I think that it is possible to estimate the mass spectrum of an infinite generation in the standard model.

I try a simple law, inspired by the Balmer series:

$$M(n) = \alpha + \beta \ n^{\gamma}$$

where γ is a half-integer, or integer, value.

The three series (quarks and leptons) have not exact values (this happen only if the γ values are real values, and there are three parameter and three data).

I obtain the three series:

$$M_{uct...}(n) = 1.870578 + 0.3257139 \ n^{12} MeV$$

$$M_{dsb...}(n) = 4.578503 + 0.1224770 \ n^{9.5} MeV$$

$$M_{e\mu\tau...}(n) = -0.2976583 + 0.8126248n^7 MeV$$

the masses in this serie are:

M _{uct}	M_{dsb}	$M_{e\mu\tau}$
$2.196292 \ MeV$	$4.700980 \ MeV$	$0.5149665 \ MeV$
$1.335995 \; GeV$	$93.26130 \ MeV$	$103.7183 \ MeV$
$173.0996 \ GeV$	$4.180058 \ GeV$	$1.776913 \; GeV$
$5.464574 \ TeV$	$64.21779 \; GeV$	$13.31375 \; GeV$
$79.51999 \ TeV$	$534.9007 \; GeV$	$63.48601 \; GeV$

if there is no constraint on the exponent, the three series are;

$M_{uct}(n) = 1.910036 + 0.2899636$	$n^{12.10583}MeV$
$M_{dsb\dots}(n) = 4.566954 + 0.1330458$	$n^{9.424649} MeV$
$M_{e\mu\tau\dots}(n) = -0.3444624 + 0.85546$	$524 \ n^{6.953205} MeV$

and the masses of the model are:

M _{uct}	M_{dsb}	$M_{e\mu\tau}$
2.200000 MeV	4.700000	$0.5110000 \ MeV$
$1.280000 \ GeV$	$96.00000 \ MeV$	$105.6600 \ MeV$
$173.1000 \ GeV$	$4.180000 \; GeV$	$1.776800 \; GeV$
$5.633516 \ TeV$	$628.4010 \; GeV$	$13.13518 \; GeV$
$83.93741 \ TeV$	$514.6974 \; GeV$	$61.98407 \; GeV$