Decomposition of the Riemann and Ricci curvatures

A.Balan

November 4, 2019

Abstract

We propose to decompose the Riemann and Ricci curvatures according to symmetric parallel endomorphisms.

1 The curvatures

The Riemann curvature R is a tensor obtained by compositions of the Levi-Civita connection. The Ricci curvature Ric is then defined with help of the Riemann curvature by a contraction with respect to the metric.

2 The decomposition of the Riemann curvature

The Riemann curvature posses symmetries like the Bianchi identities. The first Bianchi identity seems to imply that:

$$g(R(x,y)z,t) = \sum_{i} \pm [g(S_i(x),z)g(S_i(y),t) - g(S_i(x),t)g(S_i(y),z)]$$

with g the riemannian metric and S_i symmetric endomorphisms of the tangent vector bundle $S_i^* = S_i$. Now, the second Bianchi identity gives $\nabla S_i = 0$, the endomorphisms S_i are parallel with respect of the Levi-Civita connection ∇ .

3 Decomposition of the Ricci curvature

According to the decomposition of the Riemann curvature, the Ricci curvature is:

$$Ric = \sum_{i} \pm [tr(S_i)S_i - S_i^2]$$

with $\nabla S_i = 0$.