Analyzing some parts of Ramanujan's Manuscripts: Mathematical connections between several Ramanujan's equations, the Rogers-Ramanujan continued fractions and some sectors of Cosmology and Theoretical Physics. II

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed some parts of Ramanujan's Manuscripts and obtained new mathematical connections between several Ramanujan's equations, the Rogers-Ramanujan continued fractions and some sectors of Cosmology and Theoretical Physics .

[^0]
http://esciencecommons.blogspot.com/2012/12/math-formula-gives-new-glimpse-into.html
"...Expansion of modular forms is one of the fundamental tools for computing the entropy of a modular black hole. Some black holes, however, are not modular, but the new formula based on Ramanujan's vision may allow physicists to compute their entropy as though they were....."

[^1]From:

Manuscript Book 2 of Srinivasa Ramanujan

Page 229

$1 /(((324 \mathrm{Pi}) * \mathrm{sqrt}(3)))+25 / 756-\mathrm{Pi} /(54 * \operatorname{sqrt}(3))+(((\mathrm{Pi} /(18 * \operatorname{sqrt}(3)))))^{*}$ 1/(14* $\left.\cosh \left(3 \mathrm{Pi}^{*} \mathrm{sqrt}(3)\right)\right)$

Input:

$\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{18 \sqrt{3}} \times \frac{1}{14 \cosh (3 \pi \sqrt{3})}$
$\cosh (x)$ is the hyperbolic cosine function

Exact result:

$$
\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}
$$

Decimal approximation:

$0.000047117922509775900865462588584753873831033642776814532 \ldots$

Result:

$4.7117922509775900865462588584753873831033642776814532 \times 10^{-5}$
$4.71179225 \ldots * 10^{-5}$

Alternate forms:

$\frac{7 \sqrt{3}+3 \pi(75+\sqrt{3} \pi(3 \operatorname{sech}(3 \sqrt{3} \pi)-14))}{6804 \pi}$
$\underline{7 \sqrt{3}+225 \pi-42 \sqrt{3} \pi^{2}+9 \sqrt{3} \pi^{2} \operatorname{sech}(3 \sqrt{3} \pi)}$

$$
6804 \pi
$$

$$
\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{126 \sqrt{3}\left(e^{-3 \sqrt{3} \pi}+e^{3 \sqrt{3} \pi}\right)}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}= \\
& \frac{25}{756}+\frac{\pi}{(14 \cos (-3 i \pi \sqrt{3}))(18 \sqrt{3})}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}} \\
& \frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}= \\
& \frac{25}{756}+\frac{\pi}{(14 \cos (3 i \pi \sqrt{3}))(18 \sqrt{3})}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}} \\
& \frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}= \\
& \frac{25}{756}+\frac{\pi}{\left(7\left(e^{-3 \pi \sqrt{3}}+e^{3 \pi \sqrt{3}}\right)\right)(18 \sqrt{3})}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}= \\
& \frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\sum_{k=0}^{\infty} \frac{(-1)^{k}(1+2 k)}{109+4 k+4 k^{2}}}{63 \sqrt{3}} \\
& \frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}= \\
& \frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}-\frac{\pi \sum_{k=1}^{\infty}(-1)^{k} q^{-1+2 k}}{126 \sqrt{3}} \text { for } q=e^{3 \sqrt{3} \pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}= \\
& \frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{e^{-3 \sqrt{3} \pi} \pi \sum_{k=0}^{\infty}(-1)^{k} e^{-6 \sqrt{3} k \pi}}{126 \sqrt{3}}
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}= \\
& \frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{126 \sqrt{3}} \int_{0}^{\infty} \frac{t^{6 i \sqrt{3}}}{1+t^{2}} d t
\end{aligned}
$$

$\left(\left(\left(\left((1 /(((324 \mathrm{Pi}) * \operatorname{sqrt}(3)))+25 / 756-\mathrm{Pi} /(54 * \operatorname{sqrt}(3))+(((\mathrm{Pi} /(18 * \operatorname{sqrt}(3))))))^{*}\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.1 /\left(14^{*} \cosh \left(3 \mathrm{Pi}^{*} \operatorname{sqrt}(3)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 1024$

Input:

$$
\sqrt[1024]{\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{18 \sqrt{3}} \times \frac{1}{14 \cosh (3 \pi \sqrt{3})}}
$$

Exact result:

$$
\sqrt[1024]{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}}
$$

Decimal approximation:

$0.990317824381383794203738279426892199335057434473544561135 \ldots$
$0.990317824 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Alternate forms:

$$
\sqrt[1024]{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{126 \sqrt{3}\left(e^{-3 \sqrt{3} \pi}+e^{3 \sqrt{3} \pi}\right)}}
$$

$$
\sqrt[1024]{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \cosh (3 \sqrt{3} \pi)}{126 \sqrt{3}(1+\cosh (6 \sqrt{3} \pi))}}
$$

1
$\sqrt[512]{2} 3^{5 / 1024} 1024 \sqrt{\frac{7 \pi}{7 \sqrt{3}+225 \pi-42 \sqrt{3} \pi^{2}+9 \sqrt{3} \pi^{2} \operatorname{sech}(3 \sqrt{3} \pi)}}$

All 1024th roots of $25 / 756+1 /(324 \operatorname{sqrt}(3) \pi)-\pi /(54 \operatorname{sqrt}(3))+(\pi \operatorname{sech}(3 \operatorname{sqrt}(3)$ $\pi)$)/(252 sqrt(3)):
$e^{0} 1024 \sqrt{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}} \approx 0.9903$ (real, principal root)

$$
e^{(i \pi) / 512} 1024 \sqrt{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}} \approx 0.9903+0.006076 i
$$

$$
e^{(i \pi) / 256} \sqrt[1024]{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}} \approx 0.9902+0.012153 i
$$

$$
e^{(3 i \pi) / 512} 1024 \sqrt{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}} \approx 0.9902+0.018229 i
$$

$$
e^{(i \pi / 128} \sqrt[1024]{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}} \approx 0.9900+0.02430 i
$$

Alternative representations:

$$
\begin{gathered}
\sqrt[1024]{\frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}}= \\
\sqrt[1024]{\frac{25}{756}+\frac{\pi}{(14 \cos (-3 i \pi \sqrt{3}))(18 \sqrt{3})}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}}}
\end{gathered}
$$

$$
\sqrt[1024]{\frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}}=
$$

$$
\sqrt[1024]{\frac{25}{756}+\frac{\pi}{(14 \cos (3 i \pi \sqrt{3}))(18 \sqrt{3})}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}}}
$$

$$
\sqrt[1024]{\frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}}=
$$

$$
\sqrt[1024]{\frac{25}{756}+\frac{\pi}{\frac{14(18 \sqrt{3})}{\operatorname{soc}(3 i \pi \sqrt{3})}}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}}}
$$

Series representations:

$$
\begin{aligned}
& \sqrt[1024]{\frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}}= \\
& \sqrt[1024]{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}-\frac{\pi \sum_{k=1}^{\infty}(-1)^{k} q^{-1+2 k}}{126 \sqrt{3}}} \text { for } q=e^{3 \sqrt{3} \pi} \\
& \sqrt[1024]{\frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}}= \\
& \sqrt[1024]{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{e^{-3 \sqrt{3} \pi \pi \sum_{k=0}^{\infty}(-1)^{k} e^{-6 \sqrt{3} k \pi}}}{1024 \sqrt{3}}} \\
& \sqrt[1024]{\frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{25}{(14 \operatorname{cosh(3\pi \sqrt {3}))(18\sqrt {3}})}}= \\
& \sqrt{356}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi^{2}}{\pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}(1+2 k)}{27 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}}}
\end{aligned}
$$

Integral representation:

$$
\begin{gathered}
\sqrt[1024]{\frac{1}{\sqrt{3} 324 \pi}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(14 \cosh (3 \pi \sqrt{3}))(18 \sqrt{3})}} \\
\sqrt[1024]{\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{126 \sqrt{3}} \int_{0}^{\infty} \frac{t^{6 i \sqrt{3}}}{1+t^{2}} d t}
\end{gathered}
$$

$-782-8+(7 / 2) * 1 /(((((1 /(((324 \mathrm{Pi}) * \operatorname{sqrt}(3)))+25 / 756-$
$\left.\left.\left.\left.\left.\mathrm{Pi} /(54 * \operatorname{sqrt}(3))+(((\mathrm{Pi} /(18 * \operatorname{sqrt}(3))))))^{*} 1 /\left(14^{*} \cosh \left(3 \mathrm{Pi}^{*} \operatorname{sqrt}(3)\right)\right)\right)\right)\right)\right)\right)$

Input:

$-782-8+\frac{7}{2} \times \frac{1}{\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{18 \sqrt{3}} \times \frac{1}{14 \cosh (3 \pi \sqrt{3})}}$

Exact result:

$\frac{7}{2\left(\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}\right)}-790$

Decimal approximation:

73491.71306308824072153249106940347306025593211382945287718...
73491.713063...

Alternate forms:

$\frac{23814 \pi}{7 \sqrt{3}+225 \pi+3 \sqrt{3} \pi^{2}(3 \operatorname{sech}(3 \sqrt{3} \pi)-14)}-790$
$\frac{23814 \pi}{7 \sqrt{3}+225 \pi-42 \sqrt{3} \pi^{2}+9 \sqrt{3} \pi^{2} \operatorname{sech}(3 \sqrt{3} \pi)}-790$
$\frac{7}{2\left(\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{126 \sqrt{3}\left(e^{-3 \sqrt{3} \pi}+e^{3 \sqrt{3} \pi}\right)}\right)}-790$

Alternative representations:

$$
\begin{aligned}
& -782-8+\frac{7}{\left(\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(18 \sqrt{3})(14 \cosh (3 \pi \sqrt{3}))}\right) 2}= \\
& -790+\frac{7}{2\left(\frac{25}{756}+\frac{\pi}{(14 \cos (-3 i \pi \sqrt{3}))(18 \sqrt{3})}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}}\right)} \\
& \begin{array}{l}
-782-8+\frac{7}{\left(\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{7}{(18 \sqrt{3})(14 \cosh (3 \pi \sqrt{3}))}\right)} 2 \\
-790+\frac{7}{2\left(\frac{25}{756}+\frac{\pi}{(14 \cos (3 i \pi \sqrt{3}))(18 \sqrt{3})}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}}\right)}
\end{array}= \\
& -782-8+\frac{7}{\left(\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(18 \sqrt{3})(14 \cosh (3 \pi \sqrt{3}))}\right) 2}= \\
& \left.-790+\frac{7}{2\left(\frac{25}{756}+\frac{\pi}{\frac{14(18 \sqrt{3})}{\operatorname{sed}(3 i \pi \sqrt{3})}}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{324 \pi \sqrt{3}}\right.}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -782-8+\frac{7}{\left(\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(18 \sqrt{3})(14 \cosh (3 \pi \sqrt{3}))}\right) 2}= \\
& -790-\frac{23814 \pi}{-7 \sqrt{3}-225 \pi+42 \sqrt{3} \pi^{2}+18 \sqrt{3} \pi^{2} \sum_{k=1}^{\infty}(-1)^{k} q^{-1+2 k}} \text { for } q=e^{3 \sqrt{3} \pi} \\
& -782-8+\frac{7}{\left(\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(18 \sqrt{3})(14 \cosh (3 \pi \sqrt{3}))}\right) 2}= \\
& -790+\frac{23814 \pi}{7 \sqrt{3}+225 \pi-42 \sqrt{3} \pi^{2}+36 \sqrt{3} \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}(1+2 k)}{109+4 k+4 k^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& -782-8+\frac{7}{\left(\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(18 \sqrt{3})(14 \cosh (3 \pi \sqrt{3}))}\right) 2}= \\
& -790+\frac{23814}{225+\frac{7 \sqrt{3}}{\pi}-42 \sqrt{3} \pi+18 \sqrt{3} e^{-3 \sqrt{3} \pi} \pi \sum_{k=0}^{\infty}(-1)^{k} e^{-6 \sqrt{3} k \pi}}
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& -782-8+\frac{7}{\left(\frac{1}{(324 \pi) \sqrt{3}}+\frac{25}{756}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi}{(18 \sqrt{3})(14 \cosh (3 \pi \sqrt{3}))}\right) 2}= \\
& -790+\frac{7}{2\left(\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{1}{126 \sqrt{3}} \int_{0}^{\infty} \frac{t^{6 i \sqrt{3}}}{1+t^{2}} d t\right)}
\end{aligned}
$$

Thence, we have the following mathematical connection:

$$
\begin{aligned}
& \left(\frac{7}{2\left(\frac{25}{756}+\frac{1}{324 \sqrt{3} \pi}-\frac{\pi}{54 \sqrt{3}}+\frac{\pi \operatorname{sech}(3 \sqrt{3} \pi)}{252 \sqrt{3}}\right)}-790\right)=73491.713063 \ldots \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots . \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
\begin{gathered}
\binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{4}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \leqslant}{\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
\quad /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{gathered}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Page 265

We have:
sqrt(21) $\left.1 / 2((((3-\operatorname{sqrt}(7)) / \operatorname{sqrt}(2))))^{\wedge} 2(((\operatorname{sqrt}(((5+\operatorname{sqrt}(7))) / 4)))-\operatorname{sqrt}(((1+\operatorname{sqrt}(7)) / 4)))\right)^{\wedge} 4$ $(((\operatorname{sqrt}(((3+\operatorname{sqrt}(7)) / 4)))-\operatorname{sqrt}(((\operatorname{sqrt}(7)+1)) / 4)))^{\wedge} 4(1 / 2 * \operatorname{sqrt}(7)-\operatorname{sqrt}(3))^{\wedge} 2$

Input:

$\sqrt{21}\left(\frac{1}{2}\left(\frac{3-\sqrt{7}}{\sqrt{2}}\right)^{2}\right)\left(\sqrt{\frac{1}{4}(5+\sqrt{7})}-\sqrt{\frac{1}{4}(1+\sqrt{7})}\right)^{4}$
$\left(\sqrt{\frac{1}{4}(3+\sqrt{7})}-\sqrt{\frac{1}{4}(\sqrt{7}+1)}\right)^{4}\left(\frac{1}{2} \sqrt{7}-\sqrt{3}\right)^{2}$

Result:

$$
\begin{aligned}
& \frac{1}{4} \sqrt{21}(3-\sqrt{7})^{2}\left(\frac{\sqrt{7}}{2}-\sqrt{3}\right)^{2} \\
& \left(\frac{\sqrt{3+\sqrt{7}}}{2}-\frac{1}{2} \sqrt{1+\sqrt{7}}\right)^{4}\left(\frac{\sqrt{5+\sqrt{7}}}{2}-\frac{1}{2} \sqrt{1+\sqrt{7}}\right)^{4}
\end{aligned}
$$

Decimal approximation:

$2.3915524816624164664374098055386443887961318323545792 \ldots \times 10^{-6}$
$2.3915524816 \ldots * 10^{-6}$

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2048}(-32 \sqrt{2(5+\sqrt{7})(11+5 \sqrt{7})}+48 \sqrt{7}+12 \sqrt{14(5+\sqrt{7})(11+5 \sqrt{7})}- \\
& 32 \sqrt{2(1+\sqrt{7})(115+41 \sqrt{7})}+12 \sqrt{14(1+\sqrt{7})(115+41 \sqrt{7})-112)} \\
& (\sqrt{3+\sqrt{7}}-\sqrt{1+\sqrt{7}})^{4}(19 \sqrt{21}-84) \\
& \frac{\sqrt{21}(2 \sqrt{3}-\sqrt{7})^{2}(\sqrt{7}-3)^{2}(\sqrt{1+\sqrt{7}}-\sqrt{3+\sqrt{7}})^{4}(\sqrt{1+\sqrt{7}}-\sqrt{5+\sqrt{7}})^{4}}{4096}
\end{aligned}
$$

```
root of 1208925819614629174706176 x 16 +
    1066272572900102932090847232 x 15 +
    52042471479879261245210099712 x 14 +
    11466902464047792010302125506560 x 13 +
    268522316518239021476930106949632 x (12 +
    46911589457958527140659385941884928 \mp@subsup{x}{}{11}
    808765686867360903096041774996520960 x 10 +
    57518512275172950055158185352757248 x -
    2273601509826907571634757618498535424 x -
    1188432066556571834863445242753843200 x % -
    2576436753017819098275602371706880000 x' -
    4456804560805111404527207055360000000 x 5 -
    414358661156186273863724236800000000 \mp@subsup{x}{}{4}+
    9347379325695247854366720000000000 x -
    16871240529992096010000000000000 x 2-
    2372911639160737500000000000x+
    5 7 7 1 3 1 0 3 2 7 3 0 1 0 2 5 3 9 0 6 2 5 ~ n e a r ~ x ~ = ~ 2 . 3 9 1 5 5 \times 1 0 ^ { - 6 }
```


Minimal polynomial:

$1208925819614629174706176 x^{16}+1066272572900102932090847232 x^{15}+$ $52042471479879261245210099712 x^{14}+$ $11466902464047792010302125506560 x^{13}+$ $268522316518239021476930106949632 x^{12}+$ $46911589457958527140659385941884928 x^{11}-$ $808765686867360903096041774996520960 x^{10}+$ $57518512275172950055158185352757248 x^{9}-$ $2273601509826907571634757618498535424 x^{8}-$ $1188432066556571834863445242753843200 x^{7}-$ $2576436753017819098275602371706880000 x^{6}-$ $4456804560805111404527207055360000000 x^{5}-$ $414358661156186273863724236800000000 x^{4}+$ $9347379325695247854366720000000000 x^{3}$ $16871240529992096010000000000000 x^{2}$ $2372911639160737500000000000 x+5771310327301025390625$
sqrt(33) $1 / 2$ * $\left(\left((2-\operatorname{sqrt}(3))^{\wedge} 3(((\operatorname{sqrt}(((7+3 * \operatorname{sqrt}(3)) / 4)))-\operatorname{sqrt}(((3+3 \operatorname{sqrt}(3)) / 4))))^{\wedge} 4\right.\right.$ $\left.\left.(((\operatorname{sqrt}(((5+\operatorname{sqrt}(3)) / 4)))-\operatorname{sqrt}(((1+\operatorname{sqrt}(3))) / 4)))^{\wedge} 4\left((((\operatorname{sqrt}(3)-2)) /(\operatorname{sqrt}(2)))^{\wedge} 2\right)\right)\right)$

Input:

$$
\begin{gathered}
\sqrt{33} \times \frac{1}{2}\left((2-\sqrt{3})^{3}\left(\sqrt{\frac{1}{4}(7+3 \sqrt{3})}-\sqrt{\frac{1}{4}(3+3 \sqrt{3})}\right)^{4}\right. \\
\left.\left(\sqrt{\frac{1}{4}(5+\sqrt{3})}-\sqrt{\frac{1}{4}(1+\sqrt{3})}\right)^{4}\left(\frac{\sqrt{3}-2}{\sqrt{2}}\right)^{2}\right)
\end{gathered}
$$

Exact result:

$$
\begin{aligned}
& \frac{1}{4} \sqrt{33}(2-\sqrt{3})^{3}(\sqrt{3}-2)^{2} \\
& \left(\frac{\sqrt{5+\sqrt{3}}}{2}-\frac{1}{2} \sqrt{1+\sqrt{3}}\right)^{4}\left(\frac{1}{2} \sqrt{7+3 \sqrt{3}}-\frac{1}{2} \sqrt{3+3 \sqrt{3}}\right)^{4}
\end{aligned}
$$

Decimal approximation:

$9.5641535164851598615720165586116228685173468809096524 \ldots \times 10^{-7}$
$9.5641535 \ldots * 10^{-7}$

Alternate forms:

$$
\begin{aligned}
& \text { root of } 65536 x^{8}+51904512 x^{7}+141384105984 x^{6}+ \\
& 55824100687872 x^{5}+76366762805380608 x^{4}- \\
& 314341398791202816 x^{3}-3256884091099584 x^{2}- \\
& 1236849191424 x+1185921 \text { near } x=9.56415 \times 10^{-7}
\end{aligned}
$$

$$
-\frac{\sqrt{33}(\sqrt{3}-2)^{5}(\sqrt{1+\sqrt{3}}-\sqrt{5+\sqrt{3}})^{4}(\sqrt{3(1+\sqrt{3})}-\sqrt{7+3 \sqrt{3}})^{4}}{1024}
$$

$$
-\frac{9 \sqrt{33}(\sqrt{3}-2)^{5}(1+\sqrt{3})^{2}(\sqrt{1+\sqrt{3}}-\sqrt{5+\sqrt{3}})^{4}}{1024}-
$$

$$
\frac{9}{512} \sqrt{33}(\sqrt{3}-2)^{5}(1+\sqrt{3})(7+3 \sqrt{3})(\sqrt{1+\sqrt{3}}-\sqrt{5+\sqrt{3}})^{4}+
$$

$$
\frac{3}{256}(\sqrt{3}-2)^{5} \sqrt{11(1+\sqrt{3})}(7+3 \sqrt{3})^{3 / 2}(\sqrt{1+\sqrt{3}}-\sqrt{5+\sqrt{3}})^{4}-
$$

$$
\frac{\sqrt{33}(\sqrt{3}-2)^{5}(7+3 \sqrt{3})^{2}(\sqrt{1+\sqrt{3}}-\sqrt{5+\sqrt{3}})^{4}}{1024}+
$$

$$
\frac{9}{256}(\sqrt{3}-2)^{5}(1+\sqrt{3})^{3 / 2} \sqrt{11(7+3 \sqrt{3})}(\sqrt{1+\sqrt{3}}-\sqrt{5+\sqrt{3}})^{4}
$$

Minimal polynomial:

$65536 x^{8}+51904512 x^{7}+141384105984 x^{6}+55824100687872 x^{5}+$ $76366762805380608 x^{4}-314341398791202816 x^{3}-$ $3256884091099584 x^{2}-1236849191424 x+1185921$
$\operatorname{sqrt}(45) 1 / 2 *(\operatorname{sqrt}(5)-2) \wedge 3(((\operatorname{sqrt}(((7+3 * \operatorname{sqrt}(5)) / 4)))-\operatorname{sqrt}(((3+3 \operatorname{sqrt}(5)) / 4)))))^{\wedge} 4$ $\left.(((\operatorname{sqrt}(((3+\operatorname{sqrt}(5)) / 2)))-\operatorname{sqrt}(((1+\operatorname{sqrt}(5))) / 2)))^{\wedge} 4(((\operatorname{sqrt}(5)-\operatorname{sqrt}(3)) /(\operatorname{sqrt}(2))))\right)^{\wedge} 4$

Input:

$$
\begin{aligned}
& \sqrt{45}\left(\frac{1}{2}(\sqrt{5}-2)^{3}\right)\left(\sqrt{\frac{1}{4}(7+3 \sqrt{5})}-\sqrt{\frac{1}{4}(3+3 \sqrt{5})}\right)^{4} \\
& \left(\sqrt{\frac{1}{2}(3+\sqrt{5})}-\sqrt{\left.\frac{1}{2}(1+\sqrt{5})\right)^{4}\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\right)^{4}}\right.
\end{aligned}
$$

Exact result:

$\frac{3}{8} \sqrt{5}(\sqrt{5}-2)^{3}(\sqrt{5}-\sqrt{3})^{4}$
$\left(\sqrt{\frac{1}{2}(3+\sqrt{5})}-\sqrt{\frac{1}{2}(1+\sqrt{5})}\right)^{4}\left(\frac{1}{2} \sqrt{7+3 \sqrt{5}}-\frac{1}{2} \sqrt{3+3 \sqrt{5}}\right)^{4}$

Decimal approximation:

$7.5545989655538975680277255117978988700650564261449067 \ldots \times 10^{-8}$
7.5545989... * 10^{-8}
$\left.\operatorname{sqrt}(15) * 1 / 16^{*}((((\operatorname{sqrt}(5)-1)) / 2))^{\wedge} 4 *((2-\operatorname{sqrt}(3)))\right)^{\wedge} 2 *((4-\operatorname{sqrt}(15)))$

Input:

$\sqrt{15} \times \frac{1}{16}\left(\frac{1}{2}(\sqrt{5}-1)\right)^{4}(2-\sqrt{3})^{2}(4-\sqrt{15})$

Result:

$\frac{1}{256} \sqrt{15}(2-\sqrt{3})^{2}(\sqrt{5}-1)^{4}(4-\sqrt{15})$

Decimal approximation:

$0.000322062869471454321112479786299775908555054150731656741 \ldots$

Result:

$3.22062869471454321112479786299775908555054150731656741 \times 10^{-4}$
$3.220628694 \ldots * 10^{-4}$

Alternate forms:
$\frac{1}{32}(7-3 \sqrt{5})(7-4 \sqrt{3})(4 \sqrt{15}-15)$
$\frac{1}{32}(-15-21 \sqrt{5}+16 \sqrt{15})$
$-\frac{15}{32}-\frac{21 \sqrt{5}}{32}+\frac{\sqrt{15}}{2}$
Minimal polynomial:
$65536 x^{4}+122880 x^{3}-687360 x^{2}-698400 x+225$

Now, we have that:
$-1024+24 /\left(\left(\left(\left(\operatorname{sqrt}(15) * 1 / 16 *((((\operatorname{sqrt}(5)-1)) / 2))^{\wedge} 4 *((2-\operatorname{sqrt}(3)))\right)^{\wedge} 2 *((4-\right.\right.\right.$ $\operatorname{sqrt(15)))))))}$

Input:

$-1024+\frac{24}{\sqrt{15} \times \frac{1}{16}\left(\frac{1}{2}(\sqrt{5}-1)\right)^{4}(2-\sqrt{3})^{2}(4-\sqrt{15})}$

Result:

$\frac{2048 \sqrt{\frac{3}{5}}}{(2-\sqrt{3})^{2}(\sqrt{5}-1)^{4}(4-\sqrt{15})}-1024$

Decimal approximation:

73495.61177451787222723623392674785115106531233916750239826...
73495.6117745...

Alternate forms:

$$
\begin{aligned}
& -\frac{1}{55}(67840+6720 \sqrt{3}+5376 \sqrt{5}+3136 \sqrt{15}) \\
& \frac{256}{5}\left(\frac{1}{1+\frac{\sqrt{15}}{7 \sqrt{3}-16}}-21\right)
\end{aligned}
$$

$$
17600+24064 \sqrt{\frac{3}{5}}+\frac{1}{2} \sqrt{\frac{13879885824}{5}+3583770624 \sqrt{\frac{3}{5}}}
$$

Minimal polynomial:

$25 x^{4}-1760000 x^{3}-5607997440 x^{2}-5841134551040 x-2018181241634816$

Thence, we have the following mathematical connection:

$$
\binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon},} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i\left(\tau^{r}+t\right)}\right|^{2} d t \ll}{\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} /
$$

$$
\begin{aligned}
& \left(\frac{2048 \sqrt{\frac{3}{5}}}{(2-\sqrt{3})^{2}(\sqrt{5}-1)^{4}(4-\sqrt{15})}-1024\right)=73495.6117745 \ldots \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \widehat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Now, we have:
$\left.\left.\left(\left(\left(\left(\operatorname{sqrt}(15) * 1 / 16^{*}((((\operatorname{sqrt}(5)-1)) / 2))^{\wedge} 4 *((2-\operatorname{sqrt}(3)))\right)^{\wedge} 2 *((4-\operatorname{sqrt}(15)))\right)\right)\right)\right)\right)^{\wedge} 1 / 1024$

Input:

$$
\sqrt[1024]{\sqrt{15} \times \frac{1}{16}\left(\frac{1}{2}(\sqrt{5}-1)\right)^{4}(2-\sqrt{3})^{2}(4-\sqrt{15})}
$$

Exact result:

```
\(\frac{\sqrt[2048]{15} \sqrt[512]{2-\sqrt{3}} \sqrt[256]{\sqrt{5}-1} \sqrt[1024]{4-\sqrt{15}}}{\sqrt[128]{2}}\)
```


Decimal approximation:

0.992178440454249520310411311750776776068998591904671813514
$0.9921784404 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$
$\left(\left(\left(((\operatorname{sqrt}(21) 1 / 2((((3-\operatorname{sqrt}(7))) / \operatorname{sqrt}(2)))))^{\wedge} 2(((\operatorname{sqrt}(((5+\operatorname{sqrt}(7)) / 4)))-\right.\right.\right.$
$\operatorname{sqrt}(((1+\operatorname{sqrt}(7)) / 4))))^{\wedge} 4(((\operatorname{sqrt}(((3+\operatorname{sqrt}(7)) / 4)))-\operatorname{sqrt}(((\operatorname{sqrt}(7)+1)) / 4)))^{\wedge} 4(1 / 2 * \operatorname{sqrt}(7)-$ $\left.\left.\left.\left.\left.\operatorname{sqrt(3)})^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 1 / 1024$

Input:

$$
\begin{aligned}
& \left(\sqrt{21}\left(\frac{1}{2}\left(\frac{3-\sqrt{7}}{\sqrt{2}}\right)^{2}\right)\left(\sqrt{\frac{1}{4}(5+\sqrt{7})}-\sqrt{\frac{1}{4}(1+\sqrt{7})}\right)^{4}\right. \\
& \left.\quad\left(\sqrt{\frac{1}{4}(3+\sqrt{7})}-\sqrt{\frac{1}{4}(\sqrt{7}+1)}\right)^{4}\left(\frac{1}{2} \sqrt{7}-\sqrt{3}\right)^{2}\right) \wedge(1 / 1024)
\end{aligned}
$$

Exact result:

$$
\begin{aligned}
& \frac{1}{\sqrt[512]{2}} \sqrt[2048]{21} \sqrt[512]{(3-\sqrt{7})\left(\sqrt{3}-\frac{\sqrt{7}}{2}\right)} \\
& \sqrt[256]{\left(\frac{\sqrt{3+\sqrt{7}}}{2}-\frac{1}{2} \sqrt{1+\sqrt{7}}\right)\left(\frac{\sqrt{5+\sqrt{7}}}{2}-\frac{1}{2} \sqrt{1+\sqrt{7}}\right)}
\end{aligned}
$$

Decimal approximation:

$0.987439348870893804562981265483323778329220689630847778127 \ldots$
$0.987439348 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2^{3 / 256}} \sqrt[2048]{21} \sqrt[512]{(3-\sqrt{7})(2 \sqrt{3}-\sqrt{7})} \\
& \sqrt[256]{(\sqrt{3+\sqrt{7}}-\sqrt{1+\sqrt{7}})(\sqrt{5+\sqrt{7}}-\sqrt{1+\sqrt{7}})} \\
& \frac{1}{2^{3 / 256}} \sqrt[2048]{21} \sqrt[512]{7+6 \sqrt{3}-3 \sqrt{7}-2 \sqrt{21}} \\
& (1+\sqrt{7}-\sqrt{(1+\sqrt{7})(3+\sqrt{7})}-\sqrt{(1+\sqrt{7})(5+\sqrt{7})}+\sqrt{(3+\sqrt{7})(5+\sqrt{7})})
\end{aligned}
$$

$$
(1 / 256)
$$

$\left(\left(\left(\left(\left(\operatorname{sqrt}(33) 1 / 2 *\left(((2-\operatorname{sqrt}(3)) \wedge 3(((\operatorname{sqrt}(((7+3 * \operatorname{sqrt}(3)) / 4)))-\operatorname{sqrt}(((3+3 \operatorname{sqrt}(3)) / 4)))))^{\wedge} 4\right.\right.\right.\right.\right.\right.$ $(((\operatorname{sqrt}(((5+\operatorname{sqrt}(3)) / 4)))-\operatorname{sqrt}(((1+\operatorname{sqrt}(3))) / 4)))^{\wedge} 4 \quad((((\operatorname{sqrt}(3)-$
$\left.\left.\left.\left.\left.\left.\left.\left.2)) /((\operatorname{sqrt}(2)))^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 1024$

Input:

$$
\begin{aligned}
&\left(\sqrt{33} \times \frac{1}{2}\left((2-\sqrt{3})^{3}\left(\sqrt{\frac{1}{4}(7+3 \sqrt{3})}-\sqrt{\frac{1}{4}(3+3 \sqrt{3})}\right)^{4}\right.\right. \\
&\left.\left.\left(\sqrt{\frac{1}{4}(5+\sqrt{3})}-\sqrt{\frac{1}{4}(1+\sqrt{3})}\right)^{4}\left(\frac{\sqrt{3}-2}{\sqrt{2}}\right)^{2}\right)\right) \wedge(1 / 1024)
\end{aligned}
$$

Exact result:

$\frac{\left.\sqrt[2048]{33}(2-\sqrt{3})^{5 / 1024} \sqrt[256]{\left(\frac{\sqrt{5+\sqrt{3}}}{2}\right.}-\frac{1}{2} \sqrt{1+\sqrt{3}}\right)\left(\frac{1}{2} \sqrt{7+3 \sqrt{3}}-\frac{1}{2} \sqrt{3+3 \sqrt{3}}\right)}{\sqrt[512]{2}}$

Decimal approximation:

0.986555961237011117594683147326554333473724037551432510022 ..
$0.986555961237 \ldots$. result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$
$\left(\left(\left(\left(\left(\left(\left(\operatorname{sqrt}(45) 1 / 2 *(\operatorname{sqrt}(5)-2)^{\wedge} 3(((\operatorname{sqrt}(((7+3 * \operatorname{sqrt}(5)) / 4)))-\operatorname{sqrt}(((3+3 \operatorname{sqrt}(5)) / 4))))^{\wedge} 4\right.\right.\right.\right.\right.\right.\right.$ $(((\operatorname{sqrt}(((3+\operatorname{sqrt}(5)) / 2)))-\operatorname{sqrt}(((1+\operatorname{sqrt}(5))) / 2)))^{\wedge} 4(((\operatorname{sqrt}(5)-$
$\left.\left.\left.\left.\left.\left.\left.\operatorname{sqrt}(3)) /((\operatorname{sqrt}(2)))))^{\wedge} 4\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 1024$

Input:

$$
\begin{aligned}
& \left(\sqrt{45}\left(\frac{1}{2}(\sqrt{5}-2)^{3}\right)\left(\sqrt{\frac{1}{4}(7+3 \sqrt{5})}-\sqrt{\frac{1}{4}(3+3 \sqrt{5})}\right)^{4}\right. \\
& \left.\quad\left(\sqrt{\frac{1}{2}(3+\sqrt{5})}-\sqrt{\frac{1}{2}(1+\sqrt{5})}\right)^{4}\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\right)^{4}\right) \wedge(1 / 1024)
\end{aligned}
$$

Exact result:

$\frac{1}{2 / 3 / 1024} \sqrt[1024]{3} \sqrt[2048]{5}(\sqrt{5}-2)^{3 / 1024}$

$$
\sqrt[256]{(\sqrt{5}-\sqrt{3})\left(\sqrt{\frac{1}{2}(3+\sqrt{5})}-\sqrt{\frac{1}{2}(1+\sqrt{5})}\right)\left(\frac{1}{2} \sqrt{7+3 \sqrt{5}}-\frac{1}{2} \sqrt{3+3 \sqrt{5}}\right)}
$$

Decimal approximation:

$0.98411336146 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

2207-1364-123-29+0.0055/((((sqrt(45)1/2 *(sqrt(5)-2)^3 (((sqrt(((7+3*sqrt(5)))/4)))$\operatorname{sqrt}(((3+3 \operatorname{sqrt}(5)) / 4))))^{\wedge} 4(((\operatorname{sqrt}(((3+\operatorname{sqrt}(5)) / 2)))-\operatorname{sqrt}(((1+\operatorname{sqrt}(5))) / 2)))^{\wedge} 4 \quad(((\operatorname{sqrt}(5)-$ $\operatorname{sqrt(3))/(\operatorname {sqrt}(2))))\wedge 4))))}$

Where 29, 123, 1364, 2207 are Lucas numbers and $0.0055=55 / 10^{4}$ where 55 is a Fibonacci number

Input:

$$
\begin{aligned}
& 2207-1364-123-29+ \\
& 0.0055 /\left(\left(\sqrt{45} \times \frac{1}{2}(\sqrt{5}-2)^{3}\right)\left(\sqrt{\frac{1}{4}(7+3 \sqrt{5})}-\sqrt{\frac{1}{4}(3+3 \sqrt{5})}\right)^{4}\right. \\
& \left(\sqrt{\frac{1}{2}(3+\sqrt{5})}-\sqrt{\left.\left.\frac{1}{2}(1+\sqrt{5})\right)^{4}\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\right)^{4}\right)}\right.
\end{aligned}
$$

Result:

73494.3...
73494.3...

Thence, we have the following mathematical connection:

$$
\left(\begin{array}{c}
2207-1364-123-29+ \\
0.0055 /\left(\left(\sqrt{45} \times \frac{1}{2}(\sqrt{5}-2)^{3}\right)\left(\sqrt{\frac{1}{4}(7+3 \sqrt{5})}-\sqrt{\frac{1}{4}(3+3 \sqrt{5})}\right)^{4}\right. \\
\left(\sqrt{\frac{1}{2}(3+\sqrt{5})}-\sqrt{\left.\left.\frac{1}{2}(1+\sqrt{5})\right)^{4}\left(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\right)^{4}\right)}\right.
\end{array}\right)=73494.3 \ldots \Rightarrow
$$

$$
\begin{aligned}
& \Rightarrow-3927+2\left(\begin{array}{l}
13\binom{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} P_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}{\int\left[d \mathrm{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathrm{X}^{\mu} D^{2} \mathrm{X}^{\mu}\right)\right\}\left|\mathrm{X}^{\mu}, \mathrm{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
\\
-3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
=73490.8437525 \ldots \Rightarrow \\
\Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
\Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
=73491.78832548118710549159572042220548025195726563413398700 \ldots
\end{array}\right. \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
\binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{2}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i\left(T^{r}+t\right)}\right|^{2} d t \leqslant}{\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} /, ~\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots .
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

From the results of the already analyzed expressions, we obtain:
$\left(2.39155248166 \times 10^{\wedge}-6\right) *\left(1 / 9.5641535164 \times 10^{\wedge}-7\right) *\left(1 / 7.5545989655 \times 10^{\wedge}-8\right)$ * (1/3.2206286947 * 10^-4)

Input interpretation:

$2.39155248166 \times 10^{-6} \times \frac{1}{9.5641535164 \times 10^{-7}} \times \frac{1}{7.5545989655 \times 10^{-8}} \times \frac{\frac{1}{3.2206286947}}{10^{4}}$

Result:

1027.735372756695967150068231886714891405595570757250597699...
1027.7353727...

And:
$(1 / 2.39155248166 \mathrm{e}-6) *(1 / 9.5641535164 \mathrm{e}-7) *(1 / 7.5545989655 \mathrm{e}-8) *(1 /$ $3.2206286947 \mathrm{e}-4)$

Input interpretation:

$\frac{\frac{1}{2.39155248166 \times 10^{-6}} \times \frac{1}{9.5641535164 \times 10^{-7}} \times}{\frac{1}{7.5545989655 \times 10^{-8}} \times \frac{1}{3.2206286947 \times 10^{-4}}}$

Result:

$1.7968899220884632555950165273920648039964203906477204 \ldots \times 10^{22}$
$1.796889922 \ldots * 10^{22}$
$[4096 /(((1 / 2.39155248166 \mathrm{e}-6) *(1 / 9.5641535164 \mathrm{e}-7) *(1 / 7.5545989655 \mathrm{e}-8) *(1$ / $3.2206286947 \mathrm{e}-4))$)] ${ }^{\wedge} 1 / 4096$

Note that, if we insert 4096, either as a numerator, or as a root index, we obtain:

Input interpretation:

Result:

0.98957494535224...
$0.989574 \ldots$. result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$
$((((1 / 2.39155248166 \mathrm{e}-6) *(1 / 9.5641535164 \mathrm{e}-7) *(1 / 7.5545989655 \mathrm{e}-8) *(1 /$ $3.2206286947 \mathrm{e}-4)))) 5 /\left(\left(64^{\wedge} 2\right)^{\wedge} 5\right)-\left(64^{\wedge} 2+64 * 5+16\right)$

Input interpretation:

$$
\begin{gathered}
\left(\frac{1}{2.39155248166 \times 10^{-6}} \times \frac{1}{9.5641535164 \times 10^{-7}} \times \frac{1}{7.5545989655 \times 10^{-8}} \times\right. \\
\left.\frac{1}{3.2206286947 \times 10^{-4}}\right) \times \frac{5}{\left(64^{2}\right)^{5}}-\left(64^{2}+64 \times 5+16\right)
\end{gathered}
$$

Result:

73495.67828982482649822253539945441525705912723073940387622...
73495.6782898...

Thence, we have the following mathematical connection:

$$
\binom{\left(\frac{1}{2.39155248166 \times 10^{-6}} \times \frac{1}{9.5641535164 \times 10^{-7}} \times \frac{1}{7.5545989655 \times 10^{-8}} \times\right.}{\left.\frac{1}{3.2206286947 \times 10^{-4}}\right) \times \frac{5}{\left(64^{2}\right)^{5}}-\left(64^{2}+64 \times 5+16\right)}=73495.678 \Rightarrow
$$

$$
\begin{gathered}
=73490.8437525 \ldots \Rightarrow \\
\Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
\Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
=73491.78832548118710549159572042220548025195726563413398700 \ldots \\
=73491.7883254 \ldots \Rightarrow \\
\left(J_{21} \leqslant\left.\left.\int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\right|_{\lambda \leqslant p^{1-\varepsilon}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \leqslant\right. \\
\& H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}\left(\log T^{-r}\right) T^{-\varepsilon_{1}}\right\}\right) / \\
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{gathered}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

From the results of $1024^{\text {th }}$ roots of the expressions:
0.992178440454249520310411311750776776068998591904671813514
0.987439348870893804562981265483323778329220689630847778127
0.986555961237011117594683147326554333473724037551432510022
0.984113361469563511529046508637472734079204162729013649674
we obtain the following mean:

1/4

$(0.992178440454249520310411311+0.98743934887089380456298126+0.98655596$ $12370111175946831+0.984113361469563511529046)$

Input interpretation:

```
\frac{1}{4}}(0.992178440454249520310411311+0.98743934887089380456298126
    0.9865559612370111175946831 + 0.984113361469563511529046)
```


Result:

0.98757177800792948849928041775
$0.987571778 \ldots$ result very near to the result of:
$\left(2.3915524816 * 10^{\wedge}-6\right)^{\wedge} 1 / 1024=0.98743934887087$

We note that, performing the following calculation on the results signed in red, we obtain:
$\left(\left(\left(\left(0.98743934887087 * 1 /(2.3915524816 \mathrm{e}-6)^{*} 1 / 2\right)\right)\right)\right)-4096^{*}($ golden ratio $)^{\wedge} 2+(1.65578)^{\wedge} 14$

Where there are $4096=64^{2}, \phi=$ golden ratio and the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $(1,65578)^{14}$

Input interpretation:

$0.98743934887087 \times \frac{1}{2.3915524816 \times 10^{-6}} \times \frac{1}{2}-4096 \phi^{2}+1.65578^{14}$

Result:

196883.9271503793665467874480555413832494353978358613100275
196883.92715... result very near to 196884 , that is a fundamental number of the following \boldsymbol{j}-invariant
$j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots$
(In mathematics, Felix Klein's \boldsymbol{j}-invariant or \boldsymbol{j} function, regarded as a function of a complex variable τ, is a modular function of weight zero for $\operatorname{SL}(2, \mathbf{Z})$ defined on the upper half plane of complex numbers. Several remarkable properties of j have to do with its q expansion (Fourier series expansion), written as a Laurent series in terms of $q=e^{2 \pi i \tau}$ (the square of the nome), which begins:

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

Note that j has a simple pole at the cusp, so its q-expansion has no terms below q^{-1}. All the Fourier coefficients are integers, which results in several almost integers, notably Ramanujan's constant:

$$
e^{\pi \sqrt{163}} \approx 640320^{3}+744
$$

The asymptotic formula for the coefficient of q^{n} is given by

$$
\frac{e^{4 \pi \sqrt{n}}}{\sqrt{ } 2 n^{3 / 4}}
$$

as can be proved by the Hardy-Littlewood circle method)

From the following calculation of the four above results, we obtain: 1/
($0.992178440454249520310411311 * 1 / 0.98743934887089380456298126 * 1 / 0.98655$ $59612370111175946831 * 1 / 0.984113361469563511529046$)

Input interpretation:

$$
\left.\begin{array}{rl}
1 /(0.992178440454249520310411311
\end{array} \times \frac{1}{0.98743934887089380456298126} \times 1 \times \frac{1}{0.984113361469563511529046}\right) \quad .
$$

Result:

0.966245528794624343760338481601039771812738767989917932463 .
$0.9662455287 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

and also to the spectral index n_{s} and to the mesonic Regge slope (see Appendix)

From the algebraic sum, we obtain:
$(0.98743934887089380456298126+0.9865559612370111175946831+0.9841133614$ 69563511529046-0.992178440454249520310411311)

Input interpretation:

$0.98743934887089380456298126+0.9865559612370111175946831+$
$0.984113361469563511529046-0.992178440454249520310411311$

Result:

1.965930231123218913376299049

$1.96593023 \ldots$ result practically near to the mean value $1.962 * 10^{19}$ of DM particle

Page 221

From:
$\left(\mathrm{Pi}^{\wedge} 7\right) / 11520-\left(\mathrm{Pi}^{*} \theta^{6} / 180\right)$, we obtain:
$\left(x^{\wedge} 6^{*} \mathrm{Pi} / 180\right)=\left(\mathrm{Pi}^{\wedge} 7\right) / 11520$

Input:

$x^{6} \times \frac{\pi}{180}=\frac{\pi^{7}}{11520}$

Alternate form:
$\frac{\pi x^{6}}{180}-\frac{\pi^{7}}{11520}=0$

Real solutions:

$x=-\frac{\pi}{2}$
$x=\frac{\pi}{2}$
$\theta^{6}=\left(-\frac{\pi}{2},+\frac{\pi}{2}\right)$

Complex solutions:

$x=-\frac{1}{4} i(\sqrt{3}+-i) \pi$
$x=\frac{1}{4}(1-i \sqrt{3}) \pi$
$x=\frac{1}{4} i(\sqrt{3}+i) \pi$
$x=\frac{1}{4}(1+i \sqrt{3}) \pi$
Input:
$\left(\frac{\pi}{2}\right)^{6} \times \frac{\pi}{180}=\frac{\pi^{7}}{11520}$

Result:
True
Thence, we obtain:
$\left(\mathrm{Pi}^{\wedge} 7\right) / 11520$

Input:

$\frac{\pi^{7}}{11520}$

Decimal approximation:

0.262178231577846533638385980301392520131721569036059224197...
$0.2621782315778 \ldots$

Property:

$\frac{\pi^{7}}{11520}$ is a transcendental number

Alternative representations:
$\frac{\pi^{7}}{11520}=\frac{\left(180^{\circ}\right)^{7}}{11520}$
$\frac{\pi^{7}}{11520}=\frac{(-i \log (-1))^{7}}{11520}$
$\frac{\pi^{7}}{11520}=\frac{\cos ^{-1}(-1)^{7}}{11520}$

Series representations:
$\frac{\pi^{7}}{11520}=\frac{64}{45}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{7}$
$\frac{\pi^{7}}{11520}=\frac{64}{45}\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{7}$
$\frac{\pi^{7}}{11520}=\frac{\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{7}}{11520}$

Integral representations:

$\frac{\pi^{7}}{11520}=\frac{64}{45}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{7}$
$\frac{\pi^{7}}{11520}=\frac{1}{90}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{7}$

$$
\frac{\pi^{7}}{11520}=\frac{1}{90}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{7}
$$

And:
$\left(\left(\left(\left(\mathrm{Pi}^{\wedge} 7\right) / 11520\right)\right)\right)^{\wedge} 1 / 128$

Input:

$\sqrt[128]{\frac{\pi^{7}}{11520}}$

Exact result:

$\frac{\pi^{7 / 128}}{\sqrt[16]{2} \sqrt[64]{3} \sqrt[128]{5}}$

Decimal approximation:

0.989595669569276480646550081884615536979140924167165851018...
$0.9895956695692 \ldots$. result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Property:

$\frac{\pi^{7 / 128}}{\sqrt[16]{2} \sqrt[64]{3} \sqrt[128]{5}}$ is a transcendental number

All 128th roots of $\boldsymbol{\pi}^{\wedge} 7 / 11520$:

$\frac{\pi^{7 / 128} e^{0}}{\sqrt[16]{2} \sqrt[64]{3} \sqrt[128]{5}} \approx 0.98960$ (real, principal root)
$\frac{\pi^{7 / 128} e^{(i \pi) / 64}}{\sqrt[16]{2} \sqrt[64]{3} \sqrt[128]{5}} \approx 0.98840+0.04856 i$
$\frac{\pi^{7 / 128} e^{(i \pi) / 32}}{\sqrt[16]{2} \sqrt[64]{3} \sqrt[128]{5}} \approx 0.98483+0.09700 i$
$\frac{\pi^{7 / 128} e^{(3 i \pi) / 64}}{\sqrt[16]{2} \sqrt[64]{3} \sqrt[128]{5}} \approx 0.97888+0.14520 i$

$$
\frac{\pi^{7 / 128} e^{(i \pi) / 16}}{\sqrt[16]{2} \sqrt[64]{3} \sqrt[128]{5}} \approx 0.97058+0.19306 i
$$

Alternative representations:

$$
\sqrt[128]{\frac{\pi^{7}}{11520}}=\sqrt[128]{\frac{\left(180^{\circ}\right)^{7}}{11520}}
$$

$\sqrt[128]{\frac{\pi^{7}}{11520}}=\sqrt[128]{\frac{(-i \log (-1))^{7}}{11520}}$

$$
\sqrt[128]{\frac{\pi^{7}}{11520}}=\sqrt[128]{\frac{\cos ^{-1}(-1)^{7}}{11520}}
$$

Series representations:

$\sqrt[128]{\frac{\pi^{7}}{11520}}=\frac{2^{3 / 64}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{7 / 128}}{\sqrt[64]{3} \sqrt[128]{5}}$
$\sqrt[128]{\frac{\pi^{7}}{11520}}=\frac{2^{3 / 64}\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1 / 128}\right)^{7 / 128}}{\sqrt[1+2]{3} \sqrt[128]{5}}$
$\sqrt[128]{\frac{\pi^{7}}{11520}}=\frac{\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{7 / 128}}{\sqrt[16]{2} \sqrt[64]{3} \sqrt[128]{5}}$

Integral representations:

$\sqrt[128]{\frac{\pi^{7}}{11520}}=\frac{\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{7 / 128}}{\sqrt[64]{3} \sqrt[128]{10}}$
$\sqrt[128]{\frac{\pi^{7}}{11520}}=\frac{\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{7 / 128}}{\sqrt[64]{3} \sqrt[128]{10}}$
$\sqrt[128]{\frac{\pi^{7}}{11520}}=\frac{2^{3 / 64}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{7 / 128}}{\sqrt[64]{3} \sqrt[128]{5}}$

Now, we have:
36*1/(((Pi^7)/11520))

Input:

$36 \times \frac{1}{\frac{\pi^{7}}{11520}}$

Result:
$\frac{414720}{\pi^{7}}$

Decimal approximation:

137.3111710432404885012591457356723678236459462317279639474...
$137.311171 \ldots$ result near to the rest mass of Pion meson 139.57 and practically equal to the reciprocal of fine-structure constant 137.035...

Property:

$\frac{414720}{\pi^{7}}$ is a transcendental number

Alternative representations:

$\frac{36}{\frac{\pi^{7}}{11520}}=\frac{36}{\frac{\left(180^{\circ}\right)^{7}}{11520}}$
$\frac{36}{\frac{\pi^{7}}{11520}}=\frac{36}{\frac{(-i \log (-1))^{7}}{11520}}$
$\frac{36}{\frac{\pi^{7}}{11520}}=\frac{36}{\frac{\cos ^{-1}(-1)^{7}}{11520}}$

Series representations:

$$
\begin{aligned}
& \frac{36}{\frac{\pi^{7}}{11520}}=\frac{405}{16\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{7}} \\
& \frac{36}{\frac{\pi^{7}}{11520}}=\frac{405}{16\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{7}} \\
& \frac{36}{\frac{\pi^{7}}{11520}}=\frac{414720}{\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{7}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{36}{\frac{\pi^{7}}{11520}}=\frac{3240}{\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{7}} \\
& \frac{36}{\frac{\pi^{7}}{11520}}=\frac{3240}{\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{7}} \\
& \frac{36}{\frac{\pi^{7}}{11520}}=\frac{405}{16\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{7}}
\end{aligned}
$$

We note that:
$1 /\left(\left(\left(36^{*} 1 /\left(\left(\left(\operatorname{Pi}^{\wedge} 7\right) / 11520\right)\right)\right)\right)\right)^{\wedge} 1 / 1024$

Input:

$\frac{1}{\sqrt[1024]{36 \times \frac{1}{\frac{\pi^{7}}{11520}}}}$

Exact result:

$\frac{\pi^{7 / 1024}}{2^{5 / 512} \sqrt[256]{3} \sqrt[1024]{5}}$

Decimal approximation:

$0.995204650134757443388135466900444429050754894465357320562 \ldots$
$0.99520465 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Property:

$\frac{\pi^{7 / 1024}}{2 \sqrt[5 / 512]{\sqrt[256]{3}} \sqrt[1024]{5}}$ is a transcendental number

Alternative representations:

$\frac{1}{\sqrt[1024]{\frac{36}{\frac{\pi^{7}}{11520}}}}=\frac{1}{\sqrt[1024]{\frac{36}{\frac{\cos ^{-1}(-1)^{7}}{11520}}}}$
$\frac{1}{\sqrt[1024]{\frac{36}{\frac{\pi^{7}}{11520}}}}$
$=\frac{1}{1024} \sqrt{\frac{36}{\frac{(-i \log (-1))^{7}}{11520}}}$

Series representations:

$\frac{1}{\sqrt[1024]{\frac{36}{\frac{\pi^{7}}{11520}}}}=\frac{\sqrt[256]{\frac{2}{3}}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{7 / 1024}}{\sqrt[1024]{5}}$
$\frac{1}{\sqrt[1024]{\frac{36}{\frac{\pi^{7}}{11520}}}}=\frac{\sqrt[256]{\frac{2}{3}}\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{\left.1+2 k-4 \times 239^{1+2 k}\right)}\right.}{1+2 k}\right)^{7 / 1024}}{\sqrt[1024]{5}}$
$\frac{1}{\sqrt[1024]{\sqrt{\frac{36}{1 \pi^{7}}}}}=\frac{\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{7 / 1024}}{2^{5 / 512} \sqrt[256]{3} \sqrt[1024]{5}}$

Integral representations:

$\frac{1}{\sqrt[1024]{\frac{36}{\frac{\pi^{7}}{11520}}}}=\frac{\sqrt[256]{\frac{2}{3}}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{7 / 1024}}{\sqrt[1024]{5}}$
$\frac{1}{\sqrt[1024]{\frac{36}{\frac{\pi^{7}}{11520}}}}=\frac{\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{7 / 1024}}{2^{3 / 1024} \sqrt[256]{3} \sqrt[1024]{5}}$
$\frac{1}{\sqrt[1024]{\frac{36}{\frac{\pi^{7}}{11520}}}}=\frac{\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{7 / 1024}}{2^{3 / 1024} \sqrt[256]{3} \sqrt[1024]{5}}$
$1 / 16^{*} \log$ base $0.99520465\left(1 /\left(\left(\left(36^{*} 1 /\left(\left(\left(\mathrm{Pi}^{\wedge} 7\right) / 11520\right)\right)\right)\right)\right)\right)$

Input interpretation:

$\frac{1}{16} \log _{0.99520465}\left(\frac{1}{36 \times \frac{1}{\frac{\pi^{7}}{11520}}}\right)$

Result:

64.0000...

64

Alternative representation:

$\frac{1}{16} \log _{0.995205}\left(\frac{1}{\frac{36}{\frac{\pi^{7}}{11520}}}\right)=\frac{\log \left(\frac{\frac{1}{36}}{\frac{\pi^{7}}{11520}}\right)}{16 \log (0.995205)}$

Series representations:

$$
\begin{aligned}
& \frac{1}{16} \log _{0.095205}\left(\frac{1}{\frac{36}{\frac{\pi^{7}}{11520}}}\right)=-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\pi^{7}}{414720}\right)^{k}}{16 \log (0.995205)}}{1} \\
& \frac{1}{16} \log _{0.995205}\left(\frac{1}{\frac{36}{\frac{\pi^{7}}{11520}}}\right)= \\
& -13.0022 \log \left(\frac{\pi^{7}}{414720}\right)-0.0625 \log \left(\frac{\pi^{7}}{414720}\right) \sum_{k=0}^{\infty}(-0.00479535)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

And:
$21+\left[64 * 7 * 1 /\left(\left(\left(\mathrm{Pi}^{\wedge} 7\right) / 11520\right)\right)\right]$

Input:

$21+64 \times 7 \times \frac{1}{\frac{\pi^{7}}{11520}}$

Result:

$21+\frac{5160960}{\pi^{7}}$

Decimal approximation:

1729.761239649214968015669369155033910694260664217059106901...
1729.761239649.....

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Property:

$21+\frac{5160960}{\pi^{7}}$ is a transcendental number

Alternate form:

$\frac{21\left(\pi^{7}+245760\right)}{\pi^{7}}$

Alternative representations:

$21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{448}{\frac{\left(180^{\circ} 7^{7}\right.}{11520}}$
$21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{448}{\frac{(-i \log (-1))^{7}}{11520}}$
$21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{448}{\frac{\cos ^{-1}(-1)^{7}}{11520}}$

Series representations:

$$
\begin{aligned}
& 21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{315}{\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{7}} \\
& 21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{315}{\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{7}} \\
& 21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{5160960}{\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{7}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{315}{\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{7}} \\
& 21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{40320}{\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{7}} \\
& 21+\frac{64 \times 7}{\frac{\pi^{7}}{11520}}=21+\frac{40320}{\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{7}}
\end{aligned}
$$

Furthermore:
$2 \mathrm{Pi}^{*}\left(\mathrm{Pi}^{\wedge} 7\right) / 11520$

Input:

$2 \pi \times \frac{\pi^{7}}{11520}$

Result:

$\frac{\pi^{8}}{5760}$

Decimal approximation:

$1.647314412512252431793155469428257950815482547159910189602 \ldots$
$1.6473144125122 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Property:

$\frac{\pi^{8}}{5760}$ is a transcendental number

Alternative representations:

$\frac{(2 \pi) \pi^{7}}{11520}=\frac{360^{\circ}\left(180^{\circ}\right)^{7}}{11520}$
$\frac{(2 \pi) \pi^{7}}{11520}=-\frac{2 i \log (-1)(-i \log (-1))^{7}}{11520}$
$\frac{(2 \pi) \pi^{7}}{11520}=\frac{2 \cos ^{-1}(-1) \cos ^{-1}(-1)^{7}}{11520}$

Series representations:

$\frac{(2 \pi) \pi^{7}}{11520}=\frac{512}{45}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{8}$
$\frac{(2 \pi) \pi^{7}}{11520}=\frac{512}{45}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{8}$
$\frac{(2 \pi) \pi^{7}}{11520}=\frac{\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{8}}{5760}$

Integral representations:

$\frac{(2 \pi) \pi^{7}}{11520}=\frac{2}{45}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{8}$
$\frac{(2 \pi) \pi^{7}}{11520}=\frac{512}{45}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{8}$

$$
\frac{(2 \pi) \pi^{7}}{11520}=\frac{2}{45}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{8}
$$

We note that:
$\zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots \approx \frac{\pi^{8}}{5768.33516}=1.647314 \ldots \cong 1.644934 \ldots$

Page 228

$71^{\wedge} 3-23^{\wedge} 3=588^{\wedge} 2$

Input:

$71^{3}-23^{3}=588^{2}$

Result:

True

Left hand side:

$71^{3}-23^{3}=345744$
Right hand side:
$588^{2}=345744$
(71^3-23^3)/4-(4096*3)-588-71
$4096=64^{2}$

Input:

$\frac{1}{4}\left(71^{3}-23^{3}\right)-4096 \times 3-588-71$
Result:
73489
73489

$1^{\wedge} 3+135^{\wedge} 3+138^{\wedge} 3=172^{\wedge} 3$

Input:

$$
1^{3}+135^{3}+138^{3}=172^{3}
$$

Result:

True

Left hand side:

$1^{3}+135^{3}+138^{3}=5088448$

Right hand side:

$172^{3}=5088448$
$\left(1^{\wedge} 3+135^{\wedge} 3+138^{\wedge} 3\right) / 64-4096-2048+128$
$4096=64^{2} ; 2048=64 * 8 * 4 ; 128=64 * 2$

Input:

$\frac{1}{64}\left(1^{3}+135^{3}+138^{3}\right)-4096-2048+128$

Result:

73491
73491

$23^{\wedge} 3+134^{\wedge} 3=95^{\wedge} 3+116^{\wedge} 3$

Input:

$23^{3}+134^{3}=95^{3}+116^{3}$

Result:

True

Left hand side:

$23^{3}+134^{3}=2418271$

Right hand side:
$95^{3}+116^{3}=2418271$
$\left(23^{\wedge} 3+134 \wedge 3\right) / 32-4096+2048-32$
$4096=64^{2} ; 2048=64 * 8 * 4 ; 32=8 * 4$
Input:
$\frac{1}{32}\left(23^{3}+134^{3}\right)-4096+2048-32$

Exact result:

$\frac{2351711}{32}$
Decimal form:
73490.96875
73490.96875

$19^{\wedge} 3+60^{\wedge} 3+69^{\wedge} 3=82^{\wedge} 3$

Input:

$19^{3}+60^{3}+69^{3}=82^{3}$

Result:

True

Left hand side:

$19^{3}+60^{3}+69^{3}=551368$
Right hand side:
$82^{3}=551368$
$\left(19^{\wedge} 3+60^{\wedge} 3+69^{\wedge} 3\right) / 8+4096+512-32-8$
$4096=64^{2} ; 512=64 * 8 ; 32=8 * 4$

Input:

$\frac{1}{8}\left(19^{3}+60^{3}+69^{3}\right)+4096+512-32-8$

Result:

73489
73489

Page 234

$1+(1 / 4) \mathrm{x}+(3 / 8)^{\wedge} 2 \mathrm{x}^{\wedge} 2$

Input:

$1+\frac{1}{4} x+\left(\frac{3}{8}\right)^{2} x^{2}$

Result:

$\frac{9 x^{2}}{64}+\frac{x}{4}+1$
Plots:

Geometric figure:

parabola

Alternate forms:

$\frac{1}{64}\left(9 x^{2}+16 x+64\right)$
$\frac{1}{64} x(9 x+16)+1$
$\left(\frac{9 x}{64}+\frac{1}{4}\right) x+1$

Complex roots:

$$
\begin{aligned}
& x \approx-0.8889-2.5142 i \\
& x \approx-0.8889+2.5142 i
\end{aligned}
$$

Polynomial discriminant:

$\Delta=-\frac{1}{2}$
Properties as a real function:

Domain

\mathbf{R} (all real numbers)

Range

$\left(y \in \mathbb{R}: y \geq \frac{8}{9}\right)$

Derivative:
$\frac{d}{d x}\left(1+\frac{x}{4}+\left(\frac{3}{8}\right)^{2} x^{2}\right)=\frac{1}{32}(9 x+8)$

Indefinite integral:
$\int\left(1+\frac{x}{4}+\frac{9 x^{2}}{64}\right) d x=\frac{3 x^{3}}{64}+\frac{x^{2}}{8}+x+$ constant

Global minimum:

$\min \left\{1+\frac{x}{4}+\left(\frac{3}{8}\right)^{2} x^{2}\right\}=\frac{8}{9}$ at $x=-\frac{8}{9}$
$(-0.8889+2.5142 \mathrm{i}) * \mathrm{Pi} / 3$

Input interpretation:

$(-0.8889+2.5142 i) \times \frac{\pi}{3}$

Result:

- 0.930854... +
2.63286... i

Polar coordinates:

```
r=2.79257 (radius), }0=109.47\mp@subsup{1}{}{\circ}\mathrm{ (angle)
```

2.79257

Alternative representations:
$\frac{1}{3}(-0.8889+2.5142 i) \pi=60^{\circ}(-0.8889+2.5142 i)$
$\frac{1}{3}(-0.8889+2.5142 i) \pi=-\frac{1}{3} i(-0.8889+2.5142 i) \log (-1)$
$\frac{1}{3}(-0.8889+2.5142 i) \pi=\frac{1}{3}(-0.8889+2.5142 i) \cos ^{-1}(-1)$

Series representations:

$\frac{1}{3}(-0.8889+2.5142 i) \pi=3.35227(-0.353552+i) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$

$$
\begin{aligned}
& \frac{1}{3}(-0.8889+2.5142 i) \pi=1.67613(-0.353552+i)\left(-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right) \\
& \frac{1}{3}(-0.8889+2.5142 i) \pi=0.838067(-0.353552+i) \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}
\end{aligned}
$$

$\binom{n}{m}$ is the binomial coefficient

Integral representations:

$\frac{1}{3}(-0.8889+2.5142 i) \pi=\int_{0}^{\infty} \frac{-0.5926+1.67613 i}{1+t^{2}} d t$
$\frac{1}{3}(-0.8889+2.5142 i) \pi=3.35227(-0.353552+i) \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\frac{1}{3}(-0.8889+2.5142 i) \pi=\int_{0}^{\infty} \frac{(-0.5926+1.67613 i) \sin (t)}{t} d t$
$((((-0.8889+2.5142 \mathrm{i}) * \mathrm{Pi} / 3)))^{\wedge} 1 / 2$

Input interpretation:

$$
\sqrt{(-0.8889+2.5142 i) \times \frac{\pi}{3}}
$$

Result:

0.964811... +
1.36445... i

Polar coordinates:

$r=1.6711$ (radius), $\theta=54.7356^{\circ}$ (angle)
1.6711

We note that 1.6711 is a result practically equal to the value of the formula:

$$
m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-24} \mathrm{gm}
$$

that is the holographic proton mass (N. Haramein)
$1 /((((-0.8889+2.5142 \mathrm{i}) * \mathrm{Pi} / 3)))^{\wedge} 1 / 4096$

Input interpretation:

Result:

0.99974920... -
0.00046634590 .. . i

Polar coordinates:

$r=0.999749$ (radius), $\theta=-0.0267264^{\circ}$ (angle)
0.999749 result practically equal to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

Alternative representations:

$\frac{1}{\sqrt[4096]{\frac{1}{3}(-0.8889+2.5142 i) \pi}}=\frac{1}{\sqrt[4096]{\frac{1}{3}(-0.8889+2.5142 i) \cos ^{-1}(-1)}}$

Series representations:

$\binom{n}{m}$ is the binomial coefficient

Integral representations:

$\frac{1}{\sqrt[4096]{\frac{1}{3}(-0.8889+2.5142 i) \pi}}=\frac{0.999874}{\sqrt[4096]{-0.353552+i \int_{0}^{\infty} \frac{1}{1+t^{2}} d t}}$

$\frac{1}{\sqrt[4096]{\frac{1}{3}(-0.8889+2.5142 i) \pi}}=\frac{0.999874}{\sqrt[4096]{-0.353552+i \int_{0}^{\infty} \frac{\sin (t)}{t} d t}}$
$-512-2048-1 / 3((((-0.8889+2.5142 \mathrm{i}) * \mathrm{Pi} / 3)))^{\wedge} 12$

Input interpretation:

$-512-2048-\frac{1}{3}\left((-0.8889+2.5142 i) \times \frac{\pi}{3}\right)^{12}$

Result:

41876.7... +
60390.8...

Polar coordinates:

$$
r=73489.5 \text { (radius), } \quad \theta=55.2615^{\circ} \text { (angle) }
$$

73489.5

Alternative representations:

$$
\begin{aligned}
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}=-2560-\frac{1}{3}\left(60^{\circ}(-0.8889+2.5142 i)\right)^{12} \\
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}= \\
& -2560-\frac{1}{3}\left(-\frac{1}{3} i(-0.8889+2.5142 i) \log (-1)\right)^{12} \\
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}= \\
& -2560-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \cos ^{-1}(-1)\right)^{12}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}= \\
& -2560-671338 \cdot(0.353552-i)^{12}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{12} \\
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}= \\
& -2560-0.0400149(0.353552-i)^{12}\left(\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\right)^{12}
\end{aligned}
$$

$$
\begin{aligned}
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}= \\
& -2560-163.901(0.353552-i)^{12} \sqrt{3} 12\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{3}\right)^{k}}{1+2 k}\right)^{12}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}= \\
& -2560-163.901(0.353552-i)^{12}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{12} \\
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}= \\
& -2560-671338 .(0.353552-i)^{12}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{12} \\
& -512-2048-\frac{1}{3}\left(\frac{1}{3}(-0.8889+2.5142 i) \pi\right)^{12}= \\
& -2560-163.901(0.353552-i)^{12}\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{12}
\end{aligned}
$$

$(-0.8889+2.5142 \mathrm{i}) * \mathrm{Pi} / 6$

Input interpretation:

$(-0.8889+2.5142 i) \times \frac{\pi}{6}$

Result:

- 0.465427... +
1.31643... i

Polar coordinates:

$$
r=1.39629 \text { (radius), } \quad \theta=109.471^{\circ} \text { (angle) }
$$

1.39629

Alternative representations:

$\frac{1}{6}(-0.8889+2.5142 i) \pi=\frac{180}{6}{ }^{\circ}(-0.8889+2.5142 i)$

$$
\begin{aligned}
& \frac{1}{6}(-0.8889+2.5142 i) \pi=-\frac{1}{6} i((-0.8889+2.5142 i) \log (-1)) \\
& \frac{1}{6}(-0.8889+2.5142 i) \pi=\frac{1}{6}(-0.8889+2.5142 i) \cos ^{-1}(-1)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{6}(-0.8889+2.5142 i) \pi=1.67613(-0.353552+i) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{1}{6}(-0.8889+2.5142 i) \pi=0.838067(-0.353552+i)\left(-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right) \\
& \frac{1}{6}(-0.8889+2.5142 i) \pi=0.419033(-0.353552+i) \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}
\end{aligned}
$$

Integral representations:

$\frac{1}{6}(-0.8889+2.5142 i) \pi=\int_{0}^{\infty} \frac{-0.2963+0.838067 i}{1+t^{2}} d t$

$$
\frac{1}{6}(-0.8889+2.5142 i) \pi=1.67613(-0.353552+i) \int_{0}^{1} \sqrt{1-t^{2}} d t
$$

$$
\frac{1}{6}(-0.8889+2.5142 i) \pi=\int_{0}^{\infty} \frac{(-0.2963+0.838067 i) \sin (t)}{t} d t
$$

$1 /((((-0.8889+2.5142 \mathrm{i}) * \mathrm{Pi} / 6)))^{\wedge} 1 / 1024$

Input interpretation:

1
$\sqrt[1024]{(-0.8889+2.5142 i) \times \frac{\pi}{6}}$

Result:

0.99967232... -
$0.0018652422 \ldots i$

Polar coordinates:

$r=0.999674$ (radius), $\theta=-0.106905^{\circ}$ (angle)
0.999674 result practically equal to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$

Alternative representations:

$\frac{1}{\sqrt[1024]{\frac{1}{6}(-0.8889+2.5142 i) \pi}}=\frac{1}{\sqrt[1024]{\frac{180}{6}{ }^{\circ}(-0.8889+2.5142 i)}}$

$\frac{1}{\sqrt[1024]{\frac{1}{6}(-0.8889+2.5142 i) \pi}}=\frac{1}{\sqrt[1024]{\frac{1}{6}(-0.8889+2.5142 i) \cos ^{-1}(-1)}}$

Series representations:

$\sqrt[1024]{\frac{1}{6}(-0.8889+2.5142 i) \pi}$

Integral representations:

$((((-0.8889+2.5142 \mathrm{i}) * \mathrm{Pi} / 6))))^{\wedge} 32 * 1.61803398-4096 * \mathrm{Pi}-276-320-384-89$

Input interpretation:

$\left((-0.8889+2.5142 i) \times \frac{\pi}{6}\right)^{32} \times 1.61803398-4096 \pi-276-320-384-89$
i is the imaginary unit

Result:

- 22435.0... -
69983.1... i

Polar coordinates:

$$
r=73491.2 \text { (radius), } \quad \theta=-107.775^{\circ} \text { (angle) }
$$

73491.2

Alternative representations:

$$
\begin{aligned}
& \left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89= \\
& \quad-1069-737280^{\circ}+1.61803\left(\frac{180}{6}^{\circ}(-0.8889+2.5142 i)\right)^{32}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89= \\
& \quad-1069+4096 i \log (-1)+1.61803\left(-\frac{1}{6} i((-0.8889+2.5142 i) \log (-1))\right)^{32}
\end{aligned}
$$

$$
\left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89=
$$

$$
-1069-4096 \cos ^{-1}(-1)+1.61803\left(\frac{1}{6}(-0.8889+2.5142 i) \cos ^{-1}(-1)\right)^{32}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89= \\
& \quad-1069-16384 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}+2.43703 \times 10^{7}(0.353552-i)^{32}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{32}
\end{aligned}
$$

$$
\left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89=
$$

$$
-1069-4096\left(-2+2 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right)+
$$

$$
2.03305 \times 10^{-25}(-0.8889+2.5142 i)^{32}\left(-2+2 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right)^{32}
$$

$$
\begin{aligned}
& \left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89= \\
& -1069-4096\left(x+2 \sum_{k=1}^{\infty} \frac{\sin (k x)}{k}\right)+2.03305 \times 10^{-25} \\
& \quad(-0.8889+2.5142 i)^{32}\left(x+2 \sum_{k=1}^{\infty} \frac{\sin (k x)}{k}\right)^{32} \text { for }(x \in \mathbb{R} \text { and } x>0)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89= \\
& -1069-8192 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t+0.00567416(0.353552-i)^{32}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{32} \\
& \left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89= \\
& -1069-8192 \int_{0}^{\infty} \frac{\sin (t)}{t} d t+0.00567416(0.353552-i)^{32}\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{32}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{1}{6}(-0.8889+2.5142 i) \pi\right)^{32} 1.61803-4096 \pi-276-320-384-89= \\
& \quad-1069-16384 \int_{0}^{1} \sqrt{1-t^{2}} d t+2.43703 \times 10^{7}(0.353552-i)^{32}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{32}
\end{aligned}
$$

Note that we have obtained various very similar results:
73489; 73491; 73490.96875; 73489; 73489.5; 73491.2
Performing the average of these values, we obtain:

$$
\begin{aligned}
& (73489+73491+73490.96875+73489+73489.5+73491.2) / 6= \\
& =73490.1114583 \ldots
\end{aligned}
$$

Thence, we have the following mathematical connection:

$$
\begin{aligned}
& \left(\begin{array}{l}
\frac{1}{6}(73489+73491+73490.96875+73489+73489.5+73491.2)
\end{array}\right)=73490.1114 \ldots \Rightarrow \\
& \Rightarrow-3927+2\left(\begin{array}{c}
13\binom{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathrm{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}{\int\left[d \mathrm{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathrm{X}^{\mu} D^{2} \mathrm{X}^{\mu}\right)\right\}\left|\mathrm{X}^{\mu}, \mathrm{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
\\
\quad-3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
\quad=73490.8437525 \ldots \Rightarrow
\end{array}\right.
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
\Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
=73491.78832548118710549159572042220548025195726563413398700 \ldots \\
=73491.7883254 \ldots \Rightarrow \\
\left(\begin{array}{l}
I_{21} \leqslant\left.\left.\int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\right|_{\lambda \leqslant p^{1-\varepsilon}} \sum_{1} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \leqslant \\
\left.\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}\right) \\
\\
\\
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{array}\right)
\end{gathered}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Page 238

For $v=y ; u=z$, and $f^{6} / f^{6}=f^{12} / f^{12}=-1 \quad f^{18} / f^{18}=1$, we obtain:
$y-z=5^{\wedge} 5^{*} 11+75^{\wedge} 2^{*}-1 / x^{\wedge} 5+15^{\wedge} 2^{*}-1 / x^{\wedge} 6-1 / x^{\wedge} 7$

Input:

$y-z=5^{5} \times 11+\frac{75^{2} \times(-1)}{x^{5}}+\frac{15^{2} \times(-1)}{x^{6}}-\frac{1}{x^{7}}$

Result:
$y-z=-\frac{1}{x^{7}}-\frac{225}{x^{6}}-\frac{5625}{x^{5}}+34375$
Alternate forms:
$\frac{1}{x^{7}}+\frac{225}{x^{6}}+\frac{5625}{x^{5}}+y-34375=z$
$y-z=\frac{34375 x^{7}-5625 x^{2}-225 x-1}{x^{7}}$
$y-z=\frac{25 x\left(25 x\left(55 x^{5}-9\right)-9\right)-1}{x^{7}}$
Solution:
$x \neq 0, \quad z=\frac{x^{7} y-34375 x^{7}+5625 x^{2}+225 x+1}{x^{7}}$

Integer solutions:

$x=-1, \quad z=y-39776$
$x=1, \quad z=y-28524$

Implicit derivatives:

$\frac{\partial x(y, z)}{\partial z}=-\frac{x^{8}}{7+1350 x+28125 x^{2}}$
$\frac{\partial x(y, z)}{\partial y}=\frac{x^{8}}{7+1350 x+28125 x^{2}}$
$\frac{\partial y(x, z)}{\partial z}=1$
$\frac{\partial y(x, z)}{\partial x}=\frac{7+1350 x+28125 x^{2}}{x^{8}}$
$\frac{\partial z(x, y)}{\partial y}=1$
$\frac{\partial z(x, y)}{\partial x}=-\frac{7+1350 x+28125 x^{2}}{x^{8}}$
$y-39776=\left(1+225 x+5625 x^{\wedge} 2-34375 x^{\wedge} 7+x^{\wedge} 7 y\right) / x^{\wedge} 7$
Input:
$y-39776=\frac{1+225 x+5625 x^{2}-34375 x^{7}+x^{7} y}{x^{7}}$

Alternate form assuming x and y are real:
$5401 x^{6}+5625 x+\frac{1}{x}+225=0$

Alternate forms:

$y-39776=\frac{1}{x^{7}}+\frac{225}{x^{6}}+\frac{5625}{x^{5}}+y-34375$
$y-39776=\frac{225 x(25 x+1)+1}{x^{7}}+y-34375$

Real solutions:

$x=-1$
$x \approx-0.0349071$
$x \approx-0.00509288$

Complex solutions:

$$
\begin{aligned}
& x \approx-0.303495-0.958968 i \\
& x \approx-0.303495+0.958968 i \\
& x \approx 0.823495-0.592668 i \\
& x \approx 0.823495+0.592668 i
\end{aligned}
$$

Implicit derivatives:

$$
\frac{\partial x(y)}{\partial y}=0
$$

For $\mathrm{x}=-1$

$$
y=39776+(1+225 *-1+5625-34375 *-1-y) /-1
$$

Input:

$y=39776+-\frac{1}{1}(1+225 \times(-1)+5625-34375 \times(-1)-y)$

Result:

True
$y-39776+(1+225 *-1+5625-34375 *-1-y) /-1=0$

Input:

$y-39776+-\frac{1}{1}(1+225 \times(-1)+5625-34375 \times(-1)-y)=0$

Result:

$2 y-79552=0$

Root plot:

Alternate form:

$2(y-39776)=0$

Solution:

$y=39776$
$39776-0=5^{\wedge} 5^{*} 11+75^{\wedge} 2^{*}-1 /(-1)^{\wedge} 5+15^{\wedge} 2^{*}-1+1$

Input:

$39776-0=5^{5} \times 11+\frac{75^{2} \times(-1)}{(-1)^{5}}+15^{2} \times(-1)+1$

Result:

True

Left hand side:

$39776-0=39776$

Right hand side:
$5^{5} \times 11+\frac{75^{2}(-1)}{(-1)^{5}}+15^{2}(-1)+1=39776$

Now, we have that:
$\left(\left(5^{\wedge} 5^{*} 11+75^{\wedge} 2^{*}-1 /(-1)^{\wedge} 5+15^{\wedge} 2^{*}-1+1\right)\right)^{*} 2-4096-2048+64+16+4$
Input:

$$
\left(5^{5} \times 11+\frac{75^{2} \times(-1)}{(-1)^{5}}+15^{2} \times(-1)+1\right) \times 2-4096-2048+64+16+4
$$

Result:

73492
73492

Thence, we have the following mathematical connection:

$$
\begin{aligned}
& \left(\left(5^{5} \times 11+\frac{75^{2} \times(-1)}{(-1)^{5}}+15^{2} \times(-1)+1\right) \times 2-4096-2048+64+16+4\right)=73492 \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow \\
& \binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-}-\varepsilon_{2}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \ll}{\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
& /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

The above expression, can be calculated also as follows:
$y-z=5^{\wedge} 5^{*} 11+75^{\wedge} 2^{*} 1 / x^{\wedge} 5+15^{\wedge} 2^{*} 1 / x^{\wedge} 6-1 / x^{\wedge} 7$

Input:

$y-z=5^{5} \times 11+75^{2} \times \frac{1}{x^{5}}+15^{2} \times \frac{1}{x^{6}}-\frac{1}{x^{7}}$

Result:

$y-z=-\frac{1}{x^{7}}+\frac{225}{x^{6}}+\frac{5625}{x^{5}}+34375$

Alternate forms:

$z=\frac{1}{x^{7}}-\frac{225}{x^{6}}-\frac{5625}{x^{5}}+y-34375$
$\frac{1}{x^{7}}+y=\frac{225}{x^{6}}+\frac{5625}{x^{5}}+z+34375$
$y-z=\frac{34375 x^{7}+5625 x^{2}+225 x-1}{x^{7}}$

Solution:

$x \neq 0, \quad z=\frac{x^{7} y-34375 x^{7}-5625 x^{2}-225 x+1}{x^{7}}$

Integer solutions:

$x=-1, \quad z=y-28976$
$x=1, \quad z=y-40224$

Implicit derivatives:

$$
\begin{aligned}
& \frac{\partial x(y, z)}{\partial z}=\frac{x^{8}}{-7+1350 x+28125 x^{2}} \\
& \frac{\partial x(y, z)}{\partial y}=\frac{x^{8}}{7-1350 x-28125 x^{2}}
\end{aligned}
$$

$\frac{\partial y(x, z)}{\partial z}=1$
$\frac{\partial y(x, z)}{\partial x}=\frac{7-1350 x-28125 x^{2}}{x^{8}}$
$\frac{\partial z(x, y)}{\partial y}=1$
$\frac{\partial z(x, y)}{\partial x}=\frac{-7+1350 x+28125 x^{2}}{x^{8}}$
$y-40224=\left(1-225 x-5625 x^{\wedge} 2-34375 x^{\wedge} 7+x^{\wedge} 7 y\right) / x^{\wedge} 7$

Input:

$y-40224=\frac{1-225 x-5625 x^{2}-34375 x^{7}+x^{7} y}{x^{7}}$

Alternate form assuming x and y are real:
$5849 x^{6}+\frac{1}{x}=5625 x+225$

Alternate forms:

$y-40224=\frac{1}{x^{7}}-\frac{225}{x^{6}}-\frac{5625}{x^{5}}+y-34375$
$y-40224=\frac{1-225 x(25 x+1)}{x^{7}}+y-34375$
Alternate form assuming x and y are positive:
$5849 x^{7}+1=225 x(25 x+1)$

Real solutions:

$x=1$
$x \approx-0.044037$
$x \approx 0.00403701$

Complex solutions:

$x \approx-0.794535-0.583357 i$
$x \approx-0.794535+0.583357 i$
$x \approx 0.314535-0.94387 i$
$x \approx 0.314535+0.94387 i$

Implicit derivatives:

$$
\frac{\partial x(y)}{\partial y}=0
$$

$\mathrm{y}-40224=-34375+(1-225(1+25))+\mathrm{y}$
Input:
$y-40224=-34375+(1-225(1+25))+y$

Result:

True
$-34375+(1-225(1+25))+y=0$

Input:

$-34375+(1-225(1+25))+y=0$

Result:

$y-40224=0$
Root plot:
-40000 -20000

Solution:

$y=40224$
$40224 * 2-(64 \wedge 2+64 * 4 * 8+64 * 8+64 * 4+8 * 4+16)$

Input:

$40224 \times 2-\left(64^{2}+64 \times 4 \times 8+64 \times 8+64 \times 4+8 \times 4+16\right)$

Result:

73488
73488

Now, we have that:

For $x=-1$ and $X=\left(\Psi^{2} / \Psi^{2}\right)$, we obtain:
$0=1-5^{*} \mathrm{X}$
$5 X=1$
$5 X-1=0$
$X=\frac{1}{5}$
$\mathrm{X}=\left(\Psi^{2} / \Psi^{2}\right)=1 / 5$
$\mathrm{v}=\mathrm{y} ; \mathrm{u}=\mathrm{z} ; \quad \mathrm{v}=40224 ; \mathrm{u}=0$
We have that:

$$
-40224-\left(1-5^{*} 1 / 5\right)^{*}\left(\left(11-20^{*} 1 / 5+25^{*}(1 / 5)^{\wedge} 2\right)\right)=-40224
$$

Input:

$-40224-\left(1-5 \times \frac{1}{5}\right)\left(11-20 \times \frac{1}{5}+25\left(\frac{1}{5}\right)^{2}\right)=-40224$

Result:

True
$-40224=-40224 ; \quad 40224=40224$

And:

$(((1+0-40224) / 25)))^{\wedge} 1 / 3$

Input:

$\sqrt[3]{\frac{1}{25}(1+0-40224)}$

Result:

$$
\frac{\sqrt[3]{-40223}}{5^{2 / 3}}
$$

Decimal approximation:

5.85888294238292786529883089587725142144433920849672873689... + 10.1478829318058701834705486960572299586888687249430612018... i

Polar coordinates:

```
r\approx11.7178 (radius), }0=6\mp@subsup{0}{}{\circ}\mathrm{ (angle)
```

11.7178 result very near to the black hole entropy 11.8458

Alternate forms:

$\sqrt[3]{-201115}$
5
root of $25 x^{3}+40223$ near $x=5.85888+10.1479 i$
$\frac{\sqrt[3]{40223}}{2 \times 5^{2 / 3}}+\frac{i \sqrt{3} \sqrt[3]{40223}}{2 \times 5^{2 / 3}}$

$$
1 /(((1+0-40224) / 25)))^{\wedge} 1 / 3
$$

Input:

1
$\sqrt[3]{\frac{1}{25}(1+0-40224)}$

Result:

$-\frac{(-5)^{2 / 3}}{\sqrt[3]{40223}}$

Decimal approximation:

0.04267025002181044979262887140046482427577369945595943074... -
$0.07390704100944269351090280626296223509316942160101431505 \ldots i$

Polar coordinates:

$r \approx 0.0853405$ (radius), $\quad \theta=-60^{\circ}$ (angle)
0.0853405

Alternate forms:
$-\frac{(-201115)^{2 / 3}}{40223}$
$\left(\left((1 /(((1+0-40224) / 25)))^{\wedge} 1 / 3\right)\right)^{\wedge} 1 / 64$

Input:

$\sqrt[64]{\sqrt[3]{\frac{1}{25}(1+0-40224)}}$

Result:

$\sqrt[192]{-\frac{1}{40223}} \sqrt[96]{5}$

Decimal approximation:

$0.9621464023344880154486574313176803411252001447397312689 \ldots+$
$0.01574448881057173225038021685401795511252820425883944368 \ldots i$

Polar coordinates:

$$
r \approx 0.962275 \text { (radius), } \quad \theta \approx 0.9375^{\circ} \text { (angle) }
$$

0.962275 result very near to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

and to the spectral index n_{s} and to the mesonic Regge slope (see Appendix)

Alternate forms:

$\frac{40223^{191 / 192} \sqrt[192]{-25}}{40223}$
$\frac{\sqrt[96]{5} \cos \left(\frac{\pi}{192}\right)}{\sqrt[i 92]{40223}}+\frac{i \sqrt[96]{5} \sin \left(\frac{\pi}{192}\right)}{\sqrt[192]{40223}}$

Page 242

For $\mathrm{x}=0.00403701$, we obtain:
$57+14 * 1 /(0.00403701)^{\wedge} 7+1 /(0.00403701)^{\wedge} 8-1$
Input interpretation:
$57+14 \times \frac{1}{0.00403701^{7}}+\frac{1}{0.00403701^{8}}-1$

Result:

$1.4976087076988711276669815936609084297451154706750441 \ldots \times 10^{19}$
$1.4976087 \ldots * 10^{19}$
$289+126^{*} 1 /(0.00403701)^{\wedge} 7+19^{*} 1 /(0.00403701)^{\wedge} 8+1 /(0.00403701)^{\wedge} 9-1$

Input interpretation:

$289+126 \times \frac{1}{0.00403701^{7}}+19 \times \frac{1}{0.00403701^{8}}+\frac{1}{0.00403701^{9}}-1$

Result:

$3.7877827920479735372937110238941005416858226535497303 \ldots \times 10^{21}$
$3.787782792 \ldots * 10^{21}$
$3.78778279204797353 \times 10^{\wedge} 21 / 1.497608707698871 \times 10^{\wedge} 19$

Input interpretation:

$\frac{3.78778279204797353 \times 10^{21}}{1.497608707698871 \times 10^{19}}$

Result:

252.9220598528728105936171790617321567508409163378235206521
252.922059...
$\left(3.78778279204797353 \times 10^{\wedge} 21 / 1.497608707698871 \times 10^{\wedge} 19\right)^{\wedge} 1 / 11$
Input interpretation:
$\sqrt[1]{\frac{3.78778279204797353 \times 10^{21}}{1.497608707698871 \times 10^{19}}}$

Result:

1.653687095030971...
1.653687.... is very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. 1,65578...
$1 /\left(\left(\left(3.78778279204797353 \times 10^{\wedge} 21 / 1.497608707698871 \times 10^{\wedge} 19\right)\right)\right)^{\wedge} 1 / 512$

Input interpretation:

Result:

0.989251384111376078...
$0.98925138 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

$57+2 * 7 \wedge 3 *(0.00403701)^{\wedge} 7+7 \wedge 4 *(0.00403701)^{\wedge} 8-1$

Input interpretation:

$57+2 \times 7^{3} \times 0.00403701^{7}+7^{4} \times 0.00403701^{8}-1$

Result:

56.00000000000001215727730954987175619516546307399143728263.

56
$289+18^{* 7 \wedge} 3^{*}(0.00403701)^{\wedge} 7+19 * 7 \wedge 4 *(0.00403701)^{\wedge} 8+7 \wedge 6 *(0.00403701)^{\wedge} 9$

Input interpretation:

```
289+18\times7}\mp@subsup{7}{}{3}\times0.0040370\mp@subsup{1}{}{7}+19\times\mp@subsup{7}{}{4}\times0.0040370\mp@subsup{1}{}{8}+\mp@subsup{7}{}{6}\times0.0040370\mp@subsup{1}{}{9
```


Result:

$289.0000000000001111428357713006231449530352660377074291756 \ldots$
289
((()1/2)((289+18*7^3*(0.00403701)^7+19*7^4*(0.00403701)^8+7^6*(0.00403701)^
$\left.\left.\left.\left.9))) /\left(\left(\left(57+2^{*} 7 \wedge 3 *(0.00403701)^{\wedge} 7+7 \wedge 4 *(0.00403701)^{\wedge} 8-1\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 2$

Input interpretation:

$$
\sqrt{\frac{1}{2} \times \frac{289+18 \times 7^{3} \times 0.00403701^{7}+19 \times 7^{4} \times 0.00403701^{8}+7^{6} \times 0.00403701^{9}}{57+2 \times 7^{3} \times 0.00403701^{7}+7^{4} \times 0.00403701^{8}-1}}
$$

Result:

1.60634901028921585018...
1.606349.... result very near to the elementary charge

In conclusion, we have that, from the multiplication of the two previous results, we obtain:
$1 / 10^{\wedge} 4\left(\left(\left(57+2 * 7 \wedge 3 *(0.00403701)^{\wedge} 7+7^{\wedge} 4^{*}(0.00403701)^{\wedge} 8-1\right)\right)\right)^{*}((($ $\left.\left.\left.289+18^{*} 7^{\wedge} 3^{*}(0.00403701)^{\wedge} 7+19^{*} 7^{\wedge} 4^{*}(0.00403701)^{\wedge} 8+7 \wedge 6^{*}(0.00403701)^{\wedge} 9\right)\right)\right)$
where $f=1 / 10^{4}$

Input interpretation:

```
\(\frac{1}{10^{4}}\left(57+2 \times 7^{3} \times 0.00403701^{7}+7^{4} \times 0.00403701^{8}-1\right)\)
    \(\left(289+18 \times 7^{3} \times 0.00403701^{7}+19 \times 7^{4} \times 0.00403701^{8}+7^{6} \times 0.00403701^{9}\right)\)
```


Result:

1.618400000000000973745194565274918485204823518738061318220 .
1.6184...

This result is a very good approximation to the value of the golden ratio 1,618033988749...
$\left[1 /\left(\left(\left((1 / 2)\left(\left(289+18^{*} 7 \wedge 3 *(0.00403701) \wedge 7+19 * 7 \wedge 4^{*}(0.00403701) \wedge 8+7 \wedge 6 *(0.0040370\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.1)^{\wedge} 9\right)\right)\right) /\left(\left(\left(57+2 * 7 \wedge 3 *(0.00403701)^{\wedge} 7+7 \wedge 4 *(0.00403701)^{\wedge} 8-1\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 2\right]^{\wedge} 1 / 32$

Input interpretation:

Result:

$0.9852977766887614314869 \ldots$
$0.985297776 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

$3 u=7\left(v^{3}+5 \omega^{2}+7 v\right)+\left(v^{2}+7 v+7\right) \sqrt{4 v^{3}+21 v^{2}+2 v v}$

For $\mathrm{u}=\mathrm{v}=1$, we obtain:
$(((7(1+5+7)+(1+7+7) * \operatorname{sqrt}(4+21+28))))-2$

Input:

$$
(7(1+5+7)+(1+7+7) \sqrt{4+21+28})-2
$$

Result:

$89+15 \sqrt{53}$

Decimal approximation:

198.2016483392077740664595373729054919066650452386471615756...
198.201648...

Minimal polynomial:
$x^{2}-178 x-4004$

Note that:
$289-56=233 ; \quad 198.201648-56=142.201648 ; \quad 233 / 142.201648=$
$=1.63851828215 \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$
We note also that:
$((1 /(1.63851828215)))^{\wedge} 1 / 512$

Input interpretation:

$\sqrt[512]{\frac{1}{1.63851828215}}$

Result:

0.999036026743384
$0.999036 \ldots$ result practically equal to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$

Page 233

$$
\begin{aligned}
\text { vi: \&f } \alpha & =p \cdot\left(\frac{2+p}{1+7 p}\right)^{3} \\
1-\alpha & =(1+p)\left(\frac{1-p}{1+4 p}\right)^{3} \text { \& } \quad 1-\beta=(1+p)^{3} \cdot \frac{1-p}{1+3 p}
\end{aligned}
$$

For $\mathrm{p}=2 ; \alpha=2((2+2) /(1+2 * 2))^{\wedge} 3=1.024 \quad \beta=2^{\wedge} 3^{*}(2+2) /(1+2 * 2)=6.4$
$1-\alpha=(1+2)((1-2) /(1+2 * 2))^{\wedge} 3=-0.024 \quad 1-\beta=(1+2)^{\wedge} 3^{*}((1-2) /(1+2 * 2))=-5.4$

$1-\left(\left(\left(6.4^{\wedge} 3(-0.024)^{\wedge} 3\right) /(1.024(1-6.4))\right)\right)^{\wedge} 1 / 8$

Input:

$1-\sqrt[8]{\frac{6.4^{3}(-0.024)^{3}}{1.024(1-6.4)}}$

Result:

0.6
0.6
$\left.\operatorname{sqrt}\left(\left(\left(\left(\left(1+\operatorname{sqrt}(1.024 * 6.4)+\operatorname{sqrt}\left(-0.024^{*}-5.4\right)\right)\right) / 2\right)\right)\right)\right)$

Input:

$\sqrt{\frac{1}{2}(1+\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)})}$

Result:

1.4
1.4

We have that:
(()(()(1-(((6.4^3)(-0.024)^3)/(1.024(1-1)
$\left.\left.\left.6.4))))^{\wedge} 1 / 8\right)\right)\right)^{*}\left(\left(\left(\operatorname{sqrt}\left(\left(\left(\left(\left(1+\operatorname{sqrt}\left(1.024^{*} 6.4\right)+\operatorname{sqrt}\left(-0.024^{*}-5.4\right)\right)\right) / 2\right)\right)\right)\right)\right)\right.$

Input:

$$
\sqrt[16]{\left(1-\sqrt[8]{\frac{6.4^{3}(-0.024)^{3}}{1.024(1-6.4)}}\right) \sqrt{\frac{1}{2}(1+\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)})}}
$$

Result:

0.9891621...
$0.9891621 \ldots$. result practically equal to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

For:
$\alpha=2((2+2) /(1+2 * 2))^{\wedge} 3=1.024 \quad \beta=2^{\wedge} 3 *(2+2) /(1+2 * 2)=6.4$
$1-\alpha=(1+2)((1-2) /(1+2 * 2))^{\wedge} 3=-0.024 \quad 1-\beta=(1+2)^{\wedge} 3 *((1-2) /(1+2 * 2))=-5.4$
we obtain:
$2 *\left(\left(\left(\left(1.024 * 6.4^{*}(-0.024) *(-5.4)\right)\right)\right)^{\wedge} 1 / 8\right.$

Input:

$2 \sqrt[8]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}$

Result:

1.95959...
$1.95959 \ldots$ result practically near to the mean value $1.962 * 10^{19}$ of DM particle
$1 / 2 * 2\left(\left(\left(\left(1.024^{*} 6.4^{*}(-0.024) *(-5.4)\right)\right)\right)^{\wedge} 1 / 8\right.$

Input:

$\frac{1}{2} \times 2 \sqrt[8]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}$

Result:

0.979796...
$0.979796 \ldots$ result near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}}-\varphi+1 \quad 1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$
$2 *((((-0.024) *(-5.4))))^{\wedge} 1 / 8$

Input:

$2 \sqrt[8]{-0.024 \times(-5.4)}$

Result:

1.549193.
1.549193...

And, inverting the formula, we obtain:
$1 /\left(\left(\left(2 *((((-0.024) *(-5.4))))^{\wedge} 1 / 8\right)\right)\right)$

Input:

$\frac{1}{2 \sqrt[8]{-0.024 \times(-5.4)}}$

Result:

0.6454972...
0.6454972...

And:
$\left(\left(\left(1 /\left(\left(\left(2^{*}((((-0.024) *(-5.4)))) \wedge 1 / 8\right)\right)\right)\right)\right)\right)^{\wedge}(1 /(24 / 2))$

Input:

$\sqrt[24]{\frac{1}{2 \sqrt[8]{-0.024 \times(-5.4)}}}$

Result:

0.96417944 ..
$0.96417944 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

to the spectral index n_{s} and to the mesonic Regge slope (see Appendix)
$2^{*}((((1.024) *(6.4))))^{\wedge} 1 / 8$

Input:

$2 \sqrt[8]{1.024 \times 6.4}$

Result:

2.529822...
2.529822... result very near to the inflaton (dilaton) mass 2.53
$\left.4 * \operatorname{sqrt}\left(\left(\left(\left(1 / 2\left(\left(\left(1+\operatorname{sqrt}\left(1.024^{*} 6.4\right)+\operatorname{sqrt}((-0.024)(-5.4))\right)\right)\right)\right)\right)\right)\right)\right)$

Input:

$4 \sqrt{\frac{1}{2}(1+\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)})}$

Result:

5.6
5.6

From the below four results obtained:
5.6; 2.529822; 1.549193; 1.95959

We have the following expressions:
$(5.6-2.529822+1.549193+1.95959)$

Input interpretation:

$5.6-2.529822+1.549193+1.95959$

Result:

6.578961
6.578961 result very near to the value of reduced Planck constant 6.58 without exponent

And:
$(5.6-2.529822+1.549193+1.95959) * 1 / 4$

Input interpretation:

$(5.6-2.529822+1.549193+1.95959) \times \frac{1}{4}$

Result:

1.64474025
$1.64474025 \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Multiplying the four results obtained, we have:
$(5.6 * 2.529822 * 1.549193 * 1.95959)$

Input interpretation:

$5.6 \times 2.529822 \times 1.549193 \times 1.95959$

Result:

43.007949046201244784
43.007949...
$(5.6 * 2.529822 * 1.549193 * 1.95959) * 1597+((4181+610+13))$
Where $1597,4181,610$ and 13 are Fibonacci numbers

Input interpretation:

$(5.6 \times 2.529822 \times 1.549193 \times 1.95959) \times 1597+(4181+610+13)$

Result:

73487.694626783387920048
73487.694626...

We note that, from the following formula concerning the '5th order' mock theta function psi_1(q). (OEIS - sequence A053261)
$\operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(\mathrm{n} / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{n})\right)$
we obtain, for $\mathrm{n}=69 \quad[69=64+5=47+18+4$ (Lucas number) $]$
$\operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(69 / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(69)\right)$

Input:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{60}{15}}\right)}{2 \sqrt[4]{5} \sqrt{69}}$

Exact result:

$\frac{e^{\sqrt{23 / 5} \pi} \sqrt{\frac{\phi}{69}}}{2 \sqrt[4]{5}}$
Decimal approximation:
$43.20739184232318277413818553313812361467380250463695690932 \ldots$

Property:

$\frac{e^{\sqrt{23 / 5} \pi} \sqrt{\frac{\phi}{69}}}{2 \sqrt[4]{5}}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{1}{2} \sqrt{\frac{1}{690}(5+\sqrt{5})} e^{\sqrt{23 / 5} \pi} \\
& \frac{\sqrt{\frac{1}{138}(1+\sqrt{5})} e^{\sqrt{23 / 5} \pi}}{2 \sqrt[4]{5}}
\end{aligned}
$$

Series representations:

$\frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{69}{15}}\right)}{2 \sqrt[4]{5} \sqrt{69}}=\frac{\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{23}{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(60-z_{0} k^{k} z_{0}^{-k}\right.}{k!}}$
for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{69}{15}}\right)}{2 \sqrt[4]{5} \sqrt{69}}= \\
& \left(\exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right) \exp \left(\pi \exp \left(i \pi \left\lvert\, \frac{\arg \left(\frac{23}{5}-x\right)}{2 \pi}\right.\right)\right] \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{23}{5}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(2 \sqrt[4]{5} \exp \left(i \pi\left[\frac{\arg (69-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(69-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{69}{15}}\right)}{2 \sqrt[4]{5} \sqrt{69}}= \\
& \left(\exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\frac{23}{5}-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(\frac{23}{5}-z_{0}\right) /(2 \pi)\right]\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{23}{5}-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)\right. \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(69-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(69-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) /\left(2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(69-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)
\end{aligned}
$$

$\left(\left(\left(\operatorname{sqrt}(\right.\right.\right.$ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(69 / 15)\right) /$
$\left.\left.\left.\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(69)\right)\right)\right)\right) * 1597+(((64 * 4+8) *(13+4)))$
Where 1597, 8 and 13 are Fibonacci numbers

Input:

$\left(\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{69}{15}}\right)}{2 \sqrt[4]{5} \sqrt{69}}\right) \times 1597+(64 \times 4+8)(13+4)$

Exact result:

$\frac{1597 e^{\sqrt{23 / 5} \pi} \sqrt{\frac{\phi}{69}}}{2 \sqrt[4]{5}}+4488$

Decimal approximation:

73490.20477219012289029868229642158341263406259990522018419...
73490.2047721...

Property:

$4488+\frac{1597 e^{\sqrt{23 / 5} \pi} \sqrt{\frac{\phi}{69}}}{2 \sqrt[4]{5}}$ is a transcendental number

Alternate forms:

$4488+\frac{1597}{2} \sqrt{\frac{1}{690}(5+\sqrt{5})} e^{\sqrt{23 / 5} \pi}$
$4488+\frac{1597 \sqrt{\frac{1}{138}(1+\sqrt{5})} e^{\sqrt{23 / 5} \pi}}{2 \sqrt[4]{5}}$
$\frac{6193440+1597 \times 5^{3 / 4} \sqrt{138(1+\sqrt{5})} e^{\sqrt{23 / 5} \pi}}{1380}$

Series representations:

$$
\begin{aligned}
& \frac{1597 \sqrt{\phi} \exp \left(\pi \sqrt{\frac{69}{15}}\right)}{2 \sqrt[4]{5} \sqrt{69}}+(64 \times 4+8)(13+4)= \\
& \left(44880 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(69-z_{0}\right)^{k} z_{0}^{-k}}{k!}+1597 \times 5^{3 / 4}\right. \\
& \left.\quad \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{23}{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(69-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1597 \sqrt{\phi} \exp \left(\pi \sqrt{\frac{69}{15}}\right)}{2 \sqrt[4]{5} \sqrt{69}}+(64 \times 4+8)(13+4)= \\
& \left(44880 \exp \left(i \pi\left\lfloor\frac{\arg (69-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(69-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& 1597 \times 5^{3 / 4} \exp \left(i \pi\left\lfloor\frac{\arg (\phi-x)}{2 \pi}\right\rfloor\right) \exp \left(\pi \exp \left(i \pi\left[\frac{\arg \left(\frac{23}{5}-x\right)}{2 \pi}\right]\right) \sqrt{x}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(\frac{23}{5}-x\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(10 \exp \left(i \pi\left[\frac{\arg (69-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(69-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \frac{1597 \sqrt{\phi} \exp \left(\pi \sqrt{\frac{69}{15}}\right)}{2 \sqrt[4]{5} \sqrt{69}}+(64 \times 4+8)(13+4)= \\
& \left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(60-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2\left\lfloor\arg \left(60-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(44880\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\operatorname{agg}\left(60-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(69-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(69-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 1597 \times 5^{3 / 4} \exp \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\left.\arg \left(\frac{23}{5}-z_{0}\right) /(2 \pi) \right\rvert\,\right.} z_{0}^{1 / 2\left(1+\left\lfloor\left.\arg \left(\frac{23}{5}-z_{0}\right) /(2 \pi) \right\rvert\,\right)\right.}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{23}{5}-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2 \arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) /\left(10 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(69-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

Thence, we have the following mathematical connection:

$$
((5.6 \times 2.529822 \times 1.549193 \times 1.95959) \times 1597+(4181+610+13))=73487.694626 \Rightarrow
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{1597 e^{\sqrt{23 / 5} \pi} \sqrt{\frac{\phi}{69}}}{2 \sqrt[4]{5}}+4488\right)=73490.2047 \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
\begin{gathered}
\binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{2}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i\left(T^{r}+t\right)}\right|^{2} d t \leqslant}{\leftrightarrow H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{gathered}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general
asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Now, we have that:
Page 239

for
$\alpha=2((2+2) /(1+2 * 2))^{\wedge} 3=1.024 \quad \beta=2^{\wedge} 3 *(2+2) /(1+2 * 2)=6.4$
$1-\alpha=(1+2)((1-2) /(1+2 * 2))^{\wedge} 3=-0.024 \quad 1-\beta=(1+2)^{\wedge} 3 *((1-2) /(1+2 * 2))=-5.4$
we obtain:
$1-2^{\wedge}(1 / 3)^{*}\left(\left(\left(\left(\left(6.4^{\wedge} 5(-5.4)^{\wedge} 5\right)\right) /((1.024(-0.024)))\right)\right)\right)^{\wedge} 1 / 24-4^{\wedge}(1 / 3)^{*}\left(\left(\left(\left(\left(6.4^{\wedge} 5(-\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.5.4)^{\wedge} 5\right)\right) /((1.024(-0.024)))\right)\right)\right)^{\wedge} 1 / 12$

Input:

$1-\sqrt[3]{2} \sqrt[24]{\frac{6.4^{5}(-5.4)^{5}}{1.024 \times(-0.024)}}-\sqrt[3]{4} \sqrt[12]{\frac{6.4^{5}(-5.4)^{5}}{1.024 \times(-0.024)}}$

Result:

-11.5355082897977464153536028054008545716237240205812907446...
$-11.5355082897977464153536 / \operatorname{sqrt}\left[1-3^{*}\left(\left(\left(16^{*} 1.024^{*} 6.4^{*}(-0.024)(-\right.\right.\right.\right.$
$\left.\left.5.4)))^{\wedge} 1 / 6\right)+\left(\left(\left(16^{*} 1.024^{*} 6.4^{*}(-0.024)(-5.4)\right)\right)^{\wedge} 1 / 3\right)\right]$

Input interpretation:

11.5355082897977464153536
$\sqrt{1-3 \sqrt[6]{16 \times 1.024 \times 6.4 \times(-0.024) \times(-5.4)}+\sqrt[3]{16 \times 1.024 \times 6.4 \times(-0.024) \times(-5.4)}}$

Result:

10.3260...

Polar coordinates:
$r=10.326$ (radius), $\theta=90^{\circ}$ (angle)
10.326

Now:

10.326*((((1+sqrt(1.024*6.4)+sqrt(-0.024*-5.4))))))/2

Input interpretation:

$10.326\left(\frac{1}{2}(1+\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)})\right)$

Result:

20.23896
20.23896

5/10.326*((((1+sqrt(1.024*6.4)+sqrt(-0.024*-5.4)))))/2
Input interpretation:
$\frac{5}{10.326}\left(\frac{1}{2}(1+\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)})\right)$

Result:

$0.949060623668409839240751501065272128607398799147782297114 \ldots$

Repeating decimal:

$0.949060623668409839240751501065272128607398799147782297114 \ldots$
(period 430)
$0.9490606236684 \ldots$... result very near to the value of the following RogersRamanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

And to the inflaton value at the end of the inflation 0.9402 (see Appendix)

$$
1+4^{\wedge}(1 / 3)\left(\left(\left(\left((1.024)^{\wedge} 5^{*}(-0.024)^{\wedge} 5\right)\right)\right) /((6.4(-5.4)))\right)^{\wedge} 1 / 12
$$

Input:

$$
1+\sqrt[3]{4} \sqrt[12]{\frac{1.024^{5}(-0.024)^{5}}{6.4 \times(-5.4)}}
$$

Result:

1.252262010064803514388581600215084645961775120443318151338
1.2522620100648....
$\left(\left(\left(\left(1+4^{\wedge}(1 / 3)\left(\left(\left(\left((1.024)^{\wedge} 5^{*}(-0.024)^{\wedge} 5\right)\right)\right) /((6.4(-5.4)))\right)^{\wedge} 1 / 12\right)\right)\right)\right)-\left(30 / 10^{\wedge} 2+3 / 10^{\wedge} 3\right)$

Input:

$\left(1+\sqrt[3]{4} \sqrt[12]{\frac{1.024^{5}(-0.024)^{5}}{6.4 \times(-5.4)}}\right)-\left(\frac{30}{10^{2}}+\frac{3}{10^{3}}\right)$

Result:

$0.949262010064803514388581600215084645961775120443318151338 \ldots$
$0.9492620100648 \ldots$... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

And to the inflaton value at the end of the inflation 0.9402 (see Appendix)
$1+1 /(5(1.2522620100648-0.9490606236684))$

Input interpretation:

$1+\frac{1}{5(1.2522620100648-0.9490606236684)}$

Result:

1.659627590681671959948709584976407464428121318352722534734...
1.65962759068..... is very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$

And:
$(((1 /(5(1.2522620100648-0.9490606236684)))))^{\wedge} 1 / 8$

Input interpretation:

$\sqrt[8]{\frac{1}{5(1.2522620100648-0.9490606236684)}}$

Result:

0.9493193902436
$0.9493193902436 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

And to the inflaton value at the end of the inflation 0.9402 (see Appendix)

Ramanujan's mathematics applied to cosmology

From:

Higgs-dilaton cosmology:

An inflation- dark-energy connection and forecasts for future galaxy surveys Santiago Casas, Martin Pauly, and Javier Rubio - arXiv:1712.04956v3 [astroph.CO] 21 Feb 2018

From

$$
\begin{equation*}
\Theta_{\mathrm{E}}=\frac{1-4 c-2 \sqrt{4 c^{2}-2 c-2 \kappa}}{1+8 \kappa} \tag{27}
\end{equation*}
$$

$$
|\kappa| \simeq\left|\kappa_{c}\right| \simeq 1 / 6
$$

We obtain, for $\mathrm{c}=0.0013$ and $\kappa=1 / 6$, we obtain:
$\left(\left(\left(1-4 * 0.0013-2 * \operatorname{sqrt}\left(4^{*} 0.0013 \wedge 2-2 * 0.0013-2 / 6\right)\right)\right)\right) /((1+8 / 6))$

Input:

$\frac{1-4 \times 0.0013-2 \sqrt{4 \times 0.0013^{2}-2 \times 0.0013-\frac{2}{6}}}{1+\frac{8}{6}}$

Result:

0.42634286... -
$0.49679291 \ldots i$

Polar coordinates:

$r=0.654654$ (radius), $\theta=-49.3641^{\circ}$ (angle)
0.654654 result very near to the value of the following Rogers-Ramanujan continued fraction:

$$
\sqrt{\frac{\mathrm{e} \pi}{2}}=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!!}+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{1+\frac{4}{1+\ldots}}}}} \approx 2.0663656771
$$

$$
\sqrt{\frac{\mathrm{e} \pi}{2}} \operatorname{erfc}\left(\frac{\sqrt{2}}{2}\right) \approx 0.6556795424
$$

Note that: $1+0.654654=1.654654$;

Continued fraction:

$$
1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{8+\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{13+\frac{1}{5+\frac{1}{5+\frac{1}{2}}}}}}}}}}}}}
$$

Possible closed forms:
$1+\sqrt{\frac{3}{7}} \approx 1.6546536707$

From:

$$
\begin{equation*}
A_{s}=\frac{\lambda \sinh ^{2}\left(4 c N_{*}\right)}{1152 \pi^{2} \xi_{\mathrm{eff}}^{2} c^{2}} \tag{28}
\end{equation*}
$$

For $\mathrm{c}=0.0013 ; \mathrm{N}_{*}=60$ and $\xi_{\mathrm{eff}} / \sqrt{ } \lambda=50000$, we obtain:
$\left(\left(\left(\sinh ^{\wedge} 2\left(4^{*} 0.0013 * 60\right)\right)\right)\right) /\left(\left(\left(1152 * \operatorname{Pi}^{\wedge} 2^{*} 50000^{\wedge} 2^{*} 0.0013 \wedge 2\right)\right)\right)$

Input:

$\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{1152 \pi^{2} \times 50000^{2} \times 0.0013^{2}}$

Result:

$2.09304 \ldots \times 10^{-9}$
2.09304...* 10^{-9}

Alternative representations:

$\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{1152 \pi^{2} 50000^{2} \times 0.0013^{2}}=\frac{\left(\frac{1}{\operatorname{csch}(0.312)}\right)^{2}}{1152 \times 0.0013^{2} \times 50000^{2} \pi^{2}}$
$\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{1152 \pi^{2} 50000^{2} \times 0.0013^{2}}=\frac{\left(\frac{1}{2}\left(-\frac{1}{e^{0.312}}+e^{0.312}\right)\right)^{2}}{1152 \times 0.0013^{2} \times 50000^{2} \pi^{2}}$
$\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{1152 \pi^{2} 50000^{2} \times 0.0013^{2}}=\frac{\left(-\frac{i}{\csc (0.312 i)}\right)^{2}}{1152 \times 0.0013^{2} \times 50000^{2} \pi^{2}}$

Series representations:

$\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{1152 \pi^{2} 50000^{2} \times 0.0013^{2}}=\frac{1.02728 \times 10^{-7} \sum_{k=1}^{\infty} \frac{e^{-0.94321 k}}{(2 k)!}}{\pi^{2}}$
$\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{1152 \pi^{2} 50000^{2} \times 0.0013^{2}}=\frac{8.21828 \times 10^{-7}\left(\sum_{k=0}^{\infty} I_{1+2 k}(0.312)\right)^{2}}{\pi^{2}}$
$\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{1152 \pi^{2} 50000^{2} \times 0.0013^{2}}=\frac{2.05457 \times 10^{-7}\left(\sum_{k=0}^{\infty} \frac{0.312^{1+2 k}}{(1+2 k)!}\right)^{2}}{\pi^{2}}$

And:
$\left[\left(\left(\left(\sinh \wedge 2\left(4^{*} 0.0013 * 60\right)\right)\right)\right) /\left(\left(\left(1152^{*} \mathrm{Pi}^{\wedge} 2^{*} 50000^{\wedge} 2^{*} 0.0013^{\wedge} 2\right)\right)\right)\right]^{\wedge} 1 /\left(64^{\wedge} 2\right)$

Input:

$\sqrt[64]{\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{1152 \pi^{2} \times 50000^{2} \times 0.0013^{2}}}$

Result:

0.995132818...
$0.995132818 \ldots$... result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$

From:

$$
\begin{align*}
& n_{s}=1-8 c \operatorname{coth}\left(4 c N_{*}\right) \tag{29}\\
& \alpha_{s}=-32 c^{2} \operatorname{csch}^{2}\left(4 c N_{*}\right) \tag{30}
\end{align*}
$$

We have:
$1-8 * 0.0013 \operatorname{coth}(4 * 0.0013 * 60)$

Input:

$1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 60)$

Result:

0.9655920...
$0.9655920 \ldots$ result very near to the spectral index n_{s} and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

Alternative representations:

```
\(1-\operatorname{coth}(4 \times 0.0013 \times 60) 8 \times 0.0013=1-0.0104\left(1+\frac{2}{-1+e^{0.624}}\right)\)
\(1-\operatorname{coth}(4 \times 0.0013 \times 60) 8 \times 0.0013=1-0.0104 i \cot (0.312 i)\)
\(1-\operatorname{coth}(4 \times 0.0013 \times 60) 8 \times 0.0013=1+0.0104 i \cot (-0.312 i)\)
```


Series representations:

$1-\operatorname{coth}(4 \times 0.0013 \times 60) 8 \times 0.0013=1.0104+0.0208 \sum_{k=1}^{\infty} q^{2 k}$ for $q=1.36615$
$1-\operatorname{coth}(4 \times 0.0013 \times 60) 8 \times 0.0013=0.966667-0.0064896 \sum_{k=1}^{\infty} \frac{1}{0.097344+k^{2} \pi^{2}}$
$1-\operatorname{coth}(4 \times 0.0013 \times 60) 8 \times 0.0013=1-0.0032448 \sum_{k=-\infty}^{\infty} \frac{1}{0.097344+k^{2} \pi^{2}}$

Integral representation:

$1-\operatorname{coth}(4 \times 0.0013 \times 60) 8 \times 0.0013=1+0.0104 \int_{\frac{i \pi}{2}}^{0.312} \operatorname{csch}^{2}(t) d t$

If we put 0.9568666373 , that is the value of the above Rogers-Ramanujan continued fraction instead of 0.9655920 as solution of the above equation, we obtain another value of N^{*}. Indeed:
$1-8 * 0.0013 \operatorname{coth}(4 * 0.0013 * x)=0.9568666373$

Input interpretation:

$1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 x)=0.9568666373$

Result:

$1-0.0104 \operatorname{coth}(0.0052 x)=0.956867$
Plot:

Alternate forms:

$-0.0104(\operatorname{coth}(0.0052 x)-96.1538)=0.956867$
$1-\frac{0.0104 \cosh (0.0052 x)}{\sinh (0.0052 x)}=0.956867$
$-0.0104 \operatorname{csch}(0.0052 x)(\cosh (0.0052 x)-96.1538 \sinh (0.0052 x))=0.956867$

Alternate form assuming x is positive:

$\operatorname{coth}(0.0052 x)=4.14744$

Alternate form assuming x is real:

$\frac{0.0104 \sinh (0.0104 x)}{1-\cosh (0.0104 x)}+1=0.956867$

Real solution:

$x \approx 47.2991$
47.2991

Solution:

$x \approx(192.308 i)(3.14159 n+(-0.245955 i)), \quad n \in \mathbb{Z}$

We note that the result is different from the range of N_{*} that is $60-62$, also if 0.9655920 and 0.9568666373 are very near. This last value, i.e. the RogersRamanujan continued fraction, could provide a value more near to physical reality

Multiplying by $35=(34+29+7) / 2$ the following expression, we obtain:
$35((((47.2991 /(((1-8 * 0.0013 \operatorname{coth}(4 * 0.0013 * 47.2991))))))))$
Note that we have put 47.2991 also as numerator of the internal fraction
Input interpretation:
$35 \times \frac{47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}$

Result:

1730.093177891177196232409642840610813567050956273027300978...
1730.09317789...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternative representations:

$\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}=\frac{1655.47}{1-0.0104 i \cot (0.245955 i)}$
$\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}=\frac{1655.47}{1+0.0104 i \cot (-0.245955 i)}$
$\left.\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}=\frac{1655.47}{1-0.0104\left(1+\frac{2}{-1+e^{0.4919} 11}\right.}\right) \quad$

Series representations:

$\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}=\frac{79589.8}{48.5769+\sum_{k=1}^{\infty} q^{2 k}}$ for $q=1.27884$
$\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}=-\frac{323595 .}{-187.205+\sum_{k=1}^{\infty} \frac{1}{0.060494+k^{2} \pi^{2}}}$
$\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}=\frac{1655.47}{1-0.00255794 \sum_{k=-\infty}^{\infty} \frac{1}{0.060494+k^{2} \pi^{2}}}$

We have that:
$-32 * 0.0013^{\wedge} 2 \operatorname{csch}^{\wedge} 2\left(4^{*} 0.0013^{*} 60\right)$

Input:

$-32 \times 0.0013^{2} \operatorname{csch}^{2}(4 \times 0.0013 \times 60)$
$\operatorname{csch}(x)$ is the hyperbolic cosecant function

Result:

-0.000537874...
$-0.000537874 \ldots$

Alternative representations:

$-32 \times 0.0013^{2} \operatorname{csch}^{2}(4 \times 0.0013 \times 60)=-32 \times 0.0013^{2}(i \csc (0.312 i))^{2}$
$-32 \times 0.0013^{2} \operatorname{csch}^{2}(4 \times 0.0013 \times 60)=-32 \times 0.0013^{2}(-i \csc (-0.312 i))^{2}$
$-32 \times 0.0013^{2} \operatorname{csch}^{2}(4 \times 0.0013 \times 60)=-32 \times 0.0013^{2}\left(\frac{2 e^{0.312}}{-1+e^{0.624}}\right)^{2}$

Series representations:

$-32 \times 0.0013^{2} \operatorname{csch}^{2}(4 \times 0.0013 \times 60)=-0.00005408 \sum_{k=-\infty}^{\infty} \frac{1}{(-0.312+i k \pi)^{2}}$
$-32 \times 0.0013^{2} \operatorname{csch}^{2}(4 \times 0.0013 \times 60)=-0.00005408 \sum_{k=-\infty}^{\infty} \frac{1}{(0.312+i k \pi)^{2}}$
$-32 \times 0.0013^{2} \operatorname{csch}^{2}(4 \times 0.0013 \times 60)=-0.00021632\left(\sum_{k=1}^{\infty} q^{-1+2 k}\right)^{2}$ for $q=1.36615$

From which:
$\left(\left(-\left(-32^{*} 0.0013^{\wedge} 2 \operatorname{csch}^{\wedge} 2\left(4^{*} 0.0013^{*} 60\right)\right)\right)\right)^{\wedge} 1 /\left(64^{\wedge} 2\right)$
Input:
$\sqrt[64]{2} \sqrt{-\left(-32 \times 0.0013^{2} \operatorname{csch}^{2}(4 \times 0.0013 \times 60)\right)}$
$\operatorname{csch}(x)$ is the hyperbolic cosecant function

Result:

0.998163825 ..
$0.998163825 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$

From:

$$
\begin{equation*}
n_{s}=1-\frac{2}{N_{*}} X \operatorname{coth} X, \tag{43}
\end{equation*}
$$

with

$$
\begin{equation*}
X \equiv 4 c N_{*}=\frac{3 N_{*}(1+w)}{4 F\left(\Omega_{\mathrm{DE}}\right)} . \tag{44}
\end{equation*}
$$

We obtain:
4*0.0013*60

Input:

$4 \times 0.0013 \times 60$

Result:

0.312
0.312

And:
$1-(2 / 60 * 0.312 \operatorname{coth}(0.312))$

Input:

$1-\frac{2}{60} \times 0.312 \operatorname{coth}(0.312)$
$\operatorname{coth}(x)$ is the hyperbolic cotangent function

Result:

0.9655920...
$0.9655920 \ldots$ result very near to the spectral index n_{s} and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

Alternative representations:

$1-\frac{2}{60}(0.312 \operatorname{coth}(0.312))=1-\frac{1}{60} \times 0.624\left(1+\frac{2}{-1+e^{0.624}}\right)$
$1-\frac{2}{60}(0.312 \operatorname{coth}(0.312))=1-\frac{1}{60} \times 0.624 i \cot (0.312 i)$
$1-\frac{2}{60}(0.312 \operatorname{coth}(0.312))=1+\frac{1}{60} \times 0.624 i \cot (-0.312 i)$

Series representations:

$1-\frac{2}{60}(0.312 \operatorname{coth}(0.312))=1.0104+0.0208 \sum_{k=1}^{\infty} q^{2 k}$ for $q=1.36615$
$1-\frac{2}{60}(0.312 \operatorname{coth}(0.312))=0.966667-0.0064896 \sum_{k=1}^{\infty} \frac{1}{0.097344+k^{2} \pi^{2}}$
$1-\frac{2}{60}(0.312 \operatorname{coth}(0.312))=1-0.0032448 \sum_{k=-\infty}^{\infty} \frac{1}{0.097344+k^{2} \pi^{2}}$

Integral representation:

$1-\frac{2}{60}(0.312 \operatorname{coth}(0.312))=1+0.0104 \int_{\frac{i \pi}{2}}^{0.312} \operatorname{csch}^{2}(t) d t$

If we put 0.9568666373 as result of the above equation, we obtain a different value of X. Indeed:
$1-(2 / 60 * x \operatorname{coth}(x))=0.9568666373$

Input interpretation:

$1-\frac{2}{60} x \operatorname{coth}(x)=0.9568666373$

Result:

$1-\frac{1}{30} x \operatorname{coth}(x)=0.956867$

Plot:

Alternate forms:

$\frac{1}{30}(30-x \operatorname{coth}(x))=0.956867$
$1-\frac{x \cosh (x)}{30 \sinh (x)}=0.956867$
$-\frac{1}{30} \operatorname{csch}(x)(x \cosh (x)-30 \sinh (x))=0.956867$

Alternate form assuming x is positive:

$x \operatorname{coth}(x)=1.294$
Alternate form assuming x is real:
$\frac{x \sinh (2 x)}{30(1-\cosh (2 x))}+1=0.956867$

Solutions:

$x=-0.967266$
$x=0.967266$
0.967266 a result very different from the previous value of X . We note that:

From:

The ω and ω_{3} trajectories were also fitted simultaneously. Here again the higher spin trajectory alone resulted in an optimal linear fit, with $\alpha^{\prime}=0.86 \mathrm{GeV}^{-2}$. The two fitted simultancously arc best fitted with a high mass, $m_{u / d}=340$, and high slope, $\alpha^{\prime}=1.09$ GcV^{-2}. Excluding the ground state $\omega(782)$ from the fits climinates the need for a mass and the linear fit with $\alpha^{\prime}=0.97 \mathrm{GeV}^{-2}$ is then optimal. The mass of the ground state from the resulting fit is 950 MeV . This is odd, since we have no reason to expect the $\omega(782)$ to have an abnormally low mass, especially since it fits in perfectly with its trajectory in the (J, M^{2}) plane.

$$
\begin{array}{c|c|c|c}
\omega / \omega_{3} & 5+3 & m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3} & 5+3 & m_{u / d}=240-345 & 0.937-1.000
\end{array}
$$

The average between the following value $(0.988+0.937) / 2$ is equal to 0.9625 , very near to the above indicated value $\alpha^{\prime}=0.97$ and to the result that we have obtained for X. Also here, can be that this last value, i.e. the Rogers-Ramanujan continued fraction, provides a value more real from physical point of view.

Now:
$1+w=\frac{16 \gamma^{2}}{3}$
$\gamma<1 /(2 \sqrt{2})$
$\gamma<0.3535 \ldots . \gamma=0.25 ; \quad 1+w=\left(16^{*} 0.25^{\wedge} 2\right) / 3=1 / 3$
From which we obtain $\mathrm{F}\left(\Omega_{\mathrm{DE}}\right)$:
$0.312 * 4 \mathrm{x}=3 * 60 * 1 / 3$

Input:

$0.312 \times 4 x=3 \times 60 \times \frac{1}{3}$
Result:
$1.248 x=60$
Plot:

Alternate form:

$1.248 x-60=0$

Alternate form assuming x is real:
$1.248 x+0=60$

Solution:

$x \approx 48.0769$
$48.0769=\mathrm{F}\left(\Omega_{\mathrm{DE}}\right)$

If:

$$
F\left(\Omega_{\mathrm{DE}}\right)=\left[\frac{1}{\sqrt{\Omega_{\mathrm{DE}}}}-\Delta \tanh ^{-1} \sqrt{\Omega_{\mathrm{DE}}}\right]^{2}
$$

and

$$
\Delta \equiv \frac{1-\Omega_{\mathrm{DE}}}{\Omega_{\mathrm{DE}}}
$$

we have that:
$48.0769=\left[1 / \mathrm{x}-(1-\mathrm{sqrt}(\mathrm{x})) / \mathrm{sqrt}(\mathrm{x})^{*} \tanh ^{\wedge}-1 \mathrm{x}\right]^{\wedge} 2$

Input interpretation:

$48.0769=\left(\frac{1}{x}-\frac{1-\sqrt{x}}{\sqrt{x}} \tanh ^{-1}(x)\right)^{2}$
$\tanh ^{-1}(x)$ is the inverse hyperbolic tangent function

Result:

$48.0769=\left(\frac{1}{x}-\frac{(1-\sqrt{x}) \tanh ^{-1}(x)}{\sqrt{x}}\right)^{2}$
Plot:

Numerical solution:

$x \approx 0.139484062721383$.
0.1394840.....

Indeed:
[1/0.139484-(1-sqrt(0.139484))/sqrt(0.139484)*tanh^-1 0.139484]^2

Input interpretation:

$\left(\frac{1}{0.139484}-\frac{1-\sqrt{0.139484}}{\sqrt{0.139484}} \tanh ^{-1}(0.139484)\right)^{2}$

Result:

48.0769 .
48.0769...

Thence :

Input interpretation:

0.139484062721383^{2}

Result:

0.019455803753262706715885432689
0.019455803...

Repeating decimal:

0.01945580375326270671588543268900
0.01945580375...
$\Omega_{\mathrm{DE}}=0.019455786256$
We obtain:
$(0.0194558037532627)^{\wedge} 1 / 4096$

Input interpretation:

$\sqrt[4096]{0.0194558037532627}$

Result:

0.9990386435859919748.
$0.9990386435859 \ldots$. result practically equal to the value of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

From $48.0769=\mathrm{F}\left(\Omega_{\mathrm{DE}}\right)$, we obtain, multiplying by 36 , the following interesting result:
$36^{*}\left[1 / 0.139484-(1-\operatorname{sqrt}(0.139484)) / \operatorname{sqrt}(0.139484) * \tanh ^{\wedge}-10.139484\right]^{\wedge} 2$

Input interpretation:

$$
36\left(\frac{1}{0.139484}-\frac{1-\sqrt{0.139484}}{\sqrt{0.139484}} \tanh ^{-1}(0.139484)\right)^{2}
$$

Result:

1730.770020787909535328594395065643391166319277625646442926 .
1730.7700207...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternative representations:

$$
\begin{aligned}
& 36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}= \\
& 36\left(\frac{1}{0.139484}-\frac{\operatorname{sn}^{-1}(0.139484 \mid 1)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2} \\
& 36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}= \\
& 36\left(\frac{1}{0.139484}-\frac{\operatorname{coth}^{-1}\left(\frac{1}{0.139484}\right)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2} \\
& 36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}= \\
& 36\left(\frac{1}{0.139484}-\frac{(-\log (0.860516)+\log (1.13948))(1-\sqrt{0.139484})}{2 \sqrt{0.139484}}\right)^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}= \\
& 36\left(7.16928+\left(\sum_{k=0}^{\infty} \frac{0.139484^{1+2 k}}{1+2 k}\right)\left(1-\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.860516)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)\right)^{2} \\
& 36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}=36(7.16928+ \\
& \left.\frac{\left(\log (1.13948)-\log (2)+\sum_{k=1}^{\infty} \frac{0.569742^{k}}{k}\right)\left(-1+\sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.860516)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}{2 \sum_{k=0}^{\infty} \frac{(-1)^{k}(-0.860516)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)^{2} \\
& 36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}= \\
& 36\left(7.16928-\left(\left(\log (1.13948)-\log (2)+\sum_{k=1}^{\infty} \frac{0.569742^{k}}{k}\right)\right.\right. \\
& \left(1-\exp \left(i \pi\left\lfloor\frac{\arg (0.139484-x)}{2 \pi}\right\rfloor\right) \sqrt{x}\right. \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(0.139484-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / \\
& \left(2 \exp \left(i \pi\left\lfloor\frac{\arg (0.139484-x)}{2 \pi}\right\rfloor\right) \sqrt{x}\right. \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(0.139484-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)^{2} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Integral representations:

$36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}=$
$36\left(7.16928+0.139484-\frac{0.139484}{\sqrt{0.139484}} \int_{0}^{1} \frac{1}{1-0.0194558 t^{2}} d t\right)^{2}$

$$
\begin{aligned}
& 36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}= \\
& 36\left(7.16928-\frac{0.034871 i(-1+\sqrt{0.139484})}{\pi^{3 / 2} \sqrt{0.139484}}\right. \\
& \left.\int_{-i \infty+\gamma}^{i \infty+\gamma} e^{0.0196475 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s\right)^{2} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

From this result divided with the previous one very similar, ie 1730.0931..., we obtain the following very interesting expression:

1/(((((36*[1/0.139484-(1-sqrt(0.139484))/sqrt(0.139484)*tanh^-1 0.139484]^2)))
*1/((((35((((47.2991/(((1-8*0.0013 coth(4*0.0013*47.2991)))))))))))))))

Input interpretation:

$$
\left(36\left(\frac{1}{0.139484}-\frac{1-\sqrt{0.139484}}{\sqrt{0.139484}} \tanh ^{-1}(0.139484)\right)^{2}\right) \times \frac{1}{35 \times \frac{47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}}
$$

Result:

$0.999608935393724802580084555829004238392945534965615462022 \ldots$
$0.999608935 \ldots$ result practically equal to the value of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

Alternative representations:

$\frac{1}{\frac{36\left(\frac{1}{0.139484}-\frac{(1-\sqrt{0.139484}) \tanh ^{-1}(0.139484)}{\sqrt{0.139484}}\right)^{2}}{\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}}=\frac{1}{36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}}}$
$\left.\frac{1}{\frac{36\left(\frac{1}{0.139484}-\frac{(1-\sqrt{0.139484}) \tanh ^{-1}(0.139484)}{\sqrt{0.139484}}\right)^{2}}{\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}}}=\frac{1}{36\left(\frac{1}{0.139484}-\frac{\tanh ^{-1}(0.139484)(1-\sqrt{0.139484})}{\sqrt{0.139484}}\right)^{2}}\right) \frac{\frac{1655.47}{1-0.0104\left(1+\frac{2}{\left.-1+e^{0.491911}\right)}\right.}}{}$

Integral representation:

$$
\frac{1}{\frac{36\left(\frac{1}{0.139484}-\frac{(1-\sqrt{0.139484}) \tanh ^{-1}(0.139484)}{\sqrt{0.139484}}\right)^{2}}{\frac{35 \times 47.2991}{1-(8 \times 0.0013) \operatorname{coth}(4 \times 0.0013 \times 47.2991)}}}=
$$

From the eq. (28)

$$
A_{s}=\frac{\lambda \sinh ^{2}\left(4 c N_{*}\right)}{1152 \pi^{2} \xi_{\mathrm{eff}}^{2} c^{2}}
$$

that described the amplitude of the primordial spectrum of scalar perturbations, we obtain π and $\zeta(2)$
$\operatorname{sqrt}\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\sinh \wedge 2\left(4^{*} 0.0013^{*} 60\right)\right)\right)\right)\right) /\left(\left(\left(2.09304 \mathrm{e}-9 * 50000^{\wedge} 2^{*} 0.0013^{\wedge} 2\right)\right)\right)\right)\right)\right)\right.\right.\right.\right.$ * 1/1152))))))

Input interpretation:
$\sqrt{\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{2.09304 \times 10^{-9} \times 50000^{2} \times 0.0013^{2}} \times \frac{1}{1152}}$

Result:

3.141589992664707710013184878441010454597412658806979785594...

3.14158999... $\approx \pi$

And:
1/6((((((((((((sinh^2(4*0.0013*60))))) /(((2.09304e-9*50000^2*0.0013^2))))))***) 1/1152))))))

Input interpretation:

$\frac{1}{6}\left(\frac{\sinh ^{2}(4 \times 0.0013 \times 60)}{2.09304 \times 10^{-9} \times 50000^{2} \times 0.0013^{2}} \times \frac{1}{1152}\right)$

Result:

$1.644931280335173040534525990677167048961947115957791868556 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}$
$=1.644934066848226436472415166646025189218949901206798437735$.

Property:

$\frac{\pi^{2}}{6}$ is a transcendental number

Alternative representations:

$$
\begin{aligned}
& \zeta(2)=\zeta(2,1) \\
& \zeta(2)=S_{1,1}(1)
\end{aligned}
$$

$\zeta(2)=-\frac{\mathrm{Li}_{2}(-1)}{\frac{1}{2}}$

Integral representations:

$\zeta(2)=\frac{8}{3}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{2}$
$\zeta(2)=\frac{2}{3}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{2}$
$\zeta(2)=\frac{2}{3}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{2}$

From:

Eur. Phys. J. C (2019) 79:713 - https://doi.org/10.1140/epjc/s10052-019-7225-2-Regular Article - Theoretical Physics
Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity
Yermek Aldabergenov, Auttakit Chatrabhuti, Sergei V. Ketov

Table 1 The predictions for the inflationary parameters ($\left.n_{s}, r\right)$, and the values of φ at the horizon crossing $\left(\varphi_{i}\right)$ and at the end of inflation $\left(\varphi_{f}\right)$, in the case $3 \leq \alpha \leq \alpha_{*}$ with both signs of ω_{1}. The α parameter is taken to be integer, except of the upper limit $\alpha_{*} \equiv(7+\sqrt{33}) / 2$

α	3	4		5	6	-	
$\operatorname{sgn}\left(\omega_{1}\right)$	-	+	-	$+/-$	+	-	
n_{s}	0.9650	0.9649	0.9640	0.9639	0.9634	0.9637	0.9632
r	0.0035	0.0010	0.0013	0.0007	0.0005	0.0004	0.0003
$-\kappa \varphi_{i}$	5.3529	3.5542	3.9899	3.2657	3.0215	2.7427	2.5674
$-\kappa \varphi_{f}$	0.9402	0.7426	0.8067	0.7163	0.6935	0.6488	0.6276

Table 2 The masses of inflaton, axion and gravitino, and the VEVs of F - and D-fields derived from our models by fixing the amplitude A_{5} according to PLANCK data - see Eq. (57). The value of $\left\langle F_{T}\right\rangle$ for a positive ω_{1} is not fixed by A_{s}

α	3	4		5		6		7
$\operatorname{sgn}\left(\omega_{1}\right)$	-	+	-	+	-	-	-	-
m_{φ}	2.83	2.95	2.73	2.71	2.71	2.53	2.58	1.86
$m_{t^{\prime}}$	0	0.93	1.73	2.02	2.02	4.97	2.01	1.56
$m_{3 / 2}$	≥ 1.41	2.80	0.86	2.56	0.64	3.91	0.49	0.29
$\left\langle F_{T}\right\rangle$	any	$\neq 0$	0	$\neq 0$	0	$\neq 0$	0	0
$\langle D\rangle$	8.31	4.48	5.08	3.76	3.76	3.25	2.87	1.73

We take the following two values of axion mass: 0.93 and 1.73 . If we perform the following calculations, we obtain:
$(1 / 0.93+1 / 1.73)$

Input:
 $\frac{1}{0.93}+\frac{1}{1.73}$

Result:

1.653303499285225930760146684069861395984834358878737025296...
$1.653303499285 \ldots .$. is very near to the 14 th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. $1,65578 \ldots$

And the inverse:
$1 /(1 / 0.93+1 / 1.73)$

Input:
 $\frac{1}{\frac{1}{0.93}+\frac{1}{1.73}}$

Result:

0.604849624060150375939849624060150375939849624060150375939

Repeating decimal:

$0.604 \overline{849624060150375939}$ (period 18)
0.604849624...

If we put, instead of 0.93 , the value of the Rogers-Ramanujan continued fraction,

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

we obtain:

Input interpretation:
$\frac{1}{0.9568666373}+\frac{1}{1.73}$

Result:

1.623112398262680166441180693689879956488457189122659411750...
$1.62311239826 \ldots$ result that is a golden number
and the inverse:
1/(1/0.9568666373+1/1.73)
Input interpretation:
$\frac{1}{\frac{1}{0.9568666373}+\frac{1}{1.73}}$

Result:

0.616100278126372044628610417559558567227887473981699434010...
0.616100278126372......
values that tend more and more towards the golden ratio and its conjugate.

Thence, we have also:
$(((1 /(1 / 0.9568666373+1 / 1.73))))^{\wedge} 1 / 8$

Input interpretation:

$$
\sqrt[8]{\frac{1}{\frac{1}{0.9568666373}+\frac{1}{1.73}}}
$$

Result:

0.9412531 ..
0.9412531 result very near to the value 0.9402 (see above Table I)

The inflaton masses are:

m_{φ}	2.83	2.95	2.73	2.71	2.71	2.53	2.58	1.86

We have the following Rogers-Ramanujan continued fraction:

$$
\sqrt{\frac{\mathrm{e} \pi}{2}}=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!!}+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{1+\frac{4}{1+\ldots}}}}} \approx 2.0663656771
$$

And

$$
2 \int_{0}^{\infty} \frac{t^{2} d t}{\mathrm{e}^{\sqrt{3} t} \sinh t}=\frac{1}{1+\frac{1^{3}}{1+\frac{1^{3}}{3+\frac{2^{3}}{1+\frac{2^{3}}{5+\frac{3^{3}}{1+\frac{3^{3}}{7+\ldots}}}}}}} \approx 0.5269391135
$$

$$
4 \int_{0}^{\infty} \frac{t d t}{\mathrm{e}^{\sqrt{5} t} \cosh t}=\frac{1}{1+\frac{1^{2}}{1+\frac{1^{2}}{1+\frac{2^{2}}{1+\frac{2^{2}}{1+\frac{3^{2}}{1+\frac{3^{2}}{1+\ldots}}}}}}} \approx 0.5683000031
$$

We observe that: $2.0663656771+0.5683000031=2.6346656802$ and
$2.0663656771+0.5269391135=2.5933047906$, results very near to the above inflaton (dilaton) masses values $2.58-2.71$

From the following masses:

m_{φ}	2.83	2.95	2.73	2.71	2.71	2.53	2.58	1.86

we obtain this average:
$(2.83+2.95+2.73+2.71+2.71+2.53+2.58+1.86) / 8$

Input:

$\frac{1}{8}(2.83+2.95+2.73+2.71+2.71+2.53+2.58+1.86)$

Result:

2.6125
2.6125

The effective value is multiplied by $10^{13} \mathrm{GeV}$
We have also:
$(1 /(2.6125))^{\wedge} 1 / 16$

Input interpretation:

$\sqrt[16]{\frac{1}{2.6125}}$

Result:

0.941746 .
$0.941746 . .$. result very near to 0.9402 (Table I)
Now, we have that, multiplying the average $2.6125 \mathrm{e}+13$ of the mass of inflaton (dilaton) by $9 \mathrm{e}+16$, inverting and performing the $1920^{\text {th }}(64 * 30)$ root, we obtain:
$\left(\left(1 /\left(2.6125 * 10^{\wedge} 13 * 9 \mathrm{e}+16\right)\right)\right)^{\wedge} 1 /(64 * 30)$

Input interpretation:

$\sqrt[64 \times 30]{\frac{1}{2.6125 \times 10^{13} \times 9 \times 10^{16}}}$

Result:

0.96423217 ..
$0.96423217 \ldots$ result very near to the spectral tilt $n_{s}=0.9649 \pm 0.0042$.

From the following masses (axions):

$m_{t^{\prime}}$	0	0.93	1.73	2.02	2.02	4.97	2.01	1.56

we obtain the following average: 1.905
We note that, multiplying by 2 the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

we obtain: 1.9137332746 , result very near to the above average and very near to the mean value $1.962 * 10^{19}$ of DM particle that has a Planck scale mass: $\mathrm{m} \approx 10^{19} \mathrm{GeV}$.

From:
Received: June 28, 2018 - Accepted: September 10, 2018 - Published: September 17, 2018 - Cosmological phase transitions in warped space: gravitational waves and collider signatures
Eugenio Megias, Germano Nardini and Mariano Quiros
We have:
$\ell=1,616252 \times 10^{-35} \mathrm{~m}$
$g^{e f f}=106,75$
$\mathrm{a}_{\mathrm{h}}(\mathrm{T}) \ll 1$

$$
\kappa=\left(8 \pi G_{\mathrm{N}}\right)^{1 / 2}=\frac{(8 \pi)^{1 / 2}}{M_{\mathrm{P}}}=\left(2.43 \times 10^{18} \mathrm{GeV}\right)^{-1}
$$

A parameter configuration leading to $T_{R}<T_{\mathcal{H}}$ is provided by scenario D_{1}. In this case the dilaton and EW phase transitions happen simultaneously at $T=T_{n} \simeq 112 \mathrm{GeV}$, ending up with $T=T_{R}=133.7 \mathrm{GeV}<T_{\mathrm{EW}}$, so that both the radion and the Higgs acquire a VEV. Before and after the reheating, the bound of eq. (8.7) is fulfilled, and the condition of strong-enongh first order phase transition for FW haryogenesis is satisfied. ${ }^{22}$

It follows that $g^{\text {eff }}=g_{B}(T)+\frac{7}{8} g_{F}(T)=106.75$ at $172 \mathrm{GeV} \lesssim T \ll m_{G}$.

$$
\begin{aligned}
\alpha & \simeq \frac{E_{0}}{3\left(\pi^{4} \ell^{3} / \kappa^{2}\right) a_{h}\left(T_{n}\right) T_{n}^{4}}, \\
T_{i} & \approx\left(\frac{30 \kappa^{2} E_{0}}{90 \pi^{4} \ell^{3} a_{h}+\pi^{2} \kappa^{2} g_{d}^{\text {eff }}}\right)^{1 / 4}
\end{aligned}
$$

From this last expression, we obtain:
$0.591=\left[\left(\left(\left(\left(30^{*}\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2^{*} \mathrm{x}\right)\right)\right)\right) /\left(\left(\left(\left(\left(90 \mathrm{Pi}^{\wedge} 4^{*}(1.616252 \mathrm{e}-\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.35)^{\wedge} 3^{*} 1 / 12+\mathrm{Pi}^{\wedge} 2^{*}\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2^{*} 172\right)\right)\right)\right)\right)\right]^{\wedge} 1 / 4$

Input interpretation:

$0.591=\sqrt[4]{\frac{30\left(\frac{1}{2.43 \times 10^{18}}\right)^{2} x}{90 \pi^{4}\left(1.616252 \times 10^{-35}\right)^{3} \times \frac{1}{12}+\pi^{2}\left(\frac{1}{2.43 \times 10^{18}}\right)^{2} \times 172}}$

Result:

$0.591=0.364606 \sqrt[4]{x}$
Plot:

Alternate form assuming x is positive:

$\sqrt[4]{x}=1.62093$

Solution:

$x \approx 6.9033$
6.9033 GeV $=\mathrm{E}_{0}$
convert $6.9033 \mathrm{GeV} / \mathrm{k}_{\boldsymbol{B}}$ (gigaelectronvolts per Boltzmann constant) to degrees Celsius
$8.011 \times 10^{13}{ }^{\circ} \mathrm{C}$ (degrees Celsius)
$8.011 \times 10^{13} \mathrm{~K}$ (kelvins)

Indeed:
$\left[\left(\left(\left(\left(30^{*}\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2^{*} 6.9033\right)\right)\right)\right) /\left(\left(\left(\left(\left(90 \mathrm{Pi}^{\wedge} 4^{*}(1.616252 \mathrm{e}-\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.35)^{\wedge} 3^{*} 1 / 12+\mathrm{Pi}^{\wedge} 2^{*}\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2^{*} 172\right)\right)\right)\right)\right)\right]^{\wedge} 1 / 4$

Input interpretation:

$\sqrt[4]{\frac{30\left(\frac{1}{2.43 \times 10^{18}}\right)^{2} \times 6.9033}{90 \pi^{4}\left(1.616252 \times 10^{-35}\right)^{3} \times \frac{1}{12}+\pi^{2}\left(\frac{1}{2.43 \times 10^{18}}\right)^{2} \times 172}}$

Result:

0.591000...
0.591

Or/and:
$0.580=\left[\left(\left(\left(\left(30^{*}\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2^{*} \mathrm{x}\right)\right)\right)\right) /\left(\left(\left(\left(\left(90 \mathrm{Pi}^{\wedge} 4^{*}(1.616252 \mathrm{e}-\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.35)^{\wedge} 3 * 1 / 12+\operatorname{Pi}^{\wedge} 2 *\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2 * 106.75\right)\right)\right)\right)\right)\right]^{\wedge} 1 / 4$

Input interpretation:

$0.58=\sqrt[4]{\frac{30\left(\frac{1}{2.43 \times 10^{18}}\right)^{2} x}{90 \pi^{4}\left(1.616252 \times 10^{-35}\right)^{3} \times \frac{1}{12}+\pi^{2}\left(\frac{1}{2.43 \times 10^{18}}\right)^{2} \times 106.75}}$

Result:

$0.58=0.410784 \sqrt[4]{x}$

Plot:

Alternate form assuming x is positive:

$\sqrt[4]{x}=1.41193$

Solution:

$x \approx 3.97428$

$3.97428 \mathrm{GeV}=\mathrm{E}_{0}$ another value of the vacuum energy

```
convert 3.97428 GeV/k}\mp@subsup{k}{B}{}\mathrm{ (gigaelectronvolts per Boltzmann constant)
    to degrees Celsius
4.612\times10 13 %}\textrm{C}\mathrm{ (degrees Celsius)
4.612\times10 13 K (kelvins)
```

Indeed:
$\left[\left(\left(\left(\left(30^{*}\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2 * 3.97428\right)\right)\right)\right) /\left(\left(\left(\left(\left(90 \mathrm{Pi}^{\wedge} 4^{*}(1.616252 \mathrm{e}-\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.35)^{\wedge} 3^{*} 1 / 12+\mathrm{Pi}^{\wedge} 2^{*}\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2 * 106.75\right)\right)\right)\right)\right)\right]^{\wedge} 1 / 4$

Input interpretation:

$\sqrt[4]{\frac{30\left(\frac{1}{2.43 \times 10^{18}}\right)^{2} \times 3.97428}{90 \pi^{4}\left(1.616252 \times 10^{-35}\right)^{3} \times \frac{1}{12}+\pi^{2}\left(\frac{1}{2.43 \times 10^{18}}\right)^{2} \times 106.75}}$
Result:
0.580000...
0.580

From

$$
\alpha \simeq \frac{E_{0}}{3\left(\pi^{4} \ell^{3} / \kappa^{2}\right) a_{h}\left(T_{n}\right) T_{n}^{4}},
$$

we obtain:
$6.9033 /\left(\left(\left((3)\left(\left(\left(\left(\mathrm{Pi}^{\wedge} 4^{*}(1.616252 \mathrm{e}-35)^{\wedge} 3\right)\right) /\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2\right)\right)\right)\right)\right)$
$\left.\left.0.00766^{*} 112^{\wedge} 4\right)\right)$

Input interpretation:

$\frac{6.9033}{\left(3 \times \frac{\pi^{4}\left(1.616252 \times 10^{-35}\right)^{3}}{\left(\frac{1}{2.43 \times 10^{18}}\right)^{2}}\right) \times 0.00766 \times 112^{4}}$

Result:

$7.86132 \ldots \times 10^{59}$
7.86132 ... $* 10^{59}=\alpha$
and this another value of α
$3.97428 /\left(\left(\left(\left(3\left(\left(\left(\left(\left(\mathrm{Pi}^{\wedge} 4 *(1.616252 \mathrm{e}-35)^{\wedge} 3\right)\right) /\left(\left((2.43 \mathrm{e}+18)^{\wedge}-1\right)\right)^{\wedge} 2\right)\right)\right)\right)\right) 0.002 * 112^{\wedge} 4\right)\right)$

Input interpretation:

$\frac{3.97428}{\left(3 \times \frac{\pi^{4}\left(1.616252 \times 10^{-35}\right)^{3}}{\left(\frac{1}{2.43 \times 10^{18}}\right)^{2}}\right) \times 0.002 \times 112^{4}}$

Result:

$1.73339 \ldots \times 10^{60}$

Input interpretation:

$1.73339 \times 10^{60}=17.3339 \times 10^{59}$
$17.3339 * 10^{59}=\alpha$

From

$$
\begin{equation*}
F_{c}(T)=-\frac{\pi^{2}}{90} g_{c}^{\text {eff }} T^{4}, \tag{7.2}
\end{equation*}
$$

we obtain, dividing by c^{2}, two masses:
$\left.\left(\left(\left(\left(-\mathrm{Pi}^{\wedge} 2\right) / 90\right) * 106.75^{*} 112^{\wedge} 4\right)\right)\right) /(9 \mathrm{e}+16)$

Input interpretation:

$\frac{-\frac{\pi^{2}}{90} \times 106.75 \times 112^{4}}{9 \times 10^{16}}$

Result:

$-2.04670 \ldots \times 10^{-8}$
$-2.04670 \ldots * 10^{-8}$
and:
$\left.\left(\left(\left(\left(-\mathrm{Pi}^{\wedge} 2\right) / 90\right) * 106.75^{*} 133.7 \wedge 4\right)\right)\right) /(9 \mathrm{e}+16)$

Input interpretation:

$\frac{-\frac{\pi^{2}}{90} \times 106.75 \times 133.7^{4}}{9 \times 10^{16}}$

Result:

$-4.15631 \ldots \times 10^{-8}$
$-4.15631 \ldots * 10^{-8}$

We note that:
$\left(\left(\left(\left(-\left(\left(\left(\left(\left(-\mathrm{Pi}^{\wedge} 2\right) / 90\right) * 106.75^{*} 112^{\wedge} 4\right)\right)\right) /(9 \mathrm{e}+16)\right)\right)\right)\right)^{\wedge} 1 /\left(4096^{*} 5\right)$

Input interpretation:

$\sqrt[4096 \times 5]{-\frac{-\frac{\pi^{2}}{90} \times 106.75 \times 112^{4}}{9 \times 10^{16}}}$

Result:

0.999135898...
0.999135898...

And:

$$
\left(\left(\left(\left(-\left(\left(\left(\left(-\mathrm{Pi}^{\wedge} 2\right) / 90\right)^{*} 106.75^{*} 133.7 \wedge 4\right)\right)\right) /(9 \mathrm{e}+16)\right)\right)\right)^{\wedge} 1 /\left(4096^{*} 5\right)
$$

Input interpretation:

$\sqrt[4096 \times 5]{-\frac{-\frac{\pi^{2}}{90} \times 106.75 \times 133.7^{4}}{9 \times 10^{16}}}$

Result:

0.999170459...
0.999170459...

Note that, the two results $0.999135898 \ldots$ and $0.999170459 \ldots$ are practically equals to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

From the Table 3

Scen.	$m_{\mathrm{rad}} / \mathrm{TeV}$	m_{G} / TeV	c_{γ}	c_{g}	c_{V}	$c_{\mathcal{H}}$	c_{f}
$\mathrm{~B}_{2}$	0.915	4.80	0.472	0.164	0.0649	0.259	0.259
$\mathrm{~B}_{8}$	0.745	4.19	0.542	0.146	0.0744	0.298	0.298
C_{1}	0.890	3.08	0.532	0.179	0.0904	0.362	0.362
C_{2}	0.751	2.77	0.595	0.162	0.101	0.404	0.401
D_{1}	0.477	4.50	3.791	0.475	0.397	1.586	1.586
E_{1}	0.643	4.16	0.562	0.124	0.0746	0.298	0.298

Table 3. Masses of the radion and the $n=1$ graviton mode, and coupling coefficients of the radion interactions with the SM fields, for the scenario $\mathrm{B}_{2}, \mathrm{~B}_{8}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{D}_{1}$ and E_{1}.
we note that the mass of radion, for B_{2} is equal to 0.915 , value that is a good approximation to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

Now, we have that:

- Small back-reaction (class A)

$$
\begin{align*}
\gamma & =0.55 \ell^{3 / 2}, & v_{0} & =-9.35 \ell^{-3 / 2}, & v_{1} & =-6.79 \ell^{-3 / 2},
\end{align*} \quad \gamma_{1} \rightarrow \infty,
$$

- Large back-reaction (class B)

$$
\begin{align*}
& \gamma=0.1 \ell^{3 / 2}, \\
& v_{0}=-15 \ell^{-3 / 2}, \\
& v_{1}=-3.3 \ell^{-3 / 2}, \\
& \gamma_{1} \rightarrow \infty, \\
& \kappa^{2}=\frac{1}{4} \ell^{3}(N \simeq 18), \quad r_{S}=37.3 \ell, \quad\left\langle r_{1}\right\rangle=25.4 \ell \text {. } \tag{4.13}
\end{align*}
$$

- Large back-reaction ξ^{8} larger N (class C)

$$
\begin{align*}
\gamma & =0.1 \ell^{3 / 2}, & v_{0} & =-20 \ell^{-3 / 2}, & v_{1} & =0.7 \ell^{-3 / 2},
\end{align*} \quad \gamma_{1} \rightarrow \infty, ~(4)
$$

- Large back-reaction \& smaller N (class D)

$$
\begin{align*}
\gamma & =0.1 \ell^{3 / 2}, & v_{0} & =2 \ell^{-3 / 2}, & v_{1} & =8.9 \ell^{-3 / 2},
\end{align*} \quad \gamma_{1} \rightarrow \infty
$$

- Finite γ_{1} (class E)

$$
\begin{align*}
& \gamma=0.1 \ell^{3 / 2}, \quad v_{0}=-15 \ell^{-3 / 2}, \quad v_{1}=-2.6 \ell^{-3 / 2}, \quad \gamma_{1}=10 \ell^{-1}, \\
& \kappa^{2}=\frac{1}{4} \ell^{3}(N \simeq 18), \quad r_{S}=37.3 \ell, \quad\left\langle r_{1}\right\rangle=25.4 \ell . \tag{4.16}
\end{align*}
$$

We have:

For the warp factor $A-A_{0}+s A_{1}$, we can determine A_{0} as

$$
\begin{equation*}
A_{0}(r)=\frac{r}{\ell}+\frac{\kappa^{2}}{3 \gamma}\left(\phi_{0}(r)-v_{0}\right)=\frac{r}{\ell}-\frac{\kappa^{2}}{3 \gamma^{2}} \log \left(1-\frac{r}{r_{S}}\right) . \tag{4.9}
\end{equation*}
$$

${ }^{7}$ The scale ρ_{1} is $\mathcal{O}(\mathrm{TeV})$ for $\ell^{-1} \simeq M_{P}=2.4 \times 10^{18} \mathrm{GeV}$ and $A\left(r_{1}\right) \simeq 35$. In the numerical calculations we will work in units where $\ell=1$.

For

$$
\begin{array}{lll}
\gamma=0.1 \ell^{3 / 2}, & v_{0}=-15 \ell^{-3 / 2}, & v_{1}=-3.3 \ell^{-3 / 2}, \quad \gamma_{1} \rightarrow \infty \\
\kappa^{2}=\frac{1}{4} \ell^{3}(N \simeq 18), & r_{S}=37.3 \ell, & \left\langle r_{1}\right\rangle=25.4 \ell . \\
\ell=1,616252 \times 10^{-35} \mathrm{~m} & \\
& \frac{r}{\ell}-\frac{\kappa^{2}}{3 \gamma^{2}} \log \left(1-\frac{r}{r_{S}}\right)
\end{array}
$$

we obtain:
$1 /((1.616252 \mathrm{e}-35))))-1 / 4^{*}(((1.616252 \mathrm{e}-35)))^{\wedge} 3^{*} 1 /\left(3^{*}\left(\left(\left(\left(0.1^{*}(1.616252 \mathrm{e}-\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.35)^{\wedge}(1.5)\right)\right)\right)\right)\right)^{\wedge} 2 \ln (1-(25.4 / 37.3))$

Input interpretation:

$25.4 \times \frac{1}{1.616252 \times 10^{-35}}-$

$$
\left(\frac{1}{4}\left(1.616252 \times 10^{-35}\right)^{3} \times \frac{1}{\left(3\left(0.1\left(1.616252 \times 10^{-35}\right)^{1.5}\right)\right)^{2}}\right) \log \left(1-\frac{25.4}{37.3}\right)
$$

$\log (x)$ is the natural logarithm

Result:

$1.5715371117870233107213479086182105297497871273883798 \ldots \times 10^{36}$
$1.571537111787 \ldots * 10^{36}$
and, we obtain also:
$(((1 /((()(((25.4 * 1 /((1.616252 \mathrm{e}-35))))-1 / 4 *(((1.616252 \mathrm{e}-$
$\left.\left.\left.\left.\left.\left.\left.\left.35)))^{\wedge} 3 * 1 /\left(3^{*}((((0.1 *(1.616252 \mathrm{e}-35) \wedge(1.5)))))\right)^{\wedge} 2 \ln (1-(25.4 / 37.3))\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge}(1 / 2048)$

Input interpretation:

$$
\begin{aligned}
& \left(1 /\left(25.4 \times \frac{1}{1.616252 \times 10^{-35}}-\right.\right. \\
& \\
& \quad\left(\frac{1}{4}\left(1.616252 \times 10^{-35}\right)^{3} \times \frac{1}{\left(3\left(0.1\left(1.616252 \times 10^{-35}\right)^{1.5}\right)\right)^{2}}\right) \\
& \\
& \left.\left.\quad \log \left(1-\frac{25.4}{37.3}\right)\right)\right) \wedge(1 / 2048)
\end{aligned}
$$

Result:

$0.960121098529740875383702751138442555799865933620178276080 \ldots$
$0.9601210985297 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

Now, we have that:
presence of a strong first order phase transition. This is a consequence of the cooling in the initial (BH) phase, which also triggers a (very brief) inflationary stage just before the onset of the phase transition.

The energy density $\rho=F-T d F / d T$ in the two phases is given by

$$
\begin{align*}
& \rho_{d}=E_{0}+\frac{3 \pi^{4} \ell^{3}}{\kappa^{2}} a_{h} T^{4}+\frac{\pi^{2}}{30} g_{d}^{\mathrm{eff}} T^{4} \tag{7.15}\\
& \rho_{c}=\frac{\pi^{2}}{30} g_{c}^{\mathrm{eff}} T^{4} . \tag{7.16}
\end{align*}
$$

$3.97428+3 * \operatorname{Pi}^{\wedge} 4 *\left(\left(((((1.616252 \mathrm{e}-35))))^{\wedge} 3^{*} 0.002 * 112^{\wedge} 4\right)\right) /\left(\left(\left(\left(\left((2.43 \mathrm{e}+18)^{\wedge}-\right.\right.\right.\right.\right.$ $\left.\left.\left.1))^{\wedge} 2\right)\right)\right)+\left(\left(\left(\mathrm{Pi}^{\wedge} 2^{*} 172^{*} 112^{\wedge} 4\right)\right)\right) / 30$

Input interpretation:

$3.97428+3 \pi^{4} \times \frac{\left(1.616252 \times 10^{-35}\right)^{3} \times 0.002 \times 112^{4}}{\left(\frac{1}{2.43 \times 10^{18}}\right)^{2}}+\frac{1}{30}\left(\pi^{2} \times 172 \times 112^{4}\right)$

Result:

$8.90387446834999 \ldots \times 10^{9}$
8.903874... * 10^{9}
$\left(\left(\left(\left(\operatorname{Pi}^{\wedge} 2\right) * 106.75^{*} 112^{\wedge} 4\right)\right)\right) / 30$
Input interpretation:
$\frac{1}{30}\left(\pi^{2} \times 106.75 \times 112^{4}\right)$

Result:

$5.52610 \ldots \times 10^{9}$
5.52610... * 10^{9}

Alternative representations:
$\frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=\frac{1}{30} \times 106.75 \times 112^{4}\left(180^{\circ}\right)^{2}$
$\frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=\frac{1}{30} \times 106.75 \times 112^{4}(-i \log (-1))^{2}$
$\frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=\frac{1}{30} \times 640.5 \times 112^{4} \zeta(2)$

Series representations:
$\frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=8.95857 \times 10^{9}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{2}$
$\frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=2.23964 \times 10^{\circ}\left(-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{k}{k}}\right)^{2}$
$\frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=5.59911 \times 10^{8}\left(\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\right)^{2}$

Integral representations:

$\frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=2.23964 \times 10^{\circ}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{2}$

$$
\begin{aligned}
& \frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=8.95857 \times 10^{9}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{2} \\
& \frac{1}{30} \pi^{2}\left(106.75 \times 112^{4}\right)=2.23964 \times 10^{9}\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{2}
\end{aligned}
$$

Now, from the ratio between the two above results concerning the density, we obtain:
$\left(\left(\left(\left(\left(3.97428+3 * \mathrm{Pi}^{\wedge} 4 *(((((1.616252 \mathrm{e}-35)))))^{\wedge} 3^{*} 0.002^{*} 112^{\wedge} 4\right)\right) /\left(\left(\left(\left(\left((2.43 \mathrm{e}+18)^{\wedge}-\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.1))^{\wedge} 2\right)\right)\right)^{+}\left(\left(\left(\operatorname{Pi} 2^{*} 172 * 112^{\wedge} 4\right)\right)\right) / 30\right)\right)\right)\right)\right)$ * $1 /\left[\left(\left(\left((\operatorname{Pi} \wedge 2)^{*} 106.75^{*} 112^{\wedge} 4\right)\right)\right) / 30\right]$

Input interpretation:

$$
\left(\begin{array}{l}
\left.3.97428+3 \pi^{4} \times \frac{\left(1.616252 \times 10^{-35}\right)^{3} \times 0.002 \times 112^{4}}{\left(\frac{1}{2.43 \times 10^{18}}\right)^{2}}+\frac{1}{30}\left(\pi^{2} \times 172 \times 112^{4}\right)\right) \times \\
\frac{1}{\frac{1}{30}\left(\pi^{2} \times 106.75 \times 112^{4}\right)}
\end{array}\right.
$$

Result:

1.611241218517778813440124825329474753441482670191318098917...
$1.6112412185 \ldots$ result that is a good approximation to the golden ratio

Now, from the hypothetical dilaton mass -2.04670... * 10^{-8} and inserting this value in the Hawking radiation calculator, we obtain:

Mass $=-2.046700 \mathrm{e}-8$
Radius $=-3.039046 \mathrm{e}-35$
Temperature $=-5.996009 \mathrm{e}+30$
Entropy $=-4.825040$
From the Ramanujan-Nardelli mock formula, we have:
sqrt[[[[1//(((((((4*1.962364415e+19)/(5*0.0864055^2)))*1/(-2.046700e-8)* sqrt[[-$\left.\left.\left(\left(\left((-5.996009 \mathrm{e}+30) * 4 * \mathrm{Pi} *(-3.039046 \mathrm{e}-35)^{\wedge} 3-(-3.039046 \mathrm{e}-35)^{\wedge} 2\right)\right)\right)\right)\right) /$ ((6.67* $\left.\left.\left.\left.10^{\wedge}-11\right)\right)\right]\right]$]]]

Input interpretation:

$$
\left.\begin{array}{l}
\sqrt{ }\left(1 /\left(\frac{4 \times 1.962364415 \times 10^{19}}{5 \times 0.0864055^{2}}\left(-\frac{1}{2.046700 \times 10^{-8}}\right)\right.\right. \\
\left.\sqrt{-\frac{-5.996009 \times 10^{30} \times 4 \pi\left(-3.039046 \times 10^{-35}\right)^{3}-\left(-3.039046 \times 10^{-35}\right)^{2}}{6.67 \times 10^{-11}}}\right)
\end{array}\right)
$$

Result:

1.618249138019705193058637242823571021209210251498133405186...
1.618249138...i

Polar coordinates:

$r=1.61825$ (radius), $\theta=90^{\circ}$ (angle)

And:
1/sqrt[[[[[1/(((((((4*1.962364415e+19)/(5*0.0864055^2)))*1/(-2.046700e-8)* sqrt[[-$\left.\left.\left(\left(\left((-5.996009 \mathrm{e}+30) * 4 * \mathrm{Pi}^{*}(-3.039046 \mathrm{e}-35)^{\wedge} 3-(-3.039046 \mathrm{e}-35)^{\wedge} 2\right)\right)\right)\right)\right) /\left(\left(6.67 * 10^{\wedge}-\right.\right.$ 11))]]]]]

Input interpretation:

$$
\begin{aligned}
& 1 /\left(\sqrt { } \left(1 /\left(\frac{4 \times 1.962364415 \times 10^{19}}{5 \times 0.0864055^{2}}\left(-\frac{1}{2.046700 \times 10^{-8}}\right)\right.\right.\right. \\
& \sqrt{ }\left(-\frac{1}{6.67 \times 10^{-11}}\left(-5.996009 \times 10^{30} \times 4 \pi\left(-3.039046 \times 10^{-35}\right)^{3}-\right.\right. \\
& \left.\left.\left.\left.\left.\left(-3.039046 \times 10^{-35}\right)^{2}\right)\right)\right)\right)\right)
\end{aligned}
$$

Result:

- 0.617952... i
-0.617952...i
Polar coordinates:
$r=0.617952$ (radius), $\theta=-90^{\circ}$ (angle)

Practically the values obtained, very near to the golden ratio and his conjugate, are imaginary. Further we note that, dividing the two results, we have:
(1.618249138019705193058637242823571021209210251498133 i) / (-
0.61795181996742898316724180900023935130532671541476 i)

Input interpretation:

$1.618249138019705193058637242823571021209210251498133 i$
$0.61795181996742898316724180900023935130532671541476 i$

Result:

-2.61873027270151886736291489794135914768425940438548034971...
$-2.61873027 \ldots$ result that is very near to the square of the golden ratio with minus sign.

Then, multiplying by i^{2}, dividing the value about equal to the golden ratio and the corresponding reciprocal and performing the square root, we obtain:
sqrt(i^2(1.618249138019705193058637242823571021209210251498133 i) / (0.61795181996742898316724180900023935130532671541476 i))

Input interpretation:

$$
\sqrt{i^{2}\left(-\frac{1.618249138019705193058637242823571021209210251498133 i}{0.61795181996742898316724180900023935130532671541476 i}\right)}
$$

Result:

1.6182491380197051930586372428235710212092102514981...
$1.618249138 \ldots$ a result practically about equal to the golden ratio

Now, we have that for

$$
\begin{aligned}
& \mathrm{m}=10.326 ; \alpha=2((2+2) /(1+2 * 2))^{\wedge} 3=1.024 \quad \beta=2^{\wedge} 3 *(2+2) /(1+2 * 2)=6.4 \\
& 1-\alpha=(1+2)((1-2) /(1+2 * 2))^{\wedge} 3=-0.024 \quad 1-\beta=(1+2)^{\wedge} 3^{*}((1-2) /(1+2 * 2))=-5.4
\end{aligned}
$$

we obtain:

```
\sqrt{2}{\alpha(1-\beta)}+\sqrt{4}{\beta(1-\alpha)}=\sqrt{4}{4}\sqrt{24}{\alphaa(1-\alpha)(1-\beta)}
```

$$
4^{\wedge}(1 / 3)^{*}\left(\left(\left(\left(1.024^{*} 6.4(-0.024)(-5.4)\right)\right)^{\wedge} 1 / 24\right.\right.
$$

Input:

$\sqrt[3]{4} \sqrt[24]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}$

Result:

$1.576637562905021964928635001344279037261094502770738445866 \ldots$
1.5766375629...

And:
$1+1 /\left(\left(\left(\left(4^{\wedge}(1 / 3) *\left(\left(\left(\left(1.024^{*} 6.4(-0.024)(-5.4)\right)\right)\right)\right)^{\wedge} 1 / 24\right)\right)\right)\right)$

Input:

$1+\frac{1}{\sqrt[3]{4} \sqrt[24]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}}$

Result:

1.634261...
$1.634261 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$
$\left.\left.\left(\left(\left(\left(1 /\left(\left(\left(\left(4^{\wedge}(1 / 3) *(((1.024 * 6.4(-0.024)(-5.4))))\right)^{\wedge} 1 / 24\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 64$

Input:

$\sqrt[64]{\sqrt[3]{4} \sqrt[24]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}}$

Result:

0.992911269...
0.992911269 .
result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}} \approx 0.9991104684 .1 \text {, }}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Now, we have that:

$\left(\left((-5.4)^{\wedge} 7 /(-0.024)\right)\right)^{\wedge} 1 / 8+\left(\left(6.4^{\wedge} 7 / 1.024\right)\right)^{\wedge} 1 / 8+2\left(\left(\left(\left(6.4^{\wedge} 7 *(-5.4)^{\wedge} 7\right)\right)\right) /(((1.024)(-\right.$ $0.024))))^{\wedge} 1 / 24$

Input:

$\sqrt[8]{-\frac{(-5.4)^{7}}{0.024}}+\sqrt[8]{\frac{6.4^{7}}{1.024}}+2 \sqrt[24]{\frac{6.4^{7}(-5.4)^{7}}{1.024 \times(-0.024)}}$

Result:

18.5901...
18.5901...
$\left(\left(\left(-0.024^{\wedge} 7 /(-5.4)\right)\right)^{\wedge} 1 / 8+\left(\left(1.024^{\wedge} 7 / 6.4\right)\right)^{\wedge} 1 / 8+2\left(\left(\left(\left(1.024^{\wedge} 7^{*}(-0.024)^{\wedge} 7\right)\right)\right) /(((6.4)(-\right.\right.$ $5.4))))^{\wedge} 1 / 24$

Input:

$\sqrt[8]{\frac{-0.024^{7}}{-5.4}}+\sqrt[8]{\frac{1.024^{7}}{6.4}}+2 \sqrt[24]{\frac{1.024^{7}(-0.024)^{7}}{6.4 \times(-5.4)}}$

Result:

1.42598...
1.42598...

We obtain also:
$\left(\left(\left(\left(\left(1 / 18.5901\left(\left(\left(\left(\left(\left(\left(-0.024^{\wedge} 7 /(-5.4)\right)\right)\right)^{\wedge} 1 / 8+\left(\left(1.024^{\wedge} 7 / 6.4\right)\right)^{\wedge} 1 / 8+2\left(\left(\left(\left(1.024^{\wedge} 7^{*}(-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.0.024)^{\wedge} 7\right)\right)\right) /(((6.4)(-5.4)))\right)^{\wedge} 1 / 24\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 256$

Input interpretation:
$\sqrt[256]{\frac{1}{18.5901}\left(\sqrt[8]{\frac{-0.024^{7}}{-5.4}}+\sqrt[8]{\frac{1.024^{7}}{6.4}}+2 \sqrt[24]{\frac{1.024^{7}(-0.024)^{7}}{6.4 \times(-5.4)}}\right), ~}$

Result:

0.99001977...
$0.99001977 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

And:
$\left(\left(\left(\left(\left(1 / 18.5901\left(\left(\left(\left(\left(\left(\left(-0.024^{\wedge} 7 /(-5.4)\right)\right)\right)^{\wedge} 1 / 8+\left(\left(1.024^{\wedge} 7 / 6.4\right)\right)^{\wedge} 1 / 8+2\left(\left(\left(\left(1.024^{\wedge} 7^{*}(-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.0.024)^{\wedge} 7\right)\right)\right) /(((6.4)(-5.4)))\right)^{\wedge} 1 / 24\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 48$

Input interpretation:
$\sqrt[48]{\frac{1}{18.5901}}\left(\sqrt[8]{\frac{-0.024^{7}}{-5.4}}+\sqrt[8]{\frac{1.024^{7}}{6.4}}+2 \sqrt[24]{\frac{1.024^{7}(-0.024)^{7}}{6.4 \times(-5.4)}}\right)$

Result:

$0.947910419044673998026989135739103499438017025774530098451 \ldots$
$0.9479104190446 \ldots$ result very near to the value of the following RogersRamanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

Now, we have that:

$\alpha=2\left((2+2) /\left(1+2^{*} 2\right)\right)^{\wedge} 3=1.024 \quad \beta=2^{\wedge} 3^{*}(2+2) /(1+2 * 2)=6.4$
$1-\alpha=(1+2)((1-2) /(1+2 * 2))^{\wedge} 3=-0.024 \quad 1-\beta=(1+2)^{\wedge} 3 *((1-2) /(1+2 * 2))=-5.4$
$\left.(1.024 / 6.4)^{\wedge} 1 / 4+(((-0.024) /(-5.4)))^{\wedge} 1 / 4+\left(\left(\left(\left(\left(1.024^{*}(-0.024)\right)\right) /\left(6.4^{*}(-5.4)\right)\right)^{\wedge} 1 / 4\right)\right)\right)-$ $2^{*}\left(\left(\left(\left(\left(1.024^{*}(-0.024)\right) /\left(6.4^{*}(-5.4)\right)\right)^{\wedge} 1 / 8\right)\right)\right)^{*}\left(1+(1.024 / 6.4)^{\wedge} 1 / 8+(((-0.024) /(-\right.$ 5.4)) $\left.)^{\wedge} 1 / 8\right)$)

Input:

$$
\begin{aligned}
& \sqrt[4]{\frac{1.024}{6.4}}+\sqrt[4]{\frac{-0.024}{-5.4}}+\sqrt[4]{\frac{1.024 \times(-0.024)}{6.4 \times(-5.4)}}- \\
& 2 \sqrt[8]{\frac{1.024 \times(-0.024)}{6.4 \times(-5.4)}}\left(1+\sqrt[8]{\frac{1.024}{6.4}}+\sqrt[8]{\frac{-0.024}{-5.4}}\right)
\end{aligned}
$$

Result:

```
-0.80767123749212493469212082989238224653083927608658642345\ldots.
-0.807671237492....
```

And:
$-2^{*}\left(\left(\left(\left(()\left((1.024 / 6.4)^{\wedge} 1 / 4+(((-0.024) /(-5.4)))^{\wedge} 1 / 4+\left(\left(\left(\left(\left(1.024^{*}(-0.024)\right)\right) /\left(6.4^{*}(-\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.5.4)))^{\wedge} 1 / 4\right)\right)\right)-2^{*}\left(\left(\left(\left(\left(1.024^{*}(-0.024)\right) /\left(6.4^{*}(-5.4)\right)\right)^{\wedge} 1 / 8\right)\right)\right)^{*}\left(1+(1.024 / 6.4)^{\wedge} 1 / 8+(((-\right.$ $\left.\left.\left.0.024)((-5.4)))^{\wedge} 1 / 8\right)\right)\right)$))))))

Input:

$$
\begin{aligned}
-2\left(\sqrt[4]{\frac{1.024}{6.4}}+\sqrt[4]{\frac{-0.024}{-5.4}}+\sqrt[4]{\frac{1.024 \times(-0.024)}{6.4 \times(-5.4)}}-\right. \\
\left.\quad 2 \sqrt[8]{\frac{1.024 \times(-0.024)}{6.4 \times(-5.4)}}\left(1+\sqrt[8]{\frac{1.024}{6.4}}+\sqrt[8]{\frac{-0.024}{-5.4}}\right)\right)
\end{aligned}
$$

Result:

$1.615342474984249869384241659784764493061678552173172846908 \ldots$
1.61534247498....

This result is a good approximation to the value of the golden ratio 1,618033988749
$\left(\left(\left(\left(()\left(\left((1.024 / 6.4)^{\wedge} 1 / 4+(((-0.024) /(-5.4)))\right)^{\wedge} 1 / 4+\left(\left(\left(\left(\left(1.024^{*}(-0.024)\right)\right) /\left(6.4^{*}(-\right.\right.\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.5.4)))^{\wedge} 1 / 4\right)\right)\right)-2^{*}\left(\left(\left(\left(\left(1.024^{*}(-0.024)\right) /\left(6.4^{*}(-5.4)\right)\right)^{\wedge} 1 / 8\right)\right)\right)^{*}\left(1+(1.024 / 6.4)^{\wedge} 1 / 8+(((-\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.0.024)(-5.4)))^{\wedge} 1 / 8\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 5$

Input:

$$
\begin{aligned}
& \left(\sqrt[4]{\frac{1.024}{6.4}}+\sqrt[4]{\frac{-0.024}{-5.4}}+\sqrt[4]{\frac{1.024 \times(-0.024)}{6.4 \times(-5.4)}}-\right. \\
& \left.28 \sqrt[8]{\frac{1.024 \times(-0.024)}{6.4 \times(-5.4)}}\left(1+\sqrt[8]{\frac{1.024}{6.4}}+\sqrt[8]{\frac{-0.024}{-5.4}}\right)\right) \wedge(1 / 5)
\end{aligned}
$$

Result:

0.775184... +
0.563204...

Polar coordinates:

$r=0.95818$ (radius), $\theta=36^{\circ}$ (angle)
0.95818 result very near to the spectral index n_{s} and to the mesonic Regge slope (see Appendix) and to the inflaton value at the end of the inflation 0.9402

Now, we have that:

VII - here $\sqrt{\alpha \beta}+\sqrt{G \alpha)(1-\alpha)}+20 \sqrt[4]{\alpha 0(1-\alpha)(1-\alpha)}$

$1-\mathrm{sqrt}(1.024 * 6.4)+\operatorname{sqrt}((-0.024)(-5.4))+20(((1.024 * 6.4(-0.024)(-$
$5.4))))^{\wedge} 1 / 4+8 * \operatorname{sqrt}(2)^{*}\left(\left(\left(1.024^{*} 6.4(-0.024)(-5.4)\right)\right)\right)^{\wedge} 1 / 8^{*}\left(\left(\left((1.024 * 6.4)^{\wedge} 1 / 4+(-\right.\right.\right.$ $\left.\left.0.024^{*}-5.4\right)^{\wedge} 1 / 4\right)$))

Input:

$$
\begin{aligned}
& 1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)}+20 \sqrt[4]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}+ \\
& \quad 8 \sqrt{2} \sqrt[8]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024 \times(-5.4)})
\end{aligned}
$$

Result:

$42.38727537056979229286644448840268292655469797365015924302 \ldots$
42.387275370569...
$((()((1-\mathrm{sqrt}(1.024 * 6.4)+\operatorname{sqrt}((-0.024)(-5.4))+20(((1.024 * 6.4(-0.024)(-$
$5.4))))^{\wedge} 1 / 4+8 * \operatorname{sqrt}(2)^{*}(((1.024 * 6.4(-0.024)(-5.4))))^{\wedge} 1 / 8 *\left(\left(\left((1.024 * 6.4)^{\wedge} 1 / 4+(-\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.0.024^{*}-5.4\right)^{\wedge} 1 / 4\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 3-(4096-1729+17 \wedge 2+8)$

Where $17^{2}=289=322-29-4$ that are Lucas numbers and 1729 is the HardyRamanujan number

Input:

$$
\begin{aligned}
& (1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)}+ \\
& \quad 20 \sqrt[4]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}+8 \sqrt{2} \sqrt[8]{1.024 \times 6.4 \times(-0.024) \times(-5.4)} \\
& \quad(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024 \times(-5.4)}))^{3}-\left(4096-1729+17^{2}+8\right)
\end{aligned}
$$

Result:

73492.4...
73492.4...

Thence, we have the following mathematical connections:

$$
\binom{I_{21} \ll \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-e_{2}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \ll}{<H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}},
$$

$$
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
$$

$$
\begin{aligned}
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $\mathrm{u} \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.
$((((() 1-\mathrm{sqrt}(1.024 * 6.4)+\operatorname{sqrt}((-0.024)(-5.4))+20(((1.024 * 6.4(-0.024)(-$
$5.4))))^{\wedge} 1 / 4+8 * \operatorname{sqrt}(2)^{*}(((1.024 * 6.4(-0.024)(-5.4))))^{\wedge} 1 / 8 *\left(\left(\left((1.024 * 6.4)^{\wedge} 1 / 4+(-\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.0.024^{*}-5.4\right)^{\wedge} 1 / 4\right)\right)()\right)\right)\right)\right)\right)\right)^{\wedge} 2-\left(34^{*} 2\right)$

Where 34 and 2 are Fibonacci numbers

Input:

$$
\begin{aligned}
& (1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)}+ \\
& \quad 20 \sqrt[4]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}+8 \sqrt{2} \sqrt[8]{1.024 \times 6.4 \times(-0.024) \times(-5.4)} \\
& (\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024 \times(-5.4)}))^{2}-34 \times 2
\end{aligned}
$$

Result:

1728.68...
1728.68...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729
$\operatorname{Pi}(((()(1-\mathrm{sqrt}(1.024 * 6.4)+\operatorname{sqrt}((-0.024)(-5.4))+20(((1.024 * 6.4(-0.024)(-$
$5.4))))^{\wedge} 1 / 4+8 * \operatorname{sqrt}(2)^{*}(((1.024 * 6.4(-0.024)(-5.4))))^{\wedge} 1 / 8 *\left(\left(\left((1.024 * 6.4)^{\wedge} 1 / 4+(-\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.0.024^{*}-5.4\right)^{\wedge} 1 / 4\right)\right)\right)\right)\right)$)))) +1

Input:

$$
\begin{gathered}
\pi(1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)}+20 \sqrt[4]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}+8 \sqrt{2} \\
\sqrt[8]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024 \times(-5.4)}))+1
\end{gathered}
$$

Result:

134.164...
134.164... result very near to the rest mass of Pion meson 134.9766

Series representations:

$$
\begin{aligned}
& \pi(1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024(-5.4)}+ \\
& \left.\quad \begin{array}{r}
20 \sqrt[4]{1.024 \times 6.4(-0.024)(-5.4)}+8 \sqrt{2} \sqrt[8]{1.024 \times 6.4(-0.024)(-5.4)} \\
(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024(-5.4)}))+1
\end{array}\right)+1+20.2 \pi+
\end{aligned} \quad \begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k} \pi\left(-\frac{1}{2}\right)_{k} \sqrt{z_{0}\left(\left(0.1296-z_{0}\right)^{k}+17.2444\left(2-z_{0}\right)^{k}-\left(6.5536-z_{0}\right)^{k}\right) z_{0}^{-k}}}{k!} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{array}{r}
\pi(1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024(-5.4)}+20 \sqrt[4]{1.024 \times 6.4(-0.024)(-5.4)}+ \\
8 \sqrt{2} \sqrt[8]{1.024 \times 6.4(-0.024)(-5.4)}(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024(-5.4)}))+ \\
1=1+20.2 \pi+\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} \pi x^{-k}\left((0.1296-x)^{k} \exp \left(i \pi \left\lvert\, \frac{\arg (0.1296-x)}{2 \pi}\right.\right]\right)+ \\
\left.17.2444(2-x)^{k} \exp \left(i \pi \left\lvert\, \frac{\arg (2-x)}{2 \pi}\right.\right]\right)-(6.5536-x)^{k} \\
\left.\quad \exp \left(i \pi\left[\frac{\arg (6.5536-x)}{2 \pi}\right]\right)\right)\left(-\frac{1}{2}\right)_{k} \sqrt{x} \text { for }(x \in \mathbb{R} \text { and } x<0) \\
\pi(1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024(-5.4)}+20 \sqrt[4]{1.024 \times 6.4(-0.024)(-5.4)}+ \\
8 \sqrt{2} \sqrt[8]{1.024 \times 6.4(-0.024)(-5.4)}(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024(-5.4)}))+ \\
1=1+ \\
20.2 \pi+\sum_{k=0}^{\infty}\left(\frac{1}{k!}(-1)^{k} \pi\left(-\frac{1}{2}\right)_{k}\left(0.1296-z_{0}\right)^{k}\right. \\
\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(0.1296-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-k+1 / 2\left(1+\left\lfloor\arg \left(0.1296-z_{0}\right) /(2 \pi)\right\rfloor\right)}+ \\
17.2444(-1)^{k} \pi\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-k+1 / 2\left(1+\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
\quad \\
\frac{1}{k!}(-1)^{1+k} \pi\left(-\frac{1}{2}\right)_{k}\left(6.5536-z_{0}\right)^{k} \\
\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(6.5536-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-k+1 / 2\left(1+\left\lfloor\arg \left(6.5536-z_{0}\right) /(2 \pi)\right\rfloor\right)}+
\end{array}
$$

$\operatorname{Pi}(((((1-\mathrm{sqrt}(1.024 * 6.4)+\mathrm{sqrt}((-0.024)(-5.4))+20(((1.024 * 6.4(-0.024))(-$
$5.4))))^{\wedge} 1 / 4+8 * \operatorname{sqrt}(2)^{*}\left(\left(\left(1.024^{*} 6.4(-0.024)(-5.4)\right)\right)\right)^{\wedge} 1 / 8^{*}\left(\left(\left(\left(1.024^{*} 6.4\right)^{\wedge} 1 / 4+(-\right.\right.\right.$ $\left.\left.\left.0.024^{*}-5.4\right)^{\wedge} 1 / 4\right)\right)$))))))) +4

Where 4 is a Lucas number

Input:

$$
\begin{gathered}
\pi(1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)}+20 \sqrt[4]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}+8 \sqrt{2} \\
\sqrt[8]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024 \times(-5.4)}))+4
\end{gathered}
$$

Result:

137.164...
137.164... result very near to the mean of the rest masses of two Pion mesons 134.9766 and 139.57 that is 137.2733 and to the inverse of fine-structure constant 137,035

Series representations:

$$
\begin{aligned}
& \pi(1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024(-5.4)}+ \\
& \quad \begin{array}{r}
20 \sqrt[4]{1.024 \times 6.4(-0.024)(-5.4)}+8 \sqrt{2} \sqrt[8]{1.024 \times 6.4(-0.024)(-5.4)} \\
(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024(-5.4)}))+4=4+20.2 \pi+
\end{array} \\
& \quad \sum_{k=0}^{\infty} \frac{(-1)^{k} \pi\left(-\frac{1}{2}\right)_{k} \sqrt{z_{0}\left(\left(0.1296-z_{0}\right)^{k}+17.2444\left(2-z_{0}\right)^{k}-\left(6.5536-z_{0}\right)^{k}\right) z_{0}^{-k}}}{k!} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{gathered}
\pi(1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024(-5.4)}+20 \sqrt[4]{1.024 \times 6.4(-0.024)(-5.4)}+ \\
8 \sqrt{2} \sqrt[8]{1.024 \times 6.4(-0.024)(-5.4)}(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024(-5.4)}))+ \\
4=4+20.2 \pi+\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} \pi x^{-k}\left((0.1296-x)^{k} \exp \left(i \pi \left\lvert\, \frac{\arg (0.1296-x)}{2 \pi}\right.\right]\right)+ \\
\left.17.2444(2-x)^{k} \exp \left(i \pi \left\lvert\, \frac{\arg (2-x)}{2 \pi}\right.\right\rfloor\right)-(6.5536-x)^{k} \\
\exp \left(i \pi\left\lfloor\frac{\arg (6.5536-x)}{2 \pi}\right]\right)\left(-\frac{1}{2}\right)_{k} \sqrt{x} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{gathered}
$$

$$
\begin{aligned}
& \pi(1-\sqrt{1.024 \times 6.4}+\sqrt{-0.024(-5.4)}+20 \sqrt[4]{1.024 \times 6.4(-0.024)(-5.4)}+ \\
& 8 \sqrt{2} \sqrt[8]{1.024 \times 6.4(-0.024)(-5.4)}(\sqrt[4]{1.024 \times 6.4}+\sqrt[4]{-0.024(-5.4)}))+ \\
& 4=4+20.2 \pi+\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} \pi\left(-\frac{1}{2}\right)_{k} z_{0}^{1 / 2-k} \\
& \left(\left(0.1296-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(0.1296-z_{0}\right) /(2 \pi)\right\rfloor} z_{z_{0} / 2\left\lfloor\arg \left(0.1296-z_{0}\right) /(2 \pi)\right\rfloor}^{1}+\right. \\
& 17.2444\left(2-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}- \\
& \left.\left(6.5536-z_{0}\right)^{k}\left(\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(6.5536-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(6.5536-z_{0}\right) /(2 \pi)\right\rfloor}\right)\right)
\end{aligned}
$$

X1 degree. $\sqrt{\text { (} \beta}+\sqrt{(1-\alpha)(1-a)}+68 \sqrt{\text { axi- }(1)(1-a)}$

 $+16 \sqrt{y} \sqrt{\operatorname{s}(1-\alpha)}(\sqrt[3]{क n}+\sqrt[3]{(1-x)(1-\infty)})$
$\alpha=2((2+2) /(1+2 * 2))^{\wedge} 3=1.024 \quad \beta=2^{\wedge} 3 *(2+2) /(1+2 * 2)=6.4$
$1-\alpha=(1+2)((1-2) /(1+2 * 2))^{\wedge} 3=-0.024 \quad 1-\beta=(1+2)^{\wedge} 3 *((1-2) /(1+2 * 2))=-5.4$
$\operatorname{sqrt}(1.024 * 6.4)+\operatorname{sqrt}\left(-0.024^{*}-5.4\right)+68^{*}\left(1.024^{*} 6.4^{*}-0.024^{*}-\right.$
$5.4)^{\wedge} 1 / 4+16 *\left(1.024 * 6.4 *-0.024^{*}-5.4\right)^{\wedge} 1 / 12 *\left(\left(\left(\left(1.024^{*} 6.4\right)^{\wedge} 1 / 3+\left(-0.024^{*}-\right.\right.\right.\right.$
$\left.\left.\left.5.4)^{\wedge} 1 / 3\right)\right)\right)+48^{*}\left(1.024^{*} 6.4^{*}-0.024^{*}-5.4\right)^{\wedge} 1 / 6^{*}\left(\left(\left((1.024 * 6.4)^{\wedge} 1 / 6+\left(-0.024^{*}-\right.\right.\right.\right.$ $\left.5.4)^{\wedge} 1 / 6\right)$))
$16 *\left(1.024^{*} 6.4^{*}-0.024^{*}-5.4\right)^{\wedge} 1 / 12 *\left(\left(\left(\left(1.024^{*} 6.4\right)^{\wedge} 1 / 3+\left(-0.024^{*}-\right.\right.\right.\right.$
$\left.\left.\left.5.4)^{\wedge} 1 / 3\right)\right)\right)+48^{*}\left(1.024^{*} 6.4^{*}-0.024^{*}-5.4\right)^{\wedge} 1 / 6^{*}\left(\left(\left((1.024 * 6.4)^{\wedge} 1 / 6+\left(-0.024^{*}-\right.\right.\right.\right.$ $\left.5.4)^{\wedge} 1 / 6\right)$)

Input:

```
\(16 \sqrt[12]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}(\sqrt[3]{1.024 \times 6.4}+\sqrt[3]{-0.024 \times(-5.4)})+\)
    \(48 \sqrt[6]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}(\sqrt[6]{1.024 \times 6.4}+\sqrt[6]{-0.024 \times(-5.4)})\)
```


Result:

$134.6543982 \ldots$... result very near to the rest mass of Pion meson 134.9766

```
sqrt(1.024*6.4)+sqrt(-0.024*-5.4)+68*(1.024*6.4*-0.024*-
5.4)^1/4+134.65439822445221899679646313495888823864870247559167
```


Input interpretation:

```
\(\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)}+68 \sqrt[4]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}+\)
    134.65439822445221899679646313495888823864870247559167
```


Result:

Final result:
202.85439822445221899679646313495888823864870247559167
202.8543982.....

377(((()sqrt(1.024*6.4)+sqrt(-0.024*-5.4)+68*(1.024*6.4*-0.024*-
$\left.\left.\left.\left.5.4)^{\wedge} 1 / 4+134.6543982244522189\right)\right)\right)\right)$)-(2048+1024-64-24)
Where 377 is a Fibonacci number

Input interpretation:

```
\(377(\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)}+68 \sqrt[4]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}+\)
    \(134.6543982244522189)-(2048+1024-64-24)\)
```


Result:

73492.1081306184865253
73492.10813....

Thence, we have the following mathematical connections:

$$
\binom{377(\sqrt{1.024 \times 6.4}+\sqrt{-0.024 \times(-5.4)}+68 \sqrt[4]{1.024 \times 6.4 \times(-0.024) \times(-5.4)}+}{134.6543982244522189)-(2048+1024-64-24)}=73492.108 \Rightarrow
$$

$$
\begin{aligned}
& \Rightarrow-3927+2\left(\begin{array}{l}
13\binom{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} P_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}{\int\left[d \mathrm{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathrm{X}^{\mu} D^{2} \mathrm{X}^{\mu}\right)\right\}\left|\mathrm{X}^{\mu}, \mathrm{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
\\
-3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
=73490.8437525 \ldots \Rightarrow \\
\Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
\Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
=73491.78832548118710549159572042220548025195726563413398700 \ldots
\end{array}\right. \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
\binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{2}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i\left(T^{r}+t\right)}\right|^{2} d t \leqslant}{\leqslant H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} /, ~\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots .
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Now, we have that:

$$
\begin{aligned}
& \text { F. } \frac{1-\sqrt{1-t^{2} 4}}{2}=e^{-\pi \sqrt{29}} \text {. The } \\
& t^{74}+9 t^{20}+5 t^{16}-2 t^{12}-5 t^{8}+9 t^{4}-1=0 \\
& \quad \frac{t^{6}+t^{2}}{1-t^{4}}=\sqrt{\frac{\sqrt{29}-5}{2}} \\
& \quad \frac{t^{3}+t \sqrt{\sqrt{29}-2}}{1+t^{-} \sqrt{\sqrt{29}+2}}=\sqrt[4]{\frac{\sqrt{29}-8}{2}} \\
& \text { if } \sqrt[4]{1-t^{8}}=t\left(1+u^{2}\right) \text {. Them } u^{3}+u=\sqrt{2} .
\end{aligned}
$$

$$
F \cdot \frac{1-\sqrt{1-\frac{1}{64}}{ }^{24}}{2}=e^{-71 \sqrt{79}} \text { then }
$$

$$
t^{5}-t^{4}+t^{3}-2 t^{2}+3 t-1=0
$$

$$
\begin{aligned}
& t^{5}-t^{4}+t^{3}-2 t^{2}+3 t-1-0 \\
& F 1-\frac{\sqrt{1-84}}{2}=e^{4} \\
& 4 \sqrt{47} \text {, the }
\end{aligned}
$$

$$
t^{5}+2 t^{4}+2 t^{3}+t^{2}-1=0
$$

We have the following interesting expressions:
$\exp (-\mathrm{Pi} * \operatorname{sqrt}(29)) * \operatorname{sqrt}(((((\operatorname{sqrt}(29)-5)) / 2))) *(((((\operatorname{sqrt}(29)-$
$5)) / 2)))^{\wedge} 1 / 4 *(\operatorname{sqrt}(2))^{*} 1 /(\exp (-\mathrm{Pi} * \mathrm{sqrt}(79))) * \exp (-\mathrm{Pi} * \operatorname{sqrt}(47))$

Input:

$$
\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \times \frac{1}{\exp (-\pi \sqrt{79})} \exp (-\pi \sqrt{47})
$$

Exact result:

$\frac{(\sqrt{29}-5)^{3 / 4} e^{-\sqrt{29}} \pi-\sqrt{47} \pi+\sqrt{79} \pi}{\sqrt[4]{2}}$

Decimal approximation:

0.000010958098248039814630288664252483569745480054423680146
0.000010958098248.....

Property:

$\frac{(-5+\sqrt{29})^{3 / 4} e^{-\sqrt{29} \pi-\sqrt{47} \pi+\sqrt{79} \pi}}{\sqrt[4]{2}}$ is a transcendental number

Alternate form:

$\frac{\sqrt{2} e^{-\sqrt{29} \pi-\sqrt{47} \pi+\sqrt{79} \pi}}{\sqrt[4]{70+13 \sqrt{29}}}$

Series representations:

$$
\left.\begin{array}{l}
\frac{\left(\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)}\right) \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}(\sqrt{2} \exp (-\pi \sqrt{47}))}{\exp (-\pi \sqrt{79})}= \\
\exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
\left.{\sqrt{z_{0}}}^{2} \sqrt[4]{x_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(47-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{\left.(-1)^{k_{1}+k_{2}} 2^{2_{0}^{-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}(-5+\sqrt{29}}-2 z_{0}\right)^{k_{2}}\left(2-z_{0}\right)^{k_{1}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}\right) \\
/\left(\sqrt[4]{2} \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(79-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right.
\end{array}\right)
$$

$$
\begin{aligned}
& \frac{\left(\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)}\right) \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}(\sqrt{2} \exp (-\pi \sqrt{47}))}{\exp (-\pi \sqrt{79})}= \\
& \left(\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left\lfloor\frac{\arg \left(\frac{1}{2}(-5-2 x+\sqrt{29})\right)}{2 \pi}\right]\right)\right. \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (47-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2} \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 2^{-k_{2}}(2-x)^{k_{1}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}(-5-2 x+\sqrt{29})^{k_{2}}}{k_{1}!k_{2}!}\right) / \\
& \left(\sqrt[4]{2} \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (79-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)
\end{aligned}
$$

for ($x \in \mathbb{R}$ and $x<0$)

$$
\begin{aligned}
& \frac{\left(\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)}\right) \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}(\sqrt{2} \exp (-\pi \sqrt{47}))}{\exp (-\pi \sqrt{79})}= \\
& \left(\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \exp \left(i \pi\left[\frac{\arg \left(-x+\frac{1}{2}(-5+\sqrt{29})\right)}{2 \pi}\right]\right)\right. \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \quad \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (47-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2} \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(2-x)^{k_{1}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-x+\frac{1}{2}(-5+\sqrt{29})\right)^{k_{2}}}{k_{1}!k_{2}!}\right) / \\
& \left(\sqrt[4]{2} \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (79-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0$)
$\left(\left(1 / \exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(29)\right)\right)\right) * \operatorname{sqrt}(((((\operatorname{sqrt}(29)-5)) / 2))) *(((((\operatorname{sqrt}(29)-$
$5)) / 2)))^{\wedge} 1 / 4 *(\operatorname{sqrt}(2))^{*}\left(\exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(79)\right)\right) * 1 /\left(\left(\left(\exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(47)\right)\right)\right)\right)$

Input:

$$
\frac{1}{\exp (-\pi \sqrt{29})} \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \times \frac{1}{\exp (-\pi \sqrt{47})}
$$

Exact result:

Decimal approximation:

15424.80597391886041466350273291144812882808136437211734803...
15424.80597....

Property:

$\frac{(-5+\sqrt{29})^{3 / 4} e^{\sqrt{29}} \pi+\sqrt{47} \pi-\sqrt{79} \pi}{\sqrt[4]{2}}$ is a transcendental number

Alternate form:

$\frac{\sqrt{2} e^{\sqrt{29} \pi+\sqrt{47} \pi-\sqrt{79} \pi}}{\sqrt[4]{70+13 \sqrt{29}}}$

Series representations:

$$
\begin{aligned}
& \frac{\left(\sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}\right) \sqrt{2} \exp (-\pi \sqrt{79})}{\exp (-\pi \sqrt{29}) \exp (-\pi \sqrt{47})}= \\
& \left(\exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(79-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right. \\
& \left.{\sqrt{z_{0}}}^{2} \sqrt[4]{4}_{-5+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{-k}}{k!}}^{k!}\right) \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 2^{-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-5+\sqrt{29}-2 z_{0}\right)^{k_{2}}\left(2-z_{0}\right)^{k_{1}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}\right) \\
& /\left(\sqrt[4]{2} \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right. \\
& \left.\exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(47-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\frac{\left(\sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}\right) \sqrt{2} \exp (-\pi \sqrt{79})}{\exp (-\pi \sqrt{29}) \exp (-\pi \sqrt{47})}=
$$

$$
\left(\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left\lfloor\frac{\arg \left(\frac{1}{2}(-5-2 x+\sqrt{29})\right)}{2 \pi}\right]\right)\right.
$$

$$
\exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (79-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
$$

$$
\sqrt{x}^{2} \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
$$

$$
\left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 2^{-k_{2}}(2-x)^{k_{1}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}(-5-2 x+\sqrt{29})^{k_{2}}}{k_{1}!k_{2}!}\right) /
$$

$$
\left(\sqrt[4]{2} \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right.
$$

$$
\left.\exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (47-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in
$$

[^2]\[

$$
\begin{aligned}
& \frac{\left(\sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}\right) \sqrt{2} \exp (-\pi \sqrt{79})}{\exp (-\pi \sqrt{29}) \exp (-\pi \sqrt{47})}= \\
& \left(\exp \left(i \pi\left[\left.\frac{\arg (2-x)}{2 \pi} \right\rvert\,\right) \exp \left(i \pi \left\lvert\, \frac{\arg \left(-x+\frac{1}{2}(-5+\sqrt{29})\right)}{2 \pi}\right.\right]\right)\right. \\
& \quad \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (79-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2} \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(2-x)^{k_{1}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-x+\frac{1}{2}(-5+\sqrt{29})\right)^{k_{2}}}{k_{1}!k_{2}!}\right) / \\
& \left(\sqrt[4]{2} \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right. \\
& \left.\exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (47-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \text { for }(x \in
\end{aligned}
$$
\]

\mathbb{R} and $x<0$)
Or:
$1 /\left(\left(\left(\left(\left(\exp \left(-\mathrm{Pi}^{*} \mathrm{sqrt}(29)\right) * \operatorname{sqrt}(((((\operatorname{sqrt}(29)-5)) / 2))) *(((((\operatorname{sqrt}(29)-\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.5)) / 2)))^{\wedge} 1 / 4 *(\operatorname{sqrt}(2)) * 1 /\left(\exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(79)\right)\right) * \exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(47)\right)\right)\right)\right)\right)\right)$

Input:

1
$\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \times \frac{1}{\exp (-\pi \sqrt{70})} \exp (-\pi \sqrt{47})$

Exact result:

$\frac{\sqrt[4]{2} e^{\sqrt{29} \pi+\sqrt{47} \pi-\sqrt{79} \pi}}{(\sqrt{29}-5)^{3 / 4}}$
Decimal approximation:
91256.71055001537962192684759646752167309120530505483189508...
91256.7105....

Property:

$\frac{\sqrt[4]{2} e^{\sqrt{29}} \pi+\sqrt{47} \pi-\sqrt{79} \pi}{(-5+\sqrt{29})^{3 / 4}}$ is a transcendental number

Alternate form:

$\sqrt[4]{\frac{35}{2}+\frac{13 \sqrt{29}}{4}} e^{\sqrt{29} \pi+\sqrt{47} \pi-\sqrt{79} \pi}$

Series representations:

$$
\begin{aligned}
& \frac{1}{\left(\frac{\left.\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)}\right) \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}(\sqrt{2} \exp (-\pi \sqrt{47}))}{\exp (-\pi \sqrt{79})}\right.}= \\
& \left(\sqrt[4]{2} \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(79-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
& \left(\exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right. \\
& \left.\exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(47-z_{0}\right)^{k} z_{0}^{k}}{k!}\right){\sqrt{z_{0}}}^{2}\right) \\
& \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}\left(-5+\sqrt{29}-2 z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right) \\
& \sqrt[4]{\left.-5+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)}
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{1}{\frac{\left(\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}(\sqrt{2} \exp (-\pi \sqrt{47}))\right.}{\exp (-\pi \sqrt{79})}}= \\
& \left(\sqrt[4]{2} \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (79-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / \\
& \left(\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \exp \left(i \pi\left[\frac{\arg \left(\frac{1}{2}(-5-2 x+\sqrt{29})\right)}{2 \pi}\right]\right)\right. \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (47-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}(-5-2 x+\sqrt{29})^{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\frac{\left(\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)}\right) \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)}(\sqrt{2} \exp (-\pi \sqrt{47}))}{\exp (-\pi \sqrt{79})}}= \\
& \left(\sqrt[4]{2} \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (79-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) / \\
& \left(\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left[\frac{\arg \left(-x+\frac{1}{2}(-5+\sqrt{29})\right)}{2 \pi}\right]\right)\right. \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (47-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\left(-x+\frac{1}{2}(-5+\sqrt{29})\right)^{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Or:
$1 /\left(\left(\left(\left(\left(\exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(29)\right) * \operatorname{sqrt}(((((\operatorname{sqrt}(29)-5)) / 2))){ }^{*}(((((\operatorname{sqrt}(29)-\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.5)) / 2)))^{\wedge} 1 / 4 *(\operatorname{sqrt}(2)) * \exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(79)\right) * \exp \left(-\mathrm{Pi}^{*} \mathrm{sqrt}(47)\right)\right)\right)\right)\right)\right)$

Input:

$\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})$

Exact result:

$\frac{\sqrt[4]{2} e^{\sqrt{29}} \pi+\sqrt{47} \pi+\sqrt{79} \pi}{(\sqrt{29}-5)^{3 / 4}}$

Decimal approximation:

$1.6366257984354820364561326031128794782879798624822973 \ldots \times 10^{29}$
$1.6366257984 \ldots * 10^{29}$

Property:

$\frac{\sqrt[4]{2} e^{\sqrt{29}} \pi+\sqrt{47} \pi+\sqrt{79} \pi}{(-5+\sqrt{29})^{3 / 4}}$ is a transcendental number

Alternate form:

$\sqrt[4]{\frac{35}{2}+\frac{13 \sqrt{29}}{4}} e^{\sqrt{29} \pi+\sqrt{47} \pi+\sqrt{79} \pi}$

Series representations:

$$
\begin{aligned}
& \frac{1}{\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})}= \\
& (\sqrt[4]{2}) /\left(\exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)\right. \\
& \quad \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(47-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \quad \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(79-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right){\sqrt{z_{0}}}^{2} \\
& \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}\left(-5+\sqrt{29}-2 z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \sqrt[4]{\left.-5+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)}
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47}) \\
&(\sqrt[4]{2}) /\left(\operatorname { e x p } \left(i \pi\left[\frac{\arg (2-x)}{2 \pi} f\right) \exp \left(i \pi\left[\frac{\arg \left(\frac{1}{2}(-5-2 x+\sqrt{29})\right)}{2 \pi}\right]\right)\right.\right. \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (47-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (79-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
&\left.\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}(-5-2 x+\sqrt{29})^{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47}) \\
&(\sqrt[4]{2}) /\left(\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \exp \left(i \pi\left[\frac{\arg \left(-x+\frac{1}{2}(-5+\sqrt{29})\right)}{2 \pi}\right]\right)\right. \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (47-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (79-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
&\left.\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\left(-x+\frac{1}{2}(-5+\sqrt{29})\right)^{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Now, we have that:
$(((((\exp (-\mathrm{Pi} * \mathrm{sqrt}(29)) * \operatorname{sqrt}(((((\operatorname{sqrt}(29)-5)) / 2))) *(((((\operatorname{sqrt}(29)-$
5))/2))) $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\wedge 1 / 4 *(\operatorname{sqrt}(2)) * \exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(79)\right) * \exp \left(-\mathrm{Pi}^{*} \operatorname{sqrt}(47)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 4096$

Input:

$$
\sqrt[4096]{\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})}
$$

Exact result:

$\frac{(\sqrt{29}-5)^{3 / 16384} \exp (-(\sqrt{29} \pi) / 4096-(\sqrt{47} \pi) / 4096-(\sqrt{79} \pi) / 4096)}{\sqrt[16384]{2}}$

Decimal approximation:

0.983711363264398896645805536424239641142801225764713657841

$0.98371136326 \ldots$...esult near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Property:

$\frac{(-5+\sqrt{29})^{3 / 16384} e^{-(\sqrt{29} \pi) / 4096-(\sqrt{47} \pi) / 4096-(\sqrt{79} \pi) / 4096}}{16384} \sqrt{2}$ is a transcendental number
Alternate form:
$\frac{(\sqrt{29}-5)^{3 / 16384} e-((\sqrt{29}+\sqrt{47}+\sqrt{79}) \pi) / 4096}{16 \sqrt[38]{2}}$

All 4096th roots of $\left((\operatorname{sqrt}(29)-5)^{\wedge}(3 / 4) \mathrm{e}^{\wedge}(-\mathrm{sqrt}(29) \pi-\operatorname{sqrt}(47) \pi-\operatorname{sqrt}(79)\right.$ $\pi)$)/ $\mathbf{2}^{\wedge(1 / 4): ~}$

- Polar form

$$
\begin{aligned}
& \frac{(\sqrt{29}-5)^{3 / 16384} e^{0} \exp (-(\sqrt{29} \pi) / 4096-(\sqrt{47} \pi) / 4096-(\sqrt{79} \pi) / 4096)}{16 \sqrt[384]{2}} \\
& \approx 0.983711 \text { (real. principal root) } \\
& \frac{(\sqrt{29}-5)^{3 / 16384} e^{(i \pi) / 2048} \exp (-(\sqrt{29} \pi) / 4096-(\sqrt{47} \pi) / 4096-(\sqrt{79} \pi) / 4096)}{16384} \sqrt{2} \\
& \approx 0.983710+0.0015090 i
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(\sqrt{29}-5)^{3 / 16384} e^{(i \pi) / 1024} \exp (-(\sqrt{29} \pi) / 4096-(\sqrt{47} \pi) / 4096-(\sqrt{79} \pi) / 4096)}{16384} \sqrt{2} \\
& \approx 0.983707+0.0030180 i \\
& \frac{(\sqrt{29}-5)^{3 / 16384} e^{(3 i \pi) / 2048} \exp (-(\sqrt{29} \pi) / 4096-(\sqrt{47} \pi) / 4096-(\sqrt{79} \pi) / 4096)}{16384} \sqrt{2} \\
& \approx 0.983701+0.0045270 i \\
& \frac{(\sqrt{29}-5)^{3 / 16384} e^{(i \pi) / 512} \exp (-(\sqrt{29} \pi) / 4096-(\sqrt{47} \pi) / 4096-(\sqrt{79} \pi) / 4096)}{16 \sqrt[384]{2}} \\
& \approx 0.983693+0.006036 i \quad
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \sqrt[4096]{\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})} \\
& =\frac{1}{\sqrt[16384]{2}}\left(\left(\exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right.\right. \\
& \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(47-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \exp \left(-\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(79-z_{0}\right)^{k} z_{0}^{k}}{k!}\right){\sqrt{z_{0}}}^{2} \\
& \sqrt[4]{-5+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(29-z_{0}\right)^{k} z_{0}^{k}}{k!} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty}} \\
& \left.\frac{(-1)^{k_{1}+k_{2}} 2^{-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-5+\sqrt{29}-2 z_{0}\right)^{k_{2}}\left(2-z_{0}\right)^{k_{1}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}\right) \\
& \left.{ }^{\wedge}(1 / 4096)\right) \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[4096]{\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})} \\
& =\frac{1}{\sqrt[16384]{2}}\left(\left(\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \exp \left(i \pi\left[\frac{\arg \left(\frac{1}{2}(-5-2 x+\sqrt{29})\right)}{2 \pi}\right]\right)\right.\right. \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (47-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (79-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2} \sqrt[4]{-5+\exp \left(i \pi\left\lfloor\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \\
& \left.\frac{(-1)^{k_{1}+k_{2}} 2^{-k_{2}}(2-x)^{k_{1}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}(-5-2 x+\sqrt{29})^{k_{2}}}{k_{1}!k_{2}!}\right) \\
& \wedge(1 / 4096)) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[4096]{\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)} \sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})} \\
& =\frac{1}{\sqrt[16884]{2}}\left(\left(\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left[\frac{\arg \left(-x+\frac{1}{2}(-5+\sqrt{29})\right)}{2 \pi}\right]\right)\right.\right. \\
& \exp \left(-\pi \exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (47-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(47-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \exp \left(-\pi \exp \left(i \pi\left\lfloor\frac{\arg (79-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(79-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \sqrt{x}^{2} \sqrt[4]{-5+\exp \left(i \pi\left[\frac{\arg (29-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(29-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(2-x)^{k_{1}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-x+\frac{1}{2}(-5+\sqrt{29})\right)^{k_{2}}}{k_{1}!k_{2}!} \\
& \left.\int \wedge(1 / 4096)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Integral representation:

$(1+z)^{a}=\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$
$\Gamma(x)$ is the gamma function

We observe that:
[log base $0.98371136326439889\left(\left(\left(\left(\right.\right.\right.\right.$ exp $(-\mathrm{Pi} * \operatorname{sqrt}(29)){ }^{*} \operatorname{sqrt}(((((\operatorname{sqrt}(29)-$ $5)) / 2)))^{*}(((((\operatorname{sqrt}(29)-5)) / 2)))^{\wedge} 1 / 4 *(\operatorname{sqrt}(2))^{*} \exp (-\operatorname{Pi} * \operatorname{sqrt}(79)) * \exp (-$ Pi*sqrt(47))))))) $]^{\wedge} 1 / 2$

Input interpretation:

Result:

63.99999999999999...
$63.99999 \ldots .=64$

Alternative representation:

$$
\begin{aligned}
& \sqrt{\log _{0.983711}\left(\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)}\right.} \\
& \left.\sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})\right)= \\
& \sqrt{\left(\frac{1}{\log (0.983711)} \log (\exp (-\pi \sqrt{29}) \exp (-\pi \sqrt{47}) \exp (-\pi \sqrt{79})\right.} \\
& \left.\left.\sqrt[4]{\frac{1}{2}(-5+\sqrt{29})} \sqrt{2} \sqrt{\frac{1}{2}(-5+\sqrt{29})}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \sqrt{\log _{0.983711}\left(\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)}\right.} \\
& \left.\sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})\right)= \\
& \exp \left(i \pi \left(\frac { 1 } { 2 \pi } \operatorname { a r g } \left(-x+\log _{0.983711}\left(\frac{1}{\sqrt[4]{2}} \exp (-\pi \sqrt{29}) \exp (-\pi \sqrt{47}) \exp (-\pi \sqrt{79})\right.\right.\right.\right. \\
& \left.\left.\left.\left.\sqrt{2} \sqrt[4]{-5}+\sqrt{29} \sqrt{\frac{1}{2}(-5+\sqrt{29})}\right)\right)\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} x^{-k} \\
& \left.\left.\left.\left.\sqrt[4]{-5+\sqrt{29}} \sqrt{\frac{1}{2}(-5+\sqrt{29})}\right)\right)\right)^{k}\left(-\frac{1}{2}\right)\right)_{k} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\log _{0.983711}\left(\exp (-\pi \sqrt{29}) \sqrt{\frac{1}{2}(\sqrt{29}-5)}\right.} \\
& \left.\sqrt[4]{\frac{1}{2}(\sqrt{29}-5)} \sqrt{2} \exp (-\pi \sqrt{79}) \exp (-\pi \sqrt{47})\right)= \\
& \left(\frac{1}{z_{0}}\right)^{1 / 2} \left\lvert\, \arg \left(\log _{0.983711}\left(\frac{\left.\left.\exp (-\pi \sqrt{29}) \exp (-\pi \sqrt{47}) \exp (-\pi \sqrt{79}) \sqrt{2} \sqrt[4]{-5+\sqrt{29}} \sqrt{\frac{1}{2}(-5+\sqrt{29})}\right)-z_{0}\right) /(2 \pi) \mid}{\sqrt[4]{2}}\right)\right.\right. \\
& z_{0}^{1 / 2}\left(1+\arg \left(\left.\log _{0.983711}\left(\frac{\left.\exp (-\pi \sqrt{29}) \exp (-\pi \sqrt{47}) \exp (-\pi \sqrt{79}) \sqrt{2} \sqrt[4]{-5+\sqrt{29}} \sqrt{\frac{1}{2}(-5+\sqrt{29})}\right)-z_{0}}{\sqrt[4]{2}}\right) /(2 \pi) \right\rvert\,\right)\right. \\
& \sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k}\left(-\frac{1}{2}\right)_{k} \\
& \left(\operatorname { l o g } _ { 0 . 9 8 3 7 1 1 } \left(\frac{1}{\sqrt[4]{2}} \exp (-\pi \sqrt{29}) \exp (-\pi \sqrt{47}) \exp (-\pi \sqrt{79})\right.\right. \\
& \left.\left.\sqrt{2} \sqrt[4]{-5+\sqrt{29}} \sqrt{\frac{1}{2}(-5+\sqrt{29})}\right)-z_{0}\right)^{k} z_{0}^{-k}
\end{aligned}
$$

Appendix

Scen.	λ_{1}	ℓ^{-1} / M_{P}	$m_{\text {rad }} / m_{G}$	ρ_{1} / LeV	$m_{\text {rad }} / \mathrm{LeV}$	$\langle\mu\rangle / \mathrm{LeV}$	$\mu_{0} /\langle\mu\rangle$	$T_{c} /\langle\mu\rangle$	$T_{r} /\langle\mu\rangle$
Λ_{1}	1.250	0.501	0.0645	0.758	0.1998	0.750		0.305	
$\mathrm{~B}_{1}$	-3.000	0.554	0.1969	1.085	1.018	0.828	0.9995	0.903	0.609
$\mathrm{~B}_{2}$	-2.583	0.554	0.1905	1.007	0.915	0.767	0.989	0.825	0.428
$\mathrm{~B}_{3}$	-2.500	0.551	0.1888	0.989	0.890	0.752	0.971	0.806	0.367
$\mathrm{~B}_{4}$	-2.438	0.554	0.1874	0.973	0.870	0.741	0.937	0.790	0.297
$\mathrm{~B}_{5}$	-2.375	0.554	0.1859	0.957	0.849	0.728	0.982	0.774	0.193
$\mathrm{~B}_{6}$	-2.292	0.554	0.1836	0.934	0.818	0.710	0.971	0.750	0.149
$\mathrm{~B}_{8}$	2.208	0.554	0.1809	0.908	0.784	0.690	0.949	0.724	0.0990
$\mathrm{~B}_{8}$	-2.125	0.554	0.1776	0.879	0.745	0.667	0.890	0.694	0.0388
$\mathrm{~B}_{9}$	-2.096	0.554	0.1763	0.8675	0.7303	0.6585	0.827	0.682	0.0122
$\mathrm{~B}_{10}$	-2.092	0.554	0.1761	0.8658	0.7281	0.6572	0.808	0.680	0.0073
$\mathrm{~B}_{11}$	-2.090	0.554	0.1760	0.8650	0.7270	0.6565	0.793	0.679	0.0039
C_{1}	-3.125	0.377	0.289	0.554	0.890	0.378	0.989	1.123	0.601
C_{2}	-2.604	0.377	0.271	0.496	0.751	0.336	0.937	0.976	0.098
D_{1}	-3.462	1.49	0.106	0.468	0.477	0.250	0.9996	1.007	0.445
$\mathrm{~F}_{1}$	-2.429	0.554	0.155	0.877	0.643	0.667	0.895	0.694	0.142

Table 1. List of benchmark scenarios defined by the classes in eqs. (4.12)-(4.16) and the input values of λ_{1} (second column). The outputs obtained in each scenario are presented from the third column on. The foreground red [blue] color on the value of λ_{1} indicates that the corresponding phase transition is driven by $O(3)[O(4)]$ symmetric bounce solutions. In scenario A_{1} there is no phase transition.

Scen.	$T_{i} /\langle\mu\rangle$	N_{e}	$T_{R} /\langle\mu\rangle$	T_{R} / GeV	α	$\log _{10}\left(\beta / H_{\star}\right)$
B_{1}	0.663	0.09	1.272	1053	1.60	2.36
$\mathrm{~B}_{2}$	0.605	0.35	1.071	821.8	4.61	1.99
$\mathrm{~B}_{3}$	0.591	0.48	1.024	770.4	7.86	1.79
$\mathrm{~B}_{4}$	0.580	0.67	0.986	730.6	17.1	1.48
$\mathrm{~B}_{5}$	0.568	1.08	0.953	694.0	90.1	1.97
$\mathrm{~B}_{6}$	0.551	1.31	0.921	654.2	228	1.86
$\mathrm{~B}_{7}$	0.531	1.68	0.887	612.0	1047	1.67
$\mathrm{~B}_{8}$	0.509	2.57	0.849	566.4	$4.0 \cdot 10^{4}$	1.23
$\mathrm{~B}_{9}$	0.5004	3.71	0.834	549.3	$4.1 \cdot 10^{6}$	0.64
$\mathrm{~B}_{10}$	0.4991	4.22	0.832	546.8	$3.3 \cdot 10^{7}$	0.34
$\mathrm{~B}_{11}$	0.4985	4.86	0.831	545.6	$4.5 \cdot 10^{8}$	-0.32
C_{1}	0.828	0.32	1.531	578.4	4.3	2.03
C_{2}	0.718	1.99	1.239	416.2	$5.0 \cdot 10^{3}$	1.45
D_{1}	-	-	0.535	133.7	5.0	1.05
E_{1}	0.509	1.28	0.850	567.2	203	1.89

Table 2. Some physical parameters for the cases B_{i}, C_{i}, D and E considered in the text.

Table of connection between the physical and mathematical constants and the very closed approximations to the dilaton value.

Table 1

Elementary charge $=1.602176$	$1 /(1,602176)^{1 / 64}=0,992662013$
Golden ratio $=1.61803398$	$1 /(1,61803398)^{1 / 64}=0,992509261$
$\zeta(2)=1.644934$	$1 /(1,644934)^{1 / 64}=0,99253592$
$\sqrt[14]{Q=\left(G_{505} / G_{101 / 5}\right)^{3}}=1.65578$	$1 /(1,65578)^{1 / 64}=0,992151706$
Proton mass $=1.672621$	$1 /(1,672621)^{1 / 64}=0,991994840$
Neutron mass $=1.674927$	$1 /(1,674927)^{1 / 64}=0,991973486$

From:

Rotating strings confronting PDG mesons

Jacob Sonnenschein and Dorin Weissman - arXiv:1402.5603v1 [hep-ph] 23 Feb 2014
$c c$. The Ψ trajectory: The left side of figure (15) depicts the Ψ trajectory. Here we use the states $J / \Psi(1 S)(3097) 1^{--}, \chi_{c 1}(1 P)(3510) 1^{++}$, and $\Psi(3770) 1^{--}$. Since no $J=3$ state has been observed, we use three states with $J=1$, but with increasing orbital angular momentum $(L=0,1,2)$ and do the fit to L instead of J. To give an idea of the shifts in mass involved, the $J^{P C}=2^{++}$state $\chi_{c 2}$ has a mass of 3556 MeV , and the $J^{P C}=3^{--}$state is expected to lie $30-60 \mathrm{MeV}$ above the $\Psi(3770)$ [23].

The best linear fit is

$$
\alpha^{\prime}=0.418, a=-4.04
$$

with $\chi_{l}^{2}=3.41 \times 10^{-4}$, but the optimal fit is far from the linear, with endpoint masses in the range of the constituent c quark mass:

$$
m_{c}=1500, \alpha^{\prime}=0.979, a=-0.09
$$

with $\chi_{m}^{2}=5 \times 10^{-7}\left(\chi_{m}^{2} / \chi_{l}^{2}=0.002\right)$. Aside from the improvement in χ^{2}, by adding the mass we also get a value for the slope (and to a lesser extent, the intercept) that is much closer to that obtained in fits for the light meson trajectories.
where α^{\prime} is the Regge slope (string tension)

We know also that:

$$
\begin{array}{c|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
\omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
$$

The average of the various Regge slope of Omega mesons are:
$1 / 7 *(0.979+0.910+0.918+0.988+0.937+1.18+1)=0.987428571$
result very near to the value of dilaton and to the solution $0.987516007 \ldots$ of the above expression.

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.
from:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan
Quarterly Journal of Mathematics, XLV, 1914, 350-372
We have that:

Hence

$$
\begin{array}{rlrl}
64 g_{22}^{24} & =e^{\pi \sqrt{22}} \quad 24 \quad 276 e^{-\pi \sqrt{22}} & \cdots \\
64 g_{22}^{-24} & = & & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)-e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots-64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{\tau}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots \\
64 G_{37}^{-24}= & 1096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{37}^{24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\} .
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978
$$

Similarly, from

$$
g_{58}-\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain

$$
64\left(g_{58}^{24} \mid g_{58}^{-24}\right)=e^{\pi \sqrt{58}} \quad 24\left|4372 e^{-\pi \sqrt{58}}\right| \cdots=64\left\{\left.\left(\frac{5+\sqrt{29}}{2}\right)^{12} \right\rvert\,\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\} .
$$

Нене

$$
e^{\pi \sqrt{58}}=24591257751.99990982 \ldots
$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

From the following vacuum equations:

$$
\begin{aligned}
& T e^{\gamma_{E} \phi}=-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
& 16 k^{\prime} e^{2 C}=\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
&\left(A^{\prime}\right)^{2}-k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

we have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.

For
$\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right.$ we obtain:

Input:

$\exp (-\pi \sqrt{18})$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:

$1.6272016226072509292942156739117979541838581136954016 \ldots \times 10^{-6}$
$1.6272016 \ldots * 10^{-6}$

Property:

$e^{-3 \sqrt{2} \pi}$ is a transcendental number

Series representations:

$e^{-\pi \sqrt{18}}=e^{-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{1 / 2}{k}}$
$e^{-\pi \sqrt{18}}=\exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$e^{-\pi \sqrt{18}}=\exp \left(-\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)$

Now, we have the following calculations:

$$
\begin{gathered}
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}} \\
e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}
\end{gathered}
$$

from which:

$$
\begin{gathered}
\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{-6} \\
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}
\end{gathered}
$$

Now:

$$
\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}
$$

And:

$\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)$

Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...

Thence:

$$
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}
$$

Dividing both sides by 0.000244140625 , we obtain:

$$
\begin{aligned}
& \frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}} \\
& e^{-6 C+\phi}=0.0066650177536
\end{aligned}
$$

$\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right) * 1 / 0.000244140625$
Input interpretation:
$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
$0.00666501785 \ldots$

Series representations:

$$
\begin{aligned}
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
\end{aligned}
$$

Now:

$$
\begin{aligned}
& e^{-6 C+\phi}=0.0066650177536 \\
& \exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}= \\
& e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625} \\
& =0.00666501785 \ldots
\end{aligned}
$$

From:
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
$-5.010882647757 \ldots$

Alternative representations:

```
log(0.006665017846190000) = log(a) 知a(0.006665017846190000)
```

$\log (0.006665017846190000)=-\mathrm{Li}_{1}(0.993334982153810000)$

Series representations:

$$
\begin{gathered}
\log (0.006665017846190000)=-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.993334982153810000)^{k}}{k} \\
\log (0.006665017846190000)=2 i \pi\left[\frac{\arg (0.006665017846190000-x)}{2 \pi}\right]+ \\
\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.006665017846190000-x)^{k} x^{-k}}{k} \text { for } x<0
\end{gathered}
$$

$$
\log (0.006665017846190000)=\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+
$$

$$
\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.006665017846190000-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representation:

$\log (0.006665017846190000)=\int_{1}^{0.006665017846190000} \frac{1}{t} d t$

In conclusion:

$$
-6 C+\phi=-5.010882647757 \ldots
$$

and for $\mathrm{C}=1$, we obtain:
$\phi=-5.010882647757+6=\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Note that the values of n_{s} (spectral index) 0.965 , of the average of the Omega mesons Regge slope 0.987428571 and of the dilaton 0.989117352243 , are also connected to the following two Rogers-Ramanujan continued fractions:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

$$
\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684
$$

(http://www.bitman.name/math/article/102/109/)

Also performing the $512^{\text {th }}$ root of the inverse value of the Pion meson rest mass 139.57, we obtain:
$((1 /(139.57)))^{\wedge} 1 / 512$

Input interpretation:

$\sqrt[512]{\frac{1}{139.57}}$

Result:

$0.990400732708644027550973755713301415460732796178555551684 \ldots$
$0.99040073 \ldots$. result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ and to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

From:

Eur. Phys. J. C (2019) 79:713 - https://doi.org/10.1140/epjc/s10052-019-7225-2-Regular Article - Theoretical Physics Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity
Yermek Aldabergenov, Auttakit Chatrabhuti, Sergei V. Ketov

Table 1 The predictions for the inflationary parameters $\left(n_{s}, r\right)$, and the values of φ at the horizon crossing $\left(\varphi_{i}\right)$ and at the end of inflation $\left(\varphi_{f}\right)$, in the case $3 \leq \alpha \leq \alpha_{*}$ with both signs of ω_{1}. The α parameter is taken to be integer, except of the upper limit $\alpha_{*} \equiv(7+\sqrt{33}) / 2$

α	3	4		5	6	α_{*}	
$\operatorname{sgn}\left(\omega_{1}\right)$	-	+	-	$+/-$	+	-	
n_{s}	0.9650	0.9649	0.9640	0.9639	0.9634	0.9637	0.9632
r	0.0035	0.0010	0.0013	0.0007	0.0005	0.0004	0.0003
$-\kappa \varphi_{i}$	5.3529	3.5542	3.9899	3.2657	3.0215	2.7427	2.5674
$-\kappa \varphi_{f}$	0.9402	0.7426	0.8067	0.7163	0.6935	0.6488	0.6276

Acknowledgments

I would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his availability and kindness towards me

References

Ramanujan's Notebooks, Part I, by Bruce C. Berndt (Springer, 1985, ISBN 0-387-96110-0) ${ }^{[11]}$

Ramanujan's Notebooks, Part II, by Bruce C. Berndt (Springer, 1999, ISBN 0-387-96794-X) ${ }^{[11]}$

Ramanujan's Notebooks, Part III, by Bruce C. Berndt (Springer, 2004, ISBN 0-387-97503-9) ${ }^{[11][12]}$

Ramanujan's Notebooks, Part IV, by Bruce C. Berndt (Springer, 1993, ISBN 0-387-94109-6) ${ }^{[11]}$

Ramanujan's Notebooks, Part V, by Bruce C. Berndt (Springer, 2005, ISBN 0-387-94941-0) ${ }^{[11]}$

Ramanujan's Lost Notebook, Part I, by George Andrews and Bruce C. Berndt (Springer, 2005, ISBN 0-387-25529-X)

Ramanujan's Lost Notebook, Part II, George E. Andrews, Bruce C. Berndt (Springer, 2008, ISBN 978-0-387-77765-8)

Ramanujan's Lost Notebook: Part III, George E. Andrews, Bruce C. Berndt (Springer, 2012, ISBN 978-1-4614-3809-0)

Ramanujan's Lost Notebook: Part IV, George E. Andrews, Bruce C. Berndt (Springer, 2013, ISBN 978-1-4614-4080-2)

Manuscript Book 2 - Srinivasa Ramanujan
 MANUSCRIPT BOOK 2
 OF
 SRINIVASA RAMANUIAN

Manuscript Book 3-Srinivasa Ramanujan

MANUSCRIPT BOOK $\$$
0F
SRINIVASA RAMANUIAN

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

[^1]: https://blogs.royalsociety.org/history-of-science/2014/02/17/movie-maths/

[^2]: \mathbb{R} and $x<0$)

