Theorem 1 If the real number α satisfies an irreducible polynomial over the field of rational numbers of degree k, and if k is not a power of 2 , then α is not constructible.
Proof.
This is Corollary 2 to Theorem 5.4.1 in [1].
Theorem 2 A regular heptagon is not constructible by straightedge and compass.
Proof.
A regular heptagon is a seven-sided polygon with sides of equal length. The construction of a regular heptagon requires the constructibility of the real number $\cos \frac{2 \pi}{7}$. Given the formula

$$
\cos 7 \theta=64 \cos ^{7} \theta-112 \cos ^{5} \theta+56 \cos ^{3} \theta-7 \cos \theta
$$

putting $\theta=\frac{2 \pi}{7}, \alpha=\cos \frac{2 \pi}{7}$ and rearranging terms give

$$
64 \alpha^{7}-112 \alpha^{5}+56 \alpha^{3}-7 \alpha-1=0
$$

Thus α is a root of the polynomial $64 x^{7}-112 x^{5}+56 x^{3}-7 x-1$ over the rational field. Upon factorization,

$$
64 x^{7}-112 x^{5}+56 x^{3}-7 x-1=(x-1)\left(8 x^{3}+4 x^{2}-4 x-1\right)^{2}
$$

Since $\alpha-1 \neq 0$,

$$
8 \alpha^{3}+4 \alpha^{2}-4 \alpha-1=0
$$

Since $8\left(\frac{1}{2} x+1\right)^{3}+4\left(\frac{1}{2} x+1\right)^{2}-4\left(\frac{1}{2} x+1\right)-1=x^{3}+7 x^{2}+14 x+7$, this polynomial is irreducible over the rationals by the Eisenstein criterion with the prime number 7. It follows that the polynomial $8 x^{3}+4 x^{2}-4 x-1$ is irreducible over the rational field and since its degree is 3 , which is not a power of $2, \alpha$ is not constructible by Theorem 1.

Reference

[1] I. N. Herstein, Topics in Algebra, John Wiley \& Sons, New York, 1975.

