
Building and Visualizing Datasets of a Single
Variable (Heart Rate)

using Arduino, XD-58C and Processing

Neel Adwani
University of Petroleum and Energy Studies

Dehradun, Uttarakhand, India

Abstract: Datasets are of great use in
the fields like Machine Learning, Data
Science, Data Analytics, etc. To solve
the problem of Data unavailability, Data
sets can be generated with the help of
required sensors and that data can even
be visualized. Visualization might be
necessary to filter or sort out the
inaccurate data, which might interfere
with the Algorithm used.

Introduction:

To get the input for building the dataset,
An XD-58C heart rate sensor, an Arduino
Uno are used. On the Software side,
Arduino IDE and Processing are used.
Here’s the description of all the
components:

Hardware Components:

1. Arduino UNO: It is an open-source
development board based on
ATmega328P microcontroller. It is
developed by arduino.cc.

2. XD-58C Heart Rate Sensor: It is a
sensor used for measuring the
heart rate. It constitutes of an LED
and a circuit. It works on the
principle that when the blood flows
inside the veins, the light coming

from the LED gets reflected, that is
how it can detect the heart rate.

Software Components:

1. Arduino IDE: It is an open-source
integrated development
environment created by arduino.cc,
which is specifically built for
programming Arduino boards.

2. Processing: It is an open-source
graphical library and an integrated
development environment, basically
implemented in Java.

Hardware Setup:

1. 5V of the Arduino UNO is
connected to the positive of XD-
58C.

2. GND of the Arduino UNO is
connected to the negative of the
XD-58C sensor.

3. A0(Analog Pin) of the Arduino UNO
is connected to ‘S’ of the XD-58C
sensor.

4. The Arduino should be connected
to the PC via an A/B cable for
Arduino.

Methodology:

Used in Arduino:
1. Import the PulseSensorPlayground

library.
2. Declare variables to store the

values of PulseWire, Threshold,
heartbeat.

3. Create an instance of
PulseSensorPlayground object.

4. Inside the setup block, start the
serial monitor at 9600 bauds.

5. Inside the loop block, store the
value of BPM in that variable.

6. Write the value of BPM in the serial
monitor.

Used in Processing:
1. Import the processing serial library.
2. Create a variable to store the value

of Serial port.
3. Declare the variables to store id,

heart rate.
4. Inside the setup block, define the

size of the window and create a
table.

5. Add the columns for ID and Heart
Rate respectively.

6. Get the list of available serial ports
and store the specific one in a
variable.

7. Inside the draw block, choose the
stroke and fill color.

8. Draw the line in such a way that it
is colored at the bottom and the
boundary is present at the heart
rate recorded at that moment

9. If the position of graph cursor
becomes higher than that of the
width, set the width equal to zero.

10. Otherwise, increment the horizontal
position.

11. Create a new row, add ID and heart
rate to it and save the table every
time the draw block gets executed.

12. Create a function to get the serial
port.

13. Inside the function, map the value
of heart beat so that it fits the
height accordingly.

Figure 2: Heart Rate visualized

Figure 1: Arduino UNO connected to XD-58C
Heart Rate Sensor

Code:

Used in Arduino:
#define USE_ARDUINO_INTERRUPTS true
#include<PulseSensorPlayground.h>
int PulseWire = 0;
int Threshold = 550;
void setup()
{
Serial.begin(9600);
pulseSensor.analogInput(PulseWire);
pulseSensor.setThreshold(Threshold);
}
void loop()
{
int bpm =
pulseSensor.getBeatsPerMinute();
Serial.println(bpm);
}

Used in Processing:
import processing.serial.*;
Serial myPort;int xPos = 1;
float hr = 0;
String val;
Table table;
int id;
void setup ()
{
size(1920, 1080);
table = new Table();
table.addColumn("id");
table.addColumn("heart rate");
myPort = new Serial(this, Serial.list()[0],
9600);
myPort.bufferUntil('\n');
background(0);
}
void draw ()
{
stroke(0, 0, 255);
fill(0);
line(xPos, height, xPos, height – hr);
if (xPos >= width)
{
xPos = 0;
background(0);
}
else
{
xPos++;
}
textSize(20);
fill(100);
TableRow newRow = table.addRow();
newRow.setInt("id", table.lastRowIndex());
newRow.setInt("heart rate", int(hr/6));
saveTable(table, "data/new1.csv");
}
void serialEvent (Serial myPort)
{
String inString = myPort.readStringUntil('\
n');
if (inString != null)
{

Figure 3:
Generated
Dataset

inString = trim(inString);
hr = float(inString);
println(hr);
hr = map(hr, 0, 512, 0, height);
}
}

References:
1. G. Vega-Martinez, F. J. Ramos-

Becerril, D. Mirabent-Amor, J. G.
Franco-Sánchez, A. Vera-Hernández,
C. Alvarado-Serrano, L. Leija-Salas,
"Analysis of heart rate variability
and its application in sports
medicine: A review", Global Medical
Engineering Physics Exchanges/Pan
American Health Care Exchanges
(GMEPE/PAHCE) 2018, pp. 1-5,
2018.

2. T. S. Arulananth and B. Shilpa,
"Fingertip based heart beat
monitoring system using
embedded systems," 2017
International conference of
Electronics, Communication and
Aerospace Technology (ICECA),
Coimbatore, 2017, pp. 227-230.doi:
10.1109/ICECA.2017.8212802

