Analyzing some parts of Ramanujan's Manuscripts. Mathematical connections between several Ramanujan's equations, the Rogers-Ramanujan continued fractions and the Dilaton value.

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed some parts of Ramanujan's Manuscripts and obtained new mathematical connections between several Ramanujan's equations, the Rogers-Ramanujan continued fractions and the Dilaton value.

[^0]
https://www.newscientist.com/article/2209213-computer-attempts-to-replicate-the-dream-like-maths-oframanuian/

From the Ramanujan Manuscript Book III
9. No of the form $p^{2}+q^{2}$

$$
=\sqrt{\Delta_{k} \cdot \Delta_{k}} \sqrt{\frac{1-3}{1-2^{-k}}} \sqrt{\frac{1}{1-3^{-2}} \cdot \frac{1}{1-7-2 h^{*} \frac{1}{1-11}}-2 k^{\circ}}
$$

where $o_{k}=\frac{1}{l^{A}}+\frac{1}{5 h}+\frac{1}{5 h}+\cdots$ and $s^{\prime} k=\frac{1}{1^{k}}-\frac{1}{3 h}+\frac{1}{5 k} \cdots \cdots$ $\frac{B_{k}}{s_{k}}=\frac{1+3^{-k}}{1-3^{-h}} \cdot \frac{1+7-h}{1-7-k} \cdot \frac{1+11^{-k}}{1-11^{-k}} \cdot \cdots$ B, C, P are depending extern A.
Hence the pegs no ts betwateen ni s and n $\dot{A} \int_{n}^{m e} \frac{d x}{\sqrt{\operatorname{cog}_{2}}}+\theta(x)$ when $c=\frac{1}{\sqrt{2\left(1-L_{3}\right)\left(1-\frac{1}{14}\right)}}$ and $\theta(x) \& \frac{\sqrt{x}}{(\log x)^{-3}}$. of ones oft) $\sqrt{2\left(1-\frac{4}{3}\right)\left(1-\frac{2}{7}\right)\left(1-\frac{1}{r^{2}}\right)\left(1-\frac{4}{1 q^{2}}\right)}=\left(1+\frac{4}{7}\right)\left(1+\frac{1}{11}\right)\left(1+\frac{4}{n}\right)$

$$
\begin{aligned}
& \text { Here. the sencies } 二 \\
& \frac{s^{\prime} h}{1-Q^{\prime} h} \sqrt{\frac{\Delta h}{s_{h}}} \cdot \sqrt[4]{\frac{s_{q} h}{s_{2} h}} \sqrt[F]{\frac{s_{4} h}{s_{4} h}} \sqrt[16]{\frac{a_{r} h}{a_{r h}^{r}}} \cdots \cdots \\
& =\frac{A}{\sqrt{k-1}}+\frac{B}{\sqrt[5]{Q k-1}}+\frac{C}{\sqrt{k / k-1}}+\frac{D}{\sqrt[6]{P k-1}}+\cdots \\
& \text { sher } A=\sqrt{\left.\frac{t r}{2\left(1-\frac{1}{3}\right) \cdot 1-1}\right)\left(1-\frac{1}{1}\right) \cdots}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \frac{1}{1 h}+\frac{1}{2}+\frac{4}{4}+\frac{\angle}{5}+h+\frac{4}{A R}+\cdots \\
= & \frac{1}{1-a-h} \cdot \frac{1}{1-3-h} \cdot \frac{1}{1-13-h} \frac{A}{1-1-2} h
\end{aligned} \\
& +\frac{1}{1-3^{-2 k}} \cdot \frac{1}{1-7}-2 k \cdot \frac{1}{1-11-2 k}
\end{aligned}
$$

At the bottom, on the last line of the page, we find the following expression that we are going to analyze

$$
\operatorname{sqrt}((((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361))))=(1+1 / 7)(1+1 / 11)(1+1 / 19)
$$

Input:

$$
\sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)=\left(1+\frac{1}{7}\right)\left(1+\frac{1}{11}\right)\left(1+\frac{1}{19}\right)}
$$

Result:

True

Left hand side:

$$
\sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)}=\frac{1920}{1463}
$$

Right hand side:

$\left(1+\frac{1}{7}\right)\left(1+\frac{1}{11}\right)\left(1+\frac{1}{19}\right)=\frac{1920}{1463}$

We have that:
$\operatorname{sqrt}((((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361))))$

Input:

$\sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)}$

Exact result:

$\frac{1920}{1463}$

Decimal approximation:

1.312371838687628161312371838687628161312371838687628161312...
1.312371838687....

Repeating decimal:

$1 . \overline{312371838687628161}$ (period 18)

All 2nd roots of 3686400/2140369:

$\frac{1920 e^{0}}{1463} \approx 1.3124$ (real, principal root)
$\frac{1920 e^{i \pi}}{1463} \approx-1.3124$ (real root)
$(1+1 / 7)(1+1 / 11)(1+1 / 19)$

Input:

$\left(1+\frac{1}{7}\right)\left(1+\frac{1}{11}\right)\left(1+\frac{1}{19}\right)$

Exact result:

$\frac{1920}{1463}$

Decimal approximation:

$1.312371838687628161312371838687628161312371838687628161312 \ldots$

Repeating decimal:

1.312371838687628161 (period 18)
1.312371838687....

We observe that:
$[\operatorname{sqrt}(((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361))))]^{\wedge} 16$

Input:

$\sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)^{16}}$

Exact result:

34105126070941954606390978313516482560000000000000000
440462782507829638853407196959489747504132268442241

Decimal approximation:

[^1]77.4302107359.... result that is very near to 76 that is the value of $a(n)$ for $n=96$ of a $5^{\text {th }}$ order mock theta function.

The formula of mock theta function is:
$\mathrm{a}(\mathrm{n}) \sim \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(\mathrm{n} / 15)\right) /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{phi} * \mathrm{n})\right)$
and for $\mathrm{n}=96.554$, we obtain:
$\exp \left(\mathrm{Pi}^{*} \mathrm{sqrt}(96.554 / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\right.$ golden ratio*96.554) $)$
Input interpretation:
$\frac{\exp \left(\pi \sqrt{\frac{96.554}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi \times 96.554}}$

Result:

77.4325...
77.4325...

Series representations:

$$
\begin{aligned}
& \frac{\exp \left(\pi \sqrt{\frac{96.554}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi 96.554}}=\frac{\exp \left(\pi \sqrt{5.43693} \sum_{k=0}^{\infty} e^{-1.69322 k}\binom{\frac{1}{2}}{k}\right)}{2 \sqrt[4]{5} \sqrt{-1+96.554 \phi} \sum_{k=0}^{\infty}(-1+96.554 \phi)^{-k}\binom{\frac{1}{2}}{k}} \\
& \frac{\exp \left(\pi \sqrt{\frac{96.554}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi 96.554}}=\frac{\exp \left(\pi \sqrt{5.43693} \sum_{k=0}^{\infty} \frac{(-0.183927)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}{2 \sqrt[4]{5} \sqrt{-1+96.554 \phi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+96.554 \phi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
\end{aligned}
$$

$$
\frac{\exp \left(\pi \sqrt{\frac{96.554}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi 96.554}}=\frac{\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)\right)^{\left(6.43603-z_{0}\right)^{k} z_{0}^{-k}}}{k!}\right)}{2 \sqrt[4]{5} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)^{\left(06.554 \phi-z_{0} k^{k} z_{0}^{-k}\right.}}{k!}}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

Thence, we obtain the following mathematical connection:

$$
\begin{gathered}
\left(\sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)^{16}}\right)=77.43021 \Rightarrow \\
\Rightarrow\left(\frac{\exp \left(\pi \sqrt{\frac{96.554}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi \times 96.554}}\right)=77.4325
\end{gathered}
$$

Now, we have:
$((((1 / \operatorname{sqrt}((((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361)))))))))^{\wedge} 1 / 8$

Input:

$\sqrt[8]{\frac{1}{\sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)}}}$

Exact result:

$\frac{\sqrt[8]{\frac{1463}{15}}}{2^{7 / 8}}$

Decimal approximation:

$0.966591311823517666029439786015911710690223079081958938941 \ldots$
0.966591311823517666.... result very near to the spectral index n_{s} and to the mesonic Regge slope (see Appendix)

And:
$1 / 10^{\wedge} 27\left(\left(\left(\left((47+4) / 10^{\wedge} 3+((((2 \operatorname{sqrt}((((2(1-1 / 9))(1-1 / 49)(1-1 / 121)(1-\right.\right.\right.\right.$
$\left.\left.\left.\left.1 / 361)))()))))^{\wedge} 1 / 2\right)\right)\right)\right)$)

Input:

$\frac{1}{10^{27}}\left(\frac{47+4}{10^{3}}+\sqrt{2 \sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)}}\right)$

Result:

$$
\frac{51}{1000}+16 \sqrt{\frac{15}{1463}}
$$

1000000000000000000000000000

Decimal approximation:

$1.6711060697914986586592046001143448113070218500507947 \ldots \times 10^{-27}$
$1.671106069791498 \ldots * 10^{-27}$

We note that $1.6711060697 * 10^{-27} \mathrm{~kg}$ is a result practically equal to the value of the formula:
$m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-24} \mathrm{gm}$
that is the holographic proton mass (N. Haramein)

Alternate forms:

$$
74613+16000 \sqrt{21945}
$$

1463000000000000000000000000000000
$\frac{51}{1000000000000000000000000000000}+\frac{\sqrt{\frac{3}{7315}}}{12500000000000000000000000}$
$51+16000 \sqrt{\frac{15}{1463}}$

1000000000000000000000000000000

Minimal polynomial:

1463000 : $000 x^{2}-149226000000000000000000000000000000 x-3836194737$

We note also:
$1+1 / 2 \operatorname{sqrt}((((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361))))$
Input:
$1+\frac{1}{2} \sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)}$

Exact result:

$\frac{2423}{143}$

Decimal approximation:

1.656185919343814080656185919343814080656185919343814080656 .
$1.656185919 \ldots$ is very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. 1,65578...
$24 / 10^{\wedge} 3+\operatorname{sqrt}((((2 \operatorname{sqrt}((((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361)))))))))$

Input:

$\frac{24}{10^{3}}+\sqrt{2 \sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)}}$

Result:

$\frac{3}{125}+16 \sqrt{\frac{15}{1463}}$

Decimal approximation:

1.644106069791498658659204600114344811307021850050794739300
$1.64410606979149 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms:

$\frac{4389+2000 \sqrt{21945}}{182875}$
$\frac{16 \sqrt{21945}}{1463}+\frac{3}{125}$
$\frac{1}{125}\left(3+2000 \sqrt{\frac{15}{1463}}\right)$

Minimal polynomial:

$22859375 x^{2}-1097250 x-59986833$

From which, we obtain:
$\operatorname{sqrt}\left[6\left(\left(\left(\left(\left(24 / 10^{\wedge} 3+\operatorname{sqrt}((((2 \operatorname{sqrt}((((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361)))))))))\right)\right)\right)\right)\right)\right]$

Input:

$\sqrt{6\left(\frac{24}{10^{3}}+\sqrt{2 \sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)}}\right)}$

Result:

$\sqrt{6\left(\frac{3}{125}+16 \sqrt{\frac{15}{1463}}\right)}$

Decimal approximation:

3.140801875118676114669146964339020007199446557636698755753.
$3.1408018751186 \ldots . \approx \pi$

Alternate forms:

$\sqrt{\frac{18}{125}+96 \sqrt{\frac{15}{1463}}}$
$\frac{1}{5} \sqrt{\frac{6(4389+2000 \sqrt{21945})}{7315}}$

Minimal polynomial:

$22859375 x^{4}-6583500 x^{2}-2159525988$

And:
$\operatorname{sqrt}((((2 \operatorname{sqrt}((((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361)))))))))-\left(2 / 10^{\wedge} 3\right)$
where 2 is a Fibonacci number, a Lucas number and a prime number

Input:

$\sqrt{2 \sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)}}-\frac{2}{10^{3}}$

Result:

$16 \sqrt{\frac{15}{1463}}-\frac{1}{500}$

Decimal approximation:

1.618106069791498658659204600114344811307021850050794739300...
1.6181060697914....

This result is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

$$
\begin{aligned}
& \frac{8000 \sqrt{21945}-1463}{731500} \\
& \frac{16 \sqrt{21945}}{1463}-\frac{1}{500} \\
& \frac{1}{500}\left(8000 \sqrt{\frac{15}{1463}}-1\right)
\end{aligned}
$$

Minimal polynomial:

$365750000 x^{2}+1463000 x-959998537$

And:
$((((\operatorname{sqrt}((((2(1-1 / 9)(1-1 / 49)(1-1 / 121)(1-1 / 361))))))))))^{\wedge} 41+4096+144+13$

Input:

$$
\sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)^{41}}+4096+144+13
$$

Exact result:

```
437764646480702599243514267218143063788891226400828897567168:
    330439988736338669550890191393901543031559712082212766561499:
    882619915692539/
    5956859696113511164673312709859971238074122046659128253758:
    395900607517684577369826629973487501300625373167696394677:
    051465464358263
```


Decimal approximation:

73489.16523354031981668912966891476626892221502921417475764...
73489.1652335403

Thence, we have the following mathematical connections:

$$
\begin{aligned}
& {\left[\sqrt{2\left(1-\frac{1}{9}\right)\left(1-\frac{1}{49}\right)\left(1-\frac{1}{121}\right)\left(1-\frac{1}{361}\right)^{41}}+4096+144+13\right]=73489.16523 \ldots \Rightarrow} \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots . \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
\\
=73491.7883254811871054915957204220548025195726563413398700
\end{array} \\
& =73491.7883254 \ldots \Rightarrow \\
& \binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{4}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \ll}{\ll H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
& /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Now:
then $\int \frac{\log (p+q x)}{n+o x} d x, \int \log (p+\eta x) \log (2+\Delta x) d x$
and similar i. legrals, asprellas the values of $\phi\left(\frac{1}{2}\right)-\frac{3}{6} \phi\left(\frac{2}{9}, \phi\left(\frac{2}{2}\right)+\frac{\zeta}{6} \phi\left(\frac{1}{9}\right), \phi\left(\frac{4}{4}\right)\right.$ $\left.+\frac{2}{3} \phi\left(\frac{2}{9}\right), \phi\left(-\frac{4}{5}\right) \cdots \frac{4}{3} \phi\left(\frac{4}{5}\right), \phi\left(\frac{5}{8}\right)+\phi\left(\frac{4}{9}\right), \& \cos \right)$ lo foin $d . \int_{0}^{1} \log \frac{1+\sqrt{1+4 a}}{2}$

$$
\sqrt{1+a}\left\{\begin{array}{c}
1+\frac{a e^{-x}}{1-e^{-x}}+\frac{a^{2} e^{-a}}{\left(1-e^{-x}\right)\left(1 ; e^{-2}\right)} \\
a^{2}
\end{array}\right.
$$

$$
\frac{B_{4}}{4} \cdot\left(\frac{x}{1+a}\right)^{3}\left(a-a^{2}\right)+\frac{B_{6}}{18}(1+a)^{5}\left(a-11 a^{2}+11 a^{3}-a^{4}\right)
$$

$$
\begin{aligned}
& B_{4} \cdot\left(\frac{x}{1+a}\right)\left(a-a^{2}\right)+\frac{1}{4}(1+a) 8 c ? \\
& 1+\frac{a e^{-x}}{1-e^{-x}+\frac{a^{2}}{4} e^{-4 x}-\frac{a^{3} e^{-9 x}}{1-x)\left(1-e^{-2 x}\right)}+\left(1-e^{-x}\right)\left(1-e^{-2 x}\right)(x}
\end{aligned}
$$

$$
1+\frac{a e^{-x}}{1-e^{-x}}+\frac{a^{2} e^{-4 x}}{\left(1-e^{-x}\right)\left(1-e^{-2 x}\right)}+\frac{a^{3} e^{-9 x}}{\left(1-e^{-x}\right)\left(1-e^{-2 x}\right)(x}
$$

We analyze this formula:

$$
\begin{aligned}
& \frac{1}{2}\left\{\log \left(1+\frac{1}{n}\right)\right\}^{2}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n^{2}}+\frac{1}{2+1} \frac{2}{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \underline{x} e^{c^{x}}=\frac{e^{x}}{1+x} \cdot \frac{e^{\frac{x}{2}}}{1+\frac{x}{2}} \cdot \frac{e^{\frac{x}{3}}}{1+\frac{e^{x}}{3}} \cdot \frac{e^{\frac{x}{4}}}{1+\frac{x}{4}} \\
& \text { gl } \phi(x)=\frac{x}{1^{2}}+\frac{x^{2}}{2^{2}}+\frac{x^{3}}{3^{2}}+\frac{x^{4}}{4^{2}}+\cdots
\end{aligned}
$$

Now, we consider the following variant of the above formula, performing the logarithm of the result of the whole fraction (numerator and denominator)

$$
\left(\log \frac{1+\sqrt{5}}{2} \cdot \frac{1}{\pi}\right)^{2}=\left(\log 1.6180339887498 \cdot \frac{1}{\pi}\right)^{2}=\left(\log \frac{1.6180339887498}{\pi}\right)^{2}=
$$

$$
(\log 0.5150362148)^{2}=-0.6635180607907362^{2}=0.440256216995499
$$

Indeed, we have:
$\left(((((\ln (((1+\operatorname{sqrt}(5)) / 2) / \mathrm{Pi})))))^{\wedge} 2\right.$

Input:

$\log ^{2}\left(\frac{\frac{1}{2}(1+\sqrt{5})}{\pi}\right)$

Exact result:

$\log ^{2}\left(\frac{1+\sqrt{5}}{2 \pi}\right)$

Decimal approximation:

$0.440256216994252384340347328095562710280907016846326955334 \ldots$
0.4402562169....

Alternate forms:

$\left(\operatorname{csch}^{-1}(2)-\log (\pi)\right)^{2}$
$\log ^{2}\left(\frac{2 \pi}{1+\sqrt{5}}\right)$
$(-\log (2)+\log (1+\sqrt{5})-\log (\pi))^{2}$

Alternative representations:

$\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)=\log _{e}^{2}\left(\frac{1+\sqrt{5}}{2 \pi}\right)$
$\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)=\left(\log (a) \log _{a}\left(\frac{1+\sqrt{5}}{2 \pi}\right)\right)^{2}$
$\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)=\left(-\mathrm{Li}_{1}\left(1-\frac{1+\sqrt{5}}{2 \pi}\right)\right)^{2}$

Series representations:

$$
\begin{aligned}
& \log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)=\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1+\sqrt{5}}{2 \pi}\right)^{k}}{k}\right)^{2} \\
& \log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)=\left(2 i \pi\left|\frac{\arg (1+\sqrt{5}-2 \pi x)}{2 \pi}\right|+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2 \pi}\right)^{k} x^{-k}(1+\sqrt{5}-2 \pi x)^{k}}{k}\right)^{2}
\end{aligned}
$$

for $x<0$
$\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)=\left\{2 i \pi\left\lfloor\frac{\arg \left(\frac{1+\sqrt{5}}{2 \pi}-x\right)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2 \pi}\right)^{k} x^{-k}(1+\sqrt{5}-2 \pi x)^{k}}{k}\right)^{2}$
for $x<0$

Integral representation:

$\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)=\left(\int_{1}^{\frac{1+\sqrt{5}}{2 \pi}} \frac{1}{t} d t\right)^{2}$

Now, we have:
$\left.\left(\left((((\ln (((1+\operatorname{sqrt}(5)) / 2) / \mathrm{Pi}))))^{\wedge} 2\right)\right)\right)^{\wedge} 1 / 64$

Input:

$\sqrt[64]{\log ^{2}\left(\frac{\frac{1}{2}(1+\sqrt{5})}{\pi}\right)}$

Exact result:

$\sqrt[32]{-\log \left(\frac{1+\sqrt{5}}{2 \pi}\right)}$

Decimal approximation:

$0.987263084758650033899699895808408258403170137670263112520 \ldots$
$0.98726308475 \ldots$. result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternate forms:

$\sqrt[32]{\log (\pi)-\operatorname{csch}^{-1}(2)}$
$\sqrt[32]{\log \left(\frac{2 \pi}{1+\sqrt{5}}\right)}$
$\sqrt[32]{-1} e^{-(i \pi) / 16} \sqrt[32]{\operatorname{csch}^{-1}(2)-\log (\pi)}$
$\operatorname{csch}^{-1}(x)$ is the inverse hyperbolic cosecant function

Alternative representations:

$\sqrt[64]{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}=\sqrt[64]{\log _{e}^{2}\left(\frac{1+\sqrt{5}}{2 \pi}\right)}$
$\sqrt[64]{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}=\sqrt[64]{\left(\log (a) \log _{a}\left(\frac{1+\sqrt{5}}{2 \pi}\right)\right)^{2}}$
$\sqrt[64]{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}=\sqrt[64]{\left(-\mathrm{Li}_{1}\left(1-\frac{1+\sqrt{5}}{2 \pi}\right)\right)^{2}}$

Series representations:

$\sqrt[64]{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}=\sqrt[32]{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1+\sqrt{5}}{2 \pi}\right)^{k}}{k}}$
$\sqrt[64]{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}=$

$$
\sqrt[32]{-2 i \pi\left[\frac{\arg (1+\sqrt{5}-2 \pi x)}{2 \pi}\right\rfloor-\log (x)+\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2 \pi}\right)^{k} x^{-k}(1+\sqrt{5}-2 \pi x)^{k}}{k}} \text { for } x<0
$$

$\sqrt[64]{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}=$

$$
\sqrt[32]{-2 i \pi\left[\frac{\arg \left(\frac{1+\sqrt{5}}{2 \pi}-x\right)}{2 \pi}\right\rfloor-\log (x)+\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2 \pi}\right)^{k} x^{-k}(1+\sqrt{5}-2 \pi x)^{k}}{k}} \text { for } x<0
$$

Integral representation:

$\sqrt[64]{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}=\sqrt[32]{-\int_{1}^{\frac{1+\sqrt{5}}{2 \pi}} \frac{1}{t} d t}$

From which:
log base $\left.0.98726308475865\left(((((\ln (((1+\operatorname{sqrt}(5))) / 2) / \mathrm{Pi}))))^{\wedge} 2\right)\right)$

Input interpretation:

$\log _{0.98726308475865}\left(\log ^{2}\left(\frac{\frac{1}{2}(1+\sqrt{5})}{\pi}\right)\right)$

Result:

64.0000000000...

64 (see Appendix)

Alternative representations:

$\log _{0.987263084758650000}\left(\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)\right)=\frac{\log \left(\log ^{2}\left(\frac{1+\sqrt{5}}{2 \pi}\right)\right)}{\log (0.987263084758650000)}$
$\log _{0.987263084758650000}\left(\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)\right)=\log _{0.987263084758650000}\left(\log _{e}^{2}\left(\frac{1+\sqrt{5}}{2 \pi}\right)\right)$
$\log _{0.987263084758650000}\left(\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)\right)=\log _{0.987263084758650000}\left(\left(\log (a) \log _{a}\left(\frac{1+\sqrt{5}}{2 \pi}\right)\right)^{2}\right)$

Series representations:

$\log _{0.987263084758650000}\left(\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)\right)=-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\log ^{2}\left(\frac{1+\sqrt{5}}{2 \pi}\right)\right)^{k}}{k}}{\log (0.987263084758650000)}$
$\log _{0.987263084758650000}\left(\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)\right)=$
$\log _{0.987263084758650000}\left(\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1+\sqrt{5}}{2 \pi}\right)^{k}}{k}\right)^{2}\right)$

Integral representation:

$\log _{0.987263084758650000}\left(\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)\right)=\log _{0.987263084758650000}\left(\left(\int_{1}^{\frac{1+\sqrt{5}}{2 \pi}} \frac{1}{t} d t\right)^{2}\right)$

We note that the inverse of this formula, elevated to the power of eight, where 8 is a Fibonacci number, provides
$\left.\left[1 /\left(\left(\left(((((\ln (((1+\operatorname{sqrt}(5)) / 2) / \mathrm{Pi})))))^{\wedge} 2\right)\right)\right)\right)\right]^{\wedge} 8$

Input:

$$
\left.\left(\frac{1}{\log ^{2}\left(\frac{1}{2}(1+\sqrt{5})\right.} \pi\right)\right)^{8}
$$

Exact result:
 $\frac{1}{\log ^{16}\left(\frac{1+\sqrt{5}}{2 \pi}\right)}$

Decimal approximation:

708.52637259...

Alternate forms:

$\frac{1}{\left(\operatorname{csch}^{-1}(2)-\log (\pi)\right)^{16}}$
$\frac{1}{\log ^{16}\left(\frac{2 \pi}{1+\sqrt{5}}\right)}$
$\frac{1}{(-\log (2)+\log (1+\sqrt{5})-\log (\pi))^{16}}$

Alternative representations:

$$
\left(\frac{1}{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}\right)^{8}=\left(\frac{1}{\log _{e}^{2}\left(\frac{1+\sqrt{5}}{2 \pi}\right)}\right)^{8}
$$

$$
\left(\frac{1}{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi^{2}}\right)}\right)^{8}=\left(\frac{1}{\left(\log (a) \log _{a}\left(\frac{1+\sqrt{5}}{2 \pi}\right)\right)^{2}}\right)^{8}
$$

$$
\left(\frac{1}{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}\right)^{8}=\left(\frac{1}{\left(-\operatorname{Li}_{1}\left(1-\frac{1+\sqrt{5}}{2 \pi}\right)\right)^{2}}\right)^{8}
$$

Series representations:

$$
\left(\frac{1}{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi^{2}}\right)}\right)^{8}=\frac{1}{\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1+\sqrt{5}}{2 \pi}\right)^{k}}{k}\right)^{16}}
$$

$$
\left(\frac{1}{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}\right)^{8}=\frac{1}{\left(2 \pi\left[\frac{\arg (1+\sqrt{5}-2 \pi x)}{2 \pi}\right]-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2 \pi}\right)^{k} x^{-k}(1+\sqrt{5}-2 \pi x)^{k}}{k}\right)\right)^{16}}
$$

for $x<0$

$$
\left(\frac{1}{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}\right)^{8}=\frac{1}{\left(2 i \pi \left\lfloor\frac{\arg \left(\frac{1+\sqrt{5}}{2 \pi}-x\right)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{\left.\left(-\frac{1}{2 \pi}\right)^{k} x^{-k}(1+\sqrt{5}-2 \pi x)^{k}\right)^{16}}{k}\right.\right.\right.}
$$

for $x<0$

Integral representation:
$\left(\frac{1}{\log ^{2}\left(\frac{1+\sqrt{5}}{\pi 2}\right)}\right)^{8}=\frac{1}{\left(\int_{1}^{\frac{1+\sqrt{5}}{2 \pi}} \frac{1}{t} d t\right)^{16}}$

The result $708.52637259 \ldots$ is very near to 706 that is the value of $a(n)$ for $n=166$ of a $5^{\text {th }}$ order mock theta function and adding 21, that is a Fibonacci number, we obtain 729.52637

The formula of mock theta function is:
$\mathrm{a}(\mathrm{n}) \sim \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(\mathrm{n} / 15)\right) /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{phi} * \mathrm{n})\right)$
and for $\mathrm{n}=166.15$, we obtain:
$\exp (\operatorname{Pi} * \operatorname{sqrt}(166.15 / 15)) /\left(2^{*} 5^{\wedge}(1 / 4) *\right.$ sqrt(golden ratio*166.15))

Input interpretation:

$\frac{\exp \left(\pi \sqrt{\frac{166.15}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi \times 166.15}}$

Result:

708.516...
708.516...

Series representations:

$$
\begin{aligned}
& \frac{\exp \left(\pi \sqrt{\frac{166.15}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi 166.15}}=\frac{\exp \left(\pi \sqrt{10.0767} \sum_{k=0}^{\infty} e^{-2.31022 k}\binom{\frac{1}{2}}{k}\right)}{2 \sqrt[4]{5} \sqrt{-1+166.15 \phi} \sum_{k=0}^{\infty}(-1+166.15 \phi)^{-k}\binom{\frac{1}{2}}{k}} \\
& \frac{\exp \left(\pi \sqrt{\frac{166.15}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi 166.15}}=\frac{\exp \left(\pi \sqrt{10.0767} \sum_{k=0}^{\infty} \frac{(-0.099239)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}{2 \sqrt[4]{5} \sqrt{-1+166.15 \phi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+166.15 \phi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
\end{aligned}
$$

$\frac{\exp \left(\pi \sqrt{\frac{166.15}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi 166.15}}=\frac{\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(11.0767-z_{0} k^{k} z_{0}^{-k}\right.}{k!}\right)}{2 \sqrt[4]{5} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(166.15 \phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}}$
for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

Thence, we have the following mathematical connection:

$$
\begin{aligned}
& \left(\frac{1}{\log ^{16}\left(\frac{1+\sqrt{5}}{2 \pi}\right)}\right)=708.52637259 \Rightarrow \\
& \Rightarrow\left(\frac{\exp \left(\pi \sqrt{\frac{166.15}{15}}\right)}{2 \sqrt[4]{5} \sqrt{\phi \times 166.15}}\right)=708.516
\end{aligned}
$$

We observe that from the two results of the connections 77.43021 and 708.52637, and the continued fraction constant:
$(1 / 6) \pi^{\wedge} 2 /(\log (2) \log (10))$

Input:

$\frac{1}{6} \times \frac{\pi^{2}}{\log (2) \log (10)}$
$\log (x)$ is the natural logarithm

Exact result:

$\frac{\pi^{2}}{6 \log (2) \log (10)}$

Decimal approximation:

$1.030640834100712935881776094116936840925920311120726281770 \ldots$
1.0306408341007.....

Alternate forms:

$\frac{\pi^{2}}{\log (10) \log (64)}$
$\frac{\pi^{2}}{6 \log (2)(\log (2)+\log (5))}$

Alternative representations:

$$
\frac{\pi^{2}}{(\log (2) \log (10)) 6}=\frac{\pi^{2}}{6\left(\log _{e}(2) \log _{e}(10)\right)}
$$

$$
\frac{\pi^{2}}{(\log (2) \log (10)) 6}=\frac{\pi^{2}}{6\left(\log ^{2}(a) \log _{a}(2) \log _{a}(10)\right)}
$$

$$
\frac{\pi^{2}}{(\log (2) \log (10)) 6}=\frac{\pi^{2}}{6\left(\mathrm{Li}_{1}(-9) \mathrm{Li}_{1}(-1)\right)}
$$

Series representations:

$$
\begin{array}{r}
\frac{\pi^{2}}{(\log (2) \log (10)) 6}=-\left(\pi^{2} /\left(6 \left(2 \pi\left\lfloor\frac{\arg (2-x)}{2 \pi} \left\lvert\,-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right.\right)\right.\right.\right. \\
\left.\left.\left(2 \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)\right)\right) \text { for } x<0
\end{array}
$$

$\frac{\pi^{2}}{(\log (2) \log (10)) 6}=$

$$
\begin{array}{r}
-\left(\pi^{2} /\left(6\left[2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right.\right. \\
\left.\left.\left(2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)\right)
\end{array}
$$

$$
\begin{aligned}
& \frac{\pi^{2}}{(\log (2) \log (10)) 6}= \\
& \pi^{2} /\left[6\left(\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right. \\
& \quad\left(\left[\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\right. \\
& \left.\left.\quad\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\frac{\pi^{2}}{(\log (2) \log (10)) 6}=\frac{\pi^{2}}{6\left(\int_{1}^{2} \frac{1}{t} d t\right) \int_{1}^{10} \frac{1}{t} d t}
$$

$$
\frac{\pi^{2}}{(\log (2) \log (10)) 6}=-\frac{2 \pi^{4}}{3\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{o^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }-1<\gamma<0
$$

We obtain:
$\left(\left(\left((708.52637 * 77.43021)^{\wedge} 1.0306408341\right)\right)\right)-(2048+1024+64+16)$

Input interpretation:

$(708.52637 \times 77.43021)^{1.0306408341}-(2048+1024+64+16)$

Result:

73492.59...
73492.59...

Or:
$\left(\left(\left((708.52637 * 77.43021)^{\wedge}\left((1 / 6) \pi^{\wedge} 2 /(\log (2) \log (10))\right)\right)\right)\right)-(2048+1024+64+16)$
Input interpretation:
$(708.52637 \times 77.43021)^{1 / 6 \times \pi^{2} /(\log (2) \log (10))}-(2048+1024+64+16)$
$\log (x)$ is the natural logarithm

Result:

- More digits 73492.59...
73492.59...

Alternative representations:

$$
\begin{aligned}
& (708.526 \times 77.4302)^{\pi^{2} /((\log (2) \log (10)) 6)}-(2048+1024+64+16)= \\
& \quad-3152+54861.3^{\pi^{2} /\left(6\left(\log _{e}(2) \log _{e}(10)\right)\right)} \\
& (708.526 \times 77.4302)^{\pi^{2} /((\log (2) \log (10)) 6)}-(2048+1024+64+16)= \\
& \quad-3152+54861.3^{\pi^{2} /\left(6\left(\log ^{2}(a) \log _{a}(2) \log _{a}(10)\right)\right)} \\
& (708.526 \times 77.4302)^{\pi^{2} /((\log (2) \log (10)) 6)}-(2048+1024+64+16)= \\
& \quad-3152+54861.3^{\pi^{2} /\left(6\left(\operatorname{Li}_{1}(-9) \operatorname{Li}_{1}(-1)\right)\right)}
\end{aligned}
$$

Series representations:

$(708.526 \times 77.4302)^{\pi^{2} /((\log (2) \log (10)) 6)}-(2048+1024+64+16)=-3152+$
54861.

$$
3^{\pi^{2}} /\left(6\left(2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)\left(2 i \pi\left[\frac{\arg (10-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)\right)
$$

for $x<0$
$(708.526 \times 77.4302)^{\left.\pi^{2} /(\log (2) \log (10)) 6\right)}-(2048+1024+64+16)=-3152+$
54861 \therefore

$$
\pi^{\pi^{2}} /\left(6\left(\log \left(z_{0}\right)+\left[\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\left(\log \left(z_{0}\right)+\left[\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)
$$

$(708.526 \times 77.4302)^{\pi^{2} /((\log (2) \log (10)) 6)}-(2048+1024+64+16)=-3152+$ 54861.

$$
\pi^{2} /\left(6\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{2}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0} k^{k} z_{0}^{-k}\right.}{k}\right)\left(2 i \pi\left\{\frac{\pi-\arg \left(\frac{10}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0} k^{k} z_{0}^{-k}\right.}{k}\right)\right)
$$

Integral representations:

$(708.526 \times 77.4302)^{\left.\pi^{2} /(\log (2) \log (10)) 6\right)}-(2048+1024+64+16)=$
$-3152+e^{\frac{1.81876 \pi^{2}}{\left(\int_{1}^{21 t} d t\right) \int_{1}^{101} d t}}$
$(708.526 \times 77.4302)^{\pi^{2} /((\log (2) \log (10)) 6)}-(2048+1024+64+16)=$
$-3152+\exp \left(\frac{7.27504 i^{2} \pi^{4}}{\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}\right)$ for $-1<\gamma<0$
$\Gamma(x)$ is the gamma function

Thence, we obtain the following mathematical connections:

$$
\left[(708.52637 \times 77.43021)^{1 / 6 \pi^{2} /(\log (2) \log (10))}-(2048+1024+64+16)\right]=73492.59 \Rightarrow
$$

$$
\begin{aligned}
& \Rightarrow-3927+2\left(\begin{array}{l}
13\binom{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} P_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}{\int\left[d \mathrm{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathrm{X}^{\mu} D^{2} \mathrm{X}^{\mu}\right)\right\}\left|\mathrm{X}^{\mu}, \mathrm{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
\\
-3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
=73490.8437525 \ldots \Rightarrow \\
\Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
\Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
=73491.78832548118710549159572042220548025195726563413398700 \ldots
\end{array}\right. \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
\binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{2}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i\left(T^{r}+t\right)}\right|^{2} d t \leqslant}{\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} /, ~\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots .
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Now, we have that:

$$
\begin{aligned}
& =\frac{z^{m} e^{\frac{1}{x}} \int_{0} \log \frac{1}{z} d a+\left(4 x+B x^{2}+\right)}{\sqrt{2+2 x(1-x)}}\left\{\begin{array}{l}
\log \left(\frac{2 \pi}{\log 2}\right)=2.20437894 \\
2 \pi^{2} \\
\frac{2 \pi}{\log 2}=98.4776587
\end{array}\right.
\end{aligned}
$$

$\ln (2 \mathrm{Pi} / \ln 2)$

Input:

$$
\log \left(2 \times \frac{\pi}{\log (2)}\right)
$$

$\log (x)$ is the natural logarithm

Exact result:

$\log \left(\frac{2 \pi}{\log (2)}\right)$

Decimal approximation:

2.204389986991009810573098631043904749177058395112672088687...
2.2043899869910....

Alternate form:

$\log (2)+\log (\pi)-\log (\log (2))$

Alternative representations:

$\log \left(\frac{2 \pi}{\log (2)}\right)=\log _{e}\left(\frac{2 \pi}{\log (2)}\right)$
$\log \left(\frac{2 \pi}{\log (2)}\right)=\log (a) \log a\left(\frac{2 \pi}{\log (2)}\right)$
$\log \left(\frac{2 \pi}{\log (2)}\right)=-\mathrm{Li}_{1}\left(1-\frac{2 \pi}{\log (2)}\right)$

Series representations:

$\log \left(\frac{2 \pi}{\log (2)}\right)=\log \left(-1+\frac{2 \pi}{\log (2)}\right)-\sum_{k=1}^{\infty} \frac{\left(-\frac{\log (2)}{2 \pi-\log (2)}\right)^{k}}{k}$

$$
\log \left(\frac{2 \pi}{\log (2)}\right)=2 i \pi\left\lfloor\frac{\arg \left(-x+\frac{2 \pi}{\log (2)}\right)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}\left(-x+\frac{2 \pi}{\log (2)}\right)^{k}}{k}\right. \text { for } x<0\right.
$$

$$
\log \left(\frac{2 \pi}{\log (2)}\right)=2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{2 \pi}{\log (2)}-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representations:

$$
\begin{aligned}
& \log \left(\frac{2 \pi}{\log (2)}\right)=\int_{1}^{\frac{2 \pi}{\log (2)}} \frac{1}{t} d t \\
& \log \left(\frac{2 \pi}{\log (2)}\right)=-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{2 \pi}{\log (2)}\right)^{-s}}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

Input:

$2 \times \frac{\pi^{2}}{\log (2)}$
$\log (x)$ is the natural logarithm

Exact result:

$\frac{2 \pi^{2}}{\log (2)}$
Decimal approximation:
28.47765864997501086772135142273369089364055687532930406290...
28.477658649...

Alternative representations:

$$
\frac{2 \pi^{2}}{\log (2)}=\frac{2 \pi^{2}}{\log _{e}(2)}
$$

$$
\frac{2 \pi^{2}}{\log (2)}=\frac{2 \pi^{2}}{\log (a) \log _{a}(2)}
$$

$\frac{2 \pi^{2}}{\log (2)}=\frac{2 \pi^{2}}{2 \operatorname{coth}^{-1}(3)}$

Series representations:

$\frac{2 \pi^{2}}{\log (2)}=\frac{2 \pi^{2}}{2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}}$ for $x<0$
$\frac{2 \pi^{2}}{\log (2)}=\frac{2 \pi^{2}}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}$
$\frac{2 \pi^{2}}{\log (2)}=\frac{2 \pi^{2}}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right.}$

Integral representations:

$$
\begin{aligned}
& \frac{2 \pi^{2}}{\log (2)}=\frac{2 \pi^{2}}{\int_{1}^{2} \frac{1}{t} d t} \\
& \frac{2 \pi^{2}}{\log (2)}=\frac{4 i \pi^{3}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }-1<\gamma<0
\end{aligned}
$$

(2Pi/ln2)

Input:

$2 \times \frac{\pi}{\log (2)}$

Exact result:

$\frac{2 \pi}{\log (2)}$

Decimal approximation:

9.064720283654387619255365891433333620343722935447591168372...
9.06472028...

Alternative representations:

$$
\frac{2 \pi}{\log (2)}=\frac{2 \pi}{\log _{e}(2)}
$$

$\frac{2 \pi}{\log (2)}=\frac{2 \pi}{\log (a) \log _{a}(2)}$
$\frac{2 \pi}{\log (2)}=\frac{2 \pi}{2 \operatorname{coth}^{-1}(3)}$

Series representations:

$$
\begin{aligned}
& \frac{2 \pi}{\log (2)}=\frac{2 \pi}{2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}} \text { for } x<0 \\
& \frac{2 \pi}{\log (2)}=\frac{2 \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0} k^{k} z_{0}^{-k}\right.}{k}}
\end{aligned}
$$

$$
\frac{2 \pi}{\log (2)}=\frac{2 \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right.}
$$

Integral representations:

$$
\begin{aligned}
& \frac{2 \pi}{\log (2)}=\frac{2 \pi}{\int_{1}^{2} \frac{1}{t} d t} \\
& \frac{2 \pi}{\log (2)}=\frac{4 i \pi^{2}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }-1<\gamma<0
\end{aligned}
$$

Now, we have that:
$\ln (2 \mathrm{Pi} / \ln 2) *\left(2 \mathrm{Pi}^{\wedge} 2 / \ln 2\right) *(2 \mathrm{Pi} / \ln 2)$

Input:

$\log \left(2 \times \frac{\pi}{\log (2)}\right)\left(2 \times \frac{\pi^{2}}{\log (2)}\right)\left(2 \times \frac{\pi}{\log (2)}\right)$
$\log (x)$ is the natural logarithm

Exact result:

$4 \pi^{3} \log \left(\frac{2 \pi}{\log (2)}\right)$

$$
\log ^{2}(2)
$$

Decimal approximation:

569.0456620556244658364918972442354124629248429568863086987...
569.045662...

Alternate forms:

$\frac{4 \pi^{3}(\log (2)+\log (\pi)-\log (\log (2)))}{\log ^{2}(2)}$
$\frac{4 \pi^{3} \log (\pi)}{\log ^{2}(2)}-\frac{4 \pi^{3} \log (\log (2))}{\log ^{2}(2)}+\frac{4 \pi^{3}}{\log (2)}$

Alternative representations:

$$
\frac{\left(\log \left(\frac{2 \pi}{\log (2)}\right)(2 \pi)\right) 2 \pi^{2}}{\log (2) \log (2)}=4 \pi \log _{e}\left(\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(\frac{1}{\log _{e}(2)}\right)^{2}
$$

$$
\frac{\left(\log \left(\frac{2 \pi}{\log (2)}\right)(2 \pi)\right) 2 \pi^{2}}{\log (2) \log (2)}=4 \pi \log (a) \log _{a}\left(\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(\frac{1}{\log (a) \log _{a}(2)}\right)^{2}
$$

$$
\frac{\left(\log \left(\frac{2 \pi}{\log (2)}\right)(2 \pi)\right) 2 \pi^{2}}{\log (2) \log (2)}=-4 \pi \mathrm{Li}_{1}\left(1-\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(-\frac{1}{\mathrm{Li}_{1}(-1)}\right)^{2}
$$

Series representations:

$$
\frac{\left(\log \left(\frac{2 \pi}{\log (2)}\right)(2 \pi)\right) 2 \pi^{2}}{\log (2) \log (2)}=\frac{4 \pi^{3}\left(-2 i \pi\left[\frac{\arg \left(-x+\frac{2 \pi}{\log (2)}\right)}{2 \pi}\right\rfloor-\log (x)+\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}\left(-x+\frac{2 \pi}{\log (2)}\right)^{k}}{k}\right)}{\left(2 \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-x x^{k} x^{-k}\right.}{k}\right)^{2}}
$$

$$
\frac{\left(\log \left(\frac{2 \pi}{\log (2)}\right)(2 \pi)\right) 2 \pi^{2}}{\log (2) \log (2)}=\frac{4 \pi^{3}\left(-2 i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor-\log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{2 \pi}{\log (2)}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)}{\left(2 \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}}
$$

$$
\begin{aligned}
& \frac{\left(\log \left(\frac{2 \pi}{\log (2)}\right)(2 \pi)\right) 2 \pi^{2}}{\log (2) \log (2)}= \\
& \frac{4 \pi^{3}\left(\left\lfloor\frac{\arg \left(\frac{2 \pi}{\log (2)}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{2 \pi}{\log (2)}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{2 \pi}{\log (2)}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)}{\left(\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}}
\end{aligned}
$$

Integral representations:

$\frac{\left(\log \left(\frac{2 \pi}{\log (2)}\right)(2 \pi)\right) 2 \pi^{2}}{\log (2) \log (2)}=\frac{4 \pi^{3} \int_{1}^{\frac{2 \pi}{\log (2)} \frac{1}{t} d t}}{\left(\int_{1}^{2} \frac{1}{t} d t\right)^{2}}$

$$
\frac{\left(\log \left(\frac{2 \pi}{\log (2)}\right)(2 \pi)\right) 2 \pi^{2}}{\log (2) \log (2)}=\frac{8 i \pi^{4} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{2 \pi}{\log (2)}\right)^{-s}}{\Gamma(1-s)} d s}{\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{2}} \text { for }-1<\gamma<0
$$

$\left(\left(\left(2 *\left(\left(\left(\ln (2 \mathrm{Pi} / \ln 2) *\left(2 \mathrm{Pi}^{\wedge} 2 / \ln 2\right) *(2 \mathrm{Pi} / \ln 2)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 14$

Input:

$\sqrt[14]{2\left(\log \left(2 \times \frac{\pi}{\log (2)}\right)\left(2 \times \frac{\pi^{2}}{\log (2)}\right)\left(2 \times \frac{\pi}{\log (2)}\right)\right)}$
$\log (x)$ is the natural logarithm

Exact result:

$\frac{(2 \pi)^{3 / 14} \sqrt[14]{\log \left(\frac{2 \pi}{\log (2)}\right)}}{\sqrt[7]{\log (2)}}$

Decimal approximation:

1.653097104485619556424528909360107223893861476019894811244...
$1.6530971044 \ldots$ is very near to the 14 th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. 1,65578...

Alternate form:

All 14th roots of $\left(8 \pi^{\wedge} 3 \log ((2 \pi) / \log (2))\right) /\left(\log ^{\wedge} 2(2)\right)$:
$\frac{(2 \pi)^{3 / 14} e^{0} \sqrt[14]{\log \left(\frac{2 \pi}{\log (2)}\right)}}{\sqrt[7]{\log (2)}} \approx 1.6531$ (real, principal root)
$\frac{(2 \pi)^{3 / 14} e^{(i \pi /) 7} \sqrt[14]{\log \left(\frac{2 \pi}{\log (2)}\right)}}{\sqrt[7]{\log (2)}} \approx 1.4894+0.7173 i$
$\frac{(2 \pi)^{3 / 14} e^{(2 i \pi) / 7} \sqrt[14]{\log \left(\frac{2 \pi}{\log (2)}\right)}}{\sqrt[7]{\log (2)}} \approx 1.0307+1.2924 i$
$(2 \pi)^{3 / 14} e^{(3 i \pi) / 7} \sqrt[14]{\log \left(\frac{2 \pi}{\log (2)}\right)}$
$\frac{\sqrt[7]{\log (2)}}{\sqrt{\log (2)}}$
$\frac{(2 \pi)^{3 / 14} e^{(4 i \pi) / 7} \sqrt[14]{\log \left(\frac{2 \pi}{\log (2)}\right)}}{} \approx 0.36785+1.6117 i$
$\frac{7}{\log }$

Alternative representations:

$\sqrt[14]{\frac{2 \log \left(\frac{2 \pi}{\log (2)}\right)\left(\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}=\sqrt[14]{8 \pi \log _{e}\left(\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(\frac{1}{\log _{e}(2)}\right)^{2}}$

$$
\sqrt[14]{\frac{2 \log \left(\frac{2 \pi}{\log (2)}\right)\left(\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}=\sqrt[14]{8 \pi \log (a) \log _{a}\left(\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(\frac{1}{\log (a) \log _{a}(2)}\right)^{2}}
$$

$\sqrt[14]{\frac{2 \log \left(\frac{2 \pi}{\log (2)}\right)\left(\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}=\sqrt[14]{-8 \pi \mathrm{Li}_{1}\left(1-\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(-\frac{1}{\mathrm{Li}_{1}(-1)}\right)^{2}}$

Series representations:

$$
\begin{aligned}
& \sqrt[14]{\frac{2 \log \left(\frac{2 \pi}{\log (2)}\right)\left(\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}= \\
& \frac{(2 \pi)^{3 / 14} \sqrt[14]{2 i \pi\left[\frac{\arg \left(-x+\frac{2 \pi}{\log (2)}\right)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}\left(-x+\frac{2 \pi}{\log (2)}\right)^{k}}{k}}}{\sqrt[7]{2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}}} \text { for } x<0
\end{aligned}
$$

$\sqrt[14]{\frac{2 \log \left(\frac{2 \pi}{\log (2)}\right)\left(\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}=$
$(2 \pi)^{3 / 14} \sqrt[14]{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{2 \pi}{\log (2)}-z_{0}\right)^{k} z_{0}^{-k}}{k}}$

$$
\sqrt[7]{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}
$$

$$
\sqrt[14]{\frac{2 \log \left(\frac{2 \pi}{\log (2)}\right)\left(\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}=
$$

$$
(2 \pi)^{3 / 14}\left(\left\lfloor\frac{\arg \left(\frac{2 \pi}{\log (2)}-z_{0}\right)}{2 \pi}\right] \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{2 \pi}{\log (2)}-z_{0}\right)}{2 \pi}\right] \log \left(z_{0}\right)-\right.
$$

$$
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{2 \pi}{\log (2)}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \wedge(1 / 14) /
$$

$$
\left(\sqrt[7]{\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)
$$

Integral representations:

$$
\sqrt[14]{\frac{2 \log \left(\frac{2 \pi}{\log (2)}\right)\left(\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}=\frac{(2 \pi)^{3 / 14} \sqrt[14]{\int_{1}^{\frac{2 \pi}{\log (2)} \frac{1}{t} d t}}}{\sqrt[7]{\int_{1}^{2} \frac{1}{t} d t}}
$$

$$
\begin{aligned}
& \sqrt[14]{\frac{2 \log \left(\frac{2 \pi}{\log (2)}\right)\left(\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}= \\
& \quad \frac{i(2 \pi)^{2 / 7}\left(-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2}}{\Gamma(1-s)} d s\right)^{6 / 7} \sqrt[14]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{2 \pi}{\log (2)}\right)^{-s}}{\Gamma(1-s)} d s}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }
\end{aligned}
$$

$1 / 10^{\wedge} 27^{*}\left(\left(\left(\left(\left(18 / 10^{\wedge} 3+\left(\left(\left(2^{*}(((\ln (2 \mathrm{Pi} / \ln 2) *(2 \mathrm{Pi} \wedge 2 / \ln 2) *(2 \mathrm{Pi} / \ln 2))))\right)\right)\right)^{\wedge} 1 / 14\right)\right)\right)\right)\right)$

Input:

$$
\frac{1}{10^{27}}\left(\frac{18}{10^{3}}+\sqrt[14]{2\left(\log \left(2 \times \frac{\pi}{\log (2)}\right)\left(2 \times \frac{\pi^{2}}{\log (2)}\right)\left(2 \times \frac{\pi}{\log (2)}\right)\right)}\right)
$$

Exact result:

1000000000000000000000000000

Decimal approximation:

$1.6710971044856195564245289093601072238938614760198948 \ldots \times 10^{-27}$
$1.6710971044 \ldots * 10^{-27}$
We note that $1.6710971044 \ldots$ is a result practically equal to the value of the formula:

$$
m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-24} \mathrm{gm}
$$

that is the holographic proton mass (N. Haramein)

Alternate forms:

$\frac{9}{500000000000000000000000000000}+$
$\frac{\pi^{3 / 14} \sqrt[14]{\log \left(\frac{2 \pi}{\log (2)}\right)}}{500000000000000000000000000 \times 2^{11 / 14} \sqrt[7]{\log (2)}}$

$$
\frac{9}{500}+\frac{(2 \pi)^{3 / 14} \sqrt[14]{\log (2)+\log (\pi)-\log (\log (2))}}{\sqrt[7]{\log (2)}}
$$

1000000000000000000000000000

$500000000000000000000000000000 \sqrt[7]{\log (2)}$

Alternative representations:

$$
\begin{aligned}
& \frac{\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}}{10^{27}} \\
& \frac{\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}}{10^{27}}=\frac{\frac{18}{10^{3}}+\sqrt[14]{8 \pi \log _{e}\left(\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(\frac{1}{\log e_{e}(2)}\right)^{2}}}{10^{27}} \\
& \frac{\frac{18}{10^{3}}+\sqrt[14]{8 \pi \log (a) \log _{a}\left(\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(\frac{1}{\log (a) \log (2)}\right)^{2}}}{10^{27}} \\
& \frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}} \\
& 10^{27}
\end{aligned}=\frac{\frac{18}{10^{3}}+\sqrt[14]{-8 \pi \mathrm{Li}_{1}\left(1-\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(-\frac{1}{\mathrm{Li}_{1}(-1)}\right)^{2}}}{10^{27}} .
$$

Series representations:

$$
\frac{\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}}{\sqrt[9]{90^{27}} \sqrt[7]{2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}}+500(2 \pi)^{3 / 14}}=
$$

$(500000000000000000000000000000$

$$
\left.\sqrt[7]{2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}}\right) \text { for } x<0
$$

$$
\frac{\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}}{\sqrt[9]{7 \sqrt[7]{2 i \pi}\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}+500(2 \pi)^{3 / 14}}}=
$$

$\int 500000000000000000000000000000$

$$
\left.\sqrt[7]{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)
$$

$$
\begin{aligned}
& \frac{\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right.}{\log (2) \log (2)}}}{10^{27}}= \\
& \left(9\left(\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \wedge\right. \\
& (1 / 7)+500(2 \pi)^{3 / 14}\left(\left\lfloor\frac{\arg \left(\frac{2 \pi}{\log (2)}-z_{0}\right)}{2 \pi}\right) \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\right. \\
& \left.\left.\left\lfloor\frac{\arg \left(\frac{2 \pi}{\log (2)}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{2 \pi}{\log (2)}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \wedge(1 / 14)\right] / \\
& \left(500000000000000000000000000000 \sqrt[7]{\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)
\end{aligned}
$$

Integral representations:
$\frac{\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}}{10^{27}}=\frac{9 \sqrt[7]{\int_{1}^{2} \frac{1}{t} d t}+500(2 \pi)^{3 / 14} \sqrt[14]{\int_{1}^{\frac{2 \pi}{\log (2)}} \frac{1}{t} d t}}{500000000000000000000000000000 \sqrt[7]{\int_{1}^{2} \frac{1}{t} d t}}$

$$
\begin{aligned}
& \frac{\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}}{\left(9 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+500 i(2 \pi)^{2 / 7}\left(-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{6 / 7}\right.}= \\
& \left.\sqrt[14]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{2 \pi}{\log (2)}\right)^{-s}}{\Gamma(1-s)}} d s\right) / \\
& \left(500000000000000000000000000000 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right) \text { for }-1< \\
& \gamma<0
\end{aligned}
$$

$1 / 9^{*}\left[(((\ln (2 \mathrm{Pi} / \ln 2))))^{\wedge} 4+((((2 \mathrm{Pi} / \ln 2))))^{\wedge} 4+\left(2 \mathrm{Pi}^{\wedge} 2 / \ln 2\right)^{\wedge} 4\right]-\left(21 * 8^{*} 2\right)$

Input:

$\frac{1}{9}\left(\log ^{4}\left(2 \times \frac{\pi}{\log (2)}\right)+\left(2 \times \frac{\pi}{\log (2)}\right)^{4}+\left(2 \times \frac{\pi^{2}}{\log (2)}\right)^{4}\right)-21 \times 8 \times 2$

Exact result:

$\frac{1}{9}\left(\frac{16 \pi^{4}}{\log ^{4}(2)}+\frac{16 \pi^{8}}{\log ^{4}(2)}+\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)\right)-336$

Decimal approximation:

73492.79399207621478061723189938204922675911283263122564600...
73492.793992...

Alternate forms:

$\frac{1}{9}\left(-3024+\frac{16\left(\pi^{4}+\pi^{8}\right)}{\log ^{4}(2)}+\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)\right)$
$-336+\frac{16 \pi^{4}}{9 \log ^{4}(2)}+\frac{16 \pi^{8}}{9 \log ^{4}(2)}+\frac{1}{9} \log ^{4}\left(\frac{2 \pi}{\log (2)}\right)$
$\frac{16 \pi^{4}+16 \pi^{8}+\log ^{4}(2) \log ^{4}\left(\frac{2 \pi}{\log (2)}\right)}{9 \log ^{4}(2)}-336$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{9}\left(\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)+\left(\frac{2 \pi}{\log (2)}\right)^{4}+\left(\frac{2 \pi^{2}}{\log (2)}\right)^{4}\right)-21(8 \times 2)= \\
& -336+\frac{1}{9}\left(\log _{e}^{4}\left(\frac{2 \pi}{\log (2)}\right)+\left(\frac{2 \pi}{\log _{e}(2)}\right)^{4}+\left(\frac{2 \pi^{2}}{\log _{e}(2)}\right)^{4}\right) \\
& \frac{1}{9}\left(\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)+\left(\frac{2 \pi}{\log (2)}\right)^{4}+\left(\frac{2 \pi^{2}}{\log (2)}\right)^{4}\right)-21(8 \times 2)= \\
& -336+\frac{1}{9}\left(\left(\log (a) \log _{a}\left(\frac{2 \pi}{\log (2)}\right)\right)^{4}+\left(\frac{2 \pi}{\log (a) \log _{a}(2)}\right)^{4}+\left(\frac{2 \pi^{2}}{\log (a) \log _{a}(2)}\right)^{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{9}\left(\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)+\left(\frac{2 \pi}{\log (2)}\right)^{4}+\left(\frac{2 \pi^{2}}{\log (2)}\right)^{4}\right)-21(8 \times 2)= \\
& \quad-336+\frac{1}{9}\left(\left(-\mathrm{Li}_{1}\left(1-\frac{2 \pi}{\log (2)}\right)\right)^{4}+\left(-\frac{2 \pi}{\mathrm{Li}_{1}(-1)}\right)^{4}+\left(-\frac{2 \pi^{2}}{\mathrm{Li}_{1}(-1)}\right)^{4}\right)
\end{aligned}
$$

Series representations:

$$
\frac{1}{9}\left(\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)+\left(\frac{2 \pi}{\log (2)}\right)^{4}+\left(\frac{2 \pi^{2}}{\log (2)}\right)^{4}\right)-21(8 \times 2)=
$$

$$
-336+\frac{1}{9}\left(\frac{16 \pi^{4}}{\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right)^{4}\right.}+\right.
$$

$$
16 \pi^{8}
$$

$$
\overline{\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{4}}+
$$

$$
\left.\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{2 \pi}{\log (2)}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{4}\right)
$$

$$
\begin{aligned}
& \frac{1}{9}\left(\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)+\left(\frac{2 \pi}{\log (2)}\right)^{4}+\left(\frac{2 \pi^{2}}{\log (2)}\right)^{4}\right)-21(8 \times 2)= \\
& -336+\frac{1}{9}\left(\frac{16 \pi^{4}}{\left(2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)^{4}}+\right. \\
& 16 \pi^{8} \\
& \overline{\left(2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)^{4}}+ \\
& \left.\left(2 i \pi\left\lfloor\frac{\arg \left(-x+\frac{2 \pi}{\log (2)}\right)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}\left(-x+\frac{2 \pi}{\log (2)}\right)^{k}}{k}\right)^{4}\right) \text { for } x<0 \\
& \frac{1}{9}\left(\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)+\left(\frac{2 \pi}{\log (2)}\right)^{4}+\left(\frac{2 \pi^{2}}{\log (2)}\right)^{4}\right)-21(8 \times 2)= \\
& -336+\frac{1}{9}\left(\frac{16 \pi^{4}}{\left(\log \left(z_{0}\right)+\left\lfloor\frac{\operatorname{agg}\left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{4}}+\right. \\
& 16 \pi^{8} \\
& \overline{\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{4}}+ \\
& \left.\left(\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{2 \pi}{\log (2)}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{2 \pi}{\log (2)}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{4}\right)
\end{aligned}
$$

We have the following mathematical connection:

$$
\begin{aligned}
& \left(\frac{1}{9}\left(\frac{16 \pi^{4}}{\log ^{4}(2)}+\frac{16 \pi^{8}}{\log ^{4}(2)}+\log ^{4}\left(\frac{2 \pi}{\log (2)}\right)\right)-336\right)=73492.793 \ldots \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
I_{21} \& \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\mathrm{F},}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \ll
$$

$\left.<H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}\right)$

$$
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $\mathrm{u} \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

The result $569.0456 \ldots$ is very near to 566 that is the value of $a(n)$ for $n=142$ of a $5^{\text {th }}$ order mock theta function.

The formula of mock theta function is:
$\mathrm{a}(\mathrm{n}) \approx \operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt(n/15))} /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt(n)}\right)\right.$
sqrt(golden ratio) $* \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(142.36 / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(142.36)\right)$

Input interpretation:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{142.36}{15}}\right)}{2 \sqrt[4]{5} \sqrt{142.36}}$

Result:

569.1823440742094863556947215085760109349046871335692983389
569.182344074...

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{142.36}{15}}\right)}{2 \sqrt[4]{5} \sqrt{142.36}}= \\
& \frac{\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(9.49067-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(142.36-z_{0}\right)^{k} z_{0}^{-k}}{k!}}
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{142.36}{15}}\right)}{2 \sqrt[4]{5} \sqrt{142.36}}=\left(\exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right)\right. \\
& \exp \left(\pi \exp \left(i \pi\left[\frac{\arg (9.49067-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(9.49067-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right] / \\
& \left(2 \sqrt[4]{5} \exp \left(i \pi\left[\frac{\arg (142.36-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(142.36-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{142.36}{15}}\right)}{2 \sqrt[4]{5} \sqrt{142.36}}=\left(\operatorname { e x p } \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(9.49067-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right. \\
& \left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(9.49067-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(9.49067-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(142.36-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor}\right) \\
& \left.z_{0}^{-1 / 2\left\lfloor\arg \left(142.36-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(142.36-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

We have the following mathematical connection:

$$
\left.\begin{array}{l}
{\left[\frac{4 \pi^{3} \log \left(\frac{2 \pi}{\log (2)}\right)}{\log ^{2}(2)}\right]=569.0456 \ldots \Rightarrow} \\
\Rightarrow\left[\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{142.36}{15}}\right)}{2 \sqrt[4]{5} \sqrt{142.36}}\right]=569.18234 \ldots
\end{array}\right] .
$$

From the two following results: $1.6710971044 \ldots{ }^{*} 10^{-27}$ that represent the proton mass, thence a like-particle solution and $73492.793992 \ldots$, that is the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane, we obtain a solution very near to the dilaton value:
[((()((1/10^27* $\left(\left(\left(() 18 / 10^{\wedge} 3+\left(\left(\left(2^{*}\right)\left(\left(\ln (2 \mathrm{Pi} / \ln 2) *\left(2 \mathrm{Pi}^{\wedge} 2 / \ln 2\right)\right)^{*}\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.(2 \mathrm{Pi} / \ln 2)))))))^{\wedge} 1 / 14\right)\right)\right)\right)\right)\right)\right)\right)$)) $)$ * 73492.793992$]^{\wedge} 1 / 4096$

Input interpretation:

$\sqrt[4096]{\left(\frac{1}{10^{27}}\left(\frac{18}{10^{3}}+\sqrt[14]{2\left(\log \left(2 \times \frac{\pi}{\log (2)}\right)\left(2 \times \frac{\pi^{2}}{\log (2)}\right)\left(2 \times \frac{\pi}{\log (2)}\right)\right)}\right)\right) \times 73492.793992}$
$\log (x)$ is the natural logarithm

Result:

0.987758316480298
$0.9877583 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

And:
sqrt((()log base 0.98775831648
[(((((1/10^27*((((18/10^3+(((2*(((ln(2Pi/ln2)*(2Pi^2/ln2)*(2Pi/ln2)))))))^1/14))))))))))))*73492.793992]))))

Input interpretation:

$\sqrt{\log _{0.98775831648}(}$
$\left.\left.\left(\frac{1}{10^{27}}\left(\frac{18}{10^{3}}+\sqrt[14]{2\left(\log \left(2 \times \frac{\pi}{\log (2)}\right)\left(2 \times \frac{\pi^{2}}{\log (2)}\right)\left(2 \times \frac{\pi}{\log (2)}\right)\right.}\right)\right)\right) \times 73492.793992\right)$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

64.0000000..

64 (see Appendix)

All 2nd roots of 4096.00000:

$64.0000000 e^{0} \approx 64.000$ (real, principal root)
$64.0000000 e^{i \pi} \approx-64.000$ (real root)

Alternative representations:

$\sqrt{\log _{0.987758316480000}\left(\frac{73492.7939920000\left(\frac{18}{10^{3}}+\sqrt[14]{\left.\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right.}{\log (2) \log (2)}\right)}\right.}{10^{27}}\right)}=$
$\sqrt{\log _{0.987758316480000}\left(\frac{73492.7939920000\left(\frac{18}{10^{3}}+\sqrt[14]{8 \pi \log _{e}\left(\frac{2 \pi}{\log (2)}\right) \pi^{2}\left(\frac{1}{\log _{e}(2)}\right)^{2}}\right)}{10^{27}}\right)}$

Series representations:

$$
\begin{aligned}
& \sqrt{\log _{0.987758316480000}\left(\frac{73492.7939920000\left(\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\operatorname { l o g } \left(\frac{2 \pi}{\left.\log (2)\left(2 \pi^{2}\right)(2 \pi)\right)}\right.\right.}{\log (2) \log (2)}}\right)}{10^{27}}\right)}= \\
& \quad \exp \left(i \pi \left[\frac { 1 } { 2 \pi } \operatorname { a r g } \left(-x+\log _{0.987758316480000}\left(1.32287029185600 \times 10^{-24}+\right.\right.\right.\right. \\
& \left.\left.\left.8.52611499811343 \times 10^{-23} \sqrt{\left.\frac{\pi^{3} \log \left(\frac{2 \pi}{\log (2)}\right)}{\log ^{2}(2)}\right)}\right)\right) \mid \sqrt{x}\right)
\end{aligned}
$$

$$
\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} x^{-k}\left(-x+\log _{0.987758316480000}\left(1.32287029185600 \times 10^{-24}+\right.\right.
$$

$$
\left.\left.8.52611499811343 \times 10^{-23} \sqrt[14]{\frac{\pi^{3} \log \left(\frac{2 \pi}{\log (2)}\right)}{\log ^{2}(2)}}\right)\right)^{k}
$$

$$
\left(-\frac{1}{2}\right)_{k} \text { for }(x \in \mathbb{R} \text { and } x<0)
$$

$$
\begin{aligned}
& \sqrt{\log _{0.987758316480000}\left(\frac{73492.7939920000\left(\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\operatorname { l o g } \left(\frac{2 \pi}{\log (2)\left(2 \pi^{2}\right)(2 \pi)}\right.\right.}{\log (2) \log (2)}}\right)}{10^{27}}\right)}= \\
& \left(\frac{1}{z_{0}}\right)^{1 / 2}\left\lfloor\operatorname{agg}\left(\log 0.987758316480000\left(1.32287029185600 \times 10^{-24}+8.52611499811343 \times 10^{-23} \sqrt[14]{\frac{\pi^{3} \log \left(\frac{2 \pi}{\log (2)}\right.}{\log ^{2}(2)}}\right)-z_{0}\right) /(2 \pi)\right] \\
& z_{0}\left(1 / 2\left(1+\arg \left(\log _{0.987758316480000}\left(1.32287029185600 \times 10^{-24}+8.52611490811343 \times 10^{-23} \sqrt[14]{\frac{\pi^{3} \log \left(\frac{2 \pi}{\left.\log _{(2)}\right)}\right.}{\log _{2}^{2}(2)}}\right)-z_{0}\right) /(2 \pi)\right]\right) \\
& \sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\operatorname { l o g } _ { 0 . 9 8 7 7 5 8 3 1 6 4 8 0 0 0 0 } \left(1.32287029185600 \times 10^{-24}+\right.\right. \\
& \left.8.52611499811343 \times 10^{-23} \sqrt[14]{\frac{\pi^{3} \log \left(\frac{2 \pi}{\log (2)}\right)}{\log ^{2}(2)}}-z_{0}\right)^{k} z_{0}^{-k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \sqrt{\log _{0.987758316480000}\left(\frac{73492.7939920000\left(\frac{18}{10^{3}}+\sqrt[14]{\frac{2\left(\log \left(\frac{2 \pi}{\log (2)}\right)\left(2 \pi^{2}\right)(2 \pi)\right)}{\log (2) \log (2)}}\right)}{10^{27}}\right)}= \\
& \sqrt{\log _{0.987758316480000}} \\
& 1.32287029185600 \times 10^{-24}+8.52611499811343 \times 10^{-23} \sqrt[14]{\frac{\pi^{3} \int_{1}^{\frac{2 \pi}{\log _{(2)}} \frac{1}{t} d t}}{\left(\int_{1}^{2} \frac{1}{t} d t\right)^{2}}}
\end{aligned}
$$

$\Gamma(x)$ is the gamma function

Now, we have that:

For x equal to the below formula:

where we take this other version of it:

$$
\begin{gathered}
\left(\frac{\log \frac{1+\sqrt{5}}{2}}{\pi}\right)^{2}=\left(\frac{\log 1.6180339887498}{\pi}\right)^{2}=\left(\frac{0.481211825059544828}{\pi}\right)^{2} \\
=(0.1531744812649979)^{2}=0.023462421710
\end{gathered}
$$

We have from the inverse of result:
$1 / 0.023462421710$
Input interpretation:
$\frac{1}{0.023462421710}$

Result:

42.62134626852208258258264849847846332994753762781974989912...
42.621346268522....

Thence, we obtain:
$\left.\left(\left(\left(\left(\left(1+0.0000098844 \cos \left(\left(2 \mathrm{Pi}^{*} \ln 0.023462422 /(\log 2)+0.872811\right)\right)\right)\right) / 0.023462422\right)\right)\right)\right)$
Input interpretation:

$$
\frac{1+9.8844 \times 10^{-6} \cos \left(2 \pi \times \frac{\log (0.023462422)}{\log (2)}+0.872811\right)}{0.023462422}
$$

Result:

42.621281...
42.621281...

Addition formulas:

$$
\left.\begin{array}{c}
\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}= \\
42.6213+0.000421286 \cos (0.872811) \cos \left(-\frac{2 \pi \log (0.0234624)}{\log (2)}\right)+ \\
0.000421286 \sin (0.872811) \sin \left(-\frac{2 \pi \log (0.0234624)}{\log (2)}\right) \\
\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}= \\
42.6213+0.000421286 \cos (0.872811) \cos \left(\frac{2 \pi \log (0.0234624)}{\log (2)}\right)- \\
0.000421286 \sin (0.872811) \sin \left(\frac{2 \pi \log (0.0234624)}{\log (2)}\right) \\
1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right) \\
\hline 0.0234624
\end{array}\right)
$$

Alternative representations:

$\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}=$
0.0234624

$$
\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}=\frac{1}{0.0234624}\left(1+4.9422 \times 10^{-6}\right.
$$

Series representations:

$$
\begin{aligned}
& 1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right) \\
& 0.0234624 \\
& 42.6213+0.000421286 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(0.872811+\frac{2 \pi \log (0.0234624)}{\log (2)}\right)^{2 k}}{(2 k)!} \\
& \frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}= \\
& 42.6213-0.000421286 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(0.872811+\pi\left(-\frac{1}{2}+\frac{2 \log (0.0234624)}{\log (2)}\right)\right)^{1+2 k}}{(1+2 k)!} \\
& 1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right) \\
& 42.6213+0.000421286 \sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(0.872811+\frac{2 \pi \log (0.0234624)}{\log (2)}-z_{0}\right)^{k}}{k!}
\end{aligned}
$$

Integral representations:

$\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}=$
$42.6213-0.000421286 \int_{\frac{\pi}{2}}^{0.872811+\frac{2 \pi \log (0.0234624)}{\log (2)}} \sin (t) d t$
$\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}=$
$42.6218+\int_{0}^{1} \frac{1}{\log (2)}(-0.000842573 \pi \log (0.0234624)-0.000367703 \log (2))$
$\sin \left(t\left(0.872811+\frac{2 \pi \log (0.0234624)}{\log (2)}\right)\right) d t$

```
\(1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)\)
    \(42.6213+\frac{0.000210643 \sqrt{\pi}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{s-\frac{(\pi \log (0.0234624)+0.436406 \log (2))^{2}}{s \log _{g}^{2}(2)}}}{\sqrt{s}} d s\) for \(\gamma>0\)
```

Performing the following calculations, we obtain:
(()((1+0.0000098844
$\left.\left.\left.\left.\left.\left.\cos \left(\left(2 \mathrm{Pi}^{*} \ln 0.023462422 /(\log 2)+0.872811\right)\right)\right)\right) / 0.023462422\right)\right)\right)\right)^{\wedge} 3-\left(64^{\wedge} 2-64 * 3+\right.$ 64/2)

Input interpretation:
$\left(\frac{1+9.8844 \times 10^{-6} \cos \left(2 \pi \times \frac{\log (0.023462422)}{\log (2)}+0.872811\right)}{0.023462422}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)$
$\log (x)$ is the natural logarithm

Result:

73488.69..
73488.69...

Addition formulas:

$$
\begin{gathered}
\left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)= \\
-3936+77425 .\left(1+9.8844 \times 10^{-6} \cos (0.872811) \cos \left(-\frac{2 \pi \log (0.0234624)}{\log (2)}\right)+\right. \\
\left.9.8844 \times 10^{-6} \sin (0.872811) \sin \left(-\frac{2 \pi \log (0.0234624)}{\log (2)}\right)\right)^{3}
\end{gathered}
$$

$$
\begin{aligned}
& \left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)= \\
& -3936+7.47709 \times 10^{-11}\left(101170 .+\cos (0.872811) \cos \left(\frac{2 \pi \log (0.0234624)}{\log (2)}\right)-\right. \\
& \left.\sin (0.872811) \sin \left(\frac{2 \pi \log (0.0234624)}{\log (2)}\right)\right)^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)= \\
& -3936+77425 .\left(1+9.8844 \times 10^{-6} \cosh \left(\frac{2 i \pi \log (0.0234624)}{\log (2)}\right) \cos (0.872811)+\right. \\
& \left.9.8844 \times 10^{-6} i \sinh \left(\frac{2 i \pi \log (0.0234624)}{\log (2)}\right) \sin (0.872811)\right)^{3} \\
& \left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)= \\
& -3936+7.47709 \times 10^{-11}\left(101170 .+\cosh \left(-\frac{2 i \pi \log (0.0234624)}{\log (2)}\right) \cos (0.872811)-\right. \\
& \left.i\left(\sinh \left(-\frac{2 i \pi \log (0.0234624)}{\log (2)}\right) \sin (0.872811)\right)\right)^{3}
\end{aligned}
$$

Alternative representations:

$$
\begin{gathered}
\left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)= \\
160-64^{2}+\left(\frac{1+9.8844 \times 10^{-6} \cosh \left(i\left(0.872811+\frac{2 \pi \log (0.0234624)}{\log (2)}\right)\right)}{0.0234624}\right)^{3}
\end{gathered}
$$

$$
\begin{gathered}
\left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)= \\
160-64^{2}+\left(\frac{1+9.8844 \times 10^{-6} \cosh \left(-i\left(0.872811+\frac{2 \pi \log (0.0234624)}{\log (2)}\right)\right)}{0.0234624}\right)^{3}
\end{gathered}
$$

$$
\left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)=
$$

$$
160-64^{2}+\left(\frac { 1 } { 0 . 0 2 3 4 6 2 4 } \left(1+4.9422 \times 10^{-6}\left(e^{-i(0.872811+(2 \pi \log (0.0234624)) \mid \log (2))}+\right.\right.\right.
$$

$$
\left.\left.\left.e^{i(0.872811+(2 \pi \log (0.0234624))(\log (2))}\right)\right)\right)^{3}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)= \\
& -3936+77425 .\left(1+9.8844 \times 10^{-6} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(0.872811+\frac{2 \pi \log (0.0234624}{\log (2)}\right)^{2 k}}{(2 k)!}\right)^{3} \\
& \left(\frac{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)=-3936+ \\
& 77425 .\left(1-9.8844 \times 10^{-6} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(0.872811+\pi\left(-\frac{1}{2}+\frac{2 \log (0.0234624)}{\log (2)}\right)\right)^{1+2 k}}{(1+2 k)!}\right)^{3} \\
& \binom{1+9.8844 \times 10^{-6} \cos \left(\frac{(2 \pi) \log (0.0234624)}{\log (2)}+0.872811\right)}{0.0234624}^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)=-3936+ \\
& 77425 .\left(1+9.8844 \times 10^{-6} \sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(0.872811+\frac{2 \pi \log (0.0234624)}{\log (2)}-z_{0}\right)^{k}}{k}\right)^{3} \\
& k!
\end{aligned}
$$

Thence, we have the following mathematical connections:

$$
\begin{gathered}
\left(\left(\frac{1+9.8844 \times 10^{-6} \cos \left(2 \pi \times \frac{\log (0.023462422)}{\log (2)}+0.872811\right)}{0.023462422}\right)^{3}-\left(64^{2}-64 \times 3+\frac{64}{2}\right)\right)=73488.69 \Rightarrow \\
\Rightarrow-3927+2\binom{13\binom{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} P_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}}{\int\left[\mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathrm{X}^{\mu} D^{2} \mathrm{X}^{\mu}\right)\right\}\left|\mathrm{X}^{\mu}, \mathrm{X}^{i}=0\right\rangle_{\mathrm{NS}}}=}{-3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}}} .
\end{gathered}
$$

$$
\begin{aligned}
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow \\
& \binom{I_{21} \ll \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant p^{1-\varepsilon},} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \preccurlyeq}{\& H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right.} /, \\
& /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Now, we have that:

From the first formula, we obtain:
$(((2+\operatorname{sqrt}(5)+\operatorname{sqrt}((15-6 * \operatorname{sqrt}(5)))))) / 2$

Input:

$\frac{1}{2}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})$

Decimal approximation:

2.747238274932304333057465186134202826758163878776167987783...
2.7472382749323....

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2}(\sqrt{15-6 \sqrt{5}}+\sqrt{5})+1 \\
& \frac{1}{2}(2+\sqrt{5}+\sqrt{3(5-2 \sqrt{5})}) \\
& 1+\frac{\sqrt{5}}{2}+\frac{1}{2} \sqrt{15-6 \sqrt{5}}
\end{aligned}
$$

Minimal polynomial:

$x^{4}-4 x^{3}-4 x^{2}+31 x-29$

We observe that from the square root of this expression, we obtain:
$\operatorname{sqrt}[(((2+\operatorname{sqrt}(5)+\operatorname{sqrt}((15-6 * \operatorname{sqrt}(5)))))) / 2]$
Input:
$\sqrt{\frac{1}{2}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})}$

Decimal approximation:

1.657479494573704924740483047406775190347623094018322205669..
$1.6574794945737 \ldots$ is very near to the 14 th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$

Alternate forms:
$\frac{1}{2} \sqrt{(\sqrt{15-6 \sqrt{5}}+\sqrt{5}+2) 2}$
$\sqrt{\frac{1}{2}(2+\sqrt{5}+\sqrt{3(5-2 \sqrt{5})})}$

Minimal polynomial:

$x^{8}-4 x^{6}-4 x^{4}+31 x^{2}-29$

Note that, from the $64^{\text {th }}$ root of the inverse of this last result, we obtain:
$\left.\left(\left(\left(\left(1 /\left(\left(\left(\operatorname{sqrt}\left[\left(\left(\left(2+\operatorname{sqrt}(5)+\operatorname{sqrt}\left(\left(15-6^{*} \operatorname{sqrt}(5)\right)\right)\right)\right)\right)\right) / 2\right]\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 64$

Input:

$\sqrt[64]{\frac{1}{\sqrt{\frac{1}{2}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})}}}$

Result:

$$
\sqrt[128]{\frac{2}{2+\sqrt{5}+\sqrt{15-6 \sqrt{5}}}}
$$

Decimal approximation:
$0.9921358035 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternate form:

$\sqrt[128]{\frac{2}{2+\sqrt{5}+\sqrt{3(5-2 \sqrt{5})}}}$

Minimal polynomial:
$29 x^{512}-31 x^{384}+4 x^{256}+4 x^{128}-1$

Now, performing the following calculations, we obtain:
$\left.24^{*}[(((2+\operatorname{sqrt}(5)+\operatorname{sqrt}((15-6 * \operatorname{sqrt}(5))))))) / 2\right]^{\wedge} 8-\left(\left(64^{\wedge} 2+\left(24^{*} 11+12\right)+8\right)\right)$

Input:

$$
24\left(\frac{1}{2}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})\right)^{8}-\left(64^{2}+(24 \times 11+12)+8\right)
$$

Result:

$\frac{3}{32}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})^{8}-4380$

Decimal approximation:

$73492.09699195285555876457006030735768486335147173325118542 \ldots$
73492.09699...

Alternate forms:

$$
\begin{aligned}
& \frac{1}{32}(478080 \sqrt{3(85-38 \sqrt{5})}-180864 \sqrt{5}+213696 \sqrt{15(85-38 \sqrt{5})}+ \\
& 198528 \sqrt{5(15-6 \sqrt{5})}+313152 \sqrt{3(5-2 \sqrt{5})}+1519488) \\
& 12(3957-471 \sqrt{5}+\sqrt{3(2286505+523582 \sqrt{5})})
\end{aligned}
$$

$12 \sqrt{3(5-2 \sqrt{5})}(1108+649 \sqrt{5})-36(157 \sqrt{5}-1319)$

Minimal polynomial:

$x^{4}-189936 x^{3}+11233390176 x^{2}-184735480018176 x-$ 875005420177868544

Thence, the following mathematical connections:

$$
\begin{aligned}
& \left(\frac{3}{32}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})^{8}-4380\right)=73492.0969 \ldots \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
\begin{gathered}
\binom{I_{21} \leftrightarrow \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{3}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \leftrightarrow}{\leftrightarrow H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
\quad /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{gathered}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $\mathrm{u} \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

With regard 24,8 and 11 , they are numbers concerning the string theory/ M-theory.
1968 "Veneziano model" Euler beta function describes the strong nuclear force. When a string moves in space-time by splitting and recombining (see worldsheet diagram at right), a large number of mathematical identities must be satisfied. These are the identities of Ramanujan's modular function. The KSV loop diagrams of interacting strings can be described using modular functions. The "Ramanujan function" (an elliptic modular function satisfies the need for "conformal symmetry") has $\mathbf{2 4}$ "modes" that correspond to the physical vibrations of a bosonic string. When the Ramanujan function is generalized, 24 is replaced by 8 (8 $+2=10$) for fermion strings.
The Ramanujan tau function, studied by Ramanujan (1916), is the function:

$$
\sum_{n \geq 1} \tau(n) q^{n}=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}=\eta(z)^{24}=\Delta(z)
$$

One notable feature of string theories is that these theories require extra dimensions of spacetime for their mathematical consistency. In bosonic string theory, spacetime is 26 -dimensional $(24+2=26)$, while in superstring theory it is $10-$ dimensional $(\mathbf{8}+2=10)$, and in M-theory it is 11 -dimensional $(8+2+1=\mathbf{1 1})$

From the second formula, we obtain:

$((((\operatorname{sqrt}(5)-2+((\operatorname{sqrt}((13-4 * \operatorname{sqrt}(5)))))+\operatorname{sqrt}(((50+12 * \operatorname{sqrt}(5)-2 * \operatorname{sqrt}((65-$ $20 * \operatorname{sqrt}(5))))))))$)))/4

Input:

$$
\frac{1}{4}(\sqrt{5}-2+(\sqrt{13-4 \sqrt{5}}+\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}}))
$$

Result:

$\frac{1}{4}(-2+\sqrt{5}+\sqrt{13-4 \sqrt{5}}+\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}})$

Decimal approximation:

2.621408383075861505698495280612243127797970614721167679664...
2.621408383...

$$
\begin{aligned}
& \text { Alternate forms: } \\
& \frac{1}{4}(\sqrt{13-4 \sqrt{5}}+\sqrt{5}+\sqrt{-2 \sqrt{5(13-4 \sqrt{5})}+12 \sqrt{5}+50}-2) \\
& \frac{1}{4}(-2+\sqrt{5}+\sqrt{13-4 \sqrt{5}}+\sqrt{2(25+6 \sqrt{5}-\sqrt{5(13-4 \sqrt{5})})})
\end{aligned}
$$

$$
\text { root of } x^{8}+4 x^{7}-10 x^{6}-54 x^{5}+9 x^{4}+226 x^{3}+125 x^{2}-301 x-269
$$

$$
\text { near } x=2.62141
$$

Minimal polynomial:
$x^{8}+4 x^{7}-10 x^{6}-54 x^{5}+9 x^{4}+226 x^{3}+125 x^{2}-301 x-269$
$\operatorname{sqrt}[((((\operatorname{sqrt}(5)-2+((\operatorname{sqrt}((13-4 * \operatorname{sqrt}(5))))+\operatorname{sqrt}(((50+12 * \operatorname{sqrt}(5)-2 * \operatorname{sqrt}((65-$ 20 *sqrt(5)))))))))))))/4]

Input:

$\left.\sqrt{\frac{1}{4}(\sqrt{5}-2+(\sqrt{13-4 \sqrt{5}}+\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}})}\right)$

Result:

$\frac{1}{2} \sqrt{-2+\sqrt{5}+\sqrt{13-4 \sqrt{5}}+\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}}}$

Decimal approximation:

1.619076398159105247383508829602269202039776657295266862292...
1.61907639....

This result is a good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:
$\frac{1}{2} \sqrt{\sqrt{13-4 \sqrt{5}}+\sqrt{5}+\sqrt{-2 \sqrt{5(13-4 \sqrt{5})}+12 \sqrt{5}+50-2}}$
$\frac{1}{2} \sqrt{-2+\sqrt{5}+\sqrt{13-4 \sqrt{5}}+\sqrt{2(25+6 \sqrt{5}-\sqrt{5(13-4 \sqrt{5})})}}$
root of $x^{8}+4 x^{7}-10 x^{6}-54 x^{5}+9 x^{4}+226 x^{3}+125 x^{2}-301 x-269$
\quad near $x=2.62141$

Minimal polynomial:
$x^{16}+4 x^{14}-10 x^{12}-54 x^{10}+9 x^{8}+226 x^{6}+125 x^{4}-301 x^{2}-269$

Note that, from the $64^{\text {th }}$ root of the inverse result, we obtain:
$(1 / 1.6190763981591052473835)^{\wedge} 1 / 64$

Input interpretation:

$\sqrt[64]{\frac{1}{1.6190763981591052473835}}$

Result:

$0.99249927 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

The two results obtained $0.9921358035 \ldots$ and $0.99249927 \ldots$, are very similar. This means that the two values $1.6574794945737 \ldots$ and $1.61907639 \ldots$ belong to the same interval, which could be 1.6-1.675 (so-called "golden numbers". M. Nardelli)

Performing the $64^{\text {th }}$ root of the difference between the results of the two expressions, we obtain:
$[(((2+\operatorname{sqrt}(5)+\operatorname{sqrt}((15-6 * \operatorname{sqrt}(5)))))) / 2-((((\operatorname{sqrt}(5)-2+((\operatorname{sqrt}((13-$
$4 * \operatorname{sqrt}(5))))+\operatorname{sqrt}(((50+12 * \operatorname{sqrt}(5)-2 * \operatorname{sqrt}((65-20 * \operatorname{sqrt}(5))))))))))) / 4] \wedge 1 / 64$

Input:

$$
\begin{aligned}
& \left(\frac{1}{2}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})-\right. \\
& \left.\left.\quad \frac{1}{4}(\sqrt{5}-2+(\sqrt{13-4 \sqrt{5}}+\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}}))\right) \wedge_{(1 / 64)}\right)
\end{aligned}
$$

Result:

$$
\left.\begin{array}{l}
\left(\frac{1}{2}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})+\right. \\
\left.\quad \frac{1}{4}(2-\sqrt{5}-\sqrt{13-4 \sqrt{5}}-\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}})\right)
\end{array}\right)
$$

Decimal approximation:

0.968130990157095087429750492357828586803931884018623914873.
$0.96813099 \ldots$ result that is equal to the spectral index n_{s}

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2}(-\sqrt{13-4 \sqrt{5}}+\sqrt{5}+2 \sqrt{3(5-2 \sqrt{5})}- \\
& \sqrt{-2 \sqrt{5(13-4 \sqrt{5})}+12 \sqrt{5}+50}+6) \wedge(1 / 64) 2^{31 / 32}
\end{aligned}
$$

$$
\frac{\sqrt[64]{6+\sqrt{5}+2 \sqrt{15-6 \sqrt{5}}-\sqrt{13-4 \sqrt{5}}-\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}}}}{\sqrt[32]{2}}
$$

$$
\frac{\sqrt[64]{6+\sqrt{5}-\sqrt{13-4 \sqrt{5}}+2 \sqrt{3(5-2 \sqrt{5})}-\sqrt{2(25+6 \sqrt{5}-\sqrt{5(13-4 \sqrt{5})})}}}{\sqrt[32]{2}}
$$

And:
$[(((2+\operatorname{sqrt}(5)+\operatorname{sqrt}((15-6 * \operatorname{sqrt}(5)))))) / 2-((((\operatorname{sqrt}(5)-2+((\operatorname{sqrt}((13-$
$4 * \operatorname{sqrt}(5))))+\operatorname{sqrt}(((50+12 * \operatorname{sqrt}(5)-2 * \operatorname{sqrt}((65-20 * \operatorname{sqrt}(5))))))))))) / 4]^{\wedge} 1 /(89+55+21)$
Where 89, 55 and 21 are Fibonacci numbers

Input:

$$
\begin{aligned}
& \left(\frac{1}{2}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})-\right. \\
& \quad \frac{1}{4}(\sqrt{5}-2+(\sqrt{13-4 \sqrt{5}}+\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}})) \\
& \left(\frac{1}{89+55+21}\right)
\end{aligned}
$$

Result:

$$
\begin{aligned}
& \left(\frac{1}{2}(2+\sqrt{5}+\sqrt{15-6 \sqrt{5}})+\right. \\
& \left.\left.\quad \frac{1}{4}(2-\sqrt{5}-\sqrt{13-4 \sqrt{5}}-\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}})\right) \wedge_{(1 / 165)}\right)
\end{aligned}
$$

Decimal approximation:

$0.987516007895626396616021042094032985575752359030610763431 \ldots$
$0.987516007 \ldots$ result very near to the dilator value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2}(-\sqrt{13-4 \sqrt{5}}+\sqrt{5}+2 \sqrt{3(5-2 \sqrt{5})}- \\
& \quad \sqrt{-2 \sqrt{5(13-4 \sqrt{5})}+12 \sqrt{5}+50}+6) \wedge(1 / 165) 2^{163 / 165}
\end{aligned}
$$

$$
\frac{\sqrt[165]{6+\sqrt{5}+2 \sqrt{15-6 \sqrt{5}}-\sqrt{13-4 \sqrt{5}}-\sqrt{50+12 \sqrt{5}-2 \sqrt{65-20 \sqrt{5}}}}}{2^{2 / 165}}
$$

$$
\frac{\sqrt[165]{6+\sqrt{5}-\sqrt{13-4 \sqrt{5}}+2 \sqrt{3(5-2 \sqrt{5})}-\sqrt{2(25+6 \sqrt{5}-\sqrt{5(13-4 \sqrt{5})})}}}{2^{2 / 165}}
$$

We have that:
Si. The coffee: of x^{180} in $\frac{x^{7}}{\left(1-x^{2}\right)\left(1-x^{2}\right)}=$ ceeffe of x^{95} in $\frac{x^{2}}{a-x)\left(1-x^{2}\right)}-\frac{x^{3}}{(1-x)\left(1-x^{3}\right)}=I\left(\frac{95}{2}\right)-I\left(\frac{95}{3}\right)=16$.
if. $I\left(\frac{n+4}{6}\right)-I\left(\frac{n+3}{6}\right)+I\left(\frac{n+2}{6}\right)=I\left(\frac{n}{2}\right)-I\left(\frac{n}{3}\right)$ prof $\frac{x^{2}}{\left(1-x^{2}\right)\left(1-x^{3}\right)}=\frac{x^{2}}{(1-x)\left(1-x^{2}\right)}-\frac{x^{3}}{\left(1-x^{3}\left(1-x^{3}\right)\right.}$
iii. I $(\sqrt{n+1}+\sqrt{n})=I(\sqrt{\langle n+2})$. it The cruft $f x^{n} \sin \frac{\Psi\left(x^{2}\right)}{1-x}=I\left(\frac{1}{2}+\sqrt{n+\frac{1}{2}}\right)$ $=I\left(\frac{1}{2}+\sqrt{n+\frac{\xi}{k}}\right)$.

Input:

$x \times \frac{95}{2}-x \times \frac{95}{3}=16$

Result:

$\frac{95 x}{6}=16$
Plot:

Alternate form:
$\frac{95 x}{6}-16=0$

Solution:

$x \approx 1.0105$
1.0105
$1.0105((\mathrm{n}+4) / 6)-1.0105((\mathrm{n}+3) / 6)+1.0105((\mathrm{n}+2) / 6)-1.0105(\mathrm{n} / 2)+1.0105(\mathrm{n} / 3)$

Input interpretation:

$1.0105 \times \frac{n+4}{6}+\frac{n+3}{6} \times(-1.0105)+1.0105 \times \frac{n+2}{6}+\frac{n}{2} \times(-1.0105)+1.0105 \times \frac{n}{3}$

Result:

$-0.168417 n+0.168417(n+2)-0.168417(n+3)+0.168417(n+4)$

Values:

n	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
$-0.168417 n+$ $0.168417(n+2)-$ $0.168417(n+3)+$ $0.168417(n+4)$	0.50525	0.50525	0.50525	0.50525	0.50525

Alternate form:

0.50525
0.50525

Property as a function:

Parity
even

Indefinite integral:

$\int\left(\frac{1}{6} \times 1.0105(n+4)-\frac{1}{6} \times 1.0105(n+3)+\frac{1}{6} \times 1.0105(n+2)-\frac{1.0105 n}{2}+\frac{1.0105 n}{3}\right)$

$$
d n=0.50525 n+\text { constant }
$$

Global maximum:

$\max \{-0.168417 n+0.168417(n+2)-0.168417(n+3)+0.168417(n+4)\}=\frac{2021}{4000}$ at $n=\frac{33}{10}$

Global minimum:

$$
\begin{aligned}
& \min \{-0.168417 n+0.168417(n+2)-0.168417(n+3)+0.168417(n+4)\}=\frac{2021}{4000} \\
& \quad \text { at } n=\frac{33}{10}
\end{aligned}
$$

Limit:

$\lim _{n \rightarrow \pm \infty}(-0.168417 n+0.168417(2+n)-0.168417(3+n)+0.168417(4+n))=0.50525$

Definite integral after subtraction of diverging parts:

$$
\begin{aligned}
& \int_{0}^{\infty}((-0.168417 n+0.168417(2+n)-0.168417(3+n)+0.168417(4+n))-0.50525) \\
& \quad \quad d n=0
\end{aligned}
$$

$1.0105((0.50525+4) / 6)-1.0105((0.50525+3) / 6)+1.0105((0.50525+2) / 6)-$ $1.0105(0.50525 / 2)+1.0105(0.50525 / 3)$

Input interpretation:

$$
\begin{aligned}
& 1.0105\left(\frac{1}{6}(0.50525+4)\right)+\left(\frac{1}{6}(0.50525+3)\right) \times(-1.0105)+ \\
& 1.0105\left(\frac{1}{6}(0.50525+2)\right)+\frac{0.50525}{2} \times(-1.0105)+1.0105 \times \frac{0.50525}{3}
\end{aligned}
$$

Result:

0.50525
0.50525
$(0.50525)^{\wedge} 1 / 64$

Input:

$\sqrt[64]{0.50525}$

Result:

$0.98938948 \ldots$
$0.98938948 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)
$1.0105^{*}((\operatorname{sqrt}(0.50525+1)+\operatorname{sqrt}(0.50525)))$

Input interpretation:

$1.0105(\sqrt{0.50525+1}+\sqrt{0.50525})$

Result:

1.95804...
1.95804...
$1.0105 * \operatorname{sqrt}(4 * 0.50525+2)$

Input interpretation:

$1.0105 \sqrt{4 \times 0.50525+2}$

Result:

2.02630...
2.02630...

Note that: $1.95804 \approx 2.02630 \ldots$ where 1.95804 is a result practically near to the mean value $1.962 * 10^{19}$ of DM particle
$1.0105^{*}(1 / 2+\operatorname{sqrt}(0.50525+2 / 4))=1.0105^{*}(((1 / 2+\operatorname{sqrt}(0.50525+1 / 2))))$

Input interpretation:

$1.0105\left(\frac{1}{2}+\sqrt{0.50525+\frac{2}{4}}\right)=1.0105\left(\frac{1}{2}+\sqrt{0.50525+\frac{1}{2}}\right)$

Result:

True
$1.0105^{*}(((1 / 2+\operatorname{sqrt}(0.50525+1 / 2))))$

Input interpretation:

$1.0105\left(\frac{1}{2}+\sqrt{0.50525+\frac{1}{2}}\right)$

Result:

1.518399090120748220770459294979364005796997850491968076736...
1.51839909...
$1 /\left(\left(\left(\left(1.0105^{*}(((1 / 2+\operatorname{sqrt}(0.50525+1 / 2))))\right)\right)\right)\right.$

Input interpretation:

$\frac{1}{1.0105\left(\frac{1}{2}+\sqrt{0.50525+\frac{1}{2}}\right)}$

Result:

$0.658588382004678772991651006593101421040284856877452090717 \ldots$
0.65858838...
$1 /\left(\left(\left(\left(1.0105^{*}(((1 / 2+\operatorname{sqrt}(0.50525+1 / 2))))\right)\right)\right)\right)^{\wedge} 1 / 32$

Input interpretation:

1
$\sqrt[32]{1.0105\left(\frac{1}{2}+\sqrt{0.50525+\frac{1}{2}}\right)}$

Result:

$0.987033037784555433254102906818403726263980419370770744357 \ldots$
$0.987033037 \ldots$. result very near to the dilator value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

We have that:

$$
\sqrt[3]{2}=1.259921,049894,873164,767208
$$

$$
=\frac{5}{4}\left(1+\frac{24}{1 \pi c}\right)^{\top}=
$$

 $\frac{19}{50}$ (1 $+$

$(2)^{\wedge} 1 / 3=5 / 4(1+24 / 1000)^{\wedge} 1 / 3$

Input:

$\sqrt[3]{2}=\frac{5}{4} \sqrt[3]{1+\frac{24}{1000}}$

Result:

1.259921049894873164767210607278228350570251464701507980081 .
1.259921049...

True
$5 / 4(1+24 / 1000)^{\wedge} 1 / 3$

Input:

$\frac{5}{4} \sqrt[3]{1+\frac{24}{1000}}$

Result:

$\sqrt[3]{2}$

Decimal approximation:

1.259921049894873164767210607278228350570251464701507980081...
1.259921049...
$63 / 50(1+189 / 1000000)^{\wedge}-(1 / 3)$

Input:

$\frac{63}{50}\left(1+\frac{189}{1000000}\right)^{-1 / 3}$

Result:
$\frac{126}{\sqrt[3]{1000189}}$

Decimal approximation:

1.259920630000409955170602146632394291220340764820090733770...
1.25992063

Alternate form:

$\frac{126 \times 1000189^{2 / 3}}{1000189}$

Note that: $1.259921049 \ldots \approx 1.25992063 \ldots$
$\left(\left(\left(5 / 4(1+24 / 1000)^{\wedge} 1 / 3\right)\right)\right) / 2$

Input:
$\frac{1}{2}\left(\frac{5}{4} \sqrt[3]{1+\frac{24}{1000}}\right)$

Result:
$\frac{1}{2^{2 / 3}}$

Decimal approximation:
$0.629960524947436582383605303639114175285125732350753990040 \ldots$
0.629960524...

Alternate form:

$\frac{\sqrt[3]{2}}{2}$
$((((((5 / 4(1+24 / 1000) \wedge 1 / 3))) / 2)))^{\wedge} 1 / 32$

Input:

$\sqrt[32]{\frac{1}{2}\left(\frac{5}{4} \sqrt[3]{1+\frac{24}{1000}}\right)}$

Result:

$$
\frac{1}{\sqrt[48]{2}}
$$

Decimal approximation:

0.985663198640187574667594155758707421475341518434980395855...
$0.9856631986 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternate form:

$\frac{2^{47 / 48}}{2}$

From:

We obtain:

1/4+1/(4sqrt(2)) $\ln (1+\operatorname{sqrt}(2))-\mathrm{Pi} /(8 \mathrm{sqrt}(2))$

Input:

$\frac{1}{4}+\frac{1}{4 \sqrt{2}} \log (1+\sqrt{2})-\frac{\pi}{8 \sqrt{2}}$

Exact result:

$\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}$

Decimal approximation:

0.128126126400159737910012458183848644499259972500661174281...
0.128126126...

Alternate forms:

$\frac{1}{16}\left(4-\sqrt{2} \pi+2 \sqrt{2} \sinh ^{-1}(1)\right)$
$-\frac{\pi-2(\sqrt{2}+\log (1+\sqrt{2}))}{8 \sqrt{2}}$
$\frac{1}{16}(4-\sqrt{2} \pi+2 \sqrt{2} \log (1+\sqrt{2}))$
$\sinh ^{-1}(x)$ is the inverse hyperbolic sine function

Alternative representations:

$\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}=\frac{1}{4}+\frac{\log _{e}(1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}$
$\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}=\frac{1}{4}+\frac{\log (a) \log _{a}(1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}$
$\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}=\frac{1}{4}-\frac{\mathrm{Li}_{1}(-\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}$

Series representations:

$$
\begin{aligned}
& \frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}=\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\log (2)}{8 \sqrt{2}}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{-k / 2}}{k}}{4 \sqrt{2}} \\
& \frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}= \\
& \frac{1}{16}\left(4-\sqrt{2} \pi+2 \sqrt{2}\left(\log \left(z_{0}\right)+\left|\frac{\arg \left(1+\sqrt{2}-z_{0}\right)}{2 \pi}\right|\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1+\sqrt{2}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)
\end{aligned}
$$

$\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}=$

$$
\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{i \pi\left[\frac{\arg (1+\sqrt{2}-x)}{2 \pi}\right]}{2 \sqrt{2}}+\frac{\log (x)}{4 \sqrt{2}}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}(1+\sqrt{2}-x)^{k} x^{-k}}{k}}{4 \sqrt{2}} \text { for } x<0
$$

Integral representations:

$\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}=\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{1}{4 \sqrt{2}} \int_{1}^{1+\sqrt{2}} \frac{1}{t} d t$
$\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}=\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}-\frac{i}{8 \sqrt{2} \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-s / 2} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s$
for $-1<\gamma<0$
$((((1 / 4+1 /(4 \operatorname{sqrt}(2)) \ln (1+\operatorname{sqrt}(2))-\mathrm{Pi} /(8 \operatorname{sqrt}(2)))))))^{\wedge} 1 / 64$

Input:
$\sqrt[64]{\frac{1}{4}+\frac{1}{4 \sqrt{2}} \log (1+\sqrt{2})-\frac{\pi}{8 \sqrt{2}}}$
$\log (x)$ is the natural logarithm

Exact result:

$\sqrt[64]{\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}}$

Decimal approximation:

$0.968404589516534760779003269981247785539409185680817017342 \ldots$
$0.968404589 \ldots$ result very near to the spectral index n_{s} and to the mesonic Regge slope (see Appendix)

Alternate forms:

$$
\begin{aligned}
& \frac{\sqrt[64]{4-\sqrt{2} \pi+2 \sqrt{2} \sinh ^{-1}(1)}}{\sqrt[16]{2}} \\
& 2^{7 / 128}
\end{aligned}
$$

$\frac{\sqrt[64]{4-\sqrt{2} \pi+2 \sqrt{2} \log (1+\sqrt{2})}}{\sqrt[16]{2}}$

All 64th roots of $1 / 4-\pi /(8 \operatorname{sqrt}(2))+\log (1+\operatorname{sqrt}(2)) /(4 \operatorname{sqrt}(2)):$

$e^{0} \sqrt[64]{\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}} \approx 0.96840$ (real, principal root)
$e^{(i \pi) / 32} \sqrt[64]{\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}} \approx 0.96374+0.09492 i$
$e^{(i \pi) / 16} \sqrt[64]{\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}} \approx 0.94980+0.18893 i$
$e^{(3 i \pi) / 32} \sqrt[64]{\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}} \approx 0.92671+0.28111 i$
$e^{(i \pi) / 8} \sqrt[64]{\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}} \approx 0.89469+0.37059 i$

Alternative representations:

$\sqrt[64]{\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}=\sqrt[64]{\frac{1}{4}+\frac{\log _{e}(1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}$
$\sqrt[64]{\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}=\sqrt[64]{\frac{1}{4}+\frac{\log (a) \log _{a}(1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}$
$\sqrt[64]{\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}=\sqrt[64]{\frac{1}{4}-\frac{L i_{1}(-\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}$

Series representations:

$\sqrt[64]{\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}=\frac{\sqrt[64]{4-\sqrt{2} \pi+\sqrt{2} \log (2)-2 \sqrt{2} \sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{-k / 2}}{k}}}{\sqrt[16]{2}}$
$\sqrt[64]{\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}=\sqrt[64]{\frac{1}{4}-\frac{\pi}{8 \sqrt{2}}+\frac{\frac{\log (2)}{2}-\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{-k / 2}}{k}}{4 \sqrt{2}}}$

$$
\begin{aligned}
& \sqrt[64]{\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}= \\
& \frac{\sqrt[64]{4-\sqrt{2} \pi+2 \sqrt{2}\left(2 i \pi\left[\frac{\arg (1+\sqrt{2}-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(1+\sqrt{2}-x)^{k} x^{-k}}{k}\right)}}{\sqrt[16]{2}} \text { for } \\
& x<0
\end{aligned}
$$

Integral representations:

$\sqrt[64]{\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}=\frac{\sqrt[64]{4-\sqrt{2} \pi+2 \sqrt{2} \int_{1}^{1+\sqrt{2}} \frac{1}{t} d t}}{\sqrt[16]{2}}$
$\sqrt[64]{\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}}=\frac{\sqrt[64]{4-\sqrt{2} \pi-\frac{i \sqrt{2}}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-s / 2} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}}{\sqrt[16]{2}}$

```
for -1<\gamma<0
```

\log base $0.96840458951653476((((1 / 4+1 /(4 \operatorname{sqrt}(2)) \ln (1+\operatorname{sqrt}(2))-\mathrm{Pi} /(8 \operatorname{sqrt}(2))))))$

Input interpretation:

$\log _{0.96840458951653476}\left(\frac{1}{4}+\frac{1}{4 \sqrt{2}} \log (1+\sqrt{2})-\frac{\pi}{8 \sqrt{2}}\right)$

Result:

64.00000000000000...

64 (see Appendix)

Alternative representations:

$\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)=$
$\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log _{e}(1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)$
$\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)=$

$$
\log \left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)
$$

$\log (0.968404589516534760000)$
$\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)=$

$$
\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (a) \log _{a}(1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)
$$

Series representations:

$\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)=$

$\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)=$

$$
\begin{aligned}
& \log _{0.968404589516534760000}\left(\left(-\pi+2 \log (\sqrt{2})+2 \exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right)\right.\right. \\
& \left.\sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}-2 \sum_{k=1}^{\infty} \frac{(-1)^{k} \sqrt{2}^{-k}}{k}\right) / \\
& \left.\left(8 \exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)=$
$\log _{0.968404589516534760000}\left(\frac{1}{4}-\frac{\pi\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{8 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(2-z_{0}\right)^{k} z_{0}^{-k}}}{k!}}+\right.$

$$
\left.\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}\left(\log (\sqrt{2})-\sum_{k=1}^{\infty} \frac{(-1)^{k} \sqrt{2}-k}{k}\right)}{4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)
$$

Integral representations:

$$
\begin{gathered}
\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)= \\
\log _{0.968404589516534760000}\left(-\frac{\pi-2 \int_{1}^{1+\sqrt{2}} \frac{1}{t} d t-2 \sqrt{2}}{8 \sqrt{2}}\right)
\end{gathered}
$$

$\log _{0.968404589516534760000}\left(\frac{1}{4}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}-\frac{\pi}{8 \sqrt{2}}\right)=\log _{0.968404589516534760000}($

$$
\left.\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s) \sqrt{2}^{-s}}{\Gamma(1-s)} d s-i(\pi(\pi-2 \sqrt{2}))}{8 i \pi \sqrt{2}}\right) \text { for }-1<\gamma<0
$$

Now, from the "Manuscript Book 2 of Srinivasa Ramanujan", we have that

For $\mathrm{a}=3$
$(\operatorname{sqrt}(12-7)-1) / 6+2 / 3 * \operatorname{sqrt}(12+\operatorname{sqrt}(12-7)) * \sin \left(1 / 3 * \tan ^{\wedge}-1(((1+2 * \operatorname{sqrt}(12-\right.$
7))/(3*sqrt3)))

Input:

$\frac{1}{6}(\sqrt{12-7}-1)+\frac{2}{3} \sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)$
$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$\frac{1}{6}(\sqrt{5}-1)+\frac{2}{3} \sqrt{12+\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)$
(result in radians)

Decimal approximation:

$0.8779621799 \ldots$

Alternate forms:

$\frac{1}{6}\left(-1+\sqrt{5}+4 \sqrt{12+\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\sqrt{\frac{7}{9}+\frac{4 \sqrt{5}}{27}}\right)\right)\right)$
$\frac{1}{6}\left(-1+\sqrt{5}+4 \sqrt{12+\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)$
$-\frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12+\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(-1+\sqrt{5})+\frac{2}{3} \cos \left(\frac{\pi}{2}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) \sqrt{12+\sqrt{5}} \\
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(-1+\sqrt{5})-\frac{2}{3} \cos \left(\frac{\pi}{2}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) \sqrt{12+\sqrt{5}}
\end{aligned}
$$

$$
\frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2=
$$

$$
\frac{1}{6}(-1+\sqrt{5})+
$$

$$
\frac{2\left(-e^{-1 / 3 i \tan ^{-1}((1+2 \sqrt{5}) /(3 \sqrt{3}))}+e^{1 / 3 i \tan ^{-1}((1+2 \sqrt{5}) /(3 \sqrt{3}))}\right) \sqrt{12+\sqrt{5}}}{3(2 i)}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& -\frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12+\sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k} 3^{-1-2 k} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)^{1+2 k}}{(1+2 k)!} \\
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& -\frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12+\sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{\pi}{2}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{2 k}}{(2 k)!} \\
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& -\frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{1}{9} \sqrt{(12+\sqrt{5}) \pi} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{36^{s} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& -\frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{9} \sqrt{12+\sqrt{5}} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right) \int_{0}^{1} \cos \left(\frac{1}{3} t \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2=-\frac{1}{6}+\frac{\sqrt{5}}{6}- \\
& \frac{1}{18} i \sqrt{\frac{12+\sqrt{5}}{\pi}} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{s-\tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)^{2} /(36 s)}}{s^{3 / 2}} d s \text { for } \gamma>0
\end{aligned}
$$

$$
\frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2=
$$

$$
-\frac{1}{6}+\frac{\sqrt{5}}{6}-\frac{1}{3} i \sqrt{\frac{12+\sqrt{5}}{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(\frac{1}{6} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0<\gamma<1
$$

$\frac{\sqrt{4 a-7}-1}{6}+\frac{2}{3} \sqrt{4 a+\sqrt{4 a-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1} \frac{11+2 \sqrt{\sqrt{a-7}}}{3 \sqrt{3}}\right)$

$(\operatorname{sqrt}(12-7)-1) / 6+2 / 3 * \operatorname{sqrt}(12+\operatorname{sqrt}(12-7)) * \sin \left(\mathrm{Pi} / 3-1 / 3 * \tan ^{\wedge}-1(((1+2 * \operatorname{sqrt}(12-\right.$ 7)) $/(3 * \operatorname{sqrt} 3)))$

Input:

$\frac{1}{6}(\sqrt{12-7}-1)+\frac{2}{3} \sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)$

Exact Result:

$\frac{1}{6}(\sqrt{5}-1)+\frac{2}{3} \sqrt{12+\sqrt{5}} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)$
(result in radians)

Decimal approximation:

1.969254219241230305114453041420413075023762093998880011607...
(result in radians)
$1.96925421924 \ldots$ result practically near to the mean value $1.962 * 10^{19}$ of DM particle

Alternate forms:

$\frac{1}{6}\left(-1+\sqrt{5}+4 \sqrt{12+\sqrt{5}} \cos \left(\frac{1}{6}\left(\pi+2 \tan ^{-1}\left(\sqrt{\frac{7}{9}+\frac{4 \sqrt{5}}{27}}\right)\right)\right)\right)$
$\frac{1}{6}\left(-1+\sqrt{5}+4 \sqrt{12+\sqrt{5}} \cos \left(\frac{1}{6}\left(\pi+2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)\right)$
$\frac{1}{6}\left(-1+\sqrt{5}+4 \sqrt{12+\sqrt{5}} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)$

Addition formulas:

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(-1+\sqrt{5})+ \\
& \frac{2}{3} \sqrt{12+\sqrt{5}}\left(\frac{1}{2} \sqrt{3} \cos \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)-\frac{1}{2} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right) \\
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}\left(-1+\sqrt{5}+2 \sqrt{3(12+\sqrt{5})} \cos \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)-\right. \\
& \left.2 \sqrt{12+\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(-1+\sqrt{5})+\frac{2}{3} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) \sqrt{12+\sqrt{5}}
\end{aligned}
$$

$$
\frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2=
$$

$$
\frac{1}{6}(-1+\sqrt{5})-\frac{2}{3} \cos \left(\frac{5 \pi}{6}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) \sqrt{12+\sqrt{5}}
$$

$$
\frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2=
$$

$$
\frac{1}{6}(-1+\sqrt{5})+\frac{2\left(-e^{-i\left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)}+e^{i\left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)}\right) \sqrt{12+\sqrt{5}}}{3(2 i)}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& -\frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12+\sqrt{5}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{36}\right)^{k}\left(\pi+2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{2 k}}{(2 k)!}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& -\frac{1}{6}+\frac{\sqrt{5}}{6}-\frac{2}{3} \sqrt{12+\sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{1+2 k}}{(1+2 k)!}
\end{aligned}
$$

$$
\frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2=
$$

$$
-\frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{(12+\sqrt{5}) \pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{144^{s}\left(\pi+2 \tan ^{-1}\left(\frac{1}{9}(\sqrt{3}+2 \sqrt{15})\right)\right)^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& -\frac{1}{6}+\frac{\sqrt{5}}{6}-\frac{2 \sqrt{12+\sqrt{5}}}{3} \int_{\frac{\pi}{2}}^{\frac{1}{6}\left(\pi+2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)} \sin (t) d t
\end{aligned}
$$

$$
\frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2=
$$

$$
\frac{1}{6}(-1+\sqrt{5})+
$$

$$
\frac{2}{3} \sqrt{12+\sqrt{5}}\left(1-\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right) \int_{0}^{1} \sin \left(t\left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right) d t\right)
$$

$$
\begin{aligned}
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \left.-\frac{1}{6}+\frac{\sqrt{5}}{6}-\frac{1}{3} i \sqrt{\frac{12+\sqrt{5}}{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\exp \left(s-\frac{\left(\pi+2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{2}}{144 s}\right)}{\sqrt{s}}\right) \\
& \frac{1}{6}(\sqrt{12-7}-1)+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& -\frac{1}{6}+\frac{\sqrt{5}}{6}-\frac{1}{3} i \sqrt{\frac{12+\sqrt{5}}{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(\frac{12}{\left.\pi+2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{2 s}}\right.}{\Gamma(s)} \frac{\Gamma\left(\frac{1}{2}-s\right)}{\Gamma} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

And, from this formula, we obtain:

$(1-\mathrm{sqrt}(12-7)) / 6)+2 / 3 * \operatorname{sqrt}(12+\operatorname{sqrt}(12-7)) * \sin \left(\mathrm{Pi} / 3+1 / 3 * \tan ^{\wedge}-1(((1+2 * \operatorname{sqrt}(12-\right.$
7))/(3*sqrt3)))

Input:

$\frac{1}{6}(1-\sqrt{12-7})+\frac{2}{3} \sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)$

Exact Result:

$\frac{1}{6}(1-\sqrt{5})+\frac{2}{3} \sqrt{12+\sqrt{5}} \cos \left(\frac{\pi}{6}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)$
(result in radians)

Decimal approximation:

2.229182410490723010162646126549447467923214229230578053104...
(result in radians)
2.2291824104...

Alternate forms:

$$
\begin{aligned}
& \left.\frac{1}{6}\left(1-\sqrt{5}+4 \sqrt{12+\sqrt{5}} \sin \left(\frac{1}{3}\left(\pi+\tan ^{-1}\left(\sqrt{\frac{7}{9}+\frac{4 \sqrt{5}}{27}}\right)\right)\right)\right)\right) \\
& \frac{1}{6}\left(1-\sqrt{5}+4 \sqrt{12+\sqrt{5}} \sin \left(\frac{1}{3}\left(\pi+\tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)\right) \\
& \frac{1}{6}\left(1-\sqrt{5}+4 \sqrt{12+\sqrt{5}} \cos \left(\frac{\pi}{6}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)
\end{aligned}
$$

Addition formulas:

$$
\begin{aligned}
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(1-\sqrt{5})+ \\
& \frac{2}{3} \sqrt{12+\sqrt{5}}\left(\frac{1}{2} \sqrt{3} \cos \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)+\frac{1}{2} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right) \\
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}\left(1-\sqrt{5}+2 \sqrt{3(12+\sqrt{5})} \cos \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)+\right. \\
& \left.2 \sqrt{12+\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(1-\sqrt{5})+\frac{2}{3} \cos \left(\frac{\pi}{6}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) \sqrt{12+\sqrt{5}} \\
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(1-\sqrt{5})-\frac{2}{3} \cos \left(\frac{5 \pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) \sqrt{12+\sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(1-\sqrt{5})+\frac{2\left(-e^{-i\left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)}+e^{i\left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)}\right) \sqrt{12+\sqrt{5}}}{3(2 i)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}-\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12+\sqrt{5}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{36}\right)^{k}\left(\pi-2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{2 k}}{(2 k)!} \\
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \left.\frac{1}{6}-\frac{\sqrt{5}}{6}-\frac{2}{3} \sqrt{12+\sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{1+2 k}}{(1+2 k)!}\right) \\
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}-\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12+\sqrt{5}} \sum_{k=0}^{\infty} \frac{e^{3 i k \pi}\left(\frac{3}{\pi+\tan ^{-1}\left(\frac{1}{9}(\sqrt{3}+2 \sqrt{15})\right)}\right)^{-1-2 k}}{(1+2 k)!} \\
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}-\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{(12+\sqrt{5}) \pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j}} \frac{144^{s}\left(\pi-2 \tan ^{-1}\left(\frac{1}{9}(\sqrt{3}+2 \sqrt{15})\right)\right)^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}-\frac{\sqrt{5}}{6}-\frac{2 \sqrt{12+\sqrt{5}}}{3} \int_{\frac{\pi}{2}}^{\frac{1}{6}\left(\pi-2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)} \sin (t) d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}\left(1-\sqrt{5}-\frac{2}{3} \sqrt{12+\sqrt{5}}\right. \\
& \left.\quad\left(-6+\pi-2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right) \int_{0}^{1} \sin \left(\frac{1}{6} t\left(\pi-2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right) d t\right)\right)
\end{aligned}
$$

$$
\frac{1}{6}(1-\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)\right) 2=
$$

$$
\frac{1}{6}(1-\sqrt{5})+
$$

$$
\frac{2}{3} \sqrt{12+\sqrt{5}}\left(1-\frac{\pi}{6}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right) \int_{0}^{1} \sin \left(t\left(\frac{\pi}{6}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right) d t\right)
$$

Now, we have:

$(1+\operatorname{sqrt}(12-7)) / 6)+2 / 3 * \operatorname{sqrt}(12-\operatorname{sqrt}(12-7)) * \sin \left(1 / 3 * \tan ^{\wedge}-1(((2 * \operatorname{sqrt}(12-7)-\right.$ 1))/($3 * \operatorname{sqrt} 3)))$

Input:

$\frac{1}{6}(1+\sqrt{12-7})+\frac{2}{3} \sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)$

Exact Result:
$\frac{1}{6}(1+\sqrt{5})+\frac{2}{3} \sqrt{12-\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)$
(result in radians)

Decimal approximation:

$0.945763722196398446155536122455865440817511522937106097926 \ldots$
(result in radians)
$0.945763722 \ldots$

Alternate forms:

$\frac{1}{6}\left(1+\sqrt{5}+4 \sqrt{12-\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)\right)$
$\frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12-\sqrt{5}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)$
$\frac{2}{3} \sqrt{12-\sqrt{5}} \quad \begin{gathered}\text { root of } 569344 x^{12}-1708032 x^{10}+1921536 x^{8}- \\ 990464 x^{6}+224688 x^{4}-16704 x^{2}+361 \text { near } x=0.195098\end{gathered}+$ $\frac{1}{6}(1+\sqrt{5})$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(1+\sqrt{5})+\frac{2}{3} \cos \left(\frac{\pi}{2}-\frac{1}{3} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) \sqrt{12-\sqrt{5}} \\
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(1+\sqrt{5})-\frac{2}{3} \cos \left(\frac{\pi}{2}+\frac{1}{3} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) \sqrt{12-\sqrt{5}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(1+\sqrt{5})+\frac{2\left(-e^{-\frac{1}{3} i \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)}+e^{1 / 3 i \tan ^{-1}((-1+2 \sqrt{5}) /(3 \sqrt{3}))}\right) \sqrt{12-\sqrt{5}}}{3(2 i)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12-\sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k} 3^{-1-2 k} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)^{1+2 k}}{(1+2 k)!} \\
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{3} \sqrt{12-\sqrt{5}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{\pi}{2}+\frac{1}{3} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{2 k}}{(2 k)!} \\
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2=\frac{1}{6}+\frac{\sqrt{5}}{6}+ \\
& \frac{1}{9} \sqrt{(12-\sqrt{5}) \pi} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right) \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{36^{5} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}+\frac{\sqrt{5}}{6}+\frac{2}{9} \sqrt{12-\sqrt{5}} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right) \int_{0}^{1} \cos \left(\frac{1}{3} t \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2=\frac{1}{6}+\frac{\sqrt{5}}{6}- \\
& \quad \frac{1}{18} i \sqrt{\frac{12-\sqrt{5}}{\pi}} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{s-\tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)^{2} /(36 s)}}{s^{3 / 2}} d s \text { for } \gamma>0 \\
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}+\frac{\sqrt{5}}{6}-\frac{1}{3} i \sqrt{\frac{12-\sqrt{5}}{\pi}} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(\frac{1}{6} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)^{1-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0<\gamma<1
\end{aligned}
$$

Dividing the four results obtained, and multiplying by 6 , we obtain:
$6(1 / 0.8779621799993875 * 1 / 1.969254219241230305 * 1 / 2.2291824104907230 * 1 /$ $0.9457637221963984)$

Input interpretation:

Result:

1.646059004109657382423358690345476975543003634093002460572...
$1.6460590041 \ldots . \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$
And:
$2 \mathrm{Pi}^{*} 0.97004937(1 / 0.8779621799993875 * 1 / 1.969254219241230305 * 1 /$
$2.2291824104907230 * 1 / 0.9457637221963984$)
Where 0.97004937 * ($1 / 0.8779621799993875 * 1 / 1.969254219241230305 * 1 /$
$2.2291824104907230 * 1 / 0.9457637221963984)=0.26612641665 \ldots$ is the radius of a circumference

Input interpretation:

$$
\begin{aligned}
2 \pi \times 0.97004937\left(\frac{1}{0.8779621799993875}\right.
\end{aligned} \times \frac{1}{1} \quad \begin{aligned}
& \left.\frac{1}{1.969254219241230305} \times \frac{1}{2.2291824104907230} \times \frac{1}{0.9457637221963984}\right)
\end{aligned}
$$

Result:

1.6721216..
$1.6721216 \ldots$ result very near to the proton mass

Alternative representations:

$$
\begin{gathered}
(2 \pi 0.970049) /((1.9692542192412303050000 \times 2.22918241049072300000 \times \\
0.94576372219639840000) 0.87796217999938750000)= \\
\left(349.218^{\circ}\right) /(0.87796217999938750000 \times 0.94576372219639840000 \times \\
1.9692542192412303050000 \times 2.22918241049072300000) \\
(2 \pi 0.970049) /((1.9692542192412303050000 \times 2.22918241049072300000 \times \\
0.94576372219639840000) 0.87796217999938750000)= \\
-((1.9401 i \log (-1)) /(0.87796217999938750000 \times 0.94576372219639840000 \\
1.9692542192412303050000 \times 2.22918241049072300000)) \\
\\
(2 \pi 0.970049) /((1.9692542192412303050000 \times 2.22918241049072300000 \times \\
0.94576372219639840000) 0.87796217999938750000)= \\
\left(1.9401 \cos ^{-1}(-1)\right) /(0.87796217999938750000 \times 0.94576372219639840000 \\
1.9692542192412303050000 \times 2.22918241049072300000)
\end{gathered}
$$

Series representations:

$$
\begin{gathered}
(2 \pi 0.970049) /((1.9692542192412303050000 \times 0.94576372219639840000) \\
2.22918241049072300000 \times 2.12901 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
0.87796217999938750000)=-1.06451+1.06451 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}
\end{gathered}
$$

```
(2\pi 0.970049)/((1.9692542192412303050000
    2.22918241049072300000 0.94576372219639840000)
    0.87796217999938750000) =0.532253 \sum \sum \frac{2 < (-6+50k)}{(-0}
```


Integral representations:

```
(2\pi 0.970049)/ ((1.9692542192412303050000
    2.22918241049072300000 < 0.94576372219639840000)
    0.87796217999938750000) = 1.06451 \int < }\frac{1}{1+\mp@subsup{t}{}{2}}d
(2 \pi 0.970049)/((1.9692542192412303050000
    2.22918241049072300000 < 0.94576372219639840000)
    0.87796217999938750000) = 2.12901 \int
(2 \pi 0.970049)/ ((1.9692542192412303050000
    2.22918241049072300000 < 0.94576372219639840000)
    0.87796217999938750000)=1.06451 \int < \frac{\operatorname{sin}(t)}{t}dt
```

From the following algebraic sums, we obtain:
$1 /(0.8779621799993875+1.969254219241230305-2.2291824104907230+$ $0.9457637221963984)$

Input interpretation:

$1 /(0.8779621799993875+1.969254219241230305-$
$2.2291824104907230+0.9457637221963984)$

Result:

$0.639468898694623952580442123580603914914227777913978462046 \ldots$
0.63946889...

And:
$(-0.8779621799993875+1.969254219241230305+2.2291824104907230-$ $0.9457637221963984)$

Input interpretation:

$-0.8779621799993875+1.969254219241230305+$ $2.2291824104907230-0.9457637221963984$

Result:

2.374710727536167405
2.3747107...
$(0.8779621799993875+1.969254219241230305-2.2291824104907230+$ $0.9457637221963984)$

Input interpretation:

$0.8779621799993875+1.969254219241230305-$ $2.2291824104907230+0.9457637221963984$

Result:

1.563797710946293205
1.5637977109...

From the following difference between $2.3747107 \ldots$ and $1.5637977109 \ldots$, multiplied by 2, we obtain:
$2(2.374710727536167405-1.563797710946293205)$
Input interpretation:
2 (2.374710727536167405-1.563797710946293205)

Result:

1.6218260331797484
1.621826033...

And from the mean of the above results, we obtain:
$1 / 2(2.374710727536167405+1.563797710946293205)$

Input interpretation:

$\frac{1}{2}(2.374710727536167405+1.563797710946293205)$

Result:

1.969254219241230305
$1.96925421 \ldots$ result equal to the solution of a previous formula and practically near to the mean value $1.962 * 10^{19}$ of DM particle
$\left(\mathrm{Pi}^{*} 1 / 0.98593794\right) * 1 / 1.969254219241230305$

Input interpretation:

$\left(\pi \times \frac{1}{0.98593794}\right) \times \frac{1}{1.969254219241230305}$

Result:

1.6180745 .
1.6180745...

This result is a very good approximation to the value of the golden ratio 1,618033988749...

Alternative representations:

$\frac{\pi}{1.9692542192412303050000 \times 0.985938}=$
$\frac{180^{\circ}}{0.985938 \times 1.9692542192412303050000}$
$\frac{\pi}{1.9692542192412303050000 \times 0.985938}=$
$-\frac{i \log (-1)}{0.985938 \times 1.9692542192412303050000}$

[^2]
Series representations:

$\frac{\pi}{1.9692542192412303050000 \times 0.985938}=2.0602 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$

$$
\left.\frac{\pi}{1.9692542192412303050000 \times 0.985938}=-1.0301+1.0301 \sum_{k=1}^{\infty} \frac{2^{k}}{2 k} \begin{array}{c}
2 k \\
k
\end{array}\right)
$$

$\frac{\pi}{1.9692542192412303050000 \times 0.985938}=0.515049 \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}$

Integral representations:

$\frac{\pi}{1.9692542192412303050000 \times 0.985938}=1.0301 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$
$\frac{\pi}{1.9692542192412303050000 \times 0.985938}=2.0602 \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\frac{\pi}{1.9692542192412303050000 \times 0.985938}=1.0301 \int_{0}^{\infty} \frac{\sin (t)}{t} d t$

In conclusion, we can to obtain a result very near to the dilaton value from the following equation, containing $1.96925421 \ldots$ and the golden ratio:
$\left(\mathrm{Pi}^{*} 1 / \mathrm{x}\right)^{*} 1 / 1.969254219241230305=1.61803398$
Input interpretation:

$$
\left(\pi \times \frac{1}{x}\right) \times \frac{1}{1.969254219241230305}=1.61803398
$$

Result:

$\frac{1.595321021985812722}{x}=1.61803$
Plot:

Alternate form assuming x is real:
$\frac{0.985963}{x}=1$

Alternate form assuming x is positive:

$x=0.985963$ (for $x \neq 0$)

Solution:

$x \approx 0.985963$
0.985963 result that is an excellent approximation to the dilaton value
$\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ very near also to the result of the following Rogers-
Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

Thus, utilizing the previous formula,

$$
\frac{\sqrt{4 a-7}-1}{6}+\frac{2}{3} \sqrt{4 a+\sqrt{4 a-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1} \frac{1+2 \sqrt{2 a-7}}{3 \sqrt{3}}\right)
$$

with π and ϕ, we obtain:
$\left(\mathrm{Pi}^{*} 1 / \mathrm{x}\right)^{*} 1 /\left(\left(\left(\left((\operatorname{sqrt}(12-7)-1) / 6+2 / 3 * \operatorname{sqrt}(12+\operatorname{sqrt}(12-7)) * \sin \left(\mathrm{Pi} / 3-1 / 3 * \tan ^{\wedge}-\right.\right.\right.\right.\right.$ $1(((1+2 * \operatorname{sqrt}(12-7)) /(3 * \operatorname{sqrt} 3))))))))=1.61803398$

Input interpretation:

$$
\left(\pi \times \frac{1}{x}\right) \times \frac{1}{\frac{1}{6}(\sqrt{12-7}-1)+\frac{2}{3} \sqrt{12+\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{12-7}}{3 \sqrt{3}}\right)\right)}=
$$

Result:

$$
\frac{\pi}{x\left(\frac{1}{6}(\sqrt{5}-1)+\frac{2}{3} \sqrt{12+\sqrt{5}} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)}=1.61803
$$

Plot:

Alternate forms:

$\frac{6 \pi}{x\left(-1+\sqrt{5}+4 \sqrt{12+\sqrt{5}} \cos \left(\frac{1}{6}\left(\pi+2 \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)\right)}=1.61803$
$\frac{6 \pi}{x\left(-1+\sqrt{5}+4 \sqrt{12+\sqrt{5}} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)}=1.61803$
$\pi /\left(\frac{\sqrt{5} x}{6}-\frac{x}{6}-\frac{1}{3} \sqrt{12+\sqrt{5}} x \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)+\right.$
$\left.\sqrt{\frac{1}{3}(12+\sqrt{5})} \times \cos \left(\frac{1}{3} \tan ^{-1}\left(\frac{1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)=1.61803$

Solution:

$x \approx 0.985963$
0.985963 as above

We have also:

$((1+\operatorname{sqrt}(12-7)) / 6)+2 / 3 * \operatorname{sqrt}(12-\operatorname{sqrt}(12-7)) * \sin ((((\mathrm{Pi} / 3-1 / 3 * \tan \wedge-1(((2 * \operatorname{sqrt}(12-7)-$ 1)) $/(3 * \operatorname{sqrt} 3))))))$

Input:
$\frac{1}{6}(1+\sqrt{12-7})+\frac{2}{3} \sqrt{12-\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)$

Exact Result:

$\frac{1}{6}(1+\sqrt{5})+\frac{2}{3} \sqrt{12-\sqrt{5}} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)$
(result in radians)

Decimal approximation:

2.105530981777213665099274782189076818403932320866293894603
(result in radians)
2.10553098177....

Alternate forms:

$\frac{1}{6}\left(1+\sqrt{5}+4 \sqrt{12-\sqrt{5}} \cos \left(\frac{1}{6}\left(\pi+2 \cot ^{-1}\left(\frac{3}{\sqrt{7-\frac{4 \sqrt{5}}{3}}}\right)\right)\right)\right)$
$\frac{1}{6}\left(1+\sqrt{5}+4 \sqrt{12-\sqrt{5}} \cos \left(\frac{1}{6}\left(\pi+2 \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)\right)\right)$

$$
\frac{1}{6}\left(1+\sqrt{5}+4 \sqrt{12-\sqrt{5}} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)\right)
$$

Addition formula:

$$
\begin{aligned}
& \frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(1+\sqrt{5})+ \\
& \quad \frac{2}{3} \sqrt{12-\sqrt{5}}\left(\frac{1}{2} \sqrt{3} \cos \left(\frac{1}{3} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)-\frac{1}{2} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)
\end{aligned}
$$

And:
$(-(1+\operatorname{sqrt}(12-7)) / 6)+2 / 3 * \operatorname{sqrt}(12-\operatorname{sqrt}(12-7)) * \sin \left(\left(\left(\left(\mathrm{Pi} / 3-1 / 3 * \tan ^{\wedge}-1(((2 * \operatorname{sqrt}(12-7)-\right.\right.\right.\right.$ 1)) $((3 * \operatorname{sqrt} 3))))))$

Input:

$$
-\frac{1}{6}(1+\sqrt{12-7})+\frac{2}{3} \sqrt{12-\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$\frac{1}{6}(-1-\sqrt{5})+\frac{2}{3} \sqrt{12-\sqrt{5}} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)$
(result in radians)

Decimal approximation:

1.026841655943950432962883559278651406590392867662451986513...
(result in radians)
1.02684165594395.....

Alternate forms:

$$
\begin{aligned}
& \frac{1}{6}\left(-1-\sqrt{5}+4 \sqrt{12-\sqrt{5}} \cos \left(\frac{1}{6}\left(\pi+2 \cot ^{-1}\left(\frac{3}{\sqrt{7-\frac{4 \sqrt{5}}{3}}}\right)\right)\right)\right) \\
& \frac{1}{6}\left(-1-\sqrt{5}+4 \sqrt{12-\sqrt{5}} \cos \left(\frac{1}{6}\left(\pi+2 \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)\right)\right) \\
& \frac{1}{6}\left(-1-\sqrt{5}+4 \sqrt{12-\sqrt{5}} \cos \left(\frac{\pi}{6}+\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{5}-1}{3 \sqrt{3}}\right)\right)\right)
\end{aligned}
$$

Addition formula:

$$
\begin{aligned}
& -\frac{1}{6}(1+\sqrt{12-7})+\frac{1}{3}\left(\sqrt{12-\sqrt{12-7}} \sin \left(\frac{\pi}{3}-\frac{1}{3} \tan ^{-1}\left(\frac{2 \sqrt{12-7}-1}{3 \sqrt{3}}\right)\right)\right) 2= \\
& \frac{1}{6}(-1-\sqrt{5})+ \\
& \quad \frac{2}{3} \sqrt{12-\sqrt{5}}\left(\frac{1}{2} \sqrt{3} \cos \left(\frac{1}{3} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)-\frac{1}{2} \sin \left(\frac{1}{3} \tan ^{-1}\left(\frac{-1+2 \sqrt{5}}{3 \sqrt{3}}\right)\right)\right)
\end{aligned}
$$

From the two results, we obtain:
$1 /(((\mathrm{Pi} * 1 /(2.105530981777213 * 1 / 1.02684165594395)))$

Input interpretation:

$\frac{1}{\pi \times \frac{1}{2.105530981777213 \times \frac{1}{1.02684165594395}}}$

Result:

0.652691993245873...
0.6526919932....

Alternative representations:

$\frac{1}{\frac{\pi}{\frac{2.1055309817772130000}{1.026841655943950000}}}=\frac{1}{\frac{180^{\circ}}{\frac{2.1055309817772130000}{1.026841655943950000}}}$
$\frac{1}{\frac{\pi}{\frac{2.1055309817772130000}{1.026841655943950000}}}=-\frac{1}{\frac{i \log (-1)}{2.1055309817772130000}}$
$\frac{1}{\frac{\pi}{\frac{2.1055309817772130000}{1.026841655943950000}}}=\frac{1}{\frac{\cos ^{-1}(-1)}{2.1055309817772130000}} \frac{1.026841655943950000}{}$

Series representations:

$\frac{1}{\frac{\pi}{\frac{2.1055309817772130000}{1.026841655943950000}}}=\frac{0.5126230927595284217}{\sum_{k=0}^{\infty} \frac{(-1 k}{1+2 k}}$
$\frac{1}{\frac{1}{\frac{2.1055309817772130000}{1.026841655943950000}}}=\frac{1.025246185519056843}{-1.000000000000000000+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{k}{k}}}$
$\frac{1}{\frac{\pi}{\frac{2.1055309817772130000}{1.026841655943950000}}}=\frac{2.050492371038113687}{\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}}$

Integral representations:

$\frac{1}{\frac{\pi}{\frac{2.1055309817772130000}{1.026841655943950000}}}=\frac{1.025246185519056843}{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}$
$\frac{1}{\frac{\pi}{\frac{2.1055309817772130000}{1.026841655943950000}}}=\frac{0.5126230927595284217}{\int_{0}^{1} \sqrt{1-t^{2}} d t}$
$\frac{1}{\frac{\pi}{\frac{2.1055309817772130000}{1.026841655943950000}}}=\frac{1.025246185519056843}{\int_{0}^{\infty} \frac{\sin (t)}{t} d t}$

From the all six results, from the sign of the following formula

we obtain:
(2.105530981777213-1.02684165594395 $+0.8779621799993875+$
$1.969254219241230305-2.2291824104907230+0.9457637221963984)$

Input interpretation:

$2.105530981777213-1.02684165594395+0.8779621799993875+$ $1.969254219241230305-2.2291824104907230+0.9457637221963984$

Result:

2.642487036779556205

Repeating decimal:

2.642487036779556205
2.6424870....

Performing the square root, we obtain:
$\operatorname{sqrt}(2.10553098-1.02684165+0.87796217+1.96925421-2.22918241+$ 0.94576372)

Input interpretation:

$\sqrt{2.10553098-1.02684165+0.87796217+1.96925421-2.22918241+0.94576372}$

Result:

1.625572828267008158901357645933814583208432649369004303817.
1.625572828267.....

And performing the $64^{\text {th }}$ root of the inverse the above expression, we obtain:
$1 /(2.10553098-1.02684165+0.87796217+1.96925421-2.22918241+$ $0.94576372)^{\wedge} 1 / 64$

Input interpretation:

$$
\begin{aligned}
& 1 /((2.10553098-1.02684165+0.87796217+ \\
& \left.1.96925421-2.22918241+0.94576372)^{\wedge}(1 / 64)\right)
\end{aligned}
$$

Result:

0.9849315494...
0.9849315494 result that is an excellent approximation to the dilaton value
$\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ very near also to the result of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} \frac{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}{1}-\varphi+1 \quad 1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

Furthermore, we have also the following result:
$(2.10553098+1.02684165+0.87796217+1.96925421+2.22918241+$ $0.94576372)^{\wedge} 5+(144 * 64)-16$

Input interpretation:

```
(2.10553098 + 1.02684165 +0.87796217 +
    1.96925421+2.22918241+0.94576372) }\mp@subsup{}{}{5}+144\times64-1
```


Result:

73495.6335890676502034282686403408072448817824
73495.633589...

Thence, we have the following mathematical connections:

$$
\binom{(2.10553098+1.02684165+0.87796217+}{1.96925421+2.22918241+0.94576372)^{5}+144 \times 64-16}=73495.633589 \Rightarrow
$$

$$
\begin{aligned}
& \Rightarrow-3927+2\left(\begin{array}{l}
13\binom{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} P_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}{\int\left[d \mathrm{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathrm{X}^{\mu} D^{2} \mathrm{X}^{\mu}\right)\right\}\left|\mathrm{X}^{\mu}, \mathrm{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
\\
-3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
=73490.8437525 \ldots \Rightarrow \\
\Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
\Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
=73491.78832548118710549159572042220548025195726563413398700 \ldots
\end{array}\right. \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
\binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{2}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i\left(T^{r}+t\right)}\right|^{2} d t \leqslant}{\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} /, ~\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots .
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Appendix

Table of connection between the physical and mathematical constants and the very closed approximations to the dilaton value.

Table 1

Elementary charge $=1.602176$	$1 /(1,602176)^{1 / 64}=0,992662013$
Golden ratio $=1.61803398$	$1 /(1,61803398)^{1 / 64}=0,992509261$
$\zeta(2)=1.644934$	$1 /(1,644934)^{1 / 64}=0,992253592$
$\sqrt[14]{Q=\left(G_{505} / G_{101 / 5}\right)^{3}}=1.65578$	$1 /(1,65578)^{1 / 64}=0,992151706$
Proton mass $=1.672621$	$1 /(1,672621)^{1 / 64}=0,991994840$
Neutron mass $=1.674927$	$1 /(1,674927)^{1 / 64}=0,991973486$

From:

Rotating strings confronting PDG mesons

Jacob Sonnenschein and Dorin Weissman - arXiv:1402.5603v1 [hep-ph] 23 Feb 2014
$c \bar{c}$. The Ψ trajectory: The left side of figure (15) depicts the Ψ trajectory. Here we use the states $J / \Psi(1 S)(3097) 1^{--}, \chi_{c 1}(1 P)(3510) 1^{++}$, and $\Psi(3770) 1^{--}$. Since no $J=3$ state has been observed, we use three states with $J=1$, but with increasing orbital angular momentum $(L=0,1,2)$ and do the fit to L instead of J. To give an idea of the shifts in mass involved, the $J^{P C}=2^{++}$state $\chi_{c 2}$ has a mass of 3556 MeV , and the $J^{P C}=3^{--}$state is expected to lie $30-60 \mathrm{MeV}$ above the $\Psi(3770)$ [23].

The best linear fit is

$$
\alpha^{\prime}=0.418, a=-4.04
$$

with $\chi_{l}^{2}=3.41 \times 10^{-4}$, but the optimal fit is far from the linear, with endpoint masses in the range of the constituent c quark mass:

$$
m_{c}=1500, \alpha^{\prime}=0.979, a=-0.09
$$

with $\chi_{m}^{2}=5 \times 10^{-7}\left(\chi_{m}^{2} / \chi_{l}^{2}=0.002\right)$. Aside from the improvement in χ^{2}, by adding the mass we also get a value for the slope (and to a lesser extent, the intercept) that is much closer to that obtained in fits for the light meson trajectories.
where α^{\prime} is the Regge slope (string tension)

We know also that:

$$
\begin{aligned}
& \omega|6| \quad m_{u / d}=0-60 \quad \mid 0.910-0.918 \\
& \omega / \omega_{3}|5+3| m_{u / d}=255-390 \mid 0.988-1.18 \\
& \omega / \omega_{3}|5+3| m_{u / d}=240-345 \mid 0.937-1.000
\end{aligned}
$$

The average of the various Regge slope of Omega mesons are:
$1 / 7 *(0.979+0.910+0.918+0.988+0.937+1.18+1)=0.987428571$
result very near to the value of dilaton and to the solution $0.987516007 \ldots$ of the above expression.

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.
from:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan
Quarterly Journal of Mathematics, XLV, 1914, 350-372
We have that:

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & =e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots, \\
64 g_{22}^{-24} & =r & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{array}
$$

so that

$$
64\left(y_{22}^{24}+y_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\} .
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{gathered}
G_{37}=(6+\sqrt{37})^{\frac{1}{4}} \\
64 G_{37}^{24}-e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots, \\
64 G_{37}^{-24}=\quad 4096 e^{-\pi \sqrt{37}}-\cdots,
\end{gathered}
$$

so that

$$
64\left(G_{37}^{24}+G_{37}^{-24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{-\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{3}+(6-\sqrt{37})^{6}\right\} .
$$

Hence

$$
e^{\pi \sqrt{37}}=199148617.999978 \ldots
$$

Similarly, from

$$
y_{58}=\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

wo obtain
$64\left(g_{58}^{24}+g_{58}^{-24}\right)-e^{\pi \sqrt{58}}-24+4372 e^{-\pi \sqrt{58}}+\cdots-64\left\{\left(\frac{5+\sqrt{29}}{2}\right)^{12}+\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\}$.
Hence

$$
e^{\pi \sqrt{58}}-24591257751.99999982 \ldots
$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

From the following vacuum equations:

$$
\begin{aligned}
& T e^{\gamma_{E} \phi}=-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
& 16 k^{\prime} e^{-2 C}- \frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
&\left(A^{\prime}\right)^{2}-k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(3-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

we have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.

For
$\exp \left(\left(-\mathrm{Pi}^{*} \mathrm{sqrt}(18)\right)\right.$ we obtain:

Input:

$\exp (-\pi \sqrt{18})$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:

$1.6272016226072509292942156739117979541838581136954016 \ldots \times 10^{-6}$
$1.6272016 \ldots * 10^{-6}$

Property:

$e^{-3 \sqrt{2} \pi}$ is a transcendental number

Series representations:

$$
\begin{aligned}
& e^{-\pi \sqrt{18}}=e^{-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{1 / 2}{k}} \\
& e^{-\pi \sqrt{18}}=\exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& e^{-\pi \sqrt{18}}=\exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
\end{aligned}
$$

Now, we have the following calculations:

$$
\begin{gathered}
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}} \\
e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}
\end{gathered}
$$

from which:

$$
\begin{gathered}
\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{-6} \\
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}
\end{gathered}
$$

Now:

$$
\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}
$$

And:
$\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)$
Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...

Thence:

$$
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}
$$

Dividing both sides by 0.000244140625 , we obtain:

$$
\begin{aligned}
& \frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}} \\
& e^{-6 C+\phi}=0.0066650177536
\end{aligned}
$$

$\left.\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right)\right)^{*} 1 / 0.000244140625$

Input interpretation:

$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
0.00666501785...

Series representations:

$\frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{\frac{1}{2}}{k}\right)$
$\frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$\frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)$

Now:

$$
\begin{aligned}
& e^{-6 C+\phi}=0.0066650177536 \\
& \exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}= \\
& e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625} \\
& =0.00666501785 \ldots
\end{aligned}
$$

From:
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
$-5.010882647757 \ldots$

Alternative representations:

$\log (0.006665017846190000)=\log _{e}(0.006665017846190000)$
$\log (0.006665017846190000)=\log (a) \log _{a}(0.006665017846190000)$
$\log (0.006665017846190000)=-\mathrm{Li}_{1}(0.993334982153810000)$

Series representations:

$\log (0.006665017846190000)=-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.993334982153810000)^{k}}{k}$
$\left.\log (0.006665017846190000)=2 i \pi \left\lvert\, \frac{\arg (0.006665017846190000-x)}{2 \pi}\right.\right\rfloor+$
$\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.006665017846190000-x)^{k} x^{-k}}{k}$ for $x<0$
$\log (0.006665017846190000)=\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+$

$$
\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.006665017846190000-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representation:

$\log (0.006665017846190000)=\int_{1}^{0.006665017846190000} \frac{1}{t} d t$

In conclusion:

$$
-6 C+\phi=-5.010882647757 \ldots
$$

and for $\mathrm{C}=1$, we obtain:
$\phi=-5.010882647757+6=\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Note that the values of n_{s} (spectral index) 0.965 , of the average of the Omega mesons Regge slope 0.987428571 and of the dilaton 0.989117352243 , are also connected to the following two Rogers-Ramanujan continued fractions:

$$
\begin{aligned}
& \frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373 \\
& \frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} \\
& 1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}
\end{aligned} \varphi+1 \quad 1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684
$$

(http://www.bitman.name/math/article/102/109/)

References

Manuscript Book 2 - Srinivasa Ramanujan
 MANUSCRIPT BOOK 2
 OF
 SRINIVASA RAMANUIAN

Manuscript Book 3-Srinivasa Ramanujan

MANUSCRIPT BOOK $\$$
0 P
SRINIVASA RAMANUJAN

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

[^1]: 77.43021073599039896176690209685563130875920683708724925579

[^2]: $\frac{\pi}{1.9692542192412303050000 \times 0.985938}=$ $\frac{\cos ^{-1}(-1)}{0.985938 \times 1.9692542192412303050000}$

