n} C^{l}=k_{1}^{\prime}$, it is impossible.
** J-4-1-1-2- We suppose that $k_{1}^{\prime}>1$ is not a prime. Let ω be a prime natural number so that $\omega \mid k_{1}^{\prime}$.

Abdelmajid Ben Hadj Salem

** J-4-1-1-2-1- We suppose that $k_{1}^{\prime}=\omega^{s}$, with $s \geqslant 6$. We have :

$$
\begin{gather*}
A^{2 m}=\omega^{s} \cdot a \tag{150}\\
B^{n} C^{l}=\omega^{s} \tag{151}
\end{gather*}
$$

** J-4-1-1-2-1-1- We suppose that $\omega=2$, If a, k_{1}^{\prime} are no coprime, then $2 \mid a$, as $2 \mid b$, it is the contradiction with a, b coprime.
** J-4-1-1-2-1-2- We suppose $\omega=2$ and a, k_{1}^{\prime} are coprime $\Longrightarrow 2 \nmid a$. From (151), we deduce that $B=C=2$ and $n+l=s$, and $A^{2 m}=2^{s}$.a, but $A^{m}=2^{l}-2^{n} \Longrightarrow A^{2 m}=\left(2^{l}-2^{n}\right)^{2}=$ $2^{2 l}+2^{2 n}-2\left(2^{l+n}\right)=2^{2 l}+2^{2 n}-2 \times 2^{s}=2^{s} . a \Longrightarrow 2^{2 l}+2^{2 n}=2^{s}(a+2)$. If $l=n$, we obtain $a=0$ then the contradiction. If $l \neq n$, as $A^{m}=2^{l}-2^{n}>0 \Longrightarrow n<l \Longrightarrow 2 n<s$, then $2^{2 n}\left(1+2^{2 l-2 n}-2^{s+1-2 n}\right)=2^{n} 2^{l} . a$. We call $l=n+n_{1} \Longrightarrow 1+2^{2 l-2 n}-2^{s+1-2 n}=2^{n_{1}} . a$, but the left term is odd and the right member is even then the contradiction. Then the case $\omega=2$ is impossible.
** J-4-1-1-2-1-3- We suppose now that $k_{1}^{\prime}=\omega^{s}$ with $\omega \neq 2$:
** J-4-1-1-2-1-3-1- Suppose that a, k_{1}^{\prime} are not coprime, then $\omega \mid a \Longrightarrow a=\omega^{t} . a_{1}$ and $t \nmid a_{1}$. We have :

$$
\begin{array}{r}
A^{2 m}=\omega^{s+t} \cdot a_{1} \\
B^{n} C^{l}=\omega^{s} \tag{153}
\end{array}
$$

From (153), we deduce that $B^{n}=\omega^{n}, C^{n}=\omega^{l}, s=n+l$ and $A^{m}=\omega^{l}-\omega^{n}>0 \Longrightarrow l>n$. We have also $A^{2 m}=\omega^{s+t}$. $a_{1}=\left(\omega^{l}-\omega^{n}\right)^{2}=\omega^{2 l}+\omega^{2 n}-2 \times \omega^{s}$. As $\omega \neq 2 \Longrightarrow \omega$ is odd, then $A^{2 m}=\omega^{s+t} . a_{1}=\left(\omega^{l}-\omega^{n}\right)^{2}$ is even, then $2\left|a_{1} \Longrightarrow 2\right| a$, it is in contradiction with a, b coprime, then this case is impossible.
** J-4-1-1-2-1-3-2- Suppose that a, k_{1}^{\prime} are coprime, with :

$$
\begin{gather*}
A^{2 m}=\omega^{s} \cdot a \tag{154}\\
B^{n} C^{l}=\omega^{s} \tag{155}
\end{gather*}
$$

From (155), we deduce that $B^{n}=\omega^{n}, C^{l}=\omega^{l}$ and $s=n+l$. As $\omega \neq 2 \Longrightarrow \omega$ is odd and $A^{2 m}=\omega^{s} \cdot a=\left(\omega^{l}-\omega^{n}\right)^{2}$ is even, then $2 \mid a$. It follows the contradiction with a, b coprime, then this case is impossible.
** J-4-1-1-2-2- We suppose that $k_{1}^{\prime}=\omega^{s} . k_{2}$, with $s \geqslant 6, \omega \nmid k_{2}$. We have :

$$
\begin{gathered}
A^{2 m}=\omega^{s} . k_{2} \cdot a \\
B^{n} C^{l}=\omega^{s} . k_{2}
\end{gathered}
$$

** J-4-1-1-2-2-1- If k_{2} is prime, from the last equation above, $\omega=k_{2}$, it is in contradiction with $\omega \nmid k_{2}$. Then this case is impossible.
** J-4-1-1-2-2-2- We suppose that $k_{1}^{\prime}=\omega^{s} . k_{2}$, with $s \geqslant 6, \omega \nmid k_{2}$ and k_{2} non a prime. We have :

$$
\begin{gather*}
A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \\
B^{n} C^{l}=\omega^{s} \cdot k_{2} \tag{156}
\end{gather*}
$$

Definitive Proof of Beal's Conjecture

** J-4-1-1-2-2-2-1- We suppose that ω, a are coprime, then $\omega \nmid a$. As $A^{2 m}=\omega^{s} \cdot k_{2} \cdot a \Longrightarrow \omega \mid A \Longrightarrow$ $A=\omega^{i} A_{1}$ with $i \geqslant 1$ and $\omega \nmid A_{1}$, then $s=2 i m$. From (156), we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-1-2-2-2-1-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $j \geqslant 1$ and $\omega \nmid B_{1}$, then $: B_{1}^{n} C^{l}=\omega^{2 i m-j n} k_{2}$:

- If $2 i m-j n>0, \omega\left|C^{l} \Longrightarrow \omega\right| C$, no contradictions with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{2}$, as $\omega \nmid k_{2} \Longrightarrow \omega \nmid C^{l}$ then the contradiction with $\omega \mid\left(C^{l}=A^{m}+B^{n}\right)$.
- If $2 i m-j n<0 \Longrightarrow \omega^{j n-2 i m} B_{1}^{n} C^{l}=k_{2} \Longrightarrow \omega \mid k_{2}$ then the contradiction with $\omega \nmid k_{2}$.
** J-4-1-1-2-2-2-1-2- We suppose that $\omega \mid C^{l}$, with the same method used above, we obtain identical results.
** J-4-1-1-2-2-2-2- We suppose that a, ω are not coprime, then $\omega \mid a \Longrightarrow a=\omega^{t} . a_{1}$ and $\omega \nmid a_{1}$. So, we have :

$$
\begin{array}{r}
A^{2 m}=\omega^{s+t} \cdot k_{2} \cdot a_{1} \\
B^{n} C^{l}=\omega^{s} \cdot k_{2} \tag{158}
\end{array}
$$

As $A^{2 m}=\omega^{s+t} \cdot k_{2} \cdot a_{1} \Longrightarrow \omega \mid A \Longrightarrow A=\omega^{i} A_{1}$ with $i \geqslant 1$ and $\omega \nmid A_{1}$, then $s+t=2 i m$. From (158), we have $\omega\left|\left(B^{n} C^{l}\right) \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-1-2-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $j \geqslant 1$ and $\omega \nmid B_{1}$, then: $B_{1}^{n} C^{l}=\omega^{2 i m-t-j n} k_{2}$:

- If $2 i m-t-j n>0, \omega\left|C^{l} \Longrightarrow \omega\right| C$, it is no contradictions with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture 1.1 is verified.
- If $2 i m-t-j n=0 \Longrightarrow B_{1}^{n} C^{l}=k_{2}$, as $\omega \nmid k_{2} \Longrightarrow \omega \nmid C^{l}$ then the contradiction with $\omega \mid\left(C^{l}=A^{m}+B^{n}\right)$.
- If $2 i m-t-j n<0 \Longrightarrow \omega^{j n+t-2 i m} B_{1}^{n} C^{l}=k_{2} \Longrightarrow \omega \mid k_{2}$ then the contradiction with $\omega \nmid k_{2}$.
** J-4-1-1-2-2-2-2-2- We suppose that $\omega \mid C^{l}$, with the same method used above, we obtain identical results.

$$
\begin{gather*}
* * \mathrm{~J}-4-1-2-3 b-4 a \neq 4 \text { and } 4 \mid(3 b-4 a) \Longrightarrow 3 b-4 a=4^{s} \Omega \text { with } s \geqslant 1 \text { and } 4 \nmid \Omega \text {. We obtain: } \\
A^{2 m}=k_{1}^{\prime} a \tag{159}\\
B^{n} C^{l}=4^{s-1} k_{1}^{\prime} \Omega
\end{gather*}
$$

** J-4-1-2-1- We suppose $k_{1}^{\prime}=2$, from (159) we deduce that $2 \mid a$. As $4|(3 b-4 a) \Longrightarrow 2| b$, then the contradiction with a, b coprime and this case is impossible.
** J-4-1-2-2- We suppose that $k_{1}^{\prime}=3$, from 159) we deduce that $3^{3} \mid A^{2 m}$. From 160, it follows that $3^{3} \mid B^{n}$ or $3^{3} \mid C^{l}$. In the last two cases, we obtain $3^{3} \mid p$. But $4 p=3 k_{1}^{\prime} b=9 b$ and $3^{3}|p \Longrightarrow 3| b$, then the contradiction with a, b coprime and this case is impossible.

Abdelmajid Ben Hadj Salem

** J-4-1-2-3- We suppose that k_{1}^{\prime} is prime $\geqslant 5$:
** J-4-1-2-3-1- We suppose that k_{1}^{\prime} and a are coprime. The equation (159) gives $\left(A^{m}\right)^{2}=k_{1}^{\prime} \cdot a$ that is impossible with $k_{1}^{\prime} \nmid a$. Then this case is impossible.
** J-4-1-2-3-2- We suppose that k_{1}^{\prime} and a are not coprime, let $k_{1}^{\prime} \mid a \Longrightarrow a=k_{1}^{\prime \alpha} a_{1}$ with $\alpha \geqslant 1$ and $k_{1}^{\prime} \nmid a_{1}$. The equation (159) is written as:

$$
A^{2 m}=k_{1}^{\prime} a=k_{1}^{\prime \alpha+1} a_{1}
$$

The last equation gives $k_{1}^{\prime}\left|A^{2 m} \Longrightarrow k_{1}^{\prime}\right| A \Longrightarrow A=k_{1}^{\prime i} . A_{1}$, with $k_{1}^{\prime} \nmid A_{1}$. If $2 i . m \neq(\alpha+1)$ it is impossible. We suppose that $2 i . m=\alpha+1$, then $k_{1}^{\prime} \mid A^{m}$. We return to the equation 160 . If k_{1}^{\prime} and Ω are coprime, it is impossible. We suppose that k_{1}^{\prime} and Ω are not coprime, then $k_{1}^{\prime} \mid \Omega$ and the exponent of k_{1}^{\prime} in Ω is so that the equation (160) is satisfying. We deduce easily that $k_{1}^{\prime} \mid B^{n}$. Then $k_{1}^{\prime 2} \mid\left(p=A^{2 m}+B^{2 n}+A^{m} B^{n}\right)$, but $4 p=3 k_{1}^{\prime} b \Longrightarrow k_{1}^{\prime} \mid b$, then the contradiction with a, b coprime.
** J-4-1-2-4- We suppose that $k_{1}^{\prime} \geqslant 4$ is not a prime.
** J-4-1-2-4-1- We suppose that $k_{1}^{\prime}=4$. we have then : $A^{2 m}=4 a$ and $B^{n} C^{l}=3 b-4 a=3 p^{\prime}-4 a$. This case was studied in the paragraph 5.8 case ** I-2-.
** J-4-1-2-4-2- We suppose that $k_{1}^{\prime}>4$ is not a prime.
** J-4-1-2-4-2-1- We suppose that a, k_{1}^{\prime} are coprime. From the expression $A^{2 m}=k_{1}^{\prime} \cdot a$, we deduce that $a=a_{1}^{2}$ and $k_{1}^{\prime}=k_{1}{ }_{1}^{2}$. It follows :

$$
\begin{array}{r}
A^{m}=a_{1} \cdot k{ }_{1} \\
B^{n} C^{l}=4^{s-1} k{ }^{\prime \prime}{ }_{1} \cdot \Omega
\end{array}
$$

Let ω be a prime so that $\omega \mid k "_{1}$ and $k^{"}{ }_{1}=\omega^{t} . k{ }_{2}$ with $\omega \nmid k{ }_{2}$. The last two equations become :

$$
\begin{array}{r}
A^{m}=a_{1} \cdot \omega^{t} \cdot k^{\prime \prime}{ }_{2} \\
B^{n} C^{l}=4^{s-1} \omega^{2 t} \cdot k{ }^{\prime \prime 2}{ }_{2} \cdot \Omega \tag{162}
\end{array}
$$

From (161) $\omega\left|A^{m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i} . A_{1}$ with $\omega \nmid A_{1}$ and $i m=t$. From (162), we have $\omega\left|B^{n} C^{l} \Longrightarrow \omega\right| B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-2-4-2-1-1- If $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} . B_{1}$, with $\omega \nmid B_{1}$. From 161, we have $B_{1}^{n} C^{l}=$ $\omega^{2 t-j . n} 4^{s-1} . k{ }_{2}{ }_{2}^{2} . \Omega$. If $\omega=2$ and $2 \nmid \Omega$, we have $B_{1}^{n} C^{l}=2^{2 t+2 s-j . n-2} k^{\prime \prime}{ }_{2}$:

- If $2 t+2 s-j n-2 \leqslant 0$ then $2 \nmid C^{l}$ it is in contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.
- If $2 t+2 s-j n-2 \geqslant 1 \Longrightarrow 2\left|C^{l} \Longrightarrow 2\right| C$ and the conjecture 1.1 is verified.
(identical results if $2 \mid \Omega \Longrightarrow \Omega=2^{\mu} . \Omega_{1}$, we replace $2 t+2 s-j n-2$ by $2 t+2 s+\mu-j n-2$). If $\omega \neq 2$, we have $B_{1}^{n} C^{l}=\omega^{2 t-j n} 4^{s-1} k^{\prime \prime}{ }_{2} . \Omega$.

Here again, if $\omega \nmid \Omega$:
-If $2 t-j n \leqslant 0 \Longrightarrow \omega \nmid C^{l}$ it is in contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$.

Definitive Proof of Beal's Conjecture

-If $2 t-j n \geqslant 1 \Longrightarrow \omega \mid C^{l}$ and the conjecture 1.1 is verified.
Identical results if $2 \mid \Omega \Longrightarrow \Omega=2^{\mu} . \Omega_{1}$, we replace $2 t-j n$ by $2 t+\mu-j n$.
** J-4-1-2-4-2-1-2- If $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} . C_{1}$, with $\omega \nmid C_{1}$. With the same method used above for the case J-4-1-2-4-2-1-1, we obtain identical results.
** J-4-1-2-4-2-2- We suppose that a, k_{1}^{\prime} are not coprime. Let ω be a prime natural number so that $\omega \mid a$ and $\omega \mid k_{1}^{\prime}$. We write:

$$
\begin{array}{r}
a=\omega^{\alpha} \cdot a_{1} \\
k_{1}^{\prime}=\omega^{\mu} \cdot k^{\prime \prime}{ }_{1}
\end{array}
$$

with $a_{1}, k^{\prime \prime}{ }_{1}$ coprime. The expression of $A^{2 m}$ becomes $A^{2 m}=\omega^{\alpha+\mu} . a_{1} \cdot k_{1}$. The term $B^{n} C^{l}$ becomes:

$$
\begin{equation*}
B^{n} C^{l}=4^{s-1} \cdot \omega^{\mu} \cdot k^{\prime \prime}{ }_{1} \cdot \Omega \tag{163}
\end{equation*}
$$

** J-4-1-2-4-2-2-1- If $\omega=2 \Longrightarrow 2 \mid a$, but $2 \mid b$, then the contradiction with a, b coprime.
** J-4-1-2-4-2-2-2- If $\omega \geqslant 3$. we have $\omega \mid a$. If $\omega \mid b$ it is the contradiction with a, b coprime. We suppose that $\omega \nmid b$. From the expression of $A^{2 m}$, we obtain $\omega\left|A^{2 m} \Longrightarrow \omega\right| A \Longrightarrow A=\omega^{i}$. A_{1} with $\omega \nmid A_{1}, i \geqslant 1$ and $2 i . m=\alpha+\mu$. From 163), we deduce that $\omega \mid B^{n}$ or $\omega \mid C^{l}$.
** J-4-1-2-4-2-2-2-1- We suppose that $\omega\left|B^{n} \Longrightarrow \omega\right| B \Longrightarrow B=\omega^{j} B_{1}$ with $\omega \nmid B_{1}$ and $j \geqslant 1$. Then $B_{1}^{n} C^{l}=4^{s-1} \omega^{\mu-j n} . k{ }^{\prime}{ }_{1} \cdot \Omega$:

* $\omega \nmid \Omega$:
- If $\mu-j n \geqslant 1$ we have $\omega\left|C^{l} \Longrightarrow \omega\right| C$, there is no contradictions with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $\mu-j n \leqslant 0$ with $\omega \nmid \Omega$, then $\omega \nmid C^{l}$ and it is the contradiction with $C^{l}=\omega^{i m} A_{1}^{m}+\omega^{j n} B_{1}^{n}$. Then this case is impossible.
* $\omega \mid \Omega$: we write $\Omega=\omega^{\beta} . \Omega_{1}$ with $\beta \geqslant 1$ and $\omega \nmid \Omega_{1}$. As $3 b-4 a=4^{s} . \Omega=4^{s} . \omega^{\beta} . \Omega_{1} \Longrightarrow 3 b=$ $4 a+4^{s} \cdot \omega^{\beta} \cdot \Omega_{1}=4 \omega^{\alpha} \cdot a_{1}+4^{s} \cdot \omega^{\beta} \cdot \Omega_{1} \Longrightarrow 3 b=4 \omega\left(\omega^{\alpha-1} \cdot a_{1}+4^{s-1} \cdot \omega^{\beta-1} \cdot \Omega_{1}\right)$. If $\omega=3$ and $\beta=1$, we obtain $b=4\left(3^{\alpha-1} a_{1}+4^{s-1} \Omega_{1}\right)$ and $B_{1}^{n} C^{l}=4^{s-1} 3^{\mu+1-j n} . k "{ }_{1} \Omega_{1}$.
- If $\mu-j n+1 \geqslant 1$, then $3 \mid C^{l}$ and the conjecture 1.1 is verified.
- If $\mu-j n+1 \leqslant 0$, then $3 \nmid C^{l}$ and it is in contradiction with $C^{l}=3^{i m} A_{1}^{m}+3^{j n} B_{1}^{n}$.

Now, if $\beta \geqslant 2$ and $\alpha=i m \geqslant 3$, we obtain $3 b=4 \omega^{2}\left(\omega^{\alpha-2} a_{1}+4^{s-1} \omega^{\beta-2} \Omega_{1}\right)$. If $\omega=3$ or not, then $\omega \mid b$, but $\omega \mid a$, then the contradiction with a, b coprime.
** J-4-1-2-4-2-2-2-2- We suppose that $\omega\left|C^{l} \Longrightarrow \omega\right| C \Longrightarrow C=\omega^{h} C_{1}$ with $\omega \nmid C_{1}$ and $h \geqslant 1$. Then $B^{n} C_{1}^{l}=4^{s-1} \omega^{\mu-h l} . k "{ }_{1} . \Omega$. With the same method used above, we obtain identical results.
** J-4-2- We suppose that $4 \mid k_{1}^{\prime}$.

Abdelmajid Ben Hadj Salem

** J-4-2-1- $k_{1}^{\prime}=4 \Longrightarrow 4 p=3 k_{1}^{\prime} b=12 b \Longrightarrow p=3 b=3 p^{\prime}$, this case has been studied (see Case I-2- paragraph 5.8.
** J-4-2-2- $k_{1}^{\prime}>4$ with $4 \mid k_{1}^{\prime} \Longrightarrow k_{1}^{\prime}=4^{s} k^{\prime \prime}{ }_{1}$ and $s \geqslant 1,4 \nmid k{ }^{\prime \prime}{ }_{1}$. We have :

$$
\begin{aligned}
A^{2 m} & =4^{s} k^{\prime \prime}{ }_{1} a=2^{2 s} k^{\prime \prime}{ }_{1} a \\
B^{n} C^{l}=4^{s-1} k^{\prime \prime}{ }_{1}(3 b-4 a) & =2^{2 s-2} k^{\prime \prime}{ }_{1}(3 b-4 a)
\end{aligned}
$$

** J-4-2-2-1- We suppose that $s=1$ and $k_{1}^{\prime}=4 k^{\prime \prime}{ }_{1}$ with $k{ }^{\prime \prime}{ }_{1}>1$, so $p=3 p^{\prime}$ and $p^{\prime}=k{ }^{\prime \prime}{ }_{1} b$, it is the case 5.3 .
** J-4-2-2-2- We suppose that $s>1$, then $k_{1}^{\prime}=4^{s} k{ }^{\prime \prime}{ }_{1} \Longrightarrow 4 p=3 \times 4^{s} k^{"}{ }_{1} b$ and we have:

$$
\begin{array}{r}
A^{2 m}=4^{s} k{ }^{\prime \prime}{ }_{1} a \\
B^{n} C^{l}=4^{s-1} k^{\prime \prime}{ }_{1}(3 b-4 a) \tag{165}
\end{array}
$$

** J-4-2-2-2-1- We suppose that $2 \nmid\left(k{ }_{1} \cdot a\right) \Longrightarrow 2 \nmid k{ }^{\prime \prime}{ }_{1}$ and $2 \nmid a$. As $\left(A^{m}\right)^{2}=\left(2^{s}\right)^{2} \cdot\left(k{ }^{\prime \prime}{ }_{1} \cdot a\right)$, we call $d^{2}=k "{ }_{1} . a$, then $A^{m}=2^{s} . d \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}$ with $2 \nmid A_{1}$ and $i \geqslant 1$, then $2^{i m} A_{1}^{m}=2^{s} . d \Longrightarrow s=i m$. From the equation 165), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}$, with $j \geqslant 1$ and $2 \nmid B_{1}$. The equation (165) becomes:

$$
B_{1}^{n} C^{l}=2^{2 s-j n-2} k^{\prime \prime}{ }_{1}(3 b-4 a)=2^{2 i m-j n-2} k{ }_{1}{ }_{1}(3 b-4 a)
$$

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 i m-j n-2 \geqslant 1$, then $2 \mid C^{l}$, there is no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m-j n-2 \leqslant 0$, then $2 \nmid C^{l}$ and it is in contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\mu} \mid(3 b-4 a), \mu \geqslant 1$:
- If $2 i m+\mu-j n-2 \geqslant 1$, then $2 \mid C^{l}$, there is no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m+\mu-j n-2 \leqslant 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-2-2-2-1-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geqslant 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2- We suppose that $2 \mid\left(k{ }_{1} . a\right)$:
** J-4-2-2-2-2-1- We suppose that $k " 1$ and a are coprime:
** J-4-2-2-2-2-1-1- We suppose that $2 \nmid a$ and $2 \mid k "{ }_{1} \Longrightarrow k "{ }_{1}=2^{2 \mu} . k^{\prime \prime}{ }_{2}^{2}$ and $a=a_{1}^{2}$, then the equations (164 165) become:

$$
\begin{array}{r}
A^{2 m}=4^{s} \cdot 2^{2 \mu} k^{\prime \prime}{ }_{2}^{2} a_{1}^{2} \Longrightarrow A^{m}=2^{s+\mu} \cdot k_{2} \cdot{ }_{2} \cdot a_{1} \\
B^{n} C^{l}=4^{s-1} 2^{2 \mu} k_{2}^{2}(3 b-4 a)=2^{2 s+2 \mu-2} k^{\prime \prime}{ }_{2}^{2}(3 b-4 a) \tag{167}
\end{array}
$$

Definitive Proof of Beal's Conjecture

The equation (166) gives $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $2 \nmid A_{1}, i \geqslant 1$ and $i m=s+\mu$. From the equation 167), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-1-1-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geqslant 1$, then $B_{1}^{n} C^{l}=2^{2 s+2 \mu-j n-2} k{ }_{2}{ }_{2}^{2}(3 b-4 a)$:

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 i m+2 \mu-j n-2 \geqslant 1$, then $2 \mid C^{l}$, there is no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m+2 \mu-j n-2 \leqslant 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a), \alpha \geqslant 1$:
- If $2 i m+2 \mu+\alpha-j n-2 \geqslant 1$, then $2 \mid C^{l}$, there is no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 i m+2 \mu+\alpha-j n-2 \leqslant 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-2-2-2-2-1-1-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geqslant 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2-1-2- We suppose that $2 \nmid k{ }_{1}{ }_{1}$ and $2 \mid a \Longrightarrow a=2^{2 \mu} . a_{1}^{2}$ and $k{ }_{1}{ }_{1}=k{ }^{\prime}{ }_{2}$, then the equations 164165 become:

$$
\begin{gather*}
A^{2 m}=4^{s} \cdot 2^{2 \mu} a_{1}^{2} k_{2}^{\prime \prime 2} \Longrightarrow A^{m}=2^{s+\mu} \cdot a_{1} \cdot k^{\prime \prime}{ }_{2} \tag{168}\\
B^{n} C^{l}=4^{s-1} k^{\prime \prime}{ }_{2}(3 b-4 a)=2^{2 s-2} k^{\prime \prime 2}(3 b-4 a) \tag{169}
\end{gather*}
$$

The equation 168 gives $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $2 \nmid A_{1}, i \geqslant 1$ and $i m=s+\mu$. From the equation 169), we have $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-1-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geqslant 1$, then $B_{1}^{n} C^{l}=2^{2 s-j n-2} k_{2}^{2}(3 b-4 a):$

* We suppose that $2 \nmid(3 b-4 a) \Longrightarrow 2 \nmid b$:
- If $2 i m-j n-2 \geqslant 1$, then $2 \mid C^{l}$, there is no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture 1.1 is verified.
- If $2 i m-j n-2 \leqslant 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
** J-4-2-2-2-2-1-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geqslant 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-2-2-2-2-2- We suppose that $k{ }^{\prime \prime}{ }_{1}$ and a are not coprime with $2 \mid a$ and $2 \mid k{ }^{\prime \prime}{ }_{1}$. Let $a=2^{t} . a_{1}$ and $k{ }^{\prime \prime}{ }_{1}=2^{\mu} k^{\prime \prime}{ }_{2}$ and $2 \nmid a_{1}$ and $2 \nmid k{ }_{2}{ }_{2}$. From (164), we have $\mu+t=2 \lambda$ and $a_{1} \cdot k^{\prime \prime}{ }_{2}=\omega^{2}$. The equations 164 165 become:

$$
\begin{array}{r}
A^{2 m}=4^{s} k^{\prime \prime}{ }_{1} a=2^{2 s} \cdot 2^{\mu} k^{\prime \prime}{ }_{2} \cdot 2^{t} \cdot a_{1}=2^{2 s+2 \lambda} \cdot \omega^{2} \Longrightarrow A^{m}=2^{s+\lambda} \cdot \omega \\
B^{n} C^{l}=4^{s-1} 2^{\mu} k^{"}{ }_{2}(3 b-4 a)=2^{2 s+\mu-2} k^{\prime \prime}{ }_{2}(3 b-4 a) \tag{171}
\end{array}
$$

Abdelmajid Ben Hadj Salem

From (170) we have $2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} A_{1}, i \geqslant 1$ and $2 \nmid A_{1}$. From 171, $2 s+\mu-2 \geqslant 1$, we deduce that $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$.
** J-4-2-2-2-2-2-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} . B_{1}, 2 \nmid B_{1}$ and $j \geqslant 1$, then $B_{1}^{n} C^{l}=2^{2 s+\mu-j n-2} k^{\prime 2}(3 b-4 a):$

* We suppose that $2 \nmid(3 b-4 a)$:
- If $2 s+\mu-j n-2 \geqslant 1$, then $2 \mid C^{l}$, there is no contradictions with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture (1.1) is verified.
- If $2 s+\mu-j n-2 \leqslant 0$, then $2 \nmid C^{l}$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
* We suppose that $2^{\alpha} \mid(3 b-4 a)$, for one value $\alpha \geqslant 1$. As $2 \mid a$, then $2^{\alpha} \mid(3 b-4 a) \Longrightarrow$ $2|(3 b-4 a) \Longrightarrow 2|(3 b) \Longrightarrow 2 \mid b$, then the contradiction with a, b coprime.
** J-4-2-2-2-2-2-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C \Longrightarrow C=2^{h} . C_{1}$, with $h \geqslant 1$ and $2 \nmid C_{1}$. With the same method used above, we obtain identical results.
** J-4-3-2 $2 \mid k_{1}^{\prime}$ and $2 \mid(3 b-4 a)$: then we obtain $2 \mid k_{1}^{\prime} \Longrightarrow k_{1}^{\prime}=2^{t} . k^{\prime \prime}{ }_{1}$ with $t \geqslant 1$ and $2 \nmid k^{\prime \prime}{ }_{1}$. $2 \mid(3 b-4 a) \Longrightarrow 3 b-4 a=2^{\mu} . d$ with $\mu \geqslant 1$ and $2 \nmid d$. We have also $2 \mid b$. If $2 \mid a$, it is a contradiction with a, b coprime.

We suppose in the following of the section that $2 \nmid a$. The equations 164165 become:

$$
\begin{array}{r}
A^{2 m}=2^{t} \cdot k^{\prime \prime}{ }_{1} \cdot a=\left(A^{m}\right)^{2} \\
B^{n} C^{l}=2^{t-1} k^{\prime \prime}{ }_{1} \cdot 2^{\mu-1} d=2^{t+\mu-2} k^{\prime \prime}{ }_{1} \cdot d \tag{173}
\end{array}
$$

From (172), we deduce that the exponent t is even, let $t=2 \lambda$. Then we call $\omega^{2}=k{ }^{\prime \prime}{ }_{1}$.a that gives $A^{m}=2^{\lambda} . \omega \Longrightarrow 2\left|A^{m} \Longrightarrow 2\right| A \Longrightarrow A=2^{i} . A_{1}$ with $i \geqslant 1$ and $2 \nmid A_{1}$. From (173), we have $2 \lambda+\mu-2 \geqslant 1$, then $2\left|\left(B^{n} C^{l}\right) \Longrightarrow 2\right| B^{n}$ or $2 \mid C^{l}$:

[^1]
The Main Theorem is proved.

Definitive Proof of Beal's Conjecture

6. Numerical Examples

6.1 Example 1:

We consider the example : $6^{3}+3^{3}=3^{5}$ with $A^{m}=6^{3}, B^{n}=3^{3}$ and $C^{l}=3^{5}$. With the notations used in the paper, we obtain:

$$
\begin{array}{cl}
p=3^{6} \times 73, \quad q=8 \times 3^{11}, & \bar{\Delta}=4 \times 3^{18}\left(3^{7} \times 4^{2}-73^{3}\right)<0 \\
\rho=\frac{3^{8} \times 73 \sqrt{73}}{\sqrt{3}}, & \cos \theta=-\frac{4 \times 3^{3} \times \sqrt{3}}{73 \sqrt{73}} \tag{174}
\end{array}
$$

As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{3 \times 2^{4}}{73}=\frac{a}{b} \Longrightarrow a=3 \times 2^{4}, b=73$, then we obtain:

$$
\begin{equation*}
\cos \frac{\theta}{3}=\frac{4 \sqrt{3}}{\sqrt{73}}, \quad p=3^{6} . b \tag{175}
\end{equation*}
$$

We verify easily the equation (174) to calculate $\cos \theta$ using (175). For this example, we can use the two conditions from (64) as $3|a, b| 4 p$ and $3|p, b| 4 p$. The cases 4.4 and 5.3 are respectively used. For the case 4.4, it is the case B-2-2-1- that was used and the conjecture (1.1) is verified. Concerning the case 5.3 , it is the case G-2-2-1- that was used and the conjecture (1.1) is verified.

6.2 Example 2:

The second example is : $7^{4}+7^{3}=14^{3}$. We take $A^{m}=7^{4}, B^{n}=7^{3}$ and $C^{l}=14^{3}$. We obtain $p=57 \times 7^{6}=3 \times 19 \times 7^{6}, \quad q=8 \times 7^{10}, \quad \bar{\Delta}=27 q^{2}-4 p^{3}=27 \times 4 \times 7^{18}\left(16 \times 49-19^{3}\right)=$ $-27 \times 4 \times 7^{18} \times 6075<0, \quad \rho=19 \times 7^{9} \times \sqrt{19}, \quad \cos \theta=-\frac{4 \times 7}{19 \sqrt{19}}$. As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow$ $\cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=\frac{7^{2}}{4 \times 19}=\frac{a}{b} \Longrightarrow a=7^{2}, b=4 \times 19$, then $\cos \frac{\theta}{3}=\frac{7}{2 \sqrt{19}}$ and we have the two principal conditions $3 \mid p$ and $b \mid(4 p)$. The calculation of $\cos \theta$ from the expression of $\cos \frac{\theta}{3}$ is confirmed by the value below:

$$
\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{7}{2 \sqrt{19}}\right)^{3}-3 \frac{7}{2 \sqrt{19}}=-\frac{4 \times 7}{19 \sqrt{19}}
$$

We obtain then $3\left|p \Rightarrow p=3 p^{\prime}, b\right|(4 p)$ with $b \neq 2,4$ then $12 p^{\prime}=k_{1} b=3 \times 7^{6} b$. It concerns the paragraph 5.9 of the second hypothesis. As $k_{1}=3 \times 7^{6}=3 k_{1}^{\prime}$ with $k_{1}^{\prime}=7^{6} \neq 1$. It is the case J-4-1-2-4-2-2- with the condition $4 \mid(3 b-4 a)$. So we verify :

$$
3 b-4 a=3 \times 4 \times 19-4 \times 7^{2}=32 \Longrightarrow 4 \mid(3 b-4 a)
$$

with $A^{2 m}=7^{8}=7^{6} \times 7^{2}=k_{1}^{\prime} \cdot a$ and k_{1}^{\prime} not a prime, with a and k_{1}^{\prime} not coprime with $\omega=7 \nmid$ $\Omega(=2)$. We find that the conjecture (1.1) is verified with a common factor equal to 7 (prime and divisor of $k_{1}^{\prime}=7^{6}$).

6.3 Example 3:

The third example: $19^{4}+38^{3}=57^{3}$ with $A^{m}=19^{4}$, $B^{n}=38^{3}$ and $C^{l}=57^{3}$. We obtain $p=19^{6} \times 577, \quad q=8 \times 27 \times 19^{10}, \quad \bar{\Delta}=27 q^{2}-4 p^{3}=4 \times 19^{18}\left(27^{3} \times 16 \times 19^{2}-577^{3}\right)<$ $0, \quad \rho=\frac{19^{9} \times 577 \sqrt{577}}{3 \sqrt{3}}, \quad \cos \theta=-\frac{4 \times 3^{4} \times 19 \sqrt{3}}{577 \sqrt{577}}$. As $A^{2 m}=\frac{4 p}{3} \cdot \cos ^{2} \frac{\theta}{3} \Longrightarrow \cos ^{2} \frac{\theta}{3}=\frac{3 A^{2 m}}{4 p}=$

Definitive Proof of Beal's Conjecture

$\frac{3 \times 19^{2}}{4 \times 577}=\frac{a}{b} \Longrightarrow a=3 \times 19^{2}, b=4 \times 577$, then $\cos \frac{\theta}{3}=\frac{19 \sqrt{3}}{2 \sqrt{577}}$ and we have the first hypothesis $3 \mid a$ and $b \mid(4 p)$. Here again, the calculation of $\cos \theta$ from the expression of $\cos \frac{\theta}{3}$ is confirmed by the value below:

$$
\cos \theta=\cos 3(\theta / 3)=4 \cos ^{3} \frac{\theta}{3}-3 \cos \frac{\theta}{3}=4\left(\frac{19 \sqrt{3}}{2 \sqrt{577}}\right)^{3}-3 \frac{19 \sqrt{3}}{2 \sqrt{577}}=-\frac{4 \times 3^{4} \times 19 \sqrt{3}}{577 \sqrt{577}}
$$

We obtain then $3\left|a \Rightarrow a=3 a^{\prime}=3 \times 19^{2}, b\right|(4 p)$ with $b \neq 2,4$ and $b=4 p^{\prime}$ with $p=k p^{\prime}$ with $p^{\prime}=577$ and $k=19^{6}$. This concerns the paragraph 4.8 of the first hypothesis. It is the case E-2-2-2-2-1- with $\omega=19, a^{\prime}, \omega$ not coprime and $\omega=19 \nmid\left(p^{\prime}-a^{\prime}\right)=\left(577-19^{2}\right)$ with $s-j n=6-1 \times 3=3 \geqslant 1$, and the conjecture (1.1) est is verified.

7. Conclusion

The method used to give the proof of the conjecture of Beal has discussed many possibles cases, using elementary number theory and thanks of some theorems about Diophantine equations. We have confirmed the method by three numerical examples. In conclusion, we can announce the theorem:

Theorem 7.1. (A. Ben Hadj Salem, A. Beal, 2019): Let A, B, C, m, n, and l be positive natural numbers with $m, n, l>2$. If :

$$
\begin{equation*}
A^{m}+B^{n}=C^{l} \tag{176}
\end{equation*}
$$

then A, B, and C have a common factor.

Acknowledgements

My acknowledgements to Professor Thong Nguyen Quang Do for indicating me the book of D.A. Cox cited below in References.

References

1 R. Daniel Mauldin. A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem. Notice of AMS, Vol 44, $n^{\circ} 11$, pp 1436-1437. (1997).

2 B.M. Stewart. Theory of Numbers. Second edition. The Macmillan Compagny, New-York. 390 pages. (1964).

3 E.D. Bolker. Elementary Number Theory: An Algebraic Approach. W.A. Benjamin, Inc., New-York. 195 pages. (1970).

4 D.A. Cox. Primes of the form : $x^{2}+n y^{2}$, Fermat, class field theory and complex multiplication. A Wiley-Interscience Publication, John Wiley \& Sons Inc., New-York. 363 pages. (1989).

5 G. Frei. Leonhard Euler's convenient numbers. The Mathematical Intelligencer, Vol. 7, $n^{\circ} 3$, pp.55-58 and 64. (1985).

Definitive Proof of Beal's Conjecture

Abdelmajid Ben Hadj Salem abenhadjsalem@gmail.com
Cité Soliman Er-Riadh, 8020 Soliman. Tunisia

[^0]: ** F-6-1-1- We suppose that $k_{1}\left|B^{n} \Longrightarrow k_{1}\right| B \Longrightarrow B=k_{1}^{j} \cdot B_{1}$ with $j>0$ and $k_{1} \nmid B_{1}$. Then $k_{1}^{n . j} B_{1}^{n} C^{l}=k_{1} .4^{t-1} . g \Longrightarrow k_{1}^{n \cdot j-1} B_{1}^{n} C^{l}=4^{t-1} . g$. But $n \geqslant 3$ and $j \geqslant 1$ then $n . j-1 \geqslant 2$. We deduce as $k_{1} \neq 2$ that $k_{1}\left|g \Longrightarrow k_{1}\right|\left(b-4 a^{\prime}\right)$ but $k_{1}\left|a^{\prime} \Longrightarrow k_{1}\right| b$ then the contradiction with a, b coprime.

[^1]: ** J-4-3-1- We suppose that $2\left|B^{n} \Longrightarrow 2\right| B \Longrightarrow B=2^{j} B_{1}$, with $j \geqslant 1$ and $2 \nmid B_{1}$. It follows that $B_{1}^{n} C^{l}=2^{2 \lambda+\mu-j n-2} \cdot k{ }_{1} . d$.

 - If $2 \lambda+\mu-j n-2 \geqslant 1$, we have $2\left|C^{l} \Longrightarrow 2\right| C$, there is no contradictions with $C^{l}=$ $2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$ and the conjecture 1.1 is verified.
 - If $2 s+t+\mu-j n-2 \leqslant 0$, it follows that $2 \nmid C$, then the contradiction with $C^{l}=2^{i m} A_{1}^{m}+2^{j n} B_{1}^{n}$.
 ** J-4-3-2- We suppose that $2\left|C^{l} \Longrightarrow 2\right| C$. With the same method used above, we obtain identical results.

