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Abstract: The general Pareto distribution (GPD) has been widely used a lot in the extreme value for example to model 

exceedance over a threshold. Feature of The GPD that when applied to real data sets depends substantially and clearly on the 

parameter estimation process. Mostly the estimation is preferred by maximum likelihood because have a consistent estimator 

with lowest bias and variance. The objective of the present study is to develop efficient estimation methods for the maximum 

likelihood estimator for the shape parameter or extreme value index. Which based on the numerical methods for maximizing 

the log-likelihood by introduce an algorithm for computing maximum likelihood estimate of The GPD parameters. Finally, a 

numerical examples are given to illustrate the obtained results, they are carried out to investigate the behavior of the method. 

Keywords: Extreme Value Index, Generalized Pareto Distributions, Excesses Over High Thresholds, Maximum Likelihood, 

The Modified Bisection Method Algorithm 

 

1. Introduction 

The GPD are the only "stable" ones, i.e. the only ones for 

which the conditional distribution of an exceedance is a scale 

transformation of the original distribution. The GPD 

distribution has many good properties, (for more details see, 

for instance, Emberchts, Klüppelberg and Mikosch, 1997, 

Section 3.4, [4], and Reiss and Thomas, Section 1.4, [11]). 

The maximum likelihood estimate of the general Pareto 

distribution (GPD) parameters are the values which 

maximize the likelihood function which is defined as below 

formula (6). 

The asymptotic behavior properties of maximum 

likelihood estimator of the GPD parameter have been studied 

in many articles including the important works of Davison 

[2] and R.L Smith [12], the maximum likelihood estimators 

have a consistent estimator of the variance and he used it to 

replace the asymptotic variance of unknown parameters. The 

maximum likelihood estimates must be derived numerically 

for the GPD because there is no obvious simplification of the 

nonlinear likelihood equation as we defined in (8). 

From a statistical perspective, the threshold is loosely 

defined such that the population tail can be well 

approximated by an extreme value model (e.g., the 

generalized Pareto distribution), and can be used the GPD 

maximum likelihood estimates for estimating extreme value 

index. 

There is many numerical techniques for computes the GPD 

maximum likelihood estimates for the shape parameters

∈ �γ  have been proposed in many articles including the 

important works like Hosking and Wallis [10] for the 

parameter space to ( ) ( )1/ 2 1/ 2< < −γ  and Grimshaw [7] 

for extreme value index, the shape parameter 1≤γ , and we 

propose an algorithm, to estimate the extreme value index, 

the shape parameter 1≥ −γ . For this we introduce the 

approach maximum likelihood of the extreme value index. 

Then, in section (2) we gives the numerical techniques for 

computes the GPD maximum likelihood estimates. And in 

section (3) we will be given a numerical example is based on 

two real data found in the literature, he is in order to illustrate 

the problem with estimation of the shape parameter ∈ �γ  in 

small samples by the maximum likelihood estimator. 
Let 1 2, , , nX X XL be a sequence of independent and 

identically distribution (i. i. d). random variables from some 

unknown distribution function (d.f.) F . Denote the upper 

endpoint of F  by Fτ where ( ){ }sup : 1F x F x= < ≤ ∞τ and 
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let 

( ) ( ) ( ) ( )
( )|

1
t

F x t F t
F x P X t x X t

F t

+ −
= ≤ + > =

−
     (1) 

with ( )1 F t− , Ft < τ  and 0x > , be the conditional d.f. of 

X t−  given X t> . 

For an i.i.d. sample of size n , we denote the ascending 

order statistics by 1, 2, ,n n n nX X X≤ ≤ ≤L . The weak 

convergence of the centered and standardized maxima ,n nX  

implies the existence of sequences of constants 0na > , 

0nb >  and a df ( )xΦ  such that: 

( ),
lim

n n n

n
n

X a
P x x

b→∞

− 
≤ = Φ 

 
                   (2) 

The work of Fisher and Tippett (1928, [5]), Gnedenko 

(1943, [6]) and de Haan (1970, [8]) answered the question on 

the possible limits and characterized the classes of 

distribution functions F  having a certain limit in (2). 

This convergence result is our main assumption. Up to 

location and scale, the possible limiting dfs ( )xΦ  in (2) are 

given by the so-called extreme value distributions Gγ , 

defined by: 

( )
( )( )

( )( )

1/
exp 1 , 0

exp exp , 0

x if
G x

x if

− − + ≠= 
 − − =

γ

γ

γ γ

γ
           (3) 

Then it is well known [see Balkema and de Haan (1974, 

[1]) and Pickands (1975, [14])] that up to scale and location 

transformations with the shape parameter the generalized 

Pareto d.f. given by 

( ) ( ) 1/
1 1 ,H x x

−= − + γ
γ γ  

for all 0x > , if 0≥γ  and 0 1/x≤ ≤ − γ  if 0<γ , and for 

0=γ  read ( )H xγ  as 

( ) ( )1 exp .H x x= − −γ  

More precisely, it has been proved that there exists a 

normalizing function ( ) 0t >σ , such that for all x  

( ) ( )( )
0

lim sup / 0,
F F

t
t x t

F x H x t
→ < < −

− =γτ τ
σ               (4) 

if and only if F is in the maximum domain of attraction of 

the corresponding extreme value d.f. i.e ( )F D G∈ γ  where 

the parameter ∈ �γ  is the extreme value index and is the 

same in both Gγ . 

In view of (4) with Fτ denote the right endpoint of the 

support of F we can expect that observations above some 

high threshold are approximately generalized Pareto. This 

motivates that inferences on γ  should be based on some set 

of high order statistics, say ( ), 1, ,, , ,n k n n k n n nX X X− − + K , or, 

equivalently, on 

0 , 1 1, , , ,, , ,n k n n k n n k n k n n n k nC X C X X C X X− − + − −= = − = −K , (5) 

where in the asymptotic setting nk k=  is an intermediate 

sequence, that is, nk → ∞  and / 0nk n →  as n → ∞ . 

Hence, in view of convergence (4), the conditional 

distribution of the ( )0 1, , , kC C CK  given 0 0C c=  can be 

approximated by the distribution of an ordered sample of k  

i.i.d. generalized Pareto random variables with d.f. 

( ) ( )( ): /GPH x x H x t→ γ σ . This suggests to estimate the 

unknown parameters γ  and σ  by a maximum likelihood 

estimator in the approximating generalized Pareto model; 

that is, given the sample ( )1 2, , , nX X XL  denoting the 

number of absolute excesses over t by k for rather the 

largest observations ( ), ,, ,n k n n nX X− L , we maximize: 

( ) ( ) ( )0 1

1 1

, , ,
k k

k i GP i

i i

C C C C h C

= =
= =Π Πl K l ,          (6) 

where ( ) ( ) ( )( ) ( )1/ 1
1/ 1 /GPh x x

− −
= +

γ
σ γ σ  with 

, , ,i n k i n n k nC X X− + −= − for 1 i k≤ ≤  

Proposition 1: If the random variable X has a generalized 

Pareto distribution, then the conditional distribution of X t−  

given X t≥  is also generalized Pareto, with the same shape 

parameters γ . 

The log- likelihood is given by 

( )( )
1

1 1
log log 1 log 1

k

i i

i

C C

=

     = − + +           
∑l

γ
σ γ σ

     (7) 

The range for σ  is 0>σ  for 0>γ  and :k kC> −σ γ  for 

0≤γ . If 1< −γ , there is no maximum likelihood estimate 

since, for any 1< −γ , 

( )( )
:

lim log

k k

i
C

C
+→

= +∞l
σ
γ

 

If 1= −γ thus done that :k kC>σ then 

( )( )
1

1
log log

k

i

i

C

=

 =  
 

∑l
σ

 

Therefore, denoted ˆ 1= −γ , :
ˆ

k kC=σ . The problem is 

complicated by the optimization being taken over an open 

set, but it is treated as a maximum taken over a closed set. 

The GPD maximum likelihood estimates, denoted by 

( )ˆ ˆ;γ σ is then given by the local maximum if 
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( )( )( ) ( ):

1

ˆ ˆlog ; , log

k

i k k

i

C Cγ σ
=

> −∑l  and is given by the 

boundary maximum if ( )( )( ) ( ):

1

ˆ ˆlog ; , log

k

i k k

i

C Cγ σ
=

< −∑l . 

If no local maximum is found, then there is no GPD 

maximum likelihood estimate and the alternative estimators 

given by Hosking and Wallis (1987, [10]) are recommended. 

To obtain a finite maximum of the GPD log-likelihood, the 

constraint 1≥ −γ  must be imposed. Therefore, computing 

the GPD maximum likelihood estimates is an optimization on 

the constrained space { } { }:0, 0 1 0, / k kA C= > > ∪ − ≤ < < −σ γ γ σ γ . 

There are two values of ( ),γ σ  that must be investigated to 

compute the GPD maximum likelihood estimate. The first is 

the local maximum of the log-likelihood on the space A . 

The second is at the boundary of A , where 1= −γ . The 

likelihood equations from (7) are then given in terms of the 

partial derivatives have been studies in many articles 

including the important works of Hann and Ferreira [9]; p 91 

and Drees et al [3]. The resulting likelihood equations in 

terms of the excesses , , ,i n k i n n k nC X X− + −= −  are as follows: 

( )
1 1

1 1 1
log 1 1 . 1 0 0

1

ˆ 1 / 0

k k

i

i i
i

C for
k k

C

C for

= =

   
      
 + + − = ≠            +  

  


= =

∑ ∑
γ γγσ

σ

σ γ

  (8) 

Therefore, to compute the maximum likelihood estimates, 

consider θ  in terms of γ  and σ  by ( )/= −θ γ σ which is 

one-to-one in the space A .  

Then, For , , ,i n k i n n k nC X X− + −= −  the maximum likelihood 

estimator can be approximate in the following procedure: 

1. Find the root θ̂ of ( )ˆ 0k =ψ θ where: 

( ) ( ) ( ) 1

1 1

1 1
log 1 1 . 1 1

k k

k i i

i i

C C
k k

−

= =

   
= − + − −   
   
   
∑ ∑ψ θ θ θ ,  (9) 

2. Compute γ̂  by 

( )
1

1
ˆ log 1

k

i

i

C
k =

= −∑γ θ , 

( )ˆ ˆ ˆ/= −θ γ σ  then ( )ˆˆˆ /= −σ γ θ . 

Now, we go to found the solution of  which is 

on (9) so must be computed numerically on the space 

. 

The following theorem states several properties of 

that are useful in formulating an algorithm for determining 

her zeros 

Theorem 1: Consider the function  given in (9) 

defined on the space B. Then 

( )
:1/

lim
−→

= −∞
k k

k
Cθ

ψ θ  

( )
0

l im 0
→

=kθ
ψ θ                                (10) 

( ) 0<kψ θ  for all 
( )
( )

1

2

1

2 −
=L

C C

C
θ       (11) 

where 
1

1
k

i

i

C C
k =

= ∑ and 1 2 kC C C< < <L  the order statistics 

correspondence. 

With the second term in formula (8) we have 0→γ

implied 0→θ  with ( )1/ C=σ ; as similar result we can get 

that 10 p−=γ  [Note that p  is a natural number] as result we 

take an 10 /p C−=ε  around the zero. 

Since the upper bound :1/ k kC B∉ . The algorithm will use 

U −θ ε  and L −θ ε  for some 0>ε as the upper bound and 

lower bound respectively. Then the space B will be define by 

[ ]{ }; ; , 0L UΒ = ∈ − ∪ ≠  θ θ ε ε θ θ where :1/U k kC= −θ ε  

and 10 /p C−=ε with p  is a natural number, required for 

modified Bisection algorithm to search the multi-roots of 

( )kψ θ ; which we present in section (2) which rely with the 

numerical method that proposed by Tanakan, (2013, [13]), 

and best of them as well. For this in section (3) we use a two 

real data utilized the first collected from the exceedance of 

the threshold given by Grimshaw [7], and the second we use 

model extreme value by the real Danish fire data. 

2. Modified Bisection Algorithms 

A modified bisection algorithms is much more efficient 

than the bisection method. Furthermore, it is faster than the 

Newton method, and don not count the derivative of a 

function at the reference point, which is not always easy. In 

the practice, the initial solution is really important for the 

Newton method. But some initial solutions can make the 

method Newton diverges. Hence, by the intermediate value 

theorem a modified bisection algorithms, it works when f  is 

a continuous function on [ ];α β  where ( ) 2; ∈�α β  with the 

initial condition ( ) ( ). 0f f <α β  existing with each iteration. 

A modified bisection algorithms can reduced the number of 

iterations which less than the iteration number of the 

bisection method and nearby to the iteration number of 

Newton method, for numerical results see Tanakan ([13], 

section [3]). 

In this work took the error are less than the tolerance, 

which is linked to condition 1n n+ −θ θ  less than the 

tolerance because we computed numerically on the space B. 

We can state an alternative modified bisection algorithms 

( ) 0k =ψ θ

{ }:1/ , 0k kCΒ = < ≠θ θ

( )kψ θ

( )kψ θ
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for multi-roots as the following, 

1. Step 1: Divide the interval into several intervals by 

( ) /h b a t= − where t ∈�  is the number of intervals 

for example 10t = . 

2. Step 2: For 1, ,10i = K , and tolerance 71 10−× ; and 

1 i=α α , 1 1i+=β β where ( ) ( )1. 0i if f + <α β . 

3. Step 3: For 1n ≥ , compute ( )* / 2n n n= +θ α β . 

4. Step 4: Compute for a sub-interval * *;n n
 
 α β  by 

( ) ( )
( ) ( )

* *

* *

* *

; . 0
;

; . 0

n n n n

n n

n n n n

if f f

if f f

  <   =     < 

α θ α θ
α β

θ β θ β
 

5. Step 5: Compute, 

( ) ( ) ( )
* *

* *
1 * *

n n
n n n

n n

f
f f

+
−

= −
−

β αθ β β
β α

 or ( ) ( ) ( )
* *

* *
1 * *

n n
n n n

n n

f
f f

+
−

= −
−

β αθ α α
β α

 

6. Step 6: If 
* 7

1 1 10n n
−

+ − < ×θ θ , then stop program (i.e 

*
1n n+ =θ θ ) the zero is 1n+θ . ELSE 

( ) ( )
( ) ( )

* *
1 1

* *
1 1

* *
1 1

; . 0
;

; . 0

n n n n

n n

n n n n

if f f

if f f

+ +
+ +

+ +

  <   =     < 

α θ α θ
α β

θ β θ β
 

and set , GOTO Step 3. 

To alert, this the Modified Bisection Algorithms is based 

on two method: Bisection method and Modified Bisection 

method (MB) or method of false position (Regula false). We 

noticed that the algorithm at the top, we find that we 

calculate  by Bisection method and  by false position 

method. 

Theorem 2: Let  be a continuous function and defined 

on with the initial condition 

 existing with each iteration. The 

modified bisection algorithm generates a sequence 

and  approximating a zero  of with 

( )1*
1 2

5

2

i i
n n n

+
+ +

−
− <

β α
θ θ  for 1n ≥                   (12) 

where 1, ,i t= K  and t  is the number sub-intervals of 

[ ];α β . 

Proof: We have the theoretical result for Bisection method 

that 

( ) ( )0 1*

2

i i
n n

+ −
− <

β α
θ θ  for 1n ≥                 (13) 

and for Modified bisection agrees Tanakan [13] we have also 

( ) ( )0 1
1 22

i i
n n

+
+ +

−
− <

β α
θ θ  for 1n ≥                  (14) 

We can show that: 
( ) ( )( )0 0* *

1 1n n n n+ +− = − − −θ θ θ θ θ θ . 

And it's easy to prove the theorem (2) by using a 

mathematical induction. 

The result (13) and result (14) proved that the sequence 

{ }*

1
n

n

∞

=
θ  converges to 

( )0θ  with rate of convergence 
1

2
n

O
 
 
 

 

that is, 
( )0* 1

2
n n

O
 = +  
 

θ θ  and the sequence { }1 1n n

∞
+ =θ  

converges to 
( )0θ  with rate of convergence 

2

1

2
n

O +
 
 
 

 that 

is, 
( )0

1 2

1

2
n n

O+ +
 = +  
 

θ θ  respectively. 

An Algorithm for the GPD Maximum Likelihood Estimates 

In the data sets used investigating the GPD maximum 

likelihood estimates, it appears that there exists either no zero 

or two zeros on each interval. For this we preferred an 

algorithm that computes the GPD maximum likelihood 

estimates for search the zero of the function given on (9) by 

modified bisection algorithm. The algorithm that computes 

the GPD maximum likelihood estimates is given by the 

following: 

1. Choose an ε , for example let 810 / C−=ε . 

2. Compute the lower and upper bounds for zeros of 

( )kψ θ given by 

( )
( )

1

2

1

2

L

C C

C

−
=θ  and 

:

1
U

k kC
= −θ ε  

3. To determine the zero of ( )kψ θ  on the bounded 

intervals [ ];L −θ ε  and ; U  ε θ , use the modified 

bisection method algorithm given in section (2) with 

each interval. 

4. For each 
( )0

jθ , compute jγ  given by 

( )( )0

1

1
log 1

k

j j i

i

C
k =

= −∑γ θ , 

5. compute 
( )( )0

/j j j= −σ γ θ . 

6. Let jγ  denote the result of algorithm included on space 

A ; the local maximum log-likelihood parameter 

estimation of the GPD parameters is ( ),j jγ σ  which 

have a maximum ( )( )( )log ; ,i j jCl γ σ . The algorithm 

is over. 

The maximum likelihood estimator (MLE's) are taken to 

1n n= +

*
nθ 1n+θ

f

[ ]1; ;i i+ ⊂  α β α β

( ) ( )1. 0i if f + <α β

{ }1 1n n

∞
+ =θ

{ }*

1
n

n

∞

=
θ ( )0θ f
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be the values ( )ˆ ˆ,γ σ which yield a local maximum. The 

Fisher information matrix gives the asymptotic variance-

covariance of the maximum likelihood estimator, which can 

be calculated by 

( )
( )

( )( ) ( )( )

( )( ) ( )( )

1
2 2

2

2 2

2

log log

ˆˆ ˆ ˆˆ ˆvar cov( , )

ˆ ˆ ˆcov( , ) var log log

ˆ ˆ ˆ

i i

i i

C C

C C

−
 ∂ ∂
 

  ∂ ∂ ∂
=   

  ∂ ∂   
 ∂ ∂ ∂ 

l l

l l

γ σγ γ σ γ
γ σ σ

γ σ σ

 

Then we conclude ( )100 1−κ % confidence intervals 

constructing by using 

( )/2
ˆ ˆvart± κγ γ  and ( )/2

ˆ ˆvart± κσ σ  

where /2tκ  denotes the 1 / 2−κ  quantile of the standard 

normal distribution is symmetric about 0 . 

3. Numerical Examples 

In the first example, we use the tensile-strength fiber data 

presented by Grimshaw (1993, [7]). In his study, the GPD 

maximum likelihood estimates are ˆ 0.283040=σ and 

ˆ 0.117698.=γ  

The data are collected from the exceedance of the 

threshold in the tensile-strength testing for a random value 

( )1 2 15, , ,C C CK  of 15  nylon carpet fibers, listed in an 

increasing order (only observation is that we have not given 

us the value of threshold for the test is unknown for 

proprietary reasons): 

Table 1. Exceedance (in kg/mm2) of the Testing Threshold in Tensile-Strength 

Tests for a Random Sample of n = 15 Nylon Carpet Fibers. 

0.011 0.030 0.051 0.056 0.092 

0.100 0.140 0.184 0.200 0.286 

0.338 0.365 0.518 0.561 0.876 

To begin the search for zeros of ( )kψ θ  compute the bounds 

given by -3994.49L =θ , =1.141552Uθ  and 

8=3.957784 10 .−×ε  The algorithm will search for two zeros 

on [ ];L −θ ε  and ; U  ε θ . We begin with the interval [ ];L −θ ε , 

by the modified Bisection algorithm we find that no zero of 

( )kψ θ  exists on this interval. i.e 
( )0

1θ  and 
( )0

2θ  do not exist. 

We go to the interval ; U  ε θ . By the modified Bisection 

algorithm as we set in section (2), we will find that he 

converged to two roots are 
( )0

3 0.4158348=θ  and 

( )0

4 1.141497=θ . So we finished the work with the algorithm. 

And we calculate the values correspond to 
( )0

3θ  and 
( )0

4θ . 

Table 2. An account the values (γ₃,σ₃) and (γ₄,σ₄). 

( )0

3 0.4158348θ =  3=-0.1176979γ  3 0.2830401σ =  ( )( )( )3 3log ; , 5.6979682iC γ σ =l  

( )0

4 1.141497θ =  4 -0.9543413γ =  4 0.8360436σ =  ( )( )( )4 4log ; , 2.0012366iC γ σ =l  

 

Next, we have 3 3/ -0.876 A< ∈σ γ  and 4 4/ -0.876 A< ∈σ γ  

are the local maximum of the GPD log-likelihood on A  for 

15:15 0.876C = . The boundary maximum, ( )ˆ ˆ1, 0.876=− =γ σ  given 

by ( )( )( )log ; 1,0.876 1.9858378.iC − =l  

Since ( )( )( ) ( )( )( )3 3 4 4log ; , > log ; ,i iC Cγ σ γ σl l  the 

GPD maximum likelihood estimates for the data 

( )1 2 15, , ,C C CK  of 15  nylon carpet fibers, is 

( )ˆ ˆ-0.1176979, 0.2830401= =γ σ . 

The asymptotic variance-covariance matrix of the 

parameters ( ),γ σ is given by the inverse of the Fisher 

information matrix. Then, their corresponding 95 % 

confidence intervals is -0.7257669 0.4903711< <γ  and 

0.05976156 0.50631869σ< < . 

For a real second example application we use model 

extreme value. Let us consider the real Danish fire data, these 

data describe large fire insurance claims in Denmark from 

Thursday 3rd January 1980 until Monday 31st December 

1990. A numeric vector containing 2167 observations. They 

offer many possibilities for modeling and have been used by 

many researchers to illustrate their methods, see McNeil 

(1997) and Resnick (1997). These data can be found in evir 

package of the R software (Ihaka and Gentelman cite R). 

In this study, we are concerned with confidence bounds for 

the 73  monthly maximum losses during the mentioned from 

the given 2167 observations, listed in an increasing order. 

Table 3. Monthly maximum losses during the mentioned from Danish data 

for a random sample of n = 73 fire insurance claims. 

4.450262 10.011123 14.394581 20.826733 32.467532 

4.5 10.072303 14.678899 20.863675 34.141547 

4.625 10.5 15.284653 20.969856 38.154392 

4.657070 10.820452 16.441659 22.258226 42.091448 

4.821601 10.998350 17.068467 23.283859 46.5 

4.867987 11.123471 17.569546 24.970273 47.019521 

5.469679 11.595547 17.739274 25.288376 50.065531 

5.6 11.890606 17.743491 25.953860 56.225426 

6.773920 12.376238 18.322083 26.214641 57.410636 

6.798457 12.523191 18.424135 27.338066 56.707491 

7.425743 12.631813 18.646484 27.829314 152.413209 

7.613470 13.348165 19.070278 29.026037 144.657591 

7.643979 14.013548 19.162304 29.037106 263.250366 

7.863696 14.239000 19.4 31.055901  

8.678881 14.293194 20.049941 32.387807  
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To begin the search for zeros of ( )kψ θ  we compute the 

bounds ( ), ,L Uε θ θ  for 50k = . 

Then 9=2.817172 10ε −×  and other bounds given by 
1-3.018889 10Lθ −= × , and 

3=3.798662 10Uθ −× . The algorithm 

will search for two zeros on [ ];L −θ ε  and ; U  ε θ  for ( )kψ θ . 

Using our program yields we found The GPD maximum 

likelihood estimates for over threshold 50k >  monthly 

maximum losses during the mentioned from the given 73

observations for the Danish data is ˆ 0.08586831γ = , 

ˆ 32.31397400σ = . 

Then, their corresponding 95 % confidence intervals is 

-0.1249036 0.2966402γ< <  and 21.08807 43.53988σ< < . 

4. Conclusion 

Since, the value of ∈ �γ  the shape parameter or extreme 

value index though it is often referred to as "tail behavior"; in 

model of extreme values distribution is dominant which are 

the three standard family see Haan and Ferreira [9] (either 

Gumbel ( 0=γ ), Fréchet ( 0>γ ), or Weibull ( 0<γ )). by 

determining tail behavior. In this paper we introduce a good 

numerical method with less condition and we avoided many 

numerical and the negatives of Newton method, which is not 

always easy in the practice, and we have reduced time and 

effort, for maximum likelihood estimate without signs γ  the 

shape parameter. 

Acknowledgements 

Special thanks are due to Dr, Fateh Ben Atia and Dr 

Djabrane Yahia for his valuable help and the important 

remarks. 

Appendix 

The second derivatives of the log-likelihood are 

computations for ( )/= −θ γ σ  by: 
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