On the Ramanujan formulas: mathematical connections with some sectors of Particle physics, in particular on the masses of the dilaton, of the candidate glueball and of the two Pion mesons.

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed various Ramanujan equations and described the new possible mathematical connections with some sectors of Particle physics, in particular on the masses of the dilaton, of the candidate glueball and of the two Pion mesons.

[^0]
https://twitter.com/royalsociety/status/1076386910845710337

https://biografieonline.it/biografia-enrico-fermi

From:

Dynamical Gauge Boson of Hidden Local Symmetry within the Standard Model

Koichi Yamawaki - https://arxiv.org/abs/1803.07271v2

We now study the nonperturbative dynamics in the large N limit of Eq.(40). The F_{π} (and hence G) in the classical Lagrangian Eq.(40) should be regarded as the bare quantity and receives quantum corrections in the large N limit. The effective action at leading order of $1 / N$ expansion reads:

$$
\begin{align*}
\Gamma_{\text {eff }}\left[\phi, \eta, \boldsymbol{\sigma}, \rho_{\mu}\right]= & \int d^{D} x \frac{1}{2} \operatorname{tr}_{p \times p}\left[D_{\mu} \phi\left(D^{\mu} \phi\right)^{t}-\eta(x)\left(\phi \phi^{t}-N \sigma^{2} \mathbb{1}\right)\right]-V(\boldsymbol{\sigma}) \\
& +\frac{i}{2} N \operatorname{TrLn}\left(-D_{\mu} D^{\mu}-\eta\right), \quad(2 \leq D \leq 4) \tag{41}
\end{align*}
$$

where in D dimensions $\phi(x)$ and $\sigma(x)$ and $\eta(x)$ have a canonical dimension $d_{\phi / \sigma}=D / 2-1$, and $d_{\eta}=2$, respectively, while ρ_{μ} scales in the same way as the derivative in the covariant derivative, $d_{\rho_{\mu}}=1$.

The effective potential for $\left\langle\phi_{i, \beta}(x)\right\rangle=\sqrt{N} v\left(\delta_{i, j}, 0\right)$ and $\left\langle\eta_{i, j}(x)\right\rangle=\eta \delta_{i, j},\langle\sigma(x)\rangle=\sigma$ takes the form:

$$
\begin{equation*}
\frac{1}{N p} V_{\mathrm{eff}}(v, \eta, \sigma)=\eta\left(v^{2}-\sigma^{2}\right)+\frac{1}{N p} V(\sigma)+\int \frac{d^{D} k}{i(2 \pi)^{4}} \ln \left(k^{2}-\eta\right) . \tag{42}
\end{equation*}
$$

This yields the gap equation:

$$
\begin{align*}
& \frac{1}{N p} \frac{\partial V_{\mathrm{eff}}}{\partial v}=2 \eta v=0 \tag{43}\\
& \frac{1}{N p} \frac{\partial V_{\mathrm{eff}}}{\partial \sigma}=-2 \eta \sigma+\frac{\hat{\mathrm{\lambda}}}{p} \sigma\left(\sigma^{2}-\frac{1}{G}\right)=0 \tag{44}\\
& \frac{1}{N p} \frac{\partial V_{\mathrm{eff}}}{\partial \eta}=v^{2}-\sigma^{2}+\int \frac{d^{D} k}{i(2 \pi)^{D}} \frac{1}{\eta-k^{2}}=0 \tag{45}
\end{align*}
$$

Eq. (45) together with (43) is the same form as that of $C P^{N-1}$ in D dimensions (see e.g., $[7,10]$), and implies either of the two cases:

$$
\left\{\begin{array}{ll}
\eta=0, & v \neq 0 ; \tag{46}\\
v=0, & \eta \neq 0 ;
\end{array} \text { case (i) } \text { case (ii) } .\right.
$$

Eq.(44) yields two cases:

$$
\begin{align*}
& \sigma=0 \\
& \sigma \neq 0,-2 \eta+\frac{\lambda}{p}\left(\sigma^{2}-\frac{1}{G}\right)=0 . \tag{47}
\end{align*}
$$

where the first solution $\sigma=0$ in Eq.(47) contradicts Eqs.(45) and (43), and hence we are left with the second one, which implies $\eta=0$ for $\hat{\lambda} \rightarrow 0$, the BPS limit in the broken phase, case (i), while for $\hat{\lambda} \neq 0$ we have:

$$
\begin{equation*}
\sigma^{2}=\frac{1}{G}+\frac{2 p \eta}{\hat{\lambda}} \tag{48}
\end{equation*}
$$

The stationary condition in Eq.(45) gives a relation between η and v. By putting $\eta=v=0$ in Eq. (45), the critical point $G(\equiv G(\Lambda))=G_{\text {crit }}\left(\equiv G_{\text {crit }}(\Lambda)\right)$ separating the two phases in Eq. (46) is determined as

$$
\begin{equation*}
\frac{1}{G_{\text {crit }}}=\int \frac{d^{D} k}{i(2 \pi)^{D}} \frac{1}{-k^{2}}=\frac{1}{\left(\frac{D}{2}-1\right) \Gamma\left(\frac{D}{2}\right)} \frac{\Lambda^{D-2}}{(4 \pi)^{\frac{D}{2}}}, \tag{49}
\end{equation*}
$$

by which the integral in Eq.(45) reads:

$$
\begin{equation*}
\int \frac{d^{D} k}{i(2 \pi)^{4}} \frac{1}{\eta-k^{2}}=\frac{1}{G_{\text {crit }}}-\frac{\Gamma(2-D / 2)}{(D / 2-1)} \cdot \frac{\eta^{D / 2-1}}{(4 \pi)^{D / 2}} . \tag{50}
\end{equation*}
$$

$$
\begin{equation*}
v^{2}-\int \frac{d^{D} k}{i(2 \pi)^{D}}\left(\frac{1}{-k^{2}}-\frac{1}{\eta-k^{2}}\right)=\frac{1}{G}-\frac{1}{G_{\text {crit }}}=\frac{1}{G^{(R)}}-\frac{1}{G_{\text {crit }}^{(R)}}, \tag{B13}
\end{equation*}
$$

The stationary condition in Eq. (B13), combined with Eq. (B9), leads to the cases (i) (broken phase of $S U(N)_{\text {global }} \times$ $U(1)_{\text {local }}$) and (ii) (unbroken phase of $S U(N)_{\text {global }} \times U(1)_{\text {local }}$) in Eq. (B11), respectively;

$$
\begin{align*}
& \text { (i) } G<G_{\mathrm{cr}} \Rightarrow\left\langle\phi_{N}\right\rangle=\sqrt{N} v \neq 0,\langle\eta(x)\rangle=\eta=0 \\
& \frac{1}{G(\Lambda)}-\frac{1}{G_{\text {crit }}(\Lambda)}=\frac{1}{G^{(R)}(\mu)}-\frac{1}{G_{\text {crit }}^{(R)}(\mu)}=v^{2}>0, \tag{B15}
\end{align*}
$$

(ii) $G>G_{\text {cr }} \Rightarrow\left\langle\phi_{N}\right\rangle=\sqrt{N} v=0,\langle\eta(x)\rangle=\eta \neq 0$

$$
\begin{align*}
\frac{1}{G(\Lambda)}-\frac{1}{G_{\mathrm{crit}}(\Lambda)} & =\frac{1}{G^{(R)}(\mu)}-\frac{1}{G_{\mathrm{crit}}^{(R)}(\mu)} \\
& =-\frac{\Gamma(2-D / 2)}{(D / 2-1)} \cdot \frac{\eta^{D / 2-1}}{(4 \pi)^{D / 2}} \equiv-v_{\eta}^{2}<0 . \tag{B16}
\end{align*}
$$

The gap equations Eq.(B15) and Eq.(B16) take the same form as that of the D-dimensional NJL model which is also renormalizable for $2 \leq D<4[48,49]$, with opposite sign and the same sign, respectively. (See also Eq. (C3) for

We have that:

$$
\begin{aligned}
& \int \frac{d^{D} k}{i(2 \pi)^{4}} \frac{1}{\eta-k^{2}}=\frac{1}{G_{\text {crit }}}-\frac{\Gamma(2-D / 2)}{(D / 2-1)} \cdot \frac{\eta^{D / 2-1}}{(4 \pi)^{D / 2}} \\
& \frac{1}{G^{(R)}(\mu)}-\frac{1}{G_{\text {crit }}^{(R)}(\mu)}=-\frac{\Gamma(2-D / 2)}{(D / 2-1)} \cdot \frac{\eta^{D / 2-1}}{(4 \pi)^{D / 2}} \equiv-v_{\eta}^{2}<0
\end{aligned}
$$

For $D=3$ and $\eta=5$, we obtain:
$-\left(\left(\left(\left(\right.\right.\right.\right.$ gamma $\left.\left.\left.\left.(2-3 / 2) * 5^{\wedge}(0.5)\right)\right)\right)\right) /\left(\left(\left((3 / 2-1)(4 \mathrm{Pi})^{\wedge}(3 / 2)\right)\right)\right)$

Input:

$-\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}$

Exact result:

$-\frac{\sqrt{5}}{4 \pi}$

Decimal approximation:

-0.17794063585429426461919066910095076625888875596247909884...
-0.17794063585.....

Property:

$-\frac{\sqrt{5}}{4 \pi}$ is a transcendental number

Alternative representations:

$$
\begin{aligned}
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\sqrt{5} e^{-\log G(1 / 2)+\log G(3 / 2)}}{\frac{1}{2}(4 \pi)^{3 / 2}} \\
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\left(-\frac{1}{2}\right)!\sqrt{5}}{\frac{1}{2}(4 \pi)^{3 / 2}} \\
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\Gamma\left(\frac{1}{2}, 0\right) \sqrt{5}}{\frac{1}{2}(4 \pi)^{3 / 2}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\sqrt{5} \sum_{k=0}^{\infty} \frac{2^{-k} \Gamma^{(k)}(1)}{k!}}{2 \pi^{3 / 2}} \\
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\sqrt{5} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}-z_{0}\right)^{k} \Gamma^{k}(k)\left(z_{0}\right)}{k!}}{4 \pi^{3 / 2}} \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right) \\
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\sqrt{5}}{4 \sqrt{\pi} \sum_{k=0}^{\infty}\left(\frac{1}{2}-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\sqrt{5}}{4 \pi^{3 / 2}} \int_{0}^{\infty} \frac{e^{-t}}{\sqrt{t}} d t \\
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\sqrt{5}}{4 \pi^{3 / 2}} \int_{0}^{1} \frac{1}{\sqrt{\log \left(\frac{1}{t}\right)}} d t \\
& -\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}=-\frac{\sqrt{5} \csc \left(\frac{\pi}{4}\right)}{4 \pi^{3 / 2}} \int_{0}^{\infty} \frac{\sin (t)}{\sqrt{t}} d t
\end{aligned}
$$

From:

Collected Papers of

SRINIVASA RAMANUJAN

Cambridge
AT THE UNIVERSITY PRESS
1927

From the following Ramanujan equation:

$$
\begin{aligned}
& \int_{0}^{\infty}|\Gamma(a+i x) \Gamma(b+i x)|^{2} d x \\
&=\frac{1}{2} \sqrt{ } \pi \frac{\Gamma(a) \Gamma\left(a+\frac{1}{2}\right) \Gamma(b) \Gamma\left(b+\frac{1}{8}\right) \Gamma(a+b)}{\Gamma\left(a+b+\frac{1}{2}\right)}
\end{aligned}
$$

For $\mathrm{a}=3$ and $\mathrm{b}=5$, we obtain:
$\operatorname{sqrt(Pi)} / 2$ * ((((gamma (3) gamma (3+1/2) gamma (5) gamma (5+1/2) gamma (8))))) / (((gamma (3+5+1/2))))

Input:

$$
\frac{\sqrt{\pi}}{2} \times \frac{\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)}{\Gamma\left(3+5+\frac{1}{2}\right)}
$$

Exact result:

$$
\frac{120960 \pi}{143}
$$

Decimal approximation:

2657.391939707841888982107298192228453653773500338551049686
2657.3919397....

Property:

$\frac{120960 \pi}{143}$ is a transcendental number

Alternative representations:

$$
\begin{aligned}
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\Gamma\left(3+5+\frac{1}{2}\right) 2}=\frac{2!\times \frac{5}{2}!\times 4!\times \frac{9}{2}!\times 7!\sqrt{\pi}}{2 \times \frac{15}{2}!} \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\Gamma\left(3+5+\frac{1}{2}\right) 2}= \\
& \frac{\left(e^{\log (2)} e^{-\operatorname{log(12)+\operatorname {log}(288)} e^{-\log (24883200)+\log (125411328000)}}\right.}{\left.e^{-\log G(7 / 2)+\log G(9 / 2)} e^{-\log G(11 / 2)+\log G(13 / 2)} \sqrt{\pi}\right) /\left(2 e^{-\operatorname{logG}(17 / 2)+\operatorname{logG(19/2)})}\right.} \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\Gamma\left(3+5+\frac{1}{2}\right) 2}=\frac{(1)_{2}(1) \frac{5}{2}(1)_{4}(1) \frac{9}{2}(1)_{7} \sqrt{\pi}}{2(1)_{\frac{15}{2}}^{2}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\Gamma\left(3+5+\frac{1}{2}\right) 2}=\frac{483840}{143} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\Gamma\left(3+5+\frac{1}{2}\right) 2}= \\
& \frac{\sum_{k=0}^{\infty}-\frac{96768\left(-\frac{1}{25}\right)^{k} 239^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{143(1+2 k)}}{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}} \\
& \Gamma\left(3+5+\frac{1}{2}\right) 2
\end{aligned}=\frac{120960}{143} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right) .
$$

Integral representations:

$$
\begin{aligned}
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\Gamma\left(3+5+\frac{1}{2}\right) 2}=\frac{483840}{143} \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\Gamma\left(3+5+\frac{1}{2}\right) 2}=\frac{241920}{143} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
\end{aligned}
$$

$$
\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\Gamma\left(3+5+\frac{1}{2}\right) 2}=\frac{241920}{143} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
$$

We note that $2657.3919397 \ldots$ value very near to the rest mass of charmed Xi baryon 2645.49 or to the average mass of:

$D_{J}^{*}(2600)$ MASS

VALUE (MeV) DOCUMENT ID EVTS TECN CHG COMMENT

2623 ± 12 OUR AVERAG		Error includes scale factor of 4.8 . See the ideogram below.				
$2681.1 \pm 5.6 \pm 14.0$	28k	${ }^{1}$ AAIJ	16 AH LHCB		B^{-}	
$2649.2 \pm 3.5 \pm 3.5$	51k	AAIJ	13 CC LHCB		$p p$	
$2608.7 \pm 2.4 \pm 2.5$	26k	DEL	10P BABR	0		
$2621.3 \pm 3.7 \pm 4.2$	13k	2 DEL-	10P BABR		$e^{+}{ }_{e}$	

${ }^{1}$ From the amplitude analysis in the model describing the $D^{+} \pi^{-}$wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{* 0}$ states, and components corresponding to the $D_{2}^{*}(2460)^{0}, D_{1}^{*}(2680)^{0}, D_{3}^{*}(2760)^{0}$, and $D_{2}^{*}(3000)^{0}$ resonances.
${ }^{2}$ At a fixed width of 93 MeV .

Indeed: $(2623+2681.1+2649.2) / 3=2651.1$

From this expression, we obtain also:
$-1 / \mathrm{Pi}^{*} 1 /(((((\mathrm{sqrt}(\mathrm{Pi}) / 2 *((((\operatorname{gamma}(3)$ gamma (3+1/2) gamma (5) gamma (5+1/2) gamma (8))))) / (((gamma $(3+5+1 / 2)))))))))^{\wedge} 1 / 13$

Input:

Exact result:

$-\frac{\sqrt[13]{\frac{143}{35}}}{2^{7 / 13} \times 3^{3 / 13} \pi^{14 / 13}}$

Decimal approximation:

$-0.17355233644890782676397396090563169425991430099077432357 \ldots$
-0.1735523364489...

Property:

$-\frac{\sqrt[13]{\frac{143}{35}}}{2^{7 / 13} \times 3^{3 / 13} \pi^{14 / 13}}$ is a transcendental number

Alternate form:

root of $120960 x^{13}+143$ near $x=-0.595419$

$$
\pi^{14 / 13}
$$

Alternative representations:

Series representations:

$$
-\frac{1}{\sqrt[13]{\frac{\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)}{2 \Gamma\left(3+5+\frac{1}{2}\right)}} \pi}=-\frac{\sqrt[13]{\frac{143}{35}}}{4 \times 2^{9 / 13} \times 3^{3 / 13}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{14 / 13}}
$$

Integral representations:

$$
-\frac{1}{13 \sqrt{\frac{\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)}{2 \Gamma\left(3+5+\frac{1}{2}\right)}} \pi}=-\frac{\sqrt[13]{\frac{143}{35}}}{2 \times 2^{8 / 13} \times 3^{3 / 13}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{14 / 13}}
$$

$$
-\frac{1}{\sqrt[13]{\frac{\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)}{2 \Gamma\left(3+5+\frac{1}{2}\right)}} \pi}=-\frac{\sqrt[13]{\frac{143}{35}}}{4 \times 2^{9 / 13} \times 3^{3 / 13}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{14 / 13}}
$$

$$
-\frac{1}{13 \sqrt{\frac{\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)}{1}} \pi}=-\frac{\sqrt[13]{\frac{143}{35}}}{2 \times 2^{8 / 13} \times 3^{3 / 13}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{14 / 13}}
$$

and:
$-1 /(1.1424432422+0.9243408674589+1) 1 /(((((\operatorname{sqrt}(\mathrm{Pi}) / 2 *((($ gamma 3$)$ gamma $(3+1 / 2) \operatorname{gamma}(5) \operatorname{gamma}(5+1 / 2) \operatorname{gamma}(8))))) /(((\operatorname{gamma}(3+5+1 / 2)))))))))^{\wedge} 1 / 13$
where 1.1424432422 and 0.9243408674589 are two results of Ramanujan mock theta functions

Input interpretation:

$-\frac{\frac{1}{13} \sqrt{\frac{\sqrt{\pi}}{2} \times \frac{\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)}{\Gamma\left(3+5+\frac{1}{2}\right)}}}{1.1424432422+0.9243408674589+1}$
$\Gamma(x)$ is the gamma function

Result:

-0.17778582571...
-0.17778582571...

Alternative representations:

1

1

Integral representations:

$$
\begin{aligned}
& \sqrt[13]{\frac{\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)}{2 \Gamma\left(3+5+\frac{1}{2}\right)}}(1.14244324220000+0.92434086745890000+1) \\
& -(0.343932288275408 / \\
& \quad\left(\left(\operatorname { e x p } \left(-\frac{33 \gamma}{2}+\int_{0}^{1}\left(\left(4-x^{3}-x^{7 / 2}-x^{5}-x^{11 / 2}-x^{8}+x^{17 / 2}+\log \left(x^{3}\right)+\log \left(x^{7 / 2}\right)+\right.\right.\right.\right.\right. \\
& \left.\quad \log \left(x^{5}\right)+\log \left(x^{11 / 2}\right)+\log \left(x^{8}\right)-\log \left(x^{17 / 2}\right)\right) / \\
& (\log (x)-x \log (x))) d x) \sqrt{\pi}) \wedge(1 / 13)))
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[13]{\frac{\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)}{2 \Gamma\left(3+5+\frac{1}{2}\right)}}(1.14244324220000+0.92434086745890000+1) \\
& -\left(\left(0.343932288275408\left(\int_{0}^{1} \log ^{15 / 2}\left(\frac{1}{t}\right) d t\right)\right.\right. \\
& \left(\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \log ^{2}\left(\frac{1}{t_{1}}\right) \log ^{5 / 2}\left(\frac{1}{t_{2}}\right) \log ^{4}\left(\frac{1}{t_{3}}\right) \log ^{9 / 2}\left(\frac{1}{t_{4}}\right)\right. \\
& \left.\left.\log ^{7}\left(\frac{1}{t_{5}}\right) d t_{5} d t_{4} d t_{3} d t_{2} d t_{1}\right)^{12 / 13}\right) / \\
& \left(\left(\int_{0}^{1} \log ^{2}\left(\frac{1}{t}\right) d t\right)\left(\int_{0}^{1} \log ^{5 / 2}\left(\frac{1}{t}\right) d t\right)\left(\int_{0}^{1} \log ^{4}\left(\frac{1}{t}\right) d t\right)\left(\int_{0}^{1} \log ^{9 / 2}\left(\frac{1}{t}\right) d t\right)\right. \\
& \left.\left.\quad\left(\int_{0}^{1} \log ^{7}\left(\frac{1}{t}\right) d t\right) \sqrt{\pi}\right)\right)
\end{aligned}
$$

Thence, the following mathematical connection:

$$
\left(-\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}\right)=-0.17794063585 \ldots \Rightarrow
$$

$$
\Rightarrow\left(\frac{1}{-\frac{13 \sqrt{\frac{\sqrt{\pi}}{2}} \frac{\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)}{\Gamma\left(3+5+\frac{1}{2}\right)}}{1.1424432422+0.9243408674589+1}}\right)=-0.17778582571 \ldots
$$

$$
-0.17794063585 \approx-0.17778582571 \ldots
$$

Now, we have that:

$$
\begin{array}{r}
\int_{0}^{\infty} \frac{d x}{\left\{1+x^{2} / a^{2}\right\}\left\{1+x^{2} /(a+1)^{2}\right\} \ldots\left\{1+x^{2} / b^{2}\right\}\left\{1+x^{2} /(b+1)^{2}\right\} \ldots} \\
=\frac{1}{2} \sqrt{ } \pi \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma\left(b+\frac{1}{2}\right) \Gamma(a+b)}{\Gamma(a) \Gamma(b) \Gamma\left(a+b+\frac{1}{2}\right)},
\end{array}
$$

From

$$
\frac{1}{2} \sqrt{ } \pi \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma\left(b+\frac{1}{2}\right) \Gamma(a+b)}{\Gamma(a) \Gamma(b) \Gamma\left(a+b+\frac{1}{2}\right)}
$$

We obtain:
$\operatorname{sqrt}(\mathrm{Pi}) / 2 *(((((($ gamma $(3+1 / 2)$ gamma (5+1/2) gamma (8)))) $) /((($ gamma (3) gamma (5) gamma $(3+5+1 / 2))))))))$

Input:

$$
\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)}{\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)}
$$

Exact result:

$\frac{105 \pi}{286}$
Decimal approximation:
1.153381918275973042092928514840376933009450303966385004204...

Property:

$\frac{105 \pi}{286}$ is a transcendental number

Alternative representations:

$$
\begin{aligned}
& \frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}=\frac{\frac{5}{2}!\times \frac{9}{2}!\times 7!\sqrt{\pi}}{2\left(2!\times 4!\times \frac{15}{2}!\right)} \\
& \frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}= \\
& \frac{e^{-\log (24883200)+\log (125411328000)} e^{-\log G(7 / 2)+\log \mathrm{G}(9 / 2)} e^{-\log \mathrm{G}(11 / 2)+\log \mathrm{G}(13 / 2)} \sqrt{\pi}}{2\left(e^{\log (2)} e^{-\log (12)+\log (288)} e^{-\log G(17 / 2)+\log (19 / 2)}\right)}
\end{aligned}
$$

$$
\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}=\frac{(1) \frac{5}{2}(1)_{\frac{g}{2}}(1)_{7} \sqrt{\pi}}{2\left((1)_{2}(1)_{4}(1)_{\frac{15}{2}}\right)}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}=\frac{210}{143} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}=\sum_{k=0}^{\infty} \frac{42 \times 239^{-1-2 k}\left(-5(-1)^{k}+4\left(-\frac{1}{25}\right)^{k} 239^{1+2 k}\right)}{143(1+2 k)} \\
& \frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}=\frac{105}{286} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\end{aligned}
$$

Integral representations:

$$
\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}=\frac{210}{143} \int_{0}^{1} \sqrt{1-t^{2}} d t
$$

$$
\begin{aligned}
& \frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}=\frac{105}{143} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t \\
& \frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}=\frac{105}{143} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{aligned}
$$

$1 /((((\operatorname{sqrt}(\mathrm{Pi}) / 2$ * $((((((\operatorname{gamma}(3+1 / 2))$ gamma (5+1/2) gamma (8)))))/((((gamma (3) gamma (5) gamma ($3+5+1 / 2))))))$)))))) $)^{\wedge} 1 / 8$

Input:

$\frac{1}{\sqrt[8]{\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)}{\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)}}}$

Exact result:

$\sqrt[8]{\frac{286}{105 \pi}}$

Decimal approximation:

$0.982320839865782115693825278108315242791464593090816733233 \ldots$
$0.9823208398 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Property:

$\sqrt[8]{\frac{286}{105 \pi}}$ is a transcendental number

Alternative representations:

$\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}}}=\frac{1}{\sqrt[8]{\frac{\frac{5}{2}!\times \frac{9}{2}!\times 7!\sqrt{\pi}}{2\left(2!\times 4!\times \frac{15}{2}!\right)}}}$
$\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)^{2}}}}=\frac{1}{\sqrt[8]{\frac{\frac{8}{2}^{(1)} \frac{9}{2}^{(1)} 7 \sqrt{\pi}}{\left.2(1)_{2}(1)_{4}{ }^{(1)} \frac{15}{2}\right)}}}$
$\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right) 2}}}=\frac{1}{\sqrt[8]{\frac{\Gamma\left(\frac{7}{2}, 0\right) \Gamma\left(\frac{11}{2}, 0\right) \Gamma(8,0) \sqrt{\pi}}{2\left(\Gamma(3,0) \Gamma(5,0) \Gamma\left(\frac{17}{2}, 0\right)\right)}}}$

Series representations:

$\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)^{2}}}}=\sqrt[8]{\frac{143}{210}} \sqrt[8]{\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}$
$\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)^{2}}}}=\sqrt[8]{\frac{286}{105}} \sqrt[8]{\frac{1}{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}}$
$\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)^{2}}}}=\sqrt[8]{\frac{143}{210}} \sqrt[8]{\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}}$

Integral representations:

$\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8) \sqrt{\pi}\right.}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)^{2}}}}=\sqrt[8]{\frac{143}{105}} \sqrt[8]{\frac{1}{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}}$ $\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)^{2}}}}=\sqrt[8]{\frac{143}{210}} \sqrt[8]{\frac{1}{\int_{0}^{1} \sqrt{1-t^{2}} d t}}$ $\frac{1}{\sqrt[8]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)^{2}}}}=\sqrt[8]{\frac{143}{105}} \sqrt[8]{\frac{1}{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}}$

From which, we obtain:
$-1 /(4 *$ golden ratio $) * \operatorname{sqrt}(\mathrm{Pi}) / 2 *(((((($ gamma $(3+1 / 2)$ gamma $(5+1 / 2)$ gamma $(8)))) /((((\operatorname{gamma}(3)$ gamma (5) gamma (3+5+1/2))))))))

Input:

$-\frac{\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)}{\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)}}{4 \phi}$

Exact result:

$-\frac{105 \pi}{1144 \phi}$

Decimal approximation:

$-0.17820730687602621557816511463818450660108421228482086665$
$-0.178207306876 \ldots$

Property:

$-\frac{105 \pi}{1144 \phi}$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{(105-105 \sqrt{5}) \pi}{2288} \\
& -\frac{105 \pi}{572(1+\sqrt{5})}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}=-\frac{\frac{5}{2}!\times \frac{9}{2}!\times 7!\sqrt{\pi}}{2(4 \phi)\left(2!\times 4!\times \frac{15}{2}!\right)} \\
& \frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}= \\
& -\frac{e^{-\log (24883200)+\log (125411328000)} e^{-\log G(7 / 2)+\log G(9 / 2)} e^{-\log G(11 / 2)+\log G(13 / 2)} \sqrt{\pi}}{2(4 \phi)\left(e^{\log (2)} e^{-\log (12)+\log (288)} e^{-\log G(17 / 2)+\log G(19 / 2)}\right)}
\end{aligned}
$$

$$
\frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}=-\frac{(1) \frac{5}{2}(1) \frac{g}{2}(1)_{7} \sqrt{\pi}}{2(4 \phi)\left((1)_{2}(1)_{4}(1)_{\frac{15}{2}}\right)}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}=-\frac{105 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}{286 \phi} \\
& \frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}=-\frac{105 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}{1144 \phi}
\end{aligned}
$$

$$
\frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}=\sum_{k=0}^{\infty} \frac{21 \times 239^{-1-2 k}\left(5(-1)^{k}-4\left(-\frac{1}{25}\right)^{k} 239^{1+2 k}\right)}{143(1+\sqrt{5})(1+2 k)}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}=-\frac{105}{286 \phi} \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}=-\frac{105}{572 \phi} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t \\
& \frac{\left(\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)\right)\right)(-1)}{\left(2\left(\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)\right)\right)(4 \phi)}=-\frac{105}{572 \phi} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{aligned}
$$

Thence, we have another mathematical connection:

$$
\left(-\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}\right)=-0.17794063585 \Rightarrow
$$

$$
\Rightarrow\left(-\frac{\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5+\frac{1}{2}\right) \Gamma(8)}{\Gamma(3) \Gamma(5) \Gamma\left(3+5+\frac{1}{2}\right)}}{4 \phi}\right)=-0.178207306876 \ldots \ldots
$$

$-0.17794063585 \approx-0.178207306876$

We have also:

$$
\begin{array}{r}
\int_{0}^{\infty}\left(\frac{1+x^{2} / b^{2}}{1+x^{2} / a^{2}}\right)\left(\frac{1+x^{2} /(b+1)^{2}}{1+x^{2} /(a+1)^{2}}\right)\left(\frac{1+x^{2} /(b+2)^{2}}{1+x^{2} /(a+2)^{2}}\right) \ldots d x \\
\quad=\frac{1}{2} \sqrt{ } \pi \frac{\Gamma\left(a+\frac{1}{2}\right) \Gamma(b) \Gamma\left(b-a-\frac{1}{2}\right)}{\Gamma(a) \Gamma\left(b-\frac{1}{2}\right) \Gamma(b-a)}, \\
\int_{0}^{\infty}\left|\frac{\Gamma(a+i x)}{\Gamma(b+i x)}\right|^{2} d x \tag{4}
\end{array}=\frac{1}{2} \sqrt{ } \pi \frac{\Gamma(a) \Gamma\left(a+\frac{1}{2}\right) \Gamma\left(b-a-\frac{1}{2}\right)}{\Gamma\left(b-\frac{1}{2}\right) \Gamma(b) \Gamma(b-a)} ., ~ \$
$$

For $\mathrm{a}=3$ and $\mathrm{b}=5$, we obtain:
sqrt(Pi)/2 * (((gamma (3+1/2) gamma (5) gamma (5-3-1/2)))) / (((gamma (3) gamma (5-1/2) gamma (5-3))))

Input:

$\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)}{\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)}$

Exact result:

$\frac{6 \pi}{7}$

Decimal approximation:

2.692793703076965632967980042811002472169002342321519275121...
2.6927937030769....

Property:

$\frac{6 \pi}{7}$ is a transcendental number

Alternative representations:

$$
\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}=\frac{\frac{1}{2}!\times \frac{5}{2}!\times 4!\sqrt{\pi}}{2\left(1!\times 2!\times \frac{7}{2}!\right)}
$$

$$
\begin{aligned}
& \frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}= \\
& \frac{e^{-\log (12)+\log (288)} e^{-\log \mathrm{G}(3 / 2)+\log \mathrm{G}(5 / 2)} e^{-\log \mathrm{G}(7 / 2)+\log \mathrm{G}(9 / 2)} \sqrt{\pi}}{2\left(e^{0} e^{\log (2)} e^{-\log \mathrm{G}(9 / 2)+\log \mathrm{G}(11 / 2)}\right)}
\end{aligned}
$$

$$
\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}=\frac{(1)_{\frac{1}{2}}(1)_{\frac{5}{2}}(1)_{4} \sqrt{\pi}}{2\left((1)_{1}(1)_{2}(1)_{\frac{7}{2}}\right)}
$$

Series representations:

$$
\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}=\frac{24}{7} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
$$

$$
\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}=\sum_{k=0}^{\infty}-\frac{24(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{7(1+2 k)}
$$

$$
\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}=\frac{6}{7} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
$$

Integral representations:

$$
\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}=\frac{24}{7} \int_{0}^{1} \sqrt{1-t^{2}} d t
$$

$\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}=\frac{12}{7} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t$
$\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)^{2}}=\frac{12}{7} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$
$1 /(((\operatorname{sqrt}(\mathrm{Pi}) / 2 *(((\operatorname{gamma}(3+1 / 2)$ gamma (5) gamma (5-3-1/2))))) / (((gamma (3) $\operatorname{gamma}(5-1 / 2) \operatorname{gamma}(5-3))))))))^{\wedge} 1 / 64$

Input:
$\frac{1}{\sqrt[64]{\frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)}{\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)}}}$

Exact result:

$\sqrt[64]{\frac{7}{6 \pi}}$

Decimal approximation:

$0.984641365454763821899784453794638236359240744503499621802 \ldots$
$0.9846413654 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.99911046841 . . .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Property:

$\sqrt[64]{\frac{7}{6 \pi}}$ is a transcendental number

Alternative representations:

$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)^{2}}}}=\frac{1}{\sqrt[64]{\frac{\frac{1}{2}!\frac{5}{2}!\times 4!\sqrt{\pi}}{2\left(1!\times 2!\times \frac{7}{2}!\right)}}}$
$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}}}=\frac{1}{\sqrt[64]{\frac{e^{-\log (12)+\log (288)} e^{-\log G(3 / 2)+\log G(5 / 2)} e^{-\log G(7 / 2)+\log G(9 / 2)} \sqrt{\pi}}{2\left(e^{0} e^{\log (2)} e^{-\log G(9 / 2)+\log G(11 / 2)}\right)}}}$
$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)^{2}}}}=\frac{1}{\sqrt[64]{\frac{\frac{(1)}{\frac{1}{2}}^{(1)} \frac{5}{2}^{(1)} \sqrt{\pi}}{\left.\left.2(1)^{(1)}\right)_{2}(1) \frac{7}{2}\right)}}}$

Series representations:

$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)^{2}}}}=\frac{\sqrt[64]{\frac{7}{3}} \sqrt[64]{\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}}{2^{3 / 64}}$
$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)^{2}}}}=\sqrt[64]{\frac{7}{6}} \sqrt[64]{\frac{1}{\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}}$
$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)^{2}}}}=\sqrt[64]{\frac{7}{6}} \sqrt[64]{\frac{1}{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}}$

Integral representations:

$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}}}=\frac{\sqrt[64]{\frac{7}{3}} \sqrt[64]{\frac{1}{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}}}{\sqrt[32]{2}}$
$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)^{2}}}}=\frac{\sqrt[64]{\frac{7}{3}} \sqrt[64]{\frac{1}{\int_{0}^{11 \sqrt{1-t^{2}} d t}}}}{2^{3 / 64}}$
$\frac{1}{\sqrt[64]{\frac{\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right) 2}}}=\frac{\sqrt[64]{\frac{7}{3}} \sqrt[64]{\frac{1}{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}}}{\sqrt[32]{2}}$

From which, we obtain:
$1 /(5 * 3) \operatorname{sqrt}(\mathrm{Pi}) / 2 *(((\operatorname{gamma}(3+1 / 2)$ gamma (5) gamma (5-3-1/2)))) / (((gamma (3) gamma (5-1/2) gamma (5-3))))

Input:

$\frac{1}{5 \times 3} \times \frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)}{\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)}$

Exact result:

$\frac{2 \pi}{35}$

Decimal approximation:

$0.179519580205131042197865336187400164811266822821434618341 \ldots$
$0.179519580205131 \ldots .$.

Property:

$\frac{2 \pi}{35}$ is a transcendental number

Alternative representations:

$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=\frac{\frac{1}{2}!\times \frac{5}{2}!\times 4!\sqrt{\pi}}{2 \times 15\left(1!\times 2!\times \frac{7}{2}!\right)}$
$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=$
$e^{-\log (12)+\log (288)} e^{-\log \mathrm{G}(3 / 2)+\log \mathrm{G}(5 / 2)} e^{-\log \mathrm{G}(7 / 2)+\log \mathrm{G}(9 / 2)} \sqrt{\pi}$
$2 \times 15\left(e^{0} e^{\log (2)} e^{-\log G(9 / 2)+\log G(11 / 2)}\right)$
$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=\frac{(1)_{\frac{1}{2}}(1) \frac{5}{2}(1)_{4} \sqrt{\pi}}{2 \times 15\left((1)_{1}(1)_{2}(1)_{\frac{7}{2}}\right)}$

Series representations:

$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=\frac{8}{35} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$
$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=\sum_{k=0}^{\infty} \frac{8(-1)^{k}\left(956 \times 5^{-2 k}-5 \times 239^{-2 k}\right)}{41825(1+2 k)}$
$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=\frac{2}{35} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)$

Integral representations:

$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=\frac{8}{35} \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=\frac{4}{35} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t$
$\frac{\sqrt{\pi}\left(\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)\right)}{\left(2\left(\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)\right)\right)(5 \times 3)}=\frac{4}{35} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$

And:
$\operatorname{sqrt}(\mathrm{Pi}) / 2$ * (((gamma (3) gamma (3+1/2) gamma (5-3-1/2)))) / (((gamma (5-1/2) gamma (5) gamma (5-3))))

Input:

$\frac{\sqrt{\pi}}{2} \times \frac{\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)}{\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)}$

Exact result:

$\frac{\pi}{168}$

Decimal approximation:

0.018699956271367816895610972519520850501173627377232772743...
0.0018699956271367.....

Property:

$\frac{\pi}{168}$ is a transcendental number

Alternative representations:

$$
\begin{aligned}
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\frac{\frac{1}{2}!\times 2!\times \frac{5}{2}!\sqrt{\pi}}{2\left(1!\times \frac{7}{2}!\times 4!\right)} \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\frac{e^{\log (2)} e^{-\operatorname{logG}(3 / 2)+\log G(5 / 2)} e^{-\log G(7 / 2)+\log G(9 / 2)} \sqrt{\pi}}{2\left(e^{0} e^{-\log (12)+\log (288)} e^{-\log G(9 / 2)+\log G(11 / 2)}\right)} \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\frac{(1) \frac{1}{2}(1)_{2}(1) \frac{5}{2} \sqrt{\pi}}{2\left((1)_{1}(1)_{\frac{7}{2}}(1)_{4}\right)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\frac{1}{42} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\sum_{k=0}^{\infty}-\frac{(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{42(1+2 k)} \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\frac{1}{168} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\frac{1}{42} \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\frac{1}{84} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t \\
& \frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}=\frac{1}{84} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{aligned}
$$

$(((\operatorname{sqrt}(\mathrm{Pi}) / 2 *(((\operatorname{gamma}(3)$ gamma (3+1/2) gamma (5-3-1/2)))) / (((gamma (5-1/2) gamma (5) gamma (5-3))))))) $)^{\wedge} 1 / 256$

Input:

$\sqrt[256]{\frac{\sqrt{\pi}}{2} \times \frac{\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)}{\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)}}$

Exact result:

$$
\frac{\sqrt[256]{\frac{\pi}{21}}}{2^{3 / 256}}
$$

Decimal approximation:

$0.984576299466753732842533575445391018920805996977764823977 \ldots$
$0.98457629946 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} \frac{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}{1}-\varphi+1 \quad 1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Property:

$\frac{\sqrt[256]{\frac{\pi}{21}}}{2^{3 / 256}}$ is a transcendental number

All 256th roots of $\boldsymbol{\pi} / \mathbf{1 6 8}$:

$\frac{\sqrt[256]{\frac{\pi}{21}} e^{0}}{2^{3 / 256}} \approx 0.984576$ (real, principal root)
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{(i \pi) / 128}}{2^{3 / 256}} \approx 0.984280+0.024163 i$
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{(i \pi) / 64}}{2^{3 / 256}} \approx 0.983390+0.048311 i$
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{(3 i \pi) / 128}}{2^{3 / 256}} \approx 0.981909+0.07243 i$
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{(i \pi) / 32}}{2^{3 / 256}} \approx 0.979835+0.09651 i$

Alternative representations:

$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}}=2566 \sqrt{\frac{\frac{1}{2}!\times 2!\times \frac{5}{2}!\sqrt{\pi}}{2\left(1!\times \frac{7}{2}!\times 4!\right)}}$
$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}}=$
$\sqrt[256]{\frac{e^{\log (2)} e^{-\log \mathrm{G}(3 / 2)+\log \mathrm{G}(5 / 2)} e^{-\log \mathrm{G}(7 / 2)+\log \mathrm{g}(9 / 2)} \sqrt{\pi}}{2\left(e^{0} e^{-\log (12)+\log (288)} e^{-\log \mathrm{G}(9 / 2)+\log \mathrm{G}(11 / 2)}\right)}}$
$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)^{2}}}=\sqrt[256]{\frac{(1)_{\frac{1}{2}}(1)_{2}(1)_{\frac{5}{2}} \sqrt{\pi}}{2\left((1)_{1}(1)_{\frac{7}{2}}(1)_{4}\right)}}$

Series representations:

$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}}=\frac{\sqrt[256]{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}{\sqrt[256]{42}}$
$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}}=\frac{\sqrt[256]{\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{\left.1+2 k-4 \times 239^{1+2 k}\right)}\right.}{1+2 k}}}{\sqrt[256]{42}}$
$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}}=\frac{\sqrt[256]{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}}{2^{3 / 256} \sqrt[256]{21}}$

Integral representations:

$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}}=\frac{\sqrt[256]{\int_{0}^{1} \sqrt{1-t^{2}} d t}}{\sqrt[256]{42}}$
$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}}=\frac{\sqrt[256]{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}}{\sqrt[128]{256}}$
$\sqrt[256]{\frac{\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right) \sqrt{\pi}}{\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) 2}}=\frac{\sqrt[256]{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}}{\sqrt[128]{256} \sqrt{21}}$

From which, we obtain:
30/pi sqrt(Pi) $/ 2$ * (((gamma (3) gamma (3+1/2) gamma (5-3-1/2)))) / (((gamma (5$1 / 2$) gamma (5) gamma (5-3))))

Input:

$$
\frac{30}{\pi} \times \frac{\sqrt{\pi}}{2} \times \frac{\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)}{\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)}
$$

Exact result:

$\frac{5}{28}$

Decimal approximation:

0.178571428571428571428571428571428571428571428571428571428...
0.17857142857...

Repeating decimal:

$0.17 \overline{857142}$ (period 6)

Egyptian fraction expansion:

$\frac{1}{6}+\frac{1}{84}$

Alternative representations:

$\frac{\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right) 30}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)\right) \pi}=\frac{15 \times \frac{1}{2}!\times 2!\times \frac{5}{2}!\sqrt{\pi}}{\pi\left(1!\times \frac{7}{2}!\times 4!\right)}$
$\frac{\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right) 30}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right) \pi\right.}=\frac{15 e^{\log (2)} e^{-\log (3 / 2)+\log \mathrm{G}(5 / 2)} e^{-\log \mathrm{G}(7 / 2)+\log \mathrm{G}(9 / 2)} \sqrt{\pi}}{\pi\left(e^{0} e^{-\log (12)+\log (288)} e^{-\log \mathrm{G}(9 / 2)+\log \mathrm{G}(11 / 2)}\right)}$
$\frac{\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right) 30}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)\right) \pi}=\frac{15 \Gamma\left(\frac{3}{2}, 0\right) \Gamma(3,0) \Gamma\left(\frac{7}{2}, 0\right) \sqrt{\pi}}{\pi\left(\Gamma(2,0) \Gamma\left(\frac{9}{2}, 0\right) \Gamma(5,0)\right)}$

Series representations:

$$
\begin{aligned}
& \frac{\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right) 30}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)\right) \pi}= \\
& \frac{15 \exp \left(i \pi\left\lfloor\frac{\arg (\pi-x)}{2 \pi}\right\rfloor \Gamma\left(\frac{3}{2}\right) \Gamma(3) \Gamma\left(\frac{7}{2}\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(\pi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right.}{\pi \Gamma(2) \Gamma\left(\frac{9}{2}\right) \Gamma(5)}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\frac{\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right) 30}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)\right) \pi}= \\
\frac{15 \Gamma\left(\frac{3}{2}\right) \Gamma(3) \Gamma\left(\frac{7}{2}\right)\left(\frac{1}{z_{0}}\right)^{\left.1 / 2\left\lfloor\arg \left(\pi-z_{0}\right)\right)(2 \pi)\right]} z_{0}^{\left.\left.1 / 2\left(1+\arg \left(\pi-z_{0}\right)\right)(2 \pi)\right]\right)} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)\right)_{k}^{\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}}{k!}}{\pi \Gamma(2) \Gamma\left(\frac{9}{2}\right) \Gamma(5)} \\
\frac{\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right) 30}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)\right) \pi}= \\
\left(15 \sqrt{-1+\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \sum_{k_{4}=0}^{\infty} \frac{1}{k_{2}!k_{3}!k_{4}!}(-1+\pi)^{-z_{1}}\binom{\frac{1}{2}}{k_{1}}\left(\frac{3}{2}-z_{0}\right)^{k_{3}}\left(\frac{7}{2}-z_{0}\right)^{k_{2}} \Gamma^{\left(k_{2}\right)}\left(z_{0}\right) \Gamma^{\left(k_{3}\right)}\left(z_{0}\right) \Gamma^{\left(k_{4}\right)}\left(z_{0}\right)\right) /
\end{array}\right) .
$$

Integral representations:

$$
\begin{aligned}
& \frac{\left.\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right)\right)^{30}}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)\right) \pi}= \\
& \frac{\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \sqrt{\log \left(\frac{1}{t_{1}}\right)} \log ^{2}\left(\frac{1}{t_{2}}\right) \log ^{5 / 2}\left(\frac{1}{t_{3}}\right) d t_{3} d t_{2} d t_{1}}{\frac{\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right) 30}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)\right) \pi}=} \\
& \frac{15 \exp \left(\int_{0}^{1}-\frac{-7-7 \sqrt{x}+2 x^{3 / 2}+2 x^{3}+4 x^{7 / 2}+4 x^{4}+2 x^{9 / 2}}{2(1+\sqrt{x}) \log (x)} d x\right) \sqrt{\pi}}{}
\end{aligned}
$$

$$
\frac{\left(\sqrt{\pi}\left(\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)\right)\right) 30}{\left(2\left(\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)\right)\right) \pi}=\frac{1}{\pi}
$$

$$
15 \exp \left(\frac{7 \gamma}{2}+\int_{0}^{1} \frac{1}{(-1+x) \log (x)}\left(x^{3 / 2}-x^{2}+x^{3}+x^{7 / 2}-x^{9 / 2}-x^{5}-\log \left(x^{3 / 2}\right)+\right.\right.
$$

$$
\left.\left.\log \left(x^{2}\right)-\log \left(x^{3}\right)-\log \left(x^{7 / 2}\right)+\log \left(x^{9 / 2}\right)+\log \left(x^{5}\right)\right) d x\right) \sqrt{\pi}
$$

From the average between the two results, we obtain:

$$
\begin{gathered}
-\frac{\left(\frac{1}{5 \times 3} \times \frac{\sqrt{\pi}}{2} \times \frac{\Gamma\left(3+\frac{1}{2}\right) \Gamma(5) \Gamma\left(5-3-\frac{1}{2}\right)}{\Gamma(3) \Gamma\left(5-\frac{1}{2}\right) \Gamma(5-3)}+\frac{30}{\pi} \times \frac{\sqrt{\pi}}{2} \times \frac{\Gamma(3) \Gamma\left(3+\frac{1}{2}\right) \Gamma\left(5-3-\frac{1}{2}\right)}{\Gamma\left(5-\frac{1}{2}\right) \Gamma(5) \Gamma(5-3)}\right)}{2}= \\
-\left(\frac{0.179519580205131+0.17857142857}{2}\right)= \\
=-0.17904550438756550 \approx \\
\\
\approx\left(-\frac{\Gamma\left(2-\frac{3}{2}\right) \sqrt{5}}{\left(\frac{3}{2}-1\right)(4 \pi)^{3 / 2}}\right)=-0.17794063585
\end{gathered}
$$

Now, we have that:

$$
\begin{aligned}
& \langle\sigma(x)\rangle=\sqrt{\frac{-m^{2}}{\lambda}} \equiv v=246 \mathrm{GeV} . \\
& \lambda=\frac{M_{\varphi}^{2}}{2 v^{2}} \simeq \frac{(125 \mathrm{GeV})^{2}}{2 \times(246 \mathrm{GeV})^{2}} \simeq \frac{1}{8} \ll 1 .
\end{aligned}
$$

$125^{\wedge} 2 /\left(2^{*} 246^{\wedge} 2\right)$

Input:

$\frac{125^{2}}{2 \times 246^{2}}$

Exact result:

$\frac{15625}{121032}$

Decimal approximation:

0.129098089761385418732236102848833366382444312248000528785.
0.12909808976

And:
$\left(\left(\left(125^{\wedge} 2 /\left(2^{*} 246^{\wedge} 2\right)\right)\right)\right)^{\wedge} 1 / 256$

Input:

$\sqrt[256]{\frac{125^{2}}{2 \times 246^{2}}}$

Result:

$\frac{5^{3 / 128}}{2^{3 / 256} \sqrt[128]{123}}$

Decimal approximation:

$0.992035081679943485912847869470544089706055278576032326957 .$.
$0.992035081679 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Alternate form:

$\frac{1}{246} \times 5^{3 / 128} \times 2^{253 / 256} \times 123^{127 / 128}$

$$
\begin{equation*}
f\left(q^{2}, \eta\right)=-\frac{1}{2} \frac{\Gamma\left(2-\frac{D}{2}\right)}{(4 \pi)^{\frac{D}{2}} \Gamma(2)} \int_{0}^{1} d x \frac{(1-2 x)^{2}}{\left[x(1-x) q^{2}+\eta\right]^{2-\frac{D}{2}}} \tag{68}
\end{equation*}
$$

$$
f\left(q^{2}, 0\right)=-\frac{1}{D-1} \frac{\Gamma\left(2-\frac{D}{2}\right)[\Gamma(D / 2-1)]^{2}}{2(4 \pi)^{\frac{n}{2}} \Gamma(D-2)}\left(q^{2}\right)^{D / 2-2}
$$

for $\mathrm{D}=3$ and

$$
q^{2}=M_{\rho}^{2}
$$

we obtain:
$-\left(\left(\left(1 / 2^{*}\left(\operatorname{gamma}(2-3 / 2) *(\operatorname{gamma}(3 / 2-1))^{\wedge} 2 * 1 /\left(2300^{\wedge} 2\right)^{\wedge}(0.5)\right)\right)\right) /\left(\left(\left(2(4 \mathrm{Pi})^{\wedge} 1.5\right.\right.\right.\right.$ (gamma (1)))))

Input:

$$
-\frac{\frac{1}{2}\left(\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2} \times \frac{1}{\sqrt{2300^{2}}}\right)}{2(4 \pi)^{1.5} \Gamma(1)}
$$

Result:

-0.00001358695652173913043478260869565217391304347826086956...
-0.0000135869565.....

Repeating decimal:

$-0.0000135 \overline{8695652173913043478260}$ (period 22)

Rational approximation:

$-\frac{1}{73600}$

Alternative representations:

$-\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}=-\frac{\left(-\frac{1}{2}\right)!\left(\left(-\frac{1}{2}\right)!\right)^{2}}{2\left(2 \times 0!(4 \pi)^{1.5}\right) \sqrt{2300^{2}}}$
$-\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}=-\frac{e^{-\log G(1 / 2)+\log G(3 / 2)}\left(e^{-\log G(1 / 2)+\log G(3 / 2)}\right)^{2}}{2\left(2 e^{0}(4 \pi)^{1.5}\right) \sqrt{2300^{2}}}$

$$
-\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}=-\frac{\Gamma\left(\frac{1}{2}, 0\right) \Gamma\left(\frac{1}{2}, 0\right)^{2}}{2\left(2 \Gamma(1,0)(4 \pi)^{1.5}\right) \sqrt{2300^{2}}}
$$

Series representations:

$-\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}=-\frac{0.000013587\left(\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{3}}{\pi^{1.5} \sum_{k=0}^{\infty} \frac{\left(1-z_{0} k^{k} \Gamma^{(k)}\left(z_{0}\right)\right.}{k!}}$
for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$
$-\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}=$

$$
-\frac{0.000013587 \pi^{0.5} \sum_{k=0}^{\infty}\left(1-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}}{\left(\sum_{k=0}^{\infty}\left(\frac{1}{2}-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}\right)^{3}}
$$

Integral representations:

$-\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}=-\frac{0.000013587 e^{3 \int_{0}^{1} \frac{1-\sqrt{x}}{2 \log (x)+2 \sqrt{x} \log (x)} d x}}{\pi^{1.5}}$
$-\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}=$
$-\frac{0.000013587 \exp \left(-\frac{\gamma}{2}+\int_{0}^{1} \frac{2-3 \sqrt{x}+x+3 \log (\sqrt{x})-\log (x)}{\log (x)-x \log (x)} d x\right)}{\pi^{1.5}}$
$-\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}=-\frac{0.000013587\left(\int_{0}^{1} \frac{1}{\sqrt{\log \left(\frac{1}{t}\right)}} d t\right)^{3}}{\pi^{1.5} \int_{0}^{1} 1 d t}$
$1 /\left(\left(\left(\left(-\left(\left(\left(1 / 2^{*}\left(\operatorname{gamma}(2-3 / 2) *(\operatorname{gamma}(3 / 2-1))^{\wedge} 2 * 1 /\left(2300^{\wedge} 2\right)^{\wedge}(0.5)\right)\right)\right) /\right.\right.\right.\right.\right.$ $(((2(4 \mathrm{Pi}) \wedge 1.5($ gamma $(1))))))))))$

Input:

1
$\frac{\frac{1}{2}\left(\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2} \times \frac{1}{\sqrt{2300^{2}}}\right)}{2(4 \pi)^{1.5} \Gamma(1)}$

Result:

-73600
-73600

Alternative representations:

$$
\begin{aligned}
& -\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}=-\frac{1}{\frac{\left(-\frac{1}{2}\right)!\left(\left(-\frac{1}{2}\right)!\right)^{2}}{2\left(2 \times 0!(4 \pi)^{1.5}\right) \sqrt{2300^{2}}}} \\
& -\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}=-\frac{1}{e^{-\log G(1 / 2)+\log G(3 / 2)}\left(e^{-\log G(1 / 2)+\log G(3 / 2))^{2}}\right.} \\
& -\frac{2\left(2 e^{0}(4 \pi)^{1.5}\right) \sqrt{2300^{2}}}{\left(\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}\right.}
\end{aligned}
$$

Series representations:

$$
-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}=-\frac{73600 \pi^{1.5} \sum_{k=0}^{\infty} \frac{\left(1-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\left(\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{3}} \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
$$

$$
\begin{aligned}
& -\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}= \\
& -\frac{73600\left(\sum_{k=0}^{\infty}\left(\frac{1}{2}-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}\right)^{3}}{\pi^{0.5} \sum_{k=0}^{\infty}\left(1-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
&-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}=-73600 \exp \left(-3 \int_{0}^{1} \frac{1-\sqrt{x}}{2 \log (x)+2 \sqrt{x} \log (x)} d x\right) \pi^{1.5} \\
&-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}= \\
&-73600 \exp \left(\frac{\gamma}{2}+\int_{0}^{1} \frac{2-3 \sqrt{x}+x+3 \log (\sqrt{x})-\log (x)}{(-1+x) \log (x)} d x\right) \pi^{1.5} \\
&-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}=-\frac{73600 \pi^{1.5} \int_{0}^{1} 1 d t}{\left(\int_{0}^{1} \frac{1}{\sqrt{\log \left(\frac{1}{t}\right)}} d t\right)^{3}}
\end{aligned}
$$

$-\left(\left(\left(1 /\left(\left(\left(\left(-\left(\left(1 / 2^{*}(\operatorname{gamma}(2-3 / 2)) *(\operatorname{gamma}(3 / 2-1))^{\wedge} 2 * 1 /\left(2300^{\wedge} 2\right)^{\wedge}(0.5)\right)\right)\right) /\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(\left(2(4 \mathrm{Pi})^{\wedge} 1.5(\operatorname{gamma}(1))\right)\right)\right)\right)\right)\right)\right)\right)+27^{*} 4\right)\right)\right)$

Input:

$-\left(-\frac{1}{\frac{\frac{1}{2}\left(\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2} \times \frac{1}{\sqrt{2300^{2}}}\right)}{2(4 \pi)^{1.5} \Gamma(1)}}+27 \times 4\right)$

Result:

73492
73492

Alternative representations:

$-\left(-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}+27 \times 4\right)=-108--\frac{1}{\frac{\left(-\frac{1}{2}\right)!\left(\left(-\frac{1}{2}\right)!\right)^{2}}{2\left(2 \times 0!(4 \pi)^{1.5}\right) \sqrt{2300^{2}}}}$
$-\left(-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}+27 \times 4\right)=-108--\frac{1}{\frac{e^{-\log G(1 / 2)+\log G(3 / 2)}\left(e^{-\log G(1 / 2)+\log G(3 / 2)}\right)^{2}}{2\left(2 e^{0}(4 \pi)^{1.5}\right) \sqrt{2300^{2}}}}$
$-\left(-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}+27 \times 4\right)=-108--\frac{1}{\frac{\Gamma\left(\frac{1}{2}, 0\right) \Gamma\left(\frac{1}{2}, 0\right)^{2}}{2\left(2 \Gamma(1,0)(4 \pi)^{1.5}\right) \sqrt{2300^{2}}}}$

Series representations:

$$
\begin{aligned}
&-\left(-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}+27 \times 4\right)= \\
& \frac{73600\left(-0.00146739\left(\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{3}+\pi^{1.5} \sum_{k=0}^{\infty} \frac{\left(1-z_{0} k^{k} \Gamma^{(k)}\left(z_{0}\right)\right.}{k!}\right)}{\left(\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}\right)^{3}}
\end{aligned}
$$

for ($z_{0} \notin \mathbb{Z}$ or $z_{0}>0$)

$$
\begin{aligned}
& -\left(-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}+27 \times 4\right)= \\
& -\left(\left(1 0 8 \left(-681.481\left(\sum_{k=0}^{\infty}\left(\frac{1}{2}-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}\right)^{3}+\right.\right.\right. \\
& \left.\left.\pi^{0.5} \sum_{k=0}^{\infty}\left(1-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}\right)\right) / \\
& \left.\quad\left(\pi^{0.5} \sum_{k=0}^{\infty}\left(1-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -\left(-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2{\sqrt{2300^{2}}}_{2}^{2}\left(2(4 \pi)^{1.5} \Gamma(1)\right)\right.}}+27 \times 4\right)= \\
& -108+73600 \exp \left(-3 \int_{0}^{1} \frac{1-\sqrt{x}}{2 \log (x)+2 \sqrt{x} \log (x)} d x\right) \pi^{1.5}
\end{aligned}
$$

$$
-\left(-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}+27 \times 4\right)=
$$

$$
-108+73600 \exp \left(\frac{\gamma}{2}+\int_{0}^{1} \frac{2-3 \sqrt{x}+x+3 \log (\sqrt{x})-\log (x)}{(-1+x) \log (x)} d x\right) \pi^{1.5}
$$

$$
\begin{aligned}
&-\left(-\frac{1}{\frac{\Gamma\left(2-\frac{3}{2}\right) \Gamma\left(\frac{3}{2}-1\right)^{2}}{\left(2 \sqrt{2300^{2}}\right)\left(2(4 \pi)^{1.5} \Gamma(1)\right)}}+27 \times 4\right)= \\
&\left(\int_{0}^{1} \frac{1}{\sqrt{\log \left(\frac{1}{t}\right)}} d t\right)^{3}
\end{aligned}
$$

Thence, we have the following mathematical connection:

$$
\begin{aligned}
& \left(-\left(-\frac{1}{\frac{\frac{1}{2}\left(\Gamma\left(2-\frac{3}{2}\right) r\left(\frac{3}{2}-1\right)^{2} \times \frac{1}{\sqrt{2300^{2}}}\right)}{2(4 \pi)^{1.5} \Gamma(1)}}+27 \times 4\right)\right)=73492 \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow \\
& \binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{\iota}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{4}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \leqslant}{<H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
& /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

$$
f(0, \eta)=-\frac{1}{3} \frac{\Gamma\left(2-\frac{D}{2}\right)}{2(4 \pi)^{\frac{D}{2}} \Gamma(2)} \eta^{D-4}
$$

$-1 / 3 *((((\operatorname{gamma}(2-3 / 2) * 1 /(0.5))))) * 1 /(((2 *(4 \mathrm{Pi}) \wedge 1.5)(\operatorname{gamma}(2))))$

Input:

$-\frac{1}{3}\left(\Gamma\left(2-\frac{3}{2}\right) \times \frac{1}{0.5}\right) \times \frac{1}{\left(2(4 \pi)^{1.5}\right) \Gamma(2)}$

Result:

-0.0132629..
$-0.0132629 \ldots$

Alternative representations:

$\frac{\Gamma\left(2-\frac{3}{2}\right)(-1)}{\left(0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)\right) 3}=-\frac{e^{-\log G(1 / 2)+\log G(3 / 2)}}{3 \times 0.5\left(2 e^{0}(4 \pi)^{1.5}\right)}$
$\frac{\Gamma\left(2-\frac{3}{2}\right)(-1)}{\left(0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)\right) 3}=-\frac{\left(-\frac{1}{2}\right)!}{3 \times 0.5\left(2 \times 1!(4 \pi)^{1.5}\right)}$
$\frac{\Gamma\left(2-\frac{3}{2}\right)(-1)}{\left(0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)\right) 3}=-\frac{\Gamma\left(\frac{1}{2}, 0\right)}{3 \times 0.5\left(2 \Gamma(2,0)(4 \pi)^{1.5}\right)}$

Series representations:

$$
\begin{aligned}
& \frac{\Gamma\left(2-\frac{3}{2}\right)(-1)}{\left(0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)\right) 3}=-\frac{0.0416667 \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\pi^{1.5} \sum_{k=0}^{\infty} \frac{\left(2-z_{0}\right)^{k} \Gamma^{k k}\left(z_{0}\right)}{k!}} \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right) \\
& \frac{\Gamma\left(2-\frac{3}{2}\right)(-1)}{\left(0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)\right) 3}= \\
& -\frac{0.0416667 \sum_{k=0}^{\infty}\left(2-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}}{\pi^{1.5} \sum_{k=0}^{\infty}\left(\frac{1}{2}-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{\left.(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right)\right)^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\Gamma\left(2-\frac{3}{2}\right)(-1)}{\left(0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)\right) 3}=-\frac{0.0416667 \exp \left(\int_{0}^{1} \frac{3+\sqrt{x}-2 x-2 x^{3 / 2}}{2 \log (x)+2 \sqrt{x} \log (x)} d x\right)}{\pi^{1.5}} \\
& \frac{\Gamma\left(2-\frac{3}{2}\right)(-1)}{\left(0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)\right) 3}=-\frac{0.0416667 \exp \left(\frac{3 \gamma}{2}+\int_{0}^{1} \frac{\sqrt{x}-x^{2}-\log (\sqrt{x})+\log \left(x^{2}\right)}{(-1+x) \log (x)} d x\right)}{\pi^{1.5}} \\
& \frac{\Gamma\left(2-\frac{3}{2}\right)(-1)}{\left(0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)\right) 3}=-\frac{0.0416667 \int_{0}^{1} \frac{1}{\sqrt{\log \left(\frac{1}{t}\right)}} d t}{\pi^{1.5} \int_{0}^{1} \log \left(\frac{1}{t}\right) d t}
\end{aligned}
$$

$(-0.9243408674589 * 2) /\left(\left(\left(-1 / 3 *((((\right.\right.\right.$ gamma $(2-3 / 2) * 1 /(0.5))))) * 1 /\left(\left(\left(2 *(4 \mathrm{Pi})^{\wedge} 1.5\right)\right.\right.$ (gamma (2)))))))

Where 0.9243408674589 is a Ramanujan mock theta function

Input interpretation:

$-\frac{-0.9243408674589 \times 2}{\frac{1}{3}\left(\Gamma\left(2-\frac{3}{2}\right) \times \frac{1}{0.5}\right) \times \frac{1}{\left(2(4 \pi)^{1.5}\right) \Gamma(2)}}$

Result:

139.387...
139.387.... result very near to the rest mass of Pion meson 139.57

Alternative representations:

$$
\frac{-0.92434086745890000 \times 2}{-\frac{\Gamma\left(2-\frac{3}{2}\right)}{3 \times 0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)}}=\frac{-1.8486817349178000}{\left(-\frac{1}{2}\right)!}
$$

$\frac{-0.92434086745890000 \times 2}{-\frac{\Gamma\left(2-\frac{3}{2}\right)}{3 \times 0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)}}=\frac{-1.8486817349178000}{-\frac{e^{-\log G(1 / 2)+\log G(3 / 2)}}{3 \times 0.5\left(2 e^{0}(4 \pi)^{1.5}\right)}}$

$$
\frac{-0.92434086745890000 \times 2}{-\frac{\Gamma\left(2-\frac{3}{2}\right)}{3 \times 0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)}}=\frac{-1.8486817349178000}{-\frac{\Gamma\left(\frac{1}{2}, 0\right)}{3 \times 0.5\left(2 \Gamma(2,0)(4 \pi)^{1.5}\right)}}
$$

Series representations:

$$
\frac{-0.92434086745890000 \times 2}{-\frac{\Gamma\left(2-\frac{3}{2}\right)}{3 \times 0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)}}=\frac{44.3684 \pi^{1.5} \sum_{k=0}^{\infty} \frac{\left(2-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}} \text { for }\left(z_{0} \notin \mathbb{Z} \text { or } z_{0}>0\right)
$$

$$
\frac{-0.92434086745890000 \times 2}{-\frac{\Gamma\left(2-\frac{3}{2}\right)}{3 \times 0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)}}=
$$

$$
44.3684 \pi^{1.5} \sum_{k=0}^{\infty}\left(\frac{1}{2}-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}
$$

$$
\sum_{k=0}^{\infty}\left(2-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{(-1)^{j} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}{j!(-j+k)!}
$$

Integral representations:

$$
\frac{-0.92434086745890000 \times 2}{-\frac{\Gamma\left(2-\frac{3}{2}\right)}{3 \times 0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)}}=44.3684 \exp \left(\int_{0}^{1}-\frac{3+\sqrt{x}-2 x-2 x^{3 / 2}}{2 \log (x)+2 \sqrt{x} \log (x)} d x\right) \pi^{1.5}
$$

$$
\frac{-0.92434086745890000 \times 2}{-\frac{\Gamma\left(2-\frac{3}{2}\right)}{3 \times 0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)}}=
$$

$$
44.3684 \exp \left(-\frac{3 \gamma}{2}+\int_{0}^{1} \frac{\sqrt{x}-x^{2}-\log (\sqrt{x})+\log \left(x^{2}\right)}{\log (x)-x \log (x)} d x\right) \pi^{1.5}
$$

$$
\frac{-0.92434086745890000 \times 2}{-\frac{\Gamma\left(2-\frac{3}{2}\right)}{3 \times 0.5\left(\left(2(4 \pi)^{1.5}\right) \Gamma(2)\right)}}=\frac{44.3684 \pi^{1.5} \int_{0}^{1} \log \left(\frac{1}{t}\right) d t}{\int_{0}^{1} \frac{1}{\sqrt{\log \left(\frac{1}{t}\right)}} d t}
$$

$\left.\left(\left(\left(-1 / 3 *((((\operatorname{gamma}(2-3 / 2) * 1 /(0.5))))) * 1 /\left(\left(\left(2 *(4 \mathrm{Pi})^{\wedge} 1.5\right)(\operatorname{gamma}(2))\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 512$

Input:

$\sqrt[512]{-\frac{1}{3}\left(\Gamma\left(2-\frac{3}{2}\right) \times \frac{1}{0.5}\right) \times \frac{1}{\left(2(4 \pi)^{1.5}\right) \Gamma(2)}}$

Result:

0.99157394... +
0.0060842978... i

Polar coordinates:

$r=0.991593$ (radius), $\theta=0.351563^{\circ}$ (angle)
0.991593 result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Phenomenological implications of our result for the SM rho would be divided into two different scenarios depending on the possible value of a single extra free parameter existing in the nonperturbative theory, $M_{\rho}=g_{\rho \pi \pi} \cdot F_{\rho}$ (or $g_{\rho \pi \pi}=g_{\mathrm{HLS}} \equiv g_{\mathrm{HLS}}\left(M_{\rho}^{2}\right)=M_{\rho} / F_{\rho}=M_{\rho} /(350 \mathrm{GeV})$ or the cutoff Λ (or the Landau pole $\tilde{\Lambda}$) in view of Eqs.(86)-(88):

$$
\begin{equation*}
\Lambda=e^{-4 / 3} \cdot \tilde{\Lambda}=e^{-4 / 3} \cdot M_{\rho} \cdot \exp \left[\frac{\frac{3}{8}\left(4 \pi F_{\rho}\right)^{2}}{M_{\rho}^{2}}\right], \tag{136}
\end{equation*}
$$

which implies that $\Lambda<M_{\rho}\left(g_{\mathrm{HLS}}>6.7, M_{\rho}>2.3 \mathrm{TeV}\right)$ and $\Lambda>M_{\rho}\left(g_{\mathrm{HLS}}<6.7, M_{\rho}<2.3 \mathrm{TeV}\right)$.

1) "Low M_{ρ} scenario" $\left(M_{\rho}<2.3 \mathrm{TeV}, \Lambda>M_{\rho}\right)$:
2) "High M_{ρ} scenario" $\left(M_{\rho} \gg 2.3 \mathrm{TeV}, \Lambda<M_{\rho}\right.$, as a stabilizer of the skyrmion dark matter X_{s})
$M_{X_{s}} \lesssim 11 \mathrm{GeV}, \quad$ or equivalently, $\lambda_{\varphi} X_{s} X_{s} \equiv \frac{g_{\varphi X_{s} X_{\varepsilon}}}{2 F_{\varphi}}=\frac{M_{X_{s}}^{2}}{F_{\pi}^{2}} \lesssim 0.002, \quad\left(F_{\varphi}=F_{\pi}=\sqrt{N} v=246 \mathrm{GeV}\right)$

$$
\begin{equation*}
M_{X_{s}} \simeq 35 \frac{F_{\pi}}{g_{\mathrm{HLS}}} \simeq 11 \mathrm{GeV} \times\left(\frac{780}{g_{\mathrm{HLS}}}\right), \quad \lambda_{\varphi X_{s} X_{s}}=\left(\frac{35}{g_{\mathrm{HLS}}}\right)^{2}=0.002 \times\left(\frac{780}{g_{\mathrm{HLS}}}\right)^{2}, \tag{138}
\end{equation*}
$$

which would imply

$$
\begin{equation*}
g_{\mathrm{HLS}} \simeq 780 \tag{139}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle r_{X_{s}}^{2}\right\rangle_{X_{s}} \simeq\left(\frac{2.2}{g_{\mathrm{HLS}} F_{\pi}}\right)^{2} \simeq 1.3 \times 10^{-10}(\mathrm{GeV})^{-2} \times\left(\frac{780}{g_{\mathrm{HLS}}}\right)^{2} . \tag{140}
\end{equation*}
$$

This leads to the annihilation cross section of the skyrmion dark matter and the relic abundance $\Omega_{X_{s}} h^{2}[1,42]$:

$$
\begin{align*}
\left\langle\sigma_{\text {ann }} v_{\text {rel }}\right\rangle_{\text {radius }} & \simeq 4 \pi \cdot\left\langle r_{X_{s}}^{2}\right\rangle_{X_{s}} \simeq 1.7 \times 10^{-9} \mathrm{GeV}^{-2} \\
\Omega_{X_{\varepsilon}} h^{2} & \simeq \mathcal{O}(0.1) \tag{141}
\end{align*}
$$

We have:

$$
\mathrm{F}_{\pi}=246 ; \mathrm{g}_{\mathrm{HLS}}=780
$$

$M_{X_{s}} \simeq 35 \frac{F_{\pi}}{g_{\mathrm{HLS}}}$
$(35 * 246) / 780$
$\frac{287}{26}$

Decimal approximation:

11.03846153846153846153846153846153846153846153846153846153...
11.038461538...

And:
$1 /(((35 * 246) / 780))^{\wedge} 1 / 256$

Input:

$\frac{1}{\sqrt[256]{\frac{35 \times 246}{780}}}$

Result:

$\sqrt[256]{\frac{26}{287}}$

Decimal approximation:

0.990663446023417462789151326532461780371692878976507360691
$0.99066344602341 \ldots$ result very near to the value of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Alternate form:

$\frac{1}{287} \sqrt[256]{26} 287^{255 / 256}$
$\lambda_{\varphi X_{s} X_{s}}=\left(\frac{35}{g_{\mathrm{HLS}}}\right)^{2}$
$(35 / 780)^{\wedge} 2$

Input:

$\left(\frac{35}{780}\right)^{2}$

Exact result:

$\frac{49}{24336}$

Decimal approximation:

0.002013477975016436554898093359631821170282708744247205785
0.002013477975....

And:
$1 /(35 / 780)^{\wedge} 2$

Input:
$\frac{1}{\left(\frac{35}{780}\right)^{2}}$

Exact result:

$\frac{24336}{49}$

Decimal approximation:

496.6530612244897959183673469387755102040816326530612244897...
496.653.....
$1 /((((\operatorname{sqrt}(5)+5)) / 2)) * 1 /(35 / 780)^{\wedge} 2-\mathrm{Pi}$

Input:

$\frac{1}{\frac{1}{2}(\sqrt{5}+5)} \times \frac{1}{\left(\frac{35}{780}\right)^{2}}-\pi$
Result:
$\frac{48672}{49(5+\sqrt{5})}-\pi$
Decimal approximation:
134.1299373455226923700809272243851124919602012138777716772...
134.129937.... result very near to the rest mass of Pion meson 134.9766

Property:

$\frac{48672}{49(5+\sqrt{5})}-\pi$ is a transcendental number
Alternate forms:
$\frac{1}{245}(60840-12168 \sqrt{5}-245 \pi)$
$-\frac{12168}{245}(\sqrt{5}-5)-\pi$

$$
\frac{1}{245}(60840-12168 \sqrt{5})-\pi
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{2}\left(\frac{35}{780}\right)^{2}(\sqrt{5}+5)}-\pi=-\pi+\frac{48672}{49\left(5+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)} \\
& \frac{1}{\frac{1}{2}\left(\frac{35}{780}\right)^{2}(\sqrt{5}+5)}-\pi=-\pi+\frac{48672}{49\left(5+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)} \\
& \frac{1}{\frac{1}{2}\left(\frac{35}{780}\right)^{2}(\sqrt{5}+5)}-\pi=-\pi+\frac{97344 \sqrt{\pi}}{49\left(10 \sqrt{\pi}+\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 4^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)}
\end{aligned}
$$

$$
\left\langle r_{X_{s}}^{2}\right\rangle_{X_{s}} \simeq\left(\frac{2.2}{g_{\mathrm{HLS}} F_{\pi}}\right)^{2}
$$

$(2.2 /(780 * 246))^{\wedge} 2$

Input:

$\left(\frac{2.2}{780 \times 246}\right)^{2}$

Result:

$1.3145767351902283795692786067868055085675854754089626 \ldots \times 10^{-10}$ $1.31457673519 \ldots * 10^{-10}$

$$
\left\langle\sigma_{\mathrm{ann}} v_{\mathrm{rel}}\right\rangle_{\mathrm{radius}} \simeq 4 \pi \cdot\left\langle r_{X_{s}}^{2}\right\rangle_{X_{s}} \simeq 1.7 \times 10^{-9} \mathrm{GeV}^{-2}
$$

$4 \mathrm{Pi}^{*}(2.2 /(780 * 246))^{\wedge} 2$

Input:

$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}$

Result:

$1.65195 \ldots \times 10^{-9}$
$1.65195 \ldots * 10^{-9}$

Alternative representations:

$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=720^{\circ}\left(\frac{2.2}{191880}\right)^{2}$
$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=-4 i \log (-1)\left(\frac{2.2}{191880}\right)^{2}$
$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=4 \cos ^{-1}(-1)\left(\frac{2.2}{191880}\right)^{2}$

Series representations:

$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=2.10332 \times 10^{-9} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$
$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=-1.05166 \times 10^{-9}+1.05166 \times 10^{-9} \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}$
$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=5.25831 \times 10^{-10} \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}$
$\binom{n}{m}$ is the binomial coefficient

Integral representations:

$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=1.05166 \times 10^{-9} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$
$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=2.10332 \times 10^{-9} \int_{0}^{1} \sqrt{1-t^{2}} d t$
$4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}=1.05166 \times 10^{-9} \int_{0}^{\infty} \frac{\sin (t)}{t} d t$
$\left(\left(\left(4 \mathrm{Pi}^{*}(2.2 /(780 * 246))^{\wedge} 2\right)\right)\right)^{\wedge} 1 / 2048$

Input:

$\sqrt[2048]{4 \pi\left(\frac{2.2}{780 \times 246}\right)^{2}}$

Result:

0.990174897...
$0.990174897 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Now, we have that:
Then our main results for the SM Higgs case were obtained as the $D=4$ and $N \rightarrow 4$ case of the above generic results. The dynamically generated kinetic term and the mass of the SM rho ρ_{μ} read as Eq.(86) and Eq.(87):

$$
\begin{align*}
\mathrm{SM}: \quad \frac{1}{\lambda_{\mathrm{HLS}}\left(\mu^{2}\right)} & =\frac{1}{N g_{\mathrm{HLS}}^{2}\left(\mu^{2}\right)}=\frac{1}{3} \frac{1}{(4 \pi)^{2}} \ln \left(\frac{\Lambda^{2}}{\mu^{2}}\right), \\
M_{\rho}^{2}\left(\mu^{2}\right) & -g_{\mathrm{HLS}}^{2}\left(\mu^{2}\right) \cdot F_{\rho}^{2}, \\
F_{\rho}^{2} & =2 \cdot N v^{2}=2 \cdot F_{\pi}^{2} \simeq 2 \cdot(246 \mathrm{GeV})^{2} \simeq(350 \mathrm{GcV})^{2}, \tag{145}
\end{align*}
$$

1) "Low M_{ρ} scenario" ($M_{\rho}<2.3 \mathrm{TeV}, \Lambda>M_{\rho}$, collider detection):

A typical example is $M_{\rho}=2 \mathrm{TeV}\left(g_{\rho \pi \pi} \simeq 5.7\right)$, which is a simple scale-up of the QCD ρ meson, thus is perfectly natural with $\Lambda \simeq 3.3 \mathrm{TeV} \simeq 4 \pi F_{\pi}$. This yields the "broad width" $\Gamma_{\rho} \simeq \Gamma_{\rho \rightarrow W W} \simeq g_{\rho \pi \pi}^{2} M_{\rho} /(48 \pi) \simeq 433 \mathrm{GeV}$, which, although a scale-up of the ρ meson width, may be barely detectable at LHC. For larger (smaller) M_{ρ} the width gets larger (smaller) as $\sim M_{\rho}^{3}$, and the production cross section gets smaller (larger) as $\sim 1 / M_{\rho}^{2}$, thus more difficult for $M_{\rho}>2 \mathrm{TeV}$ to be seen at LHC. The SM rho with narrow resonance $\Gamma_{\rho} \lesssim 100 \mathrm{GeV}$ if any could be detected at LHC for $M_{p} \lesssim 1.2 \mathrm{TeV}$, which corresponds to $g_{\mathrm{HLS}} \lesssim 3.5$ and $\Lambda \gtrsim 50 \mathrm{TeV}$.

We have:
$2^{*}(246)^{\wedge} 2=121032 ;$

Input:

$\sqrt{121032}$

Result:

$246 \sqrt{2}$

Decimal approximation:

347.8965363437813820052154261555857273281392813427292260014...
$347.89653634 \ldots=\mathrm{F}_{\pi}$
$\left(5.7^{\wedge} 2 * 2000\right) /(48 \mathrm{Pi})$
Input:
$\frac{5.7^{2} \times 2000}{48 \pi}$

Result:

430.912...
430.912

Alternative representations:

$$
\frac{5.7^{2} \times 2000}{48 \pi}=\frac{2000 \times 5.7^{2}}{8640^{\circ}}
$$

$$
\frac{5.7^{2} \times 2000}{48 \pi}=-\frac{2000 \times 5.7^{2}}{48 i \log (-1)}
$$

$$
\frac{5.7^{2} \times 2000}{48 \pi}=\frac{2000 \times 5.7^{2}}{48 \cos ^{-1}(-1)}
$$

Series representations:

$\frac{5.7^{2} \times 2000}{48 \pi}=\frac{338.438}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}$
$\frac{5.7^{2} \times 2000}{48 \pi}=\frac{676.875}{-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}}$
$\frac{5.7^{2} \times 2000}{48 \pi}=\frac{1353.75}{\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}}$

Integral representations:

$\frac{5.7^{2} \times 2000}{48 \pi}=\frac{676.875}{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}$
$\frac{5.7^{2} \times 2000}{48 \pi}=\frac{338.438}{\int_{0}^{1} \sqrt{1-t^{2}} d t}$
$\frac{5.7^{2} \times 2000}{48 \pi}=\frac{676.875}{\int_{0}^{\infty} \frac{\sin (t)}{t} d t}$
And:
$4 \mathrm{Pi}^{*} \mathrm{sqrt}\left(\left(2^{*}(246)^{\wedge} 2\right)\right)$

Input:

$4 \pi \sqrt{2 \times 246^{2}}$

Result:

$984 \sqrt{2} \pi$
Decimal approximation:
4371.796811147832387063626894219722599436787742345679179516...
4371.7968111...

Property:

$984 \sqrt{2} \pi$ is a transcendental number

Series representations:

$4 \pi \sqrt{2 \times 246^{2}}=4 \pi \sqrt{121031} \sum_{k=0}^{\infty} 121031^{-k}\binom{\frac{1}{2}}{k}$
$4 \pi \sqrt{2 \times 246^{2}}=4 \pi \sqrt{121031} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{121031}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}$
$4 \pi \sqrt{2 \times 246^{2}}=\frac{2 \pi \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 121031^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}$

And:
$55+\mathrm{Pi}+1 /(((\operatorname{sqrt}(5)+1) / 2))^{\wedge} 2 * 4 \mathrm{Pi}^{*} \operatorname{sqrt}\left(\left(2 *(246)^{\wedge} 2\right)\right)$

Input:

$55+\pi+\frac{1}{\left(\frac{1}{2}(\sqrt{5}+1)\right)^{2}} \times 4\left(\pi \sqrt{2 \times 246^{2}}\right)$

Result:

$55+\pi+\frac{3936 \sqrt{2} \pi}{(1+\sqrt{5})^{2}}$

Decimal approximation:

1728.019382603656566492596054915250648651976071328252528446...
1728.0193826.....

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Property:

$55+\pi+\frac{3936 \sqrt{2} \pi}{(1+\sqrt{5})^{2}}$ is a transcendental number

Alternate forms:

$55+\pi+1476 \sqrt{2} \pi-492 \sqrt{10} \pi$
$55+\pi+984 \sqrt{7-3 \sqrt{5}} \pi$
$55+\pi+\frac{1968 \sqrt{2} \pi}{3+\sqrt{5}}$

Series representations:

$$
\begin{aligned}
& 55+\pi+\frac{4\left(\pi \sqrt{2 \times 246^{2}}\right)}{\left(\frac{1}{2}(\sqrt{5}+1)\right)^{2}}= \\
& \left(55+\pi+110 \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+2 \pi \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+55 \sqrt{4}^{2}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+\right. \\
& \left.\pi \sqrt{4}^{2}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{2}+16 \pi \sqrt{121031} \sum_{k=0}^{\infty} 121031^{-k}\binom{\frac{1}{2}}{k}\right) / \\
& \left(1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{2} \\
& 55+\pi+\frac{4\left(\pi \sqrt{2 \times 246^{2}}\right)}{\left(\frac{1}{2}(\sqrt{5}+1)\right)^{2}}= \\
& \left(55+\pi+110 \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+2 \pi \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}+\right. \\
& 55 \sqrt{4}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+\pi \sqrt{4}^{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}+ \\
& \left.16 \pi \sqrt{121031} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{121031}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) /\left(1+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 55+\pi+\frac{4\left(\pi \sqrt{2 \times 246^{2}}\right)}{\left(\frac{1}{2}(\sqrt{5}+1)\right)^{2}}=\left(55+\pi+110 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+\right. \\
& 2 \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+55{\sqrt{z_{0}}}^{2} \\
& \quad\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}+\pi{\sqrt{z_{0}}}^{2}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}+ \\
& \left.16 \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(121032-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.-\infty<z_{0} \leq 0\right)$)

Finally, our results are not restricted to the SM Higgs Lagrangian but to the generic nonlinear sigma model of the same $G / H=O(4) / O(3) \simeq\left[S U(2)_{L} \times S U(2)_{R}\right] / S U(2)_{V}$, with/without nonlinearly realized (approximate) scale symmetry, since we showed that the dynamical results obtained in the large N limit are not sensitive to the presence of the pseudo-dilaton φ. Then it is readily applied to the two-flavored QCD in the chiral limit. \#29

In particular, the so-called successful $a=2$ results of the ρ meson, i.e., ρ-universality, KSRF I and II, and vector meson dominance (VMD), are now proved to be realized for any a for the dynamical gauge boson of the HLS, and thus are simply nonperturbative dynamical consequences in the large N limit but not a mysterious parameter choice a $=2$. The dynamically generated kinetic term has a new free parameter, the ρ coupling (related to the cutoff or Landau pole, Eq.(1)), which is adjusted to the reality as $g_{\rho \pi \pi}=g_{\mathrm{HLS}} \simeq 5.9$ corresponding to $m_{\rho}=g_{\rho \pi \pi} f_{\rho}=\sqrt{2} g_{\mathrm{HLS}} f_{\pi} \simeq 770 \mathrm{MeV}$ $\left(f_{\pi} \simeq 92 \mathrm{MeV}\right)$, Eq.(2). This implies the cutotf (related to the Landau pole) $\Lambda=\tilde{\Lambda} \cdot e^{-4 / 3}=m_{\rho} \cdot e^{3(4 \pi)^{2} /\left(8 g_{\mathrm{HLS}}^{2}\right)} \cdot e^{-4 / 3} \simeq$ 1.1 GeV which coincides with the breakdown scale of the chiral perturbation theory $\Lambda_{\chi} \simeq 4 \pi f_{\pi}$.

The fact is a most remarkable triumph of the nonlinear sigma model as an effective field theory including full nonperturbative dynamics. It in fact becomes a direct evidence of the dynamically generation of the HLS gauge boson in QCD !! Phrased differently, QCD knows the Grassmannian manifold! Or, Nature chonses Grassmannian manifold as the effective theory of QCD-like theories.

We have:

$\operatorname{sqrt(2)*5.9*92}$

Input:

$\sqrt{2} \times 5.9 \times 92$

Result:

767.635...
767.635...
$8+(((\operatorname{sqrt}(2) * 5.9 * 92)))$

Input:

$8+\sqrt{2} \times 5.9 \times 92$

Result:

775.635...
$775.635 \ldots$. result practically equal to the rest mass of Charged rho meson 775.11
$((((1 /(((\operatorname{sqrt}(2) * 5.9 * 92))))))))^{\wedge} 1 / 1024$

Input:

$\sqrt[1024]{\frac{1}{\sqrt{2} \times 5.9 \times 92}}$

Result:

0.993533387...
0.993533387
result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{54} \sqrt{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

We have also:

4Pi*92

Input:

$4 \pi \times 92$

Result:

368π

Decimal approximation:

1156.106096521043911754252765046857061384558338970038942118.
1156.106096...

Property:

368π is a transcendental number

We note that:
$\left(\left(\left(4 \mathrm{Pi}^{*} 92\right)\right)\right)^{\wedge} 1 / 14$
Input:
$\sqrt[14]{4 \pi \times 92}$

Exact result:

$2 \sqrt[2 / 7]{23 \pi}$
Decimal approximation:
$1.654952561335743147543223624316835307075065918559826571025 \ldots$
1.65495256.... is very near to the 14th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. 1,65578...

Property:

$2 \sqrt[2 / 7]{14} 23 \pi$ is a transcendental number
All 14th roots of 368π :

- Polar form

$$
\begin{aligned}
& 2^{2 / 714} 23 \pi \\
& e^{0} \approx 1.65495 \text { (real, principal root) } \\
& 2 \sqrt[2 / 714]{23 \pi} e^{(i \pi) / 7} \approx 1.4911+0.7181 i \\
& 2 / 7 \sqrt[14]{23 \pi} e^{(2 i \pi) / 7} \approx 1.0318+1.2939 i \\
& 2 / 7144 \\
& 23 \pi \\
& e^{(3 i \pi) / 7} \approx 0.36826+1.61346 i
\end{aligned}
$$

$2^{2 / 7} \sqrt[14]{23 \pi} e^{(4 i \pi) / 7} \approx-0.3683+1.61346 i$

Alternative representations:

$\sqrt[14]{4 \pi 92}=\sqrt[14]{66240^{\circ}}$
$\sqrt[14]{4 \pi 92}=\sqrt[14]{-368 i \log (-1)}$
$\sqrt[14]{4 \pi 92}=\sqrt[14]{368 \cos ^{-1}(-1)}$

Series representations:

$\sqrt[14]{4 \pi 92}=2^{3 / 7} \sqrt[14]{23} \sqrt[14]{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}$
$\sqrt[14]{4 \pi 92}=2^{3 / 7} \sqrt[14]{\sum_{k=0}^{\infty}-\frac{23(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}$
$\sqrt[14]{4 \pi 92}=2 / 7 \sqrt[14]{23} \sqrt[14]{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}$

Integral representations:

$\sqrt[14]{4 \pi 92}=2 \sqrt[3 / 7]{14} 23 \sqrt[14]{\int_{0}^{1} \sqrt{1-t^{2}} d t}$
$\sqrt[14]{4 \pi 92}=2^{5 / 14} \sqrt[14]{23} \sqrt[14]{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}$

$$
\sqrt[14]{4 \pi 92}=2^{5 / 14} \sqrt[14]{23} \sqrt[14]{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}
$$

From:
Elementary Partiches

$$
\text { fring } 1951
$$

Enrico Fermi
C-1-Pion decay

$$
\begin{aligned}
& \Pi \rightarrow \mu+\nu \\
& \frac{e_{3} \hbar c}{\sqrt{2 \Omega \mu c^{2}}} \\
& \frac{1}{\tau_{\pi}}=\frac{2 \pi}{\hbar}\left(\frac{e_{3} \hbar c}{\sqrt{2 \Omega \mu c^{2}}}\right)^{2} \frac{p^{2} d p \Omega}{2 \pi^{2} \hbar^{3}\left(v_{\mu}+v_{\nu}\right)}=\frac{e_{3}^{2} p^{2}}{2 \pi \hbar^{2} \mu\left(v_{\mu}+v_{\nu}\right)} \\
& c p+\sqrt{\mu_{1}^{2} c^{4}+c^{2} p^{2}}=\mu c^{2} \quad \begin{array}{l}
\mu=276 m \\
\mu_{1}=210 m
\end{array} \\
& p=58.1 \mathrm{mc} \quad v_{\nu}=c \quad v_{\mu}=.27 \mathrm{c} \text { (4.1MeN) } \\
& \frac{1}{\tau_{\Pi}}=3.8 \times 10^{37} e_{3}^{2} \quad \tau_{\Pi}=2.6 \times 10^{-8} \mathrm{sec} \\
& e_{3}=10^{-15} \mathrm{eac}=2 \times 10^{-6} \mathrm{e}
\end{aligned}
$$

$(58.1)^{\wedge} 1 / 8$

Input:

$\sqrt[8]{58.1}$

Result:

1.661582909539033274740482638936982078096186008800838037791
$1.661582909539 \ldots .$. is very near to the 14 th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. 1,65578...

Possible closed forms:

$\sqrt{\frac{14445233}{5232154}} \approx 1.66158290953903337167$
π root of $961 x^{4}+98 x^{3}-4004 x^{2}+341 x+850$ near $x=0.528898$
1.661582909539033274714111
$-\frac{3\left(-100-159 e+79 e^{2}\right)}{105-853 e+287 e^{2}} \approx 1.6615829095390332722040$

C-2. Spontaneous nus decay

$$
\begin{gathered}
\mu \rightarrow e+\nu+\bar{\nu} \\
g_{2} / \Omega \\
\operatorname{Rate}(d p)=\frac{2 \pi}{\hbar} \frac{g_{2}}{\Omega^{2}} \frac{\Omega p^{2} d p}{2 \pi^{2} \hbar^{3}} \frac{d N}{d w} \\
\left|p_{1}\right|+\left|p_{2}\right|=\frac{w}{c}-p
\end{gathered}
$$

e relativistic

Neutrino mom. space

$$
\begin{gathered}
\frac{\pi}{6}\left(\frac{w^{3}}{c^{3}}-3 p \frac{w^{2}}{c^{2}}+2 p^{2} \frac{w}{c}\right) \\
\frac{d N}{d W}=\frac{d}{d W}\left\{\frac{\Omega}{8 \pi^{3} \hbar^{3}} \frac{\pi}{6}(\downarrow\right. \\
\text { Rate }(d p)=\frac{g_{2}^{2} \mu_{1}^{2} c}{48 \pi^{3} \hbar^{7}}\left(3-\frac{6 p}{\mu_{1} c}+\frac{2 p^{2}}{\mu_{1}^{2} c^{2}}\right) p^{2} d p
\end{gathered}
$$

Integrating

$$
\frac{1}{\tau_{\mu}}=\frac{7}{7680 \pi^{3}} \frac{g_{2}^{2} \mu_{1}^{5} c^{4}}{\hbar^{7}}=\frac{1}{2.15 \times 10^{-6}} \sec ^{-1}
$$

$$
g_{2}=3.3 \times 10^{-49}
$$

$(53.7)^{\wedge} 1 / 8$
Input:
$\sqrt[8]{53.7}$

Result:

1.645306394929727369700052867839179083692696389708228192009 .
$1.645306394 \ldots . \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Possible closed forms:

π root of $61154 x^{3}-8674 x^{2}+891 x-6872$ near $x=0.523717 \approx$
1.645306394929727369713919
$\frac{2022798601 \pi}{3862386510} \approx 1.64530639492972736968302$
root of $13262 x^{3}+1440 x^{2}-39525 x+2065$ near $x=1.64531 \approx$
1.6453063949297273697098827

Ramanujan Manuscript II - Page 304

$(\cos 40)^{\wedge} 1 / 3+(\cos 80)^{\wedge} 1 / 3$
Input:
$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}$

Decimal approximation:

$0.67670128772606545120744355021838109939475430998924266628 \ldots$.
$1.1720810118888308567868135834898319924398827643779341260 \ldots i$

Polar coordinates:

```
r\approx1.3534 (radius), }0\approx6\mp@subsup{0}{}{\circ}\mathrm{ (angle)
```

1.3534

Alternate forms:

$\sqrt[3]{\frac{1}{2}\left(e^{-40 i}+e^{40 i}\right)}+\sqrt[3]{\frac{1}{2}\left(e^{-80 i}+e^{80 i}\right)}$
$\frac{1}{2} \sqrt[3]{-\cos (40)}+i\left(\frac{1}{2} \sqrt{3} \sqrt[3]{-\cos (40)}+\frac{1}{2} \sqrt{3} \sqrt[3]{-\cos (80)}\right)+\frac{1}{2} \sqrt[3]{-\cos (80)}$

Alternative representations:

$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\sqrt[3]{\frac{1}{\sec (40)}}+\sqrt[3]{\frac{1}{\sec (80)}}$
$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\sqrt[3]{\cosh (-40 i)}+\sqrt[3]{\cosh (-80 i)}$
$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\sqrt[3]{\cosh (40 i)}+\sqrt[3]{\cosh (80 i)}$

Series representations:

$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\sqrt[3]{\sum_{k=0}^{\infty} \frac{(-6400)^{k}}{(2 k)!}}+\sqrt[3]{\sum_{k=0}^{\infty} \frac{(-1600)^{k}}{(2 k)!}}$
$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\sqrt[3]{\sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(40-z_{0}\right)^{k}}{k!}}+\sqrt[3]{\sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(80-z_{0}\right)^{k}}{k!}}$
$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\sqrt[3]{-\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(40-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}}+\sqrt[3]{-\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(80-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}}$

Integral representations:

$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\sqrt[3]{-\int_{\frac{\pi}{2}}^{40} \sin (t) d t}+\sqrt[3]{-\int_{\frac{\pi}{2}}^{80} \sin (t) d t}$
$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\sqrt[3]{1-40 \int_{0}^{1} \sin (40 t) d t}+\sqrt[3]{1-80 \int_{0}^{1} \sin (80 t) d t}$

$$
\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\frac{\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-1600 / s+s}}{\sqrt{s}} d s}+\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-400 / s+s}}{\sqrt{s}} d s}}{\sqrt[3]{2} \sqrt[6]{\pi}} \text { for } \gamma>0
$$

$\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)}=\frac{\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{20^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}+\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{40^{-2 s} \Gamma \Gamma\left(\frac{1}{2}-s\right)}{\Gamma} d s}}{\sqrt[3]{2} \sqrt[6]{\pi}}$ for $0<\gamma<\frac{1}{2}$
$(\cos 20)^{\wedge} 1 / 3+\left(3 / 2\left(9^{\wedge} 1 / 3-2\right)\right)^{\wedge} 1 / 3$

Input:

$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{3}{2}(\sqrt[3]{9}-2)}$

Exact result:

$\sqrt[3]{\frac{3}{2}\left(3^{2 / 3}-2\right)}+\sqrt[3]{\cos (20)}$

Decimal approximation:

1.235150302005868526995022813088258129210398609802262761649
1.235150302....

Property:

$\sqrt[3]{\frac{3}{2}\left(-2+3^{2 / 3}\right)}+\sqrt[3]{\cos (20)}$ is a transcendental number

Alternate forms:

$\sqrt[3]{\frac{3 \times 3^{2 / 3}}{2}-3}+\sqrt[3]{\cos (20)}$
$\sqrt[3]{\frac{3}{2}\left(3^{2 / 3}-2\right)}+\sqrt[3]{\frac{1}{2}\left(e^{-20 i}+e^{20 i}\right)}$
$\frac{1}{2}\left(2^{2 / 3} \sqrt[3]{3\left(3^{2 / 3}-2\right)}+2 \sqrt[3]{\cos (20)}\right)$

Alternative representations:

$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\frac{3}{2}(-2+\sqrt[3]{9})}+\sqrt[3]{\frac{1}{\sec (20)}}$
$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\cosh (-20 i)}+\sqrt[3]{\frac{3}{2}(-2+\sqrt[3]{9})}$
$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\cosh (20 i)}+\sqrt[3]{\frac{3}{2}(-2+\sqrt[3]{9})}$

Series representations:

$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\frac{3}{2}\left(-2+3^{2 / 3}\right)}+\sqrt[3]{\sum_{k=0}^{\infty} \frac{(-400)^{k}}{(2 k)!}}$
$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\frac{3}{2}\left(-2+3^{2 / 3}\right)}+\sqrt[3]{-\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(20-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}}$
$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\frac{3}{2}\left(-2+3^{2 / 3}\right)}+\sqrt[3]{\sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(20-z_{0}\right)^{k}}{k!}}$

Integral representations:

$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\frac{3}{2}\left(-2+3^{2 / 3}\right)}+\sqrt[3]{1-20 \int_{0}^{1} \sin (20 t) d t}$
$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\frac{3}{2}\left(-2+3^{2 / 3}\right)}+\sqrt[3]{-\int_{\frac{\pi}{2}}^{20} \sin (t) d t}$
$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\frac{3}{2}\left(-2+3^{2 / 3}\right)}+\frac{\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-100 / s+s}}{\sqrt{s}} d s}}{\sqrt[3]{2} \sqrt[6]{\pi}}$ for $\gamma>0$
$\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}=\sqrt[3]{\frac{3}{2}\left(-2+3^{2 / 3}\right)}+\frac{\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{10^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}}{\sqrt[3]{2} \sqrt[6]{\pi}}$
for $0<\gamma<\frac{1}{2}$

Multiplying the two results, we obtain:
$\left(\left((\cos 40)^{\wedge} 1 / 3+(\cos 80)^{\wedge} 1 / 3\right)\right) *\left(\left((\cos 20)^{\wedge} 1 / 3+\left(3 / 2\left(9^{\wedge} 1 / 3-2\right)\right)^{\wedge} 1 / 3\right)\right)$

Input:

$(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{3}{2}(\sqrt[3]{9}-2)}\right)$

Exact result:

$\left(\sqrt[3]{\frac{3}{2}\left(3^{2 / 3}-2\right)}+\sqrt[3]{\cos (20)}\right)(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})$

Decimal approximation:

$0.83582779990260987510522728061193460310802661767979666827 \ldots+$ $1.4476962158098334122457748058747804911568007390944389625 \ldots i$

Polar coordinates:

$r \approx 1.67166$ (radius), $\theta \approx 60^{\circ}$ (angle)
1.67166 result very near to the results of previous Fermi formulas
$1.661582909539 \ldots$ to the result $1.645306394 \ldots$. and to the value of the formula:
$m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-24} \mathrm{gm}$
that is the holographic proton mass (N. Haramein)

Alternate forms:

$\left(\sqrt[3]{\frac{3 \times 3^{2 / 3}}{2}-3}+\sqrt[3]{\cos (20)}\right)(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})$
$\frac{1}{2}\left(2^{2 / 3} \sqrt[3]{3\left(3^{2 / 3}-2\right)}+2 \sqrt[3]{\cos (20)}\right)(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})$

$$
\sqrt[3]{\frac{3}{2}\left(3^{2 / 3}-2\right)}(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})+\sqrt[3]{\cos (20)}(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})
$$

Alternative representations:

$$
\begin{aligned}
& (\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)= \\
& \left(\sqrt[3]{\frac{3}{2}(-2+\sqrt[3]{9})}+\sqrt[3]{\frac{1}{\sec (20)}}\right)\left(\sqrt[3]{\frac{1}{\sec (40)}}+\sqrt[3]{\frac{1}{\sec (80)}}\right) \\
& (\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)= \\
& (\sqrt[3]{\cosh (-40 i)}+\sqrt[3]{\cosh (-80 i)})\left(\sqrt[3]{\cosh (-20 i)}+\sqrt[3]{\frac{3}{2}(-2+\sqrt[3]{9})}\right)
\end{aligned}
$$

$$
(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)=
$$

$$
(\sqrt[3]{\cosh (40 i)}+\sqrt[3]{\cosh (80 i)})\left(\sqrt[3]{\cosh (20 i)}+\sqrt[3]{\frac{3}{2}(-2+\sqrt[3]{9})}\right)
$$

Series representations:

$$
\begin{aligned}
& (\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)= \\
& \frac{1}{2}\left(\sqrt[3]{\left.\sum_{k=0}^{\infty} \frac{(-6400)^{k}}{(2 k)!}+\sqrt[3]{\sum_{k=0}^{\infty} \frac{(-1600)^{k}}{(2 k)!}}\right)\left(2^{2 / 3} \sqrt[3]{3\left(-2+3^{2 / 3}\right)}+2 \sqrt[3]{\sum_{k=0}^{\infty} \frac{(-400)^{k}}{(2 k)!}}\right)}\right. \\
& (\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)= \\
& \frac{1}{2}\left(2^{2 / 3} \sqrt[3]{\left.3\left(-2+3^{2 / 3}\right)+2 \sqrt[3]{\sum_{k=0}^{\infty}} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(20-z_{0}\right)^{k}}{k!}\right)}\right. \\
& \left(\sqrt[3]{\sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(40-z_{0}\right)^{k}}{k!}}+\sqrt[3]{\sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(80-z_{0}\right)^{k}}{k!}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& (\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)= \\
& \frac{1}{2}\left(2^{2 / 3} \sqrt[3]{3\left(-2+3^{2 / 3}\right)}+2 \sqrt[3]{-\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(20-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}}\right) \\
& \left(\sqrt[3]{-\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(40-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}}+\sqrt[3]{-\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(80-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& (\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)= \\
& \frac{1}{2}\left(2^{2 / 3} \sqrt[3]{3\left(-2+3^{2 / 3}\right)}+2 \sqrt[3]{-\int_{\frac{\pi}{2}}^{20} \sin (t) d t}\right)\left(\sqrt[3]{-\int_{\frac{\pi}{2}}^{40} \sin (t) d t}+\sqrt[3]{-\int_{\frac{\pi}{2}}^{80} \sin (t) d t}\right)
\end{aligned}
$$

$$
(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)=
$$

$$
\frac{1}{2}\left(2^{2 / 3} \sqrt[3]{3\left(-2+3^{2 / 3}\right)}+2 \sqrt[3]{1-20 \int_{0}^{1} \sin (20 t) d t}\right)
$$

$$
\left(\sqrt[3]{1-40 \int_{0}^{1} \sin (40 t) d t}+\sqrt[3]{1-80 \int_{0}^{1} \sin (80 t) d t}\right)
$$

$$
(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2) 3}\right)=
$$

$$
\frac{1}{2^{2 / 3} \sqrt[3]{\pi}}\left(\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-1600 / s+s}}{\sqrt{s}} d s}+\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-400 / s+s}}{\sqrt{s}} d s}\right)
$$

$$
\left(\sqrt[3]{3\left(-2+3^{2 / 3}\right)} \sqrt[6]{\pi}+\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-100 / s+s}}{\sqrt{s}} d s}\right) \text { for } \gamma>0
$$

$$
(\sqrt[3]{\cos (40)}+\sqrt[3]{\cos (80)})\left(\sqrt[3]{\cos (20)}+\sqrt[3]{\frac{1}{2}(\sqrt[3]{9}-2)^{3}}\right)=
$$

$$
\begin{aligned}
& \frac{1}{2^{2 / 3} \sqrt[3]{\pi}}\left(\sqrt[3]{3\left(-2+3^{2 / 3}\right)} \sqrt[6]{\pi}+\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{10^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}\right) \\
& \left(\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{20^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}+\sqrt[3]{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{40^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}\right) \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Now, from the Fermi paper, we have the following equation:

We note that:
7/(7680Pi^3)

Input:

$$
\frac{7}{7680 \pi^{3}}
$$

Decimal approximation:

$0.000029395929821926617746218016773430445332219186592753455 \ldots$

Property:

$\frac{7}{7680 \pi^{3}}$ is a transcendental number

Alternative representations:

$\frac{7}{7680 \pi^{3}}=\frac{7}{7680\left(180^{\circ}\right)^{3}}$
$\frac{7}{7680 \pi^{3}}=\frac{7}{7680(-i \log (-1))^{3}}$
$\frac{7}{7680 \pi^{3}}=\frac{7}{7680 \cos ^{-1}(-1)^{3}}$

Series representations:

$$
\begin{aligned}
& \frac{7}{7680 \pi^{3}}=\frac{7}{491520\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}} \\
& \frac{7}{7680 \pi^{3}}=\frac{7}{7680\left(\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{3}}
\end{aligned}
$$

$$
\frac{7}{7680 \pi^{3}}=\frac{7}{7680\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{3}}
$$

Integral representations:

$\frac{7}{7680 \pi^{3}}=\frac{7}{491520\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{3}}$
$\frac{7}{7680 \pi^{3}}=\frac{7}{61440\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{3}}$
$\frac{7}{7680 \pi^{3}}=\frac{7}{61440\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{3}}$

And that:
$(2.67092537-0.50970737) * 1 /\left(\left(\left(\left(7 * 1 /\left(7680 \mathrm{Pi}^{\wedge} 3\right)\right)\right)\right)\right)-29$

Input interpretation:

$(2.67092537-0.50970737) \times \frac{1}{7 \times \frac{1}{7680 \pi^{3}}}-29$

Result:

73491.995.
73491.995

Alternative representations:

$\frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+\frac{2.16122}{\frac{7}{7680\left(180^{\circ}\right)^{3}}}$
$\frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+\frac{2.16122}{\frac{7}{7680 \cos ^{-1}(-1)^{3}}}$
$\frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+\frac{2.16122}{\frac{7}{7680(-i \log (-1))^{3}}}$

Series representations:

$\frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+151755 .\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}$
$\frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+18969.3\left(-1+\sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}\right)^{3}$
$\frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+2371.16\left(\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\right)^{3}$

Integral representations:

$$
\begin{aligned}
& \frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+18969.3\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{3} \\
& \frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+151755 \cdot\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{3} \\
& \frac{2.67093-0.509707}{\frac{7}{7680 \pi^{3}}}-29=-29+18969.3\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{3}
\end{aligned}
$$

Where:

$$
\begin{gathered}
\left(\frac{1}{1-0.449329}+\frac{0.449329}{\left(1-0.449329^{2}\right)\left(1-0.449329^{3}\right)}\right)+ \\
\frac{0.449329^{2}}{\left(1-0.449329^{3}\right)\left(1-0.449329^{4}\right)\left(1-0.449329^{5}\right)}
\end{gathered}
$$

2.670925377482945723639317570028275016308835824074456769461...
$\chi(\boldsymbol{q})=\mathbf{2 . 6 7 0 9 2 5 3 7 7 4 8 2 9} \ldots$
And
$0.449329+0.449329^{4}(1+0.449329)+0.449329^{9}(1+0.449329)\left(1+0.449329^{2}\right)$
$0.509707374450926175465106350027401141383801983986000851664 \ldots$
$\boldsymbol{\phi}(\boldsymbol{q})=\mathbf{0 . 5 0 9 7 0 7 3 7 4 4 5}$...

Are the values of two Ramanujan mock theta functions

Thence, we obtain the following mathematical connections:

$$
I_{21} \ll \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \ll
$$

$$
\left.\ll H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}\right)^{/}
$$

$$
\begin{aligned}
& \left((2.67092537-0.50970737) \times \frac{1}{7 \times \frac{1}{7680 \pi^{3}}}-29\right)=73491.995 \Rightarrow \\
& \Rightarrow-3927+2\left(\sqrt{13} \begin{array}{c}
N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+ \\
\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}
\end{array}\right)= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $\mathrm{u} \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Furthermore, we obtain also:

$\left(\left(\left(\left(7 /\left(7680 \mathrm{Pi}^{\wedge} 3\right)\right)\right)\right)\right)^{\wedge} 1 / 4096$

Input:

$\sqrt[4096]{\frac{7}{7680 \pi^{3}}}$

Exact result:

$$
\frac{\sqrt[4096]{\frac{7}{15}}}{2^{9 / 4096} \pi^{3 / 4096}}
$$

Decimal approximation:

$0.997455719152116841448403004416878244502721880705041058496 \ldots$
$0.997455719152 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Property:

$\frac{\sqrt[4096]{\frac{7}{15}}}{2^{9 / 4096} \pi^{3 / 4096}}$ is a transcendental number

All 4096th roots of $7 /\left(7680 \boldsymbol{\pi}^{\wedge} 3\right)$:

$\frac{\sqrt[4096]{\frac{7}{15} e^{0}}}{2^{9 / 4096} \pi^{3 / 4096}} \approx 0.9974557$ (real, principal root)
$\frac{\sqrt[4096]{\frac{7}{15}} e^{(i \pi) / 2048}}{2^{9 / 4096} \pi^{3 / 4096}} \approx 0.9974545+0.0015301 i$
$\frac{\sqrt[4096]{\frac{7}{15}} e^{(i \pi) / 1024}}{2^{9 / 4096} \pi^{3 / 4096}} \approx 0.9974510+0.0030602 i$
$\frac{\sqrt[4096]{\frac{7}{15}} e^{(3 i \pi) / 2048}}{2^{9 / 4096} \pi^{3 / 4096}} \approx 0.9974452+0.0045902 i$
$\frac{\sqrt[4096]{\frac{7}{15}} e^{(i \pi) / 512}}{2^{9 / 4096} \pi^{3 / 4096}} \approx 0.9974369+0.006120 i$

Alternative representations:

$$
\begin{aligned}
& \sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\sqrt[4096]{\frac{7}{7680\left(180^{\circ}\right)^{3}}} \\
& \sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\sqrt[4096]{\frac{7}{7680 \cos ^{-1}(-1)^{3}}} \\
& \sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\sqrt[4096]{\frac{7}{7680(-i \log (-1))^{3}}}
\end{aligned}
$$

Series representations:

$$
\sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{15}}}{2^{15 / 4096}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3 / 4096}}
$$

$$
\sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{15}}}{2^{15 / 4096}\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{3 / 4096}}
$$

$$
\sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{15}}}{2^{9 / 4096}\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{3 / 4096}}
$$

$$
\sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{15}}}{2^{9 / 4096}\left(\sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)\right)^{3 / 4096}}
$$

$$
\sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{5}}}{2^{3 / 1024} \sqrt[1024]{3}\left(\sum_{k=1}^{\infty} \frac{-120+329 k+568 k^{2}}{k(1+k)(1+2 k)(1+4 k)(3+4 k)(5+4 k)}\right)^{3 / 4096}}
$$

$$
\sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{15}}}{2^{3 / 4096}\left(\sum_{k=0}^{\infty} 16^{-k}\left(\frac{8}{1+8 k}+\frac{8}{2+8 k}+\frac{4}{3+8 k}-\frac{2}{5+8 k}-\frac{2}{6+8 k}-\frac{1}{7+8 k}\right)\right)^{3 / 4096}}
$$

$$
\sqrt[4096]{\frac{7}{7680 \pi^{3}}}=
$$

$$
\frac{\sqrt[4096]{\frac{7}{15}} 2^{9 / 4096}}{\left(\sum_{k=0}^{\infty}(-1)^{k} 2^{-10 k}\left(-\frac{32}{1+4 k}-\frac{1}{3+4 k}+\frac{256}{1+10 k}-\frac{64}{3+10 k}-\frac{4}{5+10 k}-\frac{4}{7+10 k}+\frac{1}{9+10 k}\right)\right)^{3 / 4096}}
$$

$\sqrt[4096]{\frac{7}{7680 \pi^{3}}}=$

$$
\frac{\sqrt[409]{\frac{7}{15}}}{2^{9 / 4096}\left(\sum_{k=0}^{\infty} 16^{-k}\left(-\frac{8 r}{2+8 k}-\frac{4 r}{3+8 k}+\frac{r}{7+8 k}-\frac{1+2 r}{5+8 k}-\frac{1+2 r}{6+8 k}-\frac{2+8 r}{4+8 k}+\frac{4+8 r}{1+8 k}\right)\right)^{3 / 4096}}
$$

for $(r \in \mathbb{Z}$ and $r>0)$

Integral representations:

$$
\begin{aligned}
& \sqrt[4006]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{15}}}{2^{15 / 4096}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{3 / 4096}} \\
& \sqrt[4006]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{15}}}{2^{3 / 1024}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{3 / 4096}} \\
& \sqrt[4096]{\frac{7}{7680 \pi^{3}}}=\frac{\sqrt[4096]{\frac{7}{15}}}{2^{3 / 1024}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{3 / 4096}}
\end{aligned}
$$

We have that:

$$
g_{2}=3.3 \times 10^{-49}
$$

From which:
$\left(3.3^{*} 10^{\wedge}-49\right)^{\wedge} 1 / 4096$

Input interpretation:

$\sqrt[4096]{3.3 \times 10^{-49}}$

Result:

0.9731139529...
$0.9731139529 \ldots$... result very near to the spectral index n_{s} and to the mesonic Regge slope (see Appendix) and to the inflaton value at the end of the inflation 0.9402 and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

And:
$\operatorname{sqrt}\left(\left(\left(\log\right.\right.\right.$ base $\left.\left.\left.0.9731139529\left(3.3^{*} 10^{\wedge}-49\right)\right)\right)\right)$

Input interpretation:

$\sqrt{\log _{0.9731139529}\left(3.3 \times 10^{-49}\right)}$
$\log _{b}(x)$ is the base- b logarithm

Result:

64.000000...

64
Note that:

$$
g_{22}=\sqrt{(1+\sqrt{2})} .
$$

Hence

$$
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Thence:

$$
64 g_{22}^{-24}=\quad 4096 e^{-\pi \sqrt{22}}+\cdots
$$

And

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

That are connected with 64 and $4096=64^{2}$
And:
$27 \operatorname{sqrt}\left(\left(\left(\log\right.\right.\right.$ base $\left.\left.\left.0.9731139529\left(3.3^{*} 10^{\wedge}-49\right)\right)\right)\right)$

Input interpretation:

$27 \sqrt{\log _{0.9731139529}\left(3.3 \times 10^{-49}\right)}$

Result:

1728.0000...

1728
This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

We have that:

$$
\frac{1}{\tau_{3}}=\frac{5000(210)^{3}}{\pi} g_{3}^{2} \frac{m^{2} c z^{4}}{t^{4} a^{3}}
$$

Input:

$\underline{5000 \times 210^{3}}$

Exact result:

46305000000

Decimal approximation:

$1.4739339279740427045556325325928555068011307792023671 \ldots \times 10^{10}$
$1.473933927 \ldots * 10^{10}$

Property:

46305000000

Alternative representations:

$\frac{5000 \times 210^{3}}{\pi}=\frac{5000 \times 210^{3}}{180^{\circ}}$
$\frac{5000 \times 210^{3}}{\pi}=-\frac{5000 \times 210^{3}}{i \log (-1)}$
$\frac{5000 \times 210^{3}}{\pi}=\frac{5000 \times 210^{3}}{\cos ^{-1}(-1)}$

Series representations:

$\frac{5000 \times 210^{3}}{\pi}=\frac{11576250000}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}$
$\frac{5000 \times 210^{3}}{\pi}=\frac{11576250000}{\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}$
$\frac{5000 \times 210^{3}}{\pi}=\frac{46305000000}{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}$

Integral representations:

$$
\begin{aligned}
& \frac{5000 \times 210^{3}}{\pi}=\frac{11576250000}{\int_{0}^{1} \sqrt{1-t^{2}} d t} \\
& \frac{5000 \times 210^{3}}{\pi}=\frac{23152500000}{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t} \\
& \frac{5000 \times 210^{3}}{\pi}=\frac{23152500000}{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}
\end{aligned}
$$

And for

$$
\begin{aligned}
& g_{3}=1.3 \times 10^{-49} \\
& \tau_{3}=2.15 \times 10^{-6}
\end{aligned}
$$

We obtain:
$\left(2.15^{*} 10^{\wedge}-6\right) /\left(\left(\left(\left(5000(210)^{\wedge} 3\right)\right) / \mathrm{Pi} *\left(1.3^{*} 10^{\wedge}-49\right)^{\wedge} 2\right)\right)$

Input interpretation:

$\frac{2.15 \times 10^{-6}}{\frac{5000 \times 210^{3}}{\pi}\left(1.3 \times 10^{-49}\right)^{2}}$

Result:

$8.63125 \ldots \times 10^{81}$
8.63125...* 10^{81}

And:
$(64 * 32+144+8)+2 *\left(\left(\left(\left(\left(2.15^{*} 10^{\wedge}-6\right) /\left(\left(\left(\left(5000(210)^{\wedge} 3\right)\right) / \mathrm{Pi}^{*}\left(1.3^{*} 10^{\wedge}-\right.\right.\right.\right.\right.\right.\right.$
49)^2)))))) $)^{\wedge} 1 / 18$

Input interpretation:

$(64 \times 32+144+8)+2 \sqrt[18]{\frac{2.15 \times 10^{-6}}{\frac{5000 \times 210^{3}}{\pi}\left(1.3 \times 10^{-49}\right)^{2}}}$

Result:

73490.90...
73490.90...

Thence, the following mathematical connections:

$$
\begin{aligned}
& \left((64 \times 32+144+8)+2 \sqrt[18]{\frac{2.15 \times 10^{-6}}{\frac{5000 \times 210^{3}}{\pi}\left(1.3 \times 10^{-49}\right)^{2}}}\right)=73490.90 \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \binom{I_{21} \leftrightarrow \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{,}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \leftrightarrow}{\leftrightarrow H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
& /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

We have also:
$1 /\left(\left(\left(\left(\left(2.15^{*} 10^{\wedge}-6\right) /\left(\left(\left(\left(5000(210)^{\wedge} 3\right)\right) / \mathrm{Pi}^{*}\left(1.3^{*} 10^{\wedge}-49\right)^{\wedge} 2\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 4096$

Input interpretation:

$\sqrt[4096]{\frac{2.15 \times 10^{-6}}{\frac{5000 \times 210^{3}}{\pi}\left(1.3 \times 10^{-49}\right)^{2}}}$

Result:

0.954983957...
$0.954983957 \ldots$ result very near to the spectral index n_{s}, to the mesonic Regge slope (see Appendix), to the inflaton value at the end of the inflation 0.9402 and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

We have that:

$$
\begin{aligned}
U(r) & =\frac{1}{\left(2 \pi f^{3}\right.} \int \frac{-e_{2}^{2} \hbar^{2} c^{2}}{\mu^{2} c^{4}+c^{2} p^{2}} e^{\frac{i}{\hbar} p \cdot r} d^{3} r= \\
& =-\frac{e_{2}^{2}}{2 \pi r} e^{-\frac{\mu c}{\hbar} r} \quad \frac{\hbar}{\mu c}=1.4 \times 10^{-13}
\end{aligned}
$$

$\left(1.4^{*} 10^{\wedge}-13\right)^{\wedge} 1 / 4096$

Input interpretation:

$\sqrt[4096]{1.4 \times 10^{-13}}$

Result:

0.9928001810...
$0.9928001810 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilator value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

$$
\begin{aligned}
& D-4-\text { Production of pious by } \gamma^{\prime} s \\
& \gamma+N \rightarrow P+\Pi^{-} \\
& \text {Press } \\
& \gamma+N \rightarrow \widetilde{\gamma}+P+\Pi_{1} \rightarrow P+\Pi^{-}
\end{aligned}
$$

$$
\sigma=\frac{\sqrt{2} e^{2} e_{2}^{2}}{c^{3} \mu^{3 / 2}} \frac{\sqrt{+\omega-\mu c^{2}}}{h \omega}
$$

$$
\begin{aligned}
& \text { for } 335 \mathrm{MeN} \\
& \sigma \approx 3 \times 10^{-28}
\end{aligned}
$$

Discussion of other intermediate stops Difference Thetnoen positive and neg. pion to production of ventral pions
$\left(3^{*} 10^{\wedge}-28\right)^{\wedge} 1 / 4096$

Input interpretation:

$\sqrt[4096]{3 \times 10^{-28}}$

Result:

$$
\frac{\sqrt[4096]{3}}{10^{7 / 1024}}
$$

Decimal approximation:

0.984646966308441828238021915927473407248566395499039147463 .
0.984646966308 result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

From:

Ramanujan's Notebooks

Working mostly in isolation, Ramanujan noted striking and sometimes still unproved results in series, special functions and number theory.

Bruce C. Berndt

University of Illinois,
Urbana, IL 61801

$$
\begin{aligned}
\tan ^{-1} & \frac{1}{n+1}+\tan ^{-1} \frac{1}{n+2}+\cdots+\tan ^{-1} \frac{1}{2 n}+\tan ^{-1} \frac{1}{2 n+1}+\tan ^{-1} \frac{1}{2 n+3}+\cdots+\tan ^{-1} \frac{1}{4 n+1} \\
= & \frac{\pi}{4}+\tan ^{-1} \frac{9}{53}+\tan ^{-1} \frac{18}{599}+\cdots+\tan ^{-1} \frac{9 n}{32 n^{4}+22 n^{2}-1} \\
& +\tan ^{-1} \frac{4}{137}+\tan ^{-1} \frac{8}{2081}+\cdots+\tan ^{-1} \frac{4 n}{128 n^{4}+8 n^{2}+1} .
\end{aligned}
$$

$\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1\left(18 /\left(32 * 16+22^{*} 4-1\right)\right)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-$ $1(8 / 2081)+\tan ^{\wedge}-1\left(8 /\left(128^{*} 16+8 * 4+1\right)\right)$

Input:

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+ \\
& \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)
\end{aligned}
$$

Exact Result:

$\frac{\pi}{4}+2 \tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{9}{53}\right)$
(result in radians)

Decimal approximation:

1.050564383055564282645346089140019210234227249284812372396...
(result in radians)
1.0505643830555....

Alternate forms:

$\frac{1}{4}\left(\pi+2 \tan ^{-1}\left(\frac{79862893}{136200276}\right)\right)$
$\frac{\pi}{4}+\frac{1}{2} \tan ^{-1}\left(\frac{79862893}{136200276}\right)$
$\frac{1}{4}\left(\pi+8 \tan ^{-1}\left(\frac{8}{2081}\right)+4 \tan ^{-1}\left(\frac{4}{137}\right)+8 \tan ^{-1}\left(\frac{18}{599}\right)\right)+\tan ^{-1}\left(\frac{9}{53}\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+ \\
& \quad \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)= \\
& \operatorname{sc}^{-1}\left(\left.\frac{9}{53} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+2 \operatorname{sc}^{-1}\left(\left.\frac{18}{599} \right\rvert\, 0\right)+2 \mathrm{sc}^{-1}\left(\left.\frac{8}{2081} \right\rvert\, 0\right)+\frac{\pi}{4}
\end{aligned}
$$

$$
\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+
$$

$$
\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)=
$$

$$
\tan ^{-1}\left(1, \frac{9}{53}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+2 \tan ^{-1}\left(1, \frac{18}{599}\right)+2 \tan ^{-1}\left(1, \frac{8}{2081}\right)+\frac{\pi}{4}
$$

$$
\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+
$$

$$
\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)=
$$

$$
\cot ^{-1}\left(\frac{1}{\frac{9}{53}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{137}}\right)+2 \cot ^{-1}\left(\frac{1}{\frac{18}{599}}\right)+2 \cot ^{-1}\left(\frac{1}{\frac{8}{2081}}\right)+\frac{\pi}{4}
$$

Series representations:

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+ \\
& \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)= \\
& \frac{\pi}{4}+\sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 9^{1+2 k} \times 53^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+\right. \\
& \left.\quad 2\left(\frac{(-1)^{k} 18^{1+2 k} \times 599^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right)\right)
\end{aligned}
$$

$$
\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+
$$

$$
\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)=
$$

$$
\frac{\pi}{4}-i \log \left(1+\frac{8 i}{2081}\right)-\frac{1}{2} i \log \left(1+\frac{4 i}{137}\right)-i \log \left(1+\frac{18 i}{599}\right)-\frac{1}{2} i \log \left(1+\frac{9 i}{53}\right)+
$$

$$
3 i \log (2)+\sum_{k=1}^{\infty}-\frac{i 2^{-1-k}\left(2\left(1+\frac{8 i}{2081}\right)^{k}+\left(1+\frac{4 i}{137}\right)^{k}+2\left(1+\frac{18 i}{599}\right)^{k}+\left(1+\frac{9 i}{53}\right)^{k}\right)}{k}
$$

$$
\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+
$$

$$
\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)=
$$

$$
\frac{\pi}{4}+i \log \left(1-\frac{8 i}{2081}\right)+\frac{1}{2} i \log \left(1-\frac{4 i}{137}\right)+i \log \left(1-\frac{18 i}{599}\right)+\frac{1}{2} i \log \left(1-\frac{9 i}{53}\right)-
$$

$$
3 i \log (2)+\sum_{k=1}^{\infty} \frac{i 2^{-1-k}\left(2\left(1-\frac{8 i}{2081}\right)^{k}+\left(1-\frac{4 i}{137}\right)^{k}+2\left(1-\frac{18 i}{599}\right)^{k}+\left(1-\frac{9 i}{53}\right)^{k}\right)}{k}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+ \\
& \quad \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)= \\
& \frac{\pi}{4}+\int_{0}^{1}\left(\frac{548}{18769+16 t^{2}}+\frac{33296}{4330561+64 t^{2}}+\frac{477}{2809+81 t^{2}}+\frac{21564}{358801+324 t^{2}}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+ \\
& \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)= \\
& \frac{\pi}{4}+\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{9 i 2^{-2-s} \times 53^{-1+2 s} \times 1445^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right. \\
& \frac{i 137^{-1+2 s} \times 18785^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{9 i 599^{-1+2 s} \times 359125^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \left.\frac{4 i 2081^{-1+2 s} \times 4330625^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}\right) d s \text { for } 0<\gamma<\frac{1}{2} \\
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+ \\
& \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)=\frac{\pi}{4}+ \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i\left(\frac{9}{53}\right)^{1-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{4 \pi \Gamma\left(\frac{3}{2}-s\right)}-\frac{i 16^{-s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\right. \\
& \frac{i 4^{-s} \times 9^{1-2 s} \times 599^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \left.\frac{i 4^{1-3 s} \times 2081^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$\left(\left(\left(\left(\left(\left(\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(18 /(32 * 16+22 * 4-1))+\tan ^{\wedge}-\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.1(4 / 137)+\tan ^{\wedge}-1(8 / 2081)+\tan ^{\wedge}-1\left(8 /\left(128^{*} 16+8 * 4+1\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 10$

Input:

$$
\begin{aligned}
& \left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)\right)^{10}
\end{aligned}
$$

Exact Result:

$\left(\frac{\pi}{4}+2 \tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{9}{53}\right)\right)^{10}$
(result in radians)

Decimal approximation:

1.637671268255303751988865082154298724800351052086303525617...
(result in radians)
$1.637671268255 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms:

$\frac{\left(\pi+2 \tan ^{-1}\left(\frac{79862893}{136200276}\right)\right)^{10}}{1048576}$
$\left(\frac{\pi}{4}+\frac{1}{2} \tan ^{-1}\left(\frac{79862893}{136200276}\right)\right)^{10}$
$\frac{\left(\pi+4\left(2 \tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{9}{53}\right)\right)\right)^{10}}{1048576}$

Alternative representations:

$$
\begin{aligned}
& \left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)\right)^{10}= \\
& \left(\operatorname{sc}^{-1}\left(\left.\frac{9}{53} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+2 \operatorname{sc}^{-1}\left(\left.\frac{18}{599} \right\rvert\, 0\right)+2 \mathrm{sc}^{-1}\left(\left.\frac{8}{2081} \right\rvert\, 0\right)+\frac{\pi}{4}\right)^{10} \\
& \left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)\right)^{10}= \\
& \left(\tan ^{-1}\left(1, \frac{9}{53}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+2 \tan ^{-1}\left(1, \frac{18}{599}\right)+2 \tan ^{-1}\left(1, \frac{8}{2081}\right)+\frac{\pi}{4}\right)^{10}
\end{aligned}
$$

$$
\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+\right.
$$

$$
\left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)\right)^{10}=
$$

Page 29
D-7 Scattering of pions by nucleons

$$
\begin{gathered}
N+\Pi^{+} \rightarrow P \rightarrow N+\Pi^{+} \\
\frac{\left(\frac{e_{2} \hbar c}{\sqrt{2 \Omega \mu c^{2}}}\right)^{2}}{\mu c^{2}}=\frac{e_{2}^{2} \hbar^{2}}{2 \Omega \mu^{2} c^{2}}=\frac{\left(\frac{1}{\sqrt{w}}\right)^{2}}{\omega} \approx \frac{1}{\omega^{2}} \\
\sigma=\frac{2 \pi}{\hbar v\left(\frac{e_{2}^{2} \hbar^{2}}{2 \mu^{2} c^{2}}\right)^{2} \frac{p^{2}}{2 \pi^{2} \hbar^{3} v} \approx \frac{1}{4 \pi}\left(\frac{e_{2}^{2}}{\mu c^{2}}\right)^{2}=1.6 \times 10^{-26}}
\end{gathered}
$$

Query dependevee

$$
\frac{p^{2}}{v^{2}} \frac{1}{w^{4}} \rightarrow \frac{1}{w^{2}}
$$

$$
\begin{gathered}
c^{2} p=v w \\
\frac{p}{v}=\frac{w}{c^{2}}
\end{gathered}
$$

(unreliable)
Discussion of siuvilas

$$
\left.\begin{array}{l}
P+\Pi^{-} \rightarrow P+\Pi^{-} \\
P+\Pi^{\circ} \rightarrow P+\Pi^{0} \\
N+\Pi^{\circ} \rightarrow N+\Pi^{\circ}
\end{array}\right\} \begin{aligned}
& \text { here possible desbre } \\
& \text { interference like }
\end{aligned}
$$

Scattering ir th exchange

$$
\begin{aligned}
& N+\Pi^{+} \rightarrow P+M^{0} \\
& P+\eta^{-} \rightarrow N+M^{0}
\end{aligned}
$$

\checkmark particles

$$
2165 \pm 20 \quad Q \approx 30 \mathrm{mc}^{2}
$$

We note that:

$$
\sigma=\frac{2 \pi}{\hbar v}\left(\frac{e_{2}^{2} \hbar^{2}}{2 \mu^{2} c^{2}}\right)^{2} \frac{\beta^{2}}{2 \pi^{2} \hbar^{3} v} \approx \frac{1}{4 \pi}\left(\frac{e_{2}^{2}}{\mu c^{2}}\right)^{2}=1.6 \times 10^{-26}
$$

And that:

$$
\begin{aligned}
& \left(\begin{array}{l}
\left(\frac{\pi}{4}+2 \tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{9}{53}\right)\right)^{10} \\
\text { (result in radians) } \\
\end{array}\right)= \\
& =1.637671268255 \ldots
\end{aligned}
$$

$1 / 10^{\wedge} 26\left(\left(\left(\left(\left(\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(18 /(32 * 16+22 * 4-1))+\tan ^{\wedge}-\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.1(4 / 137)+\tan ^{\wedge}-1(8 / 2081)+\tan ^{\wedge}-1(8 /(128 * 16+8 * 4+1))\right)\right)\right)\right)\right)\right)^{\wedge} 10$

Input:

$$
\begin{aligned}
& \frac{1}{10^{26}}\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)\right)^{10}
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$\frac{\left(\frac{\pi}{4}+2 \tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{9}{53}\right)\right)^{10}}{100000000000000000000000000}$
(result in radians)

Decimal approximation:

$1.6376712682553037519888650821542987248003510520863035 \ldots \times 10^{-26}$
(result in radians)
$1.637671268255 \ldots * 10^{-26}$

Alternate forms:

$$
\left(\pi+2 \tan ^{-1}\left(\frac{79862893}{136200276}\right)\right)^{10}
$$

104857600000000000000000000000000
$\frac{\left(\frac{\pi}{4}+\frac{1}{2} \tan ^{-1}\left(\frac{79862893}{136200276}\right)\right)^{10}}{}$
100000000000000000000000000
$\underline{\left(\pi+4\left(2 \tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{9}{53}\right)\right)\right)^{10}}$
104857600000000000000000000000000

Alternative representations:

$$
\begin{aligned}
& \frac{1}{10^{26}}\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)\right)^{10}= \\
& \frac{\left(\operatorname{sc}^{-1}\left(\left.\frac{9}{53} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+2 \mathrm{sc}^{-1}\left(\left.\frac{18}{599} \right\rvert\, 0\right)+2 \operatorname{sc}^{-1}\left(\left.\frac{8}{2081} \right\rvert\, 0\right)+\frac{\pi}{4}\right)^{10}}{10^{26}}
\end{aligned}
$$

$$
\frac{1}{10^{26}}\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+\right.
$$

$$
\left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)\right)^{10}=
$$

$$
\frac{\left(\tan ^{-1}\left(1, \frac{9}{53}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+2 \tan ^{-1}\left(1, \frac{18}{599}\right)+2 \tan ^{-1}\left(1, \frac{8}{2081}\right)+\frac{\pi}{4}\right)^{10}}{10^{26}}
$$

$$
\frac{1}{10^{26}}\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{18}{32 \times 16+22 \times 4-1}\right)+\right.
$$

$$
\left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{8}{128 \times 16+8 \times 4+1}\right)\right)^{10}=
$$

$$
\left.\left.\left.\frac{\left(\operatorname { c o t } ^ { - 1 } \left(\frac{1}{9}\right.\right.}{53}\right)+\cot ^{-1}\left(\frac{1}{4}\right)+2 \cot ^{-1}\left(\frac{1}{187}\right)+2 \cot ^{-1}\left(\frac{\frac{1}{8}}{\frac{18}{2081}}\right)+\frac{\pi}{4}\right)^{10}\right)\left(10^{26}\right.
$$

Now, we have that, from:
Received: April 10, 2019 - Revised: July 9, 2019 - Accepted: October 1, 2019
Published: October 18, 2019
Gravitational waves from walking technicolor
Kohtaroh Miura, Hiroshi Ohki, Saeko Otani and Koichi Yamawaki

The phase transition dynamics is modified via the shift of $\left(2 f_{2} / N_{j}\right)\left(s^{0}\right)^{2} \rightarrow\left(\Delta m_{s}\right)^{2}+$ $\left(2 f_{2} / N_{f}\right)\left(s^{0}\right)^{2}$ in $m_{s^{i}}^{2}$ with finite Δm_{s}. The details of the mass spectra at one loop with $\left(\Delta m_{s}\right)^{2}$ are summarized in appendix A. Using eq. (4.18), the total effective potential becomes,

$$
\begin{align*}
V_{\text {eff }}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)= & \frac{N_{f}^{2}-1}{64 \pi^{2}} \mathcal{M}_{s^{i}}^{4}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)\left(\ln \frac{\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)}{\mu_{\mathrm{GW}}^{2}}-\frac{3}{2}\right) \\
& +\frac{T^{4}}{2 \pi^{2}}\left(N_{f}^{2}-1\right) J_{B}\left(\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right) / T^{2}\right)+C(T), \tag{4.19}
\end{align*}
$$

with,

$$
\begin{equation*}
\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)-m_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}\right)+\Pi(T) \tag{1.20}
\end{equation*}
$$

where the thermal mass $\Pi(T)$ is given in eq. (3.3). We require that the following properties remain intact for arbitrary $\Delta m_{s} ;(1)$ the vev $\left\langle s^{0}\right\rangle(T=0)$ determined by the minimum of the potential eq. (4.19) is identified with the dilaton decay constant favored by the walking technicolor model, $F_{\phi}=1.25 \mathrm{TeV}$ or 1 TeV , (2) the dilaton mass given by the potential curvature at the vacuum is identified with the observed SM Higgs mass, $m_{s^{0}}=125 \mathrm{GeV}$.

Thence $\quad F_{\phi}=1.25 \mathrm{TeV}$

$$
2.0662356+1.00186743+0.655679=3.72378203 \div 3=1.2412606766666
$$

$$
\sqrt{\frac{\mathrm{e} \pi}{2}}=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!!}+\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{1+\frac{4}{1+\ldots}}}}} \approx 2.0663656771
$$

$$
\sqrt{\frac{\mathrm{e} \pi}{2}} \operatorname{erfc}\left(\frac{\sqrt{2}}{2}\right) \approx 0.6556795424
$$

$$
\frac{\mathrm{e}^{-\frac{2 \pi}{5}}}{\sqrt{\varphi \sqrt{5}}-\varphi}=1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\frac{\mathrm{e}^{-6 \pi}}{1+\frac{\mathrm{e}^{-8 \pi}}{1+\ldots}}}} \approx 1.0018674362
$$

From:

SUPERSTRING THEORY

Volume 2
Loop amplitudes, anomalies and phenomenology

MICHAEL B. GREEN
Queen Mary College, University of London
JOHN H. SCHWARZ
California Institute of Technology
EDWARD WITTEN
Princeton University
(c)Cambridge University Press 1987

First published 1987
Reprinted 1987
Printed in the United States of America

The next term in the expansion of the integrand gives a divergence of the form $\int d \epsilon / \epsilon$ corresponding to the propagation of a massless dilaton, rather than a tachyon, down the long neck of fig. $8.22 a$. The coefficient of this divergence,

$$
\begin{equation*}
\int_{F} d^{2} \tau(\operatorname{lm} \tau)^{-14} e^{4 \pi \operatorname{Im} \tau}\left|f\left(e^{2 \pi i r}\right)\right|^{-48} \tag{8.2.47}
\end{equation*}
$$

should be pro -tional to the coupling of a dilaton to a toroidal world sheet, i.e., to the dilaton one-loop expectation value. Thic can be seen

We calculate the following integral:
integrate[-exp(4Pi) $\left.(\exp (2 \mathrm{Pi}))^{\wedge}-48\right] \mathrm{x}$

Indefinite integral:

$\int-\frac{\exp (4 \pi) x}{\exp ^{48}(2 \pi)} d x=-\frac{1}{2} e^{-92 \pi} x^{2}+$ constant

Plot of the integral:

For $\mathrm{x}=1$, we have:
$-1 / 2 \mathrm{e}^{\wedge}(-92 \pi)$

Input:

$-\frac{1}{2} e^{-92 \pi}$

Decimal approximation:

$-1.50087820446173031810634934870291518491171201070408 \ldots \times 10^{-126}$
$-1.5008782 \ldots * 10^{-126}$

Property:

$-\frac{1}{2} e^{-92 \pi}$ is a transcendental number

Alternative representations:
$\frac{1}{2} e^{-92 \pi}(-1)=-\frac{1}{2} e^{-16560^{\circ}}$
$\frac{1}{2} e^{-92 \pi}(-1)=-\frac{1}{2} e^{92 i \log (-1)}$
$\frac{1}{2} e^{-92 \pi}(-1)=\frac{1}{2} \exp ^{-92 \pi}(z)(-1)$ for $z=1$

Series representations:

$\frac{1}{2} e^{-92 \pi}(-1)=-\frac{1}{2} e^{-368 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}$
$\frac{1}{2} e^{-92 \pi}(-1)=-\frac{1}{2}\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-92 \pi}$
$\frac{1}{2} e^{-92 \pi}(-1)=-\frac{1}{2}\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{-92 \pi}$

Integral representations:

$\frac{1}{2} e^{-92 \pi}(-1)=-\frac{1}{2} e^{-184} \int_{0}^{1} 1 / \sqrt{1-t^{2}} d t$
$\frac{1}{2} e^{-92 \pi}(-1)=-\frac{1}{2} e^{-368} \int_{0}^{1} \sqrt{1-t^{2}} d t$
$\frac{1}{2} e^{-92 \pi}(-1)=-\frac{1}{2} e^{-184} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t$

Input:

$$
\sqrt[4096]{-\left(-\frac{1}{2} e^{-92 \pi}\right)}
$$

Exact result:

$\frac{e^{-(23 \pi) / 1024}}{\sqrt[4096]{2}}$

Decimal approximation:

$0.931711239069052518334943626020824441131662057687785110881 \ldots$
$0.931711239 \ldots$. result very near to the spectral index n_{s}, to the mesonic Regge slope (see Appendix), to the inflaton value at the end of the inflation 0.9402 and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

Property:

$\frac{e^{-(23 \pi) / 1024}}{\sqrt[4096]{2}}$ is a transcendental number

All 4096th roots of $\mathrm{e}^{\wedge}(-92 \pi) / 2$:
$\frac{e^{-(23 \pi) / 1024} e^{0}}{\sqrt[4096]{2}} \approx 0.93171$ (real, principal root)
$\frac{e^{-(23 \pi) / 1024} e^{(i \pi) / 2048}}{\sqrt[4096]{2}} \approx 0.931710+0.001429 i$
$\frac{e^{-(23 \pi) / 1024} e^{(i \pi) / 1024}}{\sqrt[4096]{2}} \approx 0.931707+0.002858 i$
$\frac{e^{-(23 \pi) / 1024} e^{(3 i \pi) / 2048}}{\sqrt[4096]{2}} \approx 0.931701+0.004288 i$
$\frac{e^{-(23 \pi) / 1024} e^{(i \pi) / 512}}{\sqrt[4096]{2}} \approx 0.931694+0.005717 i$

Alternative representations:

$\sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\sqrt[4096]{\frac{e^{-16560^{\circ}}}{2}}$
$\sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\sqrt[4096]{\frac{1}{2} e^{92 i \log (-1)}}$
$\sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\sqrt[4096]{-\frac{1}{2}(-1) \exp ^{-92 \pi}(z)}$ for $z=1$

Series representations:

$$
\begin{aligned}
& \sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\frac{e^{-23 / 256 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}{\sqrt[4096]{2}} \\
& \sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\frac{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-(23 \pi) / 1024}}{4096} \sqrt{2} \\
& \sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\frac{\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{-(23 \pi) / 1024}}{4096} \sqrt{2}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\frac{e^{-23 / 256} \int_{0}^{1} \sqrt{1-t^{2}} d t}{\sqrt[4096]{2}} \\
& \sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\frac{e^{-23 / 512} \int_{0}^{1} 1 / \sqrt{1-t^{2}} d t}{\sqrt[4096]{2}}
\end{aligned}
$$

$$
\sqrt[4096]{-\frac{1}{2}(-1) e^{-92 \pi}}=\frac{e^{-23 / 512} 6^{\infty} 1 /\left(1+t^{2}\right) d t}{\sqrt[4096]{2}}
$$

We have:

$$
\begin{aligned}
& k_{1}=\frac{4 \pi}{3} \quad k_{2}=\frac{4 \pi^{2}}{45} \\
& f=\frac{\pi^{1 / 2} \hbar}{\mu c} \frac{42^{1 / 2} \hat{1}^{1 / 4} \pi \hbar^{7 / 2} c^{1 / 2}}{3 \times 2^{2}} \frac{4 \sqrt{2} \pi^{3 / 2} \hbar^{9 / 2}}{M \mu^{1 / 2}}=\frac{4 M \mu^{5 / 2} c^{5 / 2}}{3 M} \\
& = \\
& =5.2 \times 10^{-62} e^{22} 20_{x} .
\end{aligned}
$$

Single froin productive in E-2 unelern collisuon

$$
\begin{aligned}
& \frac{S_{3}}{S_{2}}=\frac{V_{\mu}^{3 / 2}}{8 \sqrt{2} \pi \hbar^{3}} \frac{\left(T-\mu c^{2}\right)^{2}}{\sqrt{T}} \approx \frac{V \mu\left(T-\mu c^{2}\right)^{3}}{8 \sqrt{2} \pi \hbar^{3} c} \\
& \frac{S_{3}}{S_{2}}=.004
\end{aligned}
$$

From the values of above Fermi's formulas, we obtain:
$1 / \mathrm{Pi}((1 \mathrm{e}-61 * 5.2 \mathrm{e}-62 * 1 /(4 \mathrm{Pi} / 3) * 0.004))$

Input interpretation:

$\frac{1}{\pi}\left(1 \times 10^{-61} \times 5.2 \times 10^{-62} \times \frac{1}{4 \times \frac{\pi}{3}} \times 0.004\right)$

Result:

$1.580610464820469234524519626071751166907996884887046 \ldots \times 10^{-126}$
$1.58061046 \ldots * 10^{-126}$
$[1 / \operatorname{Pi}((1 \mathrm{e}-61 * 5.2 \mathrm{e}-62 * 1 /(4 \mathrm{Pi} / 3) * 0.004))]^{\wedge} 1 / 4096$

Input interpretation:

$$
\sqrt[4096]{\frac{1}{\pi}\left(1 \times 10^{-61} \times 5.2 \times 10^{-62} \times \frac{1}{4 \times \frac{\pi}{3}} \times 0.004\right)}
$$

Result:

0.931723013...
0.931723013...

Thence, we have the following mathematical connection:

$$
\begin{gathered}
\left(\sqrt[4096]{-\left(-\frac{1}{2} e^{-92 \pi}\right)}\right)=0.931711239 \Rightarrow \\
\Rightarrow\left(\sqrt[4096]{\frac{1}{\pi}\left(1 \times 10^{-61} \times 5.2 \times 10^{-62} \times \frac{1}{4 \times \frac{\pi}{3}} \times 0.004\right)}\right)=0.93172301
\end{gathered}
$$

Note that, the result $0.9317 \ldots$ is very near to the Regge slope of vector mesons ρ and ω as showed in the below description:

4.1.1 Light quark mesons

We begin by looking at mesons consisting only of light quarks $-u$ and d. We assume for our analysis that the u and d quarks are equal in mass, as any difference between them would be too small to reveal itself in our fits.

This sector is where we have the most data, but it is also where our fits are the least conclusive. The trajectories we have analyzed are those of the $\pi / b, \rho / a, \eta / h$, and ω / f.

Of the four $\left(J, M^{2}\right)$ trajectories, the two $I=1$ trajectories, of the ρ and the π, show a weak dependence of χ^{2} on m. Endpoint masses anywhere between 0 and 160 MeV are nearly equal in terms of χ^{2}, and no clear optimum can be observed. For the two $I=0$ trajectories, of the η and ω, the linear fit is optimal. If we allow an increase of up to 10% in χ^{2}, we can add masses of only 60 MeV or less. Figure (2) presents the plots of χ^{2} vs. α^{\prime} and m for the trajectories of the ω and ρ and shows the difference in the allowed masses between them.

The slope for these trajectories is between $\alpha^{\prime}=0.81-0.86$ for the two trajectories starting with a pseudo-scalar (η and π), and $\alpha^{\prime}=0.88-0.93$ for the trajectories beginning with a vector meson (ρ and ω). The higher values for the slopes are obtained when we add masses, as increasing the mass generally requires an increase in α^{\prime} to retain a good fit to a given trajectory. This can also be seen in figure (2), in the plot for the ρ trajectory fit.

Traj.	N	m	α^{\prime}	a
π / b	4	$m_{u / d}=90 \quad 185$	$0.808 \quad 0.863$	(0.23)
ρ / a	6	$m_{u / d}=0-180$	$0.883-0.933$	$0.47-0.66$
η / h	5	$m_{u / d}=0-70$	$0.839-0.854$	$(-0.25)-(-0.21)$
ω	6	$m_{u / d}-0-60$	$0.910-0.918$	$0.45-0.50$
K^{*}	5	$m_{u / d}=0-240 \quad m_{s}=0-390$	$0.848-0.927$	$0.32-0.62$
ϕ	3	$m_{s}=400$	1.078	0.82
D	3	$m_{u / d}-80 \quad m_{c}-1640$	1.073	-0.07
ν_{s}^{*}	3	$m_{s}=400 \quad m_{c}=1580$	1.093	0.89
Ψ	3	$m_{c}=1500$	0.979	-0.09
Υ	3	$\pi u_{b}=4730$	0.635	1.00

Table 1. The results of the meson fits in the (J, M^{2}) plane. For the uneven K^{*} fit the higher values of m_{s} recuire $m_{L / d}$ to take a correspondingly low value. $m_{u / d}+m_{s}$ never exceeds 480 MeV , and the highest masses quoted for the s are obtained when $m_{u / d}=0$. The ranges listed are those where χ^{2} is within 10% of its optimal value. N is the number of data points in the trajectory.

Furthermore, the value is very near to the following Ramanujan mock theta function Mock ϑ-functions (of 7th order)
(i) $1+\frac{q}{1-q^{2}}+\frac{q^{4}}{\left(1-q^{3}\right)\left(1-q^{4}\right)}+\frac{q^{9}}{\left(1-q^{4}\right)\left(1-q^{5}\right)\left(1-q^{6}\right)}+\ldots$

That is equal to $\mathbf{0 . 9 2 4 3 4 0 8 6 7 4 5 8 9}$

From:

Ramanujan's Notebooks

Working mostly in isolation, Ramanujan noted striking and sometimes still unproved results in
series, special functions and number theory.

Bruce C. Berndt
University of Illinois,
Urbana, IL 61801

Now, we have that:

$$
\begin{aligned}
A_{5}= & \frac{1}{20} \log \frac{(1+x)^{5}}{1+x^{5}}+\frac{1}{4 \sqrt{5}} \log \frac{1+x \frac{\sqrt{5}-1}{2}+x^{2}}{1-x \frac{\sqrt{5}-1}{2}+x^{2}} \\
& +\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1} \frac{x \sqrt{10-2 \sqrt{5}}}{4-x(\sqrt{5}+1)}+\frac{\sqrt{10+2 \sqrt{5}}}{10} \tan ^{-1} \frac{x \sqrt{10+2 \sqrt{5}}}{4+x(\sqrt{5}-1)}
\end{aligned}
$$

$1 / 20 \ln \left(\left(\left((1+2)^{\wedge} 5\right) /\left(1+2^{\wedge} 5\right)\right)\right)+1 /(4 \operatorname{sqrt}(5)) \ln \left(\left(\left(\left(\left(\left(\left(1+2(1 /\right.\right.\right.\right.\right.\right.\right.$ golden ratio $\left.\left.\left.\left.)+2^{\wedge} 2\right)\right)\right)\right) /(1-$ $2(1 /$ golden ratio $\left.\left.)+2^{\wedge} 2\right)\right)$)

Input:
$\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{1}{4 \sqrt{5}} \log \left(\frac{1+2 \times \frac{1}{\phi}+2^{2}}{1-2 \times \frac{1}{\phi}+2^{2}}\right)$

Exact result:

$\frac{\log \left(\frac{\frac{2}{\phi}+5}{5-\frac{2}{\phi}}\right)}{4 \sqrt{5}}+\frac{1}{20} \log \left(\frac{81}{11}\right)$

Decimal approximation:

$0.156275630312977622327464447184175443670743606014671252325 \ldots$
0.15627563...

Alternate forms:

$\frac{1}{20}\left(\sqrt{5} \log \left(\frac{5 \phi+2}{5 \phi-2}\right)+\log \left(\frac{81}{11}\right)\right)$
$\frac{1}{20} \log \left(\frac{81}{11}\right)+\frac{\log \left(\frac{1}{31}(29+10 \sqrt{5})\right)}{4 \sqrt{5}}$
$\frac{1}{20}\left(\sqrt{5} \log \left(\frac{\frac{2}{\phi}+5}{5-\frac{2}{\phi}}\right)+\log \left(\frac{81}{11}\right)\right)$

Alternative representations:

$\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{\phi}+2^{2}}{1-\frac{2}{\phi}+2^{2}}\right)}{4 \sqrt{5}}=\frac{1}{20} \log (a) \log _{a}\left(\frac{3^{5}}{1+2^{5}}\right)+\frac{\log (a) \log _{a}\left(\frac{5+\frac{2}{\phi}}{5-\frac{2}{\phi}}\right)}{4 \sqrt{5}}$
$\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{\phi}+2^{2}}{1-\frac{2}{\phi}+2^{2}}\right)}{4 \sqrt{5}}=\frac{1}{20} \log _{e}\left(\frac{3^{5}}{1+2^{5}}\right)+\frac{\log _{e}\left(\frac{5+\frac{2}{\phi}}{5-\frac{2}{\phi}}\right)}{4 \sqrt{5}}$
$\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{\phi}+2^{2}}{1-\frac{2}{\phi}+2^{2}}\right)}{4 \sqrt{5}}=-\frac{1}{20} \mathrm{Li}_{1}\left(1-\frac{3^{5}}{1+2^{5}}\right)-\frac{\mathrm{Li}_{1}\left(1-\frac{5+\frac{2}{\phi}}{5-\frac{2}{\phi}}\right)}{4 \sqrt{5}}$

Series representations:

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{\phi}+2^{2}}{1-\frac{2}{\phi}+2^{2}}\right)}{4 \sqrt{5}}= \\
& \frac{1}{10} i \pi\left(\frac{\arg \left(\frac{81}{11}-x\right)}{2 \pi}\right]+\frac{i \pi\left\lfloor\frac{\arg (2+5 \phi+2 x-5 \phi x)}{2 \pi}\right\rfloor}{2 \sqrt{5}}+\frac{\log (x)}{20}+\frac{\log (x)}{4 \sqrt{5}}+ \\
& \quad \sum_{k=1}^{\infty}\left(\frac{(-1)^{1+k}\left(\frac{81}{11}-x\right)^{k} x^{-k}}{20 k}+\frac{(-1)^{1+k}(-2+5 \phi)^{-k} x^{-k}(2+5 \phi+2 x-5 \phi x)^{k}}{4 \sqrt{5} k}\right) \text { for } x< \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{\phi}+2^{2}}{1-\frac{2}{\phi}+2^{2}}\right)}{4 \sqrt{5}}=\frac{1}{10} i \pi\left[\frac{\arg \left(\frac{81}{11}-x\right)}{2 \pi} \left\lvert\,+\frac{i \pi\left[\frac{\frac{15-\frac{1}{\phi}}{2 \pi}}{2 \sqrt{5}}\right]}{20}+\frac{\log (x)}{20}+\right.\right. \\
& \frac{\log (x)}{4 \sqrt{5}}+\sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k}\left(\frac{81}{11}-x\right)^{k} x^{-k}}{20 k}+\frac{(-1)^{-1+k}\left(\frac{5+\frac{2}{\phi}}{5-\frac{2}{\phi}}-x\right)^{k} x^{-k}}{4 \sqrt{5} k}\right) \text { for } x<0
\end{aligned}
$$

$$
\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{\phi}+2^{2}}{1-\frac{2}{\phi}+2^{2}}\right)}{4 \sqrt{5}}=
$$

$$
\frac{1}{10} i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]^{i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]} \frac{2 \sqrt{5}}{2 \pi}+\frac{\log \left(z_{0}\right)}{20}+\frac{\log \left(z_{0}\right)}{4 \sqrt{5}}+
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{1+k} z_{0}^{-k}\left(\left(\frac{81}{11}-z_{0}\right)^{k}+\sqrt{5}(1+5 \sqrt{5})^{-k}\left(9+5 \sqrt{5}-(1+5 \sqrt{5}) z_{0}\right)^{k}\right)}{20 k}
$$

Integral representations:

$\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{\phi}+2^{2}}{1-\frac{2}{\phi}+2^{2}}\right)}{4 \sqrt{5}}=\int_{1}^{\frac{81}{11}} \frac{-9+175 \sqrt{5}+44(1+\sqrt{5}) t}{20 t(-9+175 \sqrt{5}+44 t)} d t$

$$
\frac{1}{20} \log \left(\frac{(1+2)^{5}}{1+2^{5}}\right)+\frac{\log \left(\frac{1+\frac{2}{\phi}+2^{2}}{1-\frac{2}{\phi}+2^{2}}\right)}{4 \sqrt{5}}=
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{\left(\frac{11}{7}\right)^{s} 2^{-3-s} \times 5^{-1-s} \Gamma(-s)^{2} \Gamma(1+s)}{\pi \Gamma(1-s)}-\frac{i\left(-1+\frac{5+\frac{2}{\phi}}{5-\frac{2}{\phi}}\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{8 \sqrt{5} \pi \Gamma(1-s)}\right) d s \text { for }
$$

$$
-1<\gamma<0
$$

$1 / 10 \operatorname{sqrt}(((10-2 \operatorname{sqrt}(5)))) \tan ^{\wedge}-1[(2 \operatorname{sqrt}(10-2 \operatorname{sqrt}(5))) /((4-2(\operatorname{sqrt}(5)+1)))]+$ $\operatorname{sqrt}((10+2 \operatorname{sqrt}(5))) / 10 \tan ^{\wedge}-1[(2 \operatorname{sqrt}(10+2 \operatorname{sqrt}(5))) /((4+2(\operatorname{sqrt}(5)-1)))]$

Input:

$\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\left(\frac{1}{10} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)$ $\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)$
(result in radians)

Decimal approximation:

$0.073900830513950814579037443315566581309899511892543957758 \ldots$
(result in radians)
0.07390083...

Alternate forms:

$\frac{1}{5} \sqrt{\frac{1}{2}(5+\sqrt{5})} \tan ^{-1}\left(\sqrt{\frac{1}{2}(5-\sqrt{5})}\right)-\frac{1}{5} \sqrt{\frac{1}{2}(5-\sqrt{5})} \tan ^{-1}\left(\sqrt{\frac{1}{2}(5+\sqrt{5})}\right)$
$\frac{1}{10}\left(\sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{\sqrt{2(5-\sqrt{5})}}{1-\sqrt{5}}\right)+\sqrt{2(5+\sqrt{5})} \tan ^{-1}\left(\frac{\sqrt{2(5+\sqrt{5})}}{1+\sqrt{5}}\right)\right)$
$\sqrt{5+\sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)+\sqrt{5-\sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)$
$5 \sqrt{2}$

Alternative representations:

$$
\left.\left.\begin{array}{l}
\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}= \\
\frac{1}{10} \operatorname{sc}^{-1}\left(\left.\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})} \right\rvert\, 0\right) \sqrt{10-2 \sqrt{5}}+ \\
\frac{1}{10} \operatorname{sc}^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right.
\end{array} \right\rvert\, 0\right) \sqrt{10+2 \sqrt{5}} .
$$

$$
\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=
$$

$$
\frac{1}{10} \tan ^{-1}\left(1, \frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+
$$

$$
\frac{1}{10} \tan ^{-1}\left(1, \frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}
$$

$\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=$

$$
\frac{1}{10} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+
$$

$$
\frac{1}{10} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}
$$

$(0.1562756303129776)+1 / 10 \operatorname{sqrt}(((10-2 \operatorname{sqrt}(5)))) \tan ^{\wedge}-1[(2 \operatorname{sqrt}(10-2 \operatorname{sqrt}(5))) /((4-$ $2(\operatorname{sqrt}(5)+1)))]+\operatorname{sqrt}((10+2 \operatorname{sqrt}(5))) / 10 \tan ^{\wedge}-1[(2 \operatorname{sqrt}(10+2 \operatorname{sqrt}(5))) /((4+2(\operatorname{sqrt}(5)-$ 1)))]

Input interpretation:

$0.1562756303129776+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$

$$
\left(\frac{1}{10} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)
$$

Result:

0.2301764608269284...

(result in radians)

0.23017646...

Alternative representations:

$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$

$$
\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=
$$

$0.15627563031297760000+\frac{1}{10} \operatorname{sc}^{-1}\left(\left.\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})} \right\rvert\, 0\right) \sqrt{10-2 \sqrt{5}}+$

$$
\frac{1}{10} \mathrm{sc}^{-1}\left(\left.\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})} \right\rvert\, 0\right) \sqrt{10+2 \sqrt{5}}
$$

$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$
$\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=$
$0.15627563031297760000+\frac{1}{10} \tan ^{-1}\left(1, \frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+$

$$
\frac{1}{10} \tan ^{-1}\left(1, \frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}
$$

$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$

$$
\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=
$$

$0.15627563031297760000+\frac{1}{10} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+$ $\frac{1}{10} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}$

Series representations:

$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$

$$
\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=
$$

$0.20000000000000000000(0.7813781515648880000+$

$$
\begin{aligned}
& 1.0000000000000000000 \exp \left(i \pi\left[\left.\frac{\arg (10-x-2 \sqrt{5})}{2 \pi} \right\rvert\,\right) \sqrt{x}\right. \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{2}!\left(1+2 k_{1}\right)}(-1)^{k_{1}+k_{2}} x^{-k_{2}} T_{1+2 k_{1}}\left(\frac{\sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \\
& { }_{2} F_{1}\left(\frac{1}{2}+k_{1}, 1+k_{1} ; 2+2 k_{1} ;-4\right)\left(-\frac{1}{2}\right)_{k_{2}}(10-x-2 \sqrt{5})^{k_{2}}+
\end{aligned}
$$

$1.0000000000000000000 \exp \left(i \pi\left\lfloor\frac{\arg (10-x+2 \sqrt{5})}{2 \pi}\right\rfloor\right) \sqrt{x}$

$$
\begin{gathered}
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{2}!\left(1+2 k_{1}\right)}(-1)^{k_{1}+k_{2}} x^{-k_{2}} T_{1+2 k_{1}}\left(\frac{\sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \\
{ }_{2} F_{1}\left(\frac{1}{2}+k_{1}, 1+k_{1} ; 2+2 k_{1} ;-4\right)\left(-\frac{1}{2}\right)_{k_{2}} \\
\left.(10-x+2 \sqrt{5})^{k_{2}}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{gathered}
$$

$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$
$\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=$
$0.100000000000000000001 .5627563031297760000+1.0000000000000000000$
$\sqrt{9-2 \sqrt{5}} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{1+2 k_{2}}\left(-\frac{1}{5}\right)^{k_{2}} 4^{1+2 k_{2}}\binom{\frac{1}{2}}{k_{1}} F_{1+2 k_{2}}$
$(9-2 \sqrt{5})^{-k_{1}}\left(\frac{\sqrt{10-2 \sqrt{5}}}{(4-2(1+\sqrt{5}))\left(1+\sqrt{1+\frac{16{\sqrt{10-2 \sqrt{5}^{5}}}^{2\left(4-2\left(1+\sqrt{5}^{2}\right)\right)^{2}}}{}}\right)}\right)^{1+2 k_{2}}+$
$1.0000000000000000000 \sqrt{9+2 \sqrt{5}}$

$$
\begin{gathered}
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{1+2 k_{2}}\left(-\frac{1}{5}\right)^{k_{2}} 4^{1+2 k_{2}}\binom{\frac{1}{2}}{k_{1}} F_{1+2 k_{2}}(9+2 \sqrt{5})^{-k_{1}} \\
\binom{\sqrt{10+2 \sqrt{5}}}{(4+2(-1+\sqrt{5}))\left(1+\sqrt{1+\frac{16{\sqrt{10+2 \sqrt{5}^{5}}}^{2}}{5(4+2(-1+\sqrt{5}))^{2}}}\right)}
\end{gathered}
$$

$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$
$\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=0.10000000000000000000$
$\int_{1.5627563031297760000+1.0000000000000000000}$

$$
\begin{gathered}
\left.\exp \left(i \pi \left\lvert\, \frac{\arg (10-x-2 \sqrt{5})}{2 \pi}\right.\right]\right) \sqrt{x} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{1}!\left(1+2 k_{2}\right)}(-1)^{k_{1}+k_{2}} \\
4^{1+2 k_{2} \times 5^{-k_{2}} x^{-k_{1}} F_{1+2 k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}(10-x-2 \sqrt{5})^{k_{1}}} \\
\left(\frac{\sqrt{10-2 \sqrt{5}}}{(4-2(1+\sqrt{5}))\left(1+\sqrt{1+\frac{16 \sqrt{10-2 \sqrt{5}}^{2}}{5(4-2(1+\sqrt{5}))^{2}}}\right)}\right)^{1+2 k_{2}}+
\end{gathered}
$$

$1.0000000000000000000 \exp \left(i \pi\left[\frac{\arg (10-x+2 \sqrt{5})}{2 \pi}\right]\right) \sqrt{x}$ $\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{1}!\left(1+2 k_{2}\right)}(-1)^{k_{1}+k_{2}} 4^{1+2 k_{2}} \times 5^{-k_{2}}$ $x^{-k_{1}} F_{1+2 k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}(10-x+2 \sqrt{5})^{k_{1}}$
for $(x \in \mathbb{R}$ and $x<0)$

Integral representations:

$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$

$$
\begin{aligned}
& \frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}= \\
& 0.15627563031297760000+\int_{0}^{1}\left(\left((-1+\sqrt{5})^{2}(1+\sqrt{5}) \sqrt{2(5+\sqrt{5})^{2}+}\right.\right. \\
& {\sqrt{10-2 \sqrt{5}^{2}}}^{2}\left(-(-1+\sqrt{5})(1+\sqrt{5})^{2}+2 t^{2}{\left.\left.\sqrt{2(5+\sqrt{5})^{2}}\right)\right) /}^{2}\right)\left((1+\sqrt{5})^{2}+t^{2}{\left.\left.\left.\sqrt{2(5+\sqrt{5})^{2}}\right)\right)\right) d t}^{\left(10\left((-1+\sqrt{5})^{2}+t^{2}{\left.\sqrt{10-2 \sqrt{5}^{2}}\right)}^{2}\right)\right.}\right.
\end{aligned}
$$

$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$

$$
\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=0.15627563031297760000+
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}{\sqrt{10-2 \sqrt{5}^{5}}}^{2}\left(1+\frac{4 \sqrt{10-2 \sqrt{5}}^{2}}{(4-2(1+\sqrt{5}))^{2}}\right)^{-s}}{20 \pi^{3 / 2}(4-2(1+\sqrt{5}))}-\right.
$$

$$
20 \pi^{3 / 2}(4+2(-1+\sqrt{5}))
$$

$d s$ for $0<\gamma<\frac{1}{2}$
$0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$

$$
\begin{gathered}
\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}=0.15627563031297760000+ \\
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{4^{-1-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s){\sqrt{10-2 \sqrt{5}^{5}}}^{2}\left(\frac{\sqrt{10-2 \sqrt{5}}^{2}}{(4-2(1+\sqrt{5}))^{2}}\right)^{-s}}{5 i \pi \Gamma\left(\frac{3}{2}-s\right)(4-2(1+\sqrt{5}))}+\right. \\
\left.\quad \frac{4^{-1-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s){\sqrt{10+2 \sqrt{5}^{2}}}^{2}\left(\frac{\sqrt{10+2 \sqrt{5}}_{(4+2(-1+\sqrt{5}))^{2}}}{}{ }^{-s}\right.}{5 i \pi \Gamma\left(\frac{3}{2}-s\right)(4+2(-1+\sqrt{5}))}\right)
\end{gathered}
$$

ds for $0<\gamma<\frac{1}{2}$
$\left(\left(\left((0.1562756303129776)+1 / 10 \operatorname{sqrt}(((10-2 \operatorname{sqrt}(5)))) \tan ^{\wedge}-1[(2 \operatorname{sqrt}(10-\right.\right.\right.$
$2 \operatorname{sqrt}(5))) /((4-2(\operatorname{sqrt}(5)+1)))]+\operatorname{sqrt}((10+2 \operatorname{sqrt}(5))) / 10 \tan ^{\wedge}-1$
$[(2 \operatorname{sqrt}(10+2 \operatorname{sqrt}(5))) /((4+2(\operatorname{sqrt}(5)-1)))]))) * 7$

Input interpretation:

$\left(0.1562756303129776+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\left(\frac{1}{10} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right) \times 7
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Result:

1.611235225788499...
(result in radians)
1.61123522....

This result is an approximation to the value of the golden ratio $1,618033988749 \ldots$

Alternative representations:

$$
\begin{aligned}
& \left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right. \\
& \left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7= \\
& 7\left(0.15627563031297760000+\frac{1}{10} \mathrm{sc}^{-1}\left(\left.\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})} \right\rvert\, 0\right) \sqrt{10-2 \sqrt{5}}+\right. \\
& \left.\frac{1}{10} \operatorname{sc}^{-1}\left(\left.\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})} \right\rvert\, 0\right) \sqrt{10+2 \sqrt{5}}\right)
\end{aligned}
$$

$$
\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.
$$

$$
\left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7=
$$

$$
7\left(0.15627563031297760000+\frac{1}{10} \tan ^{-1}\left(1, \frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+\right.
$$

$$
\left.\frac{1}{10} \tan ^{-1}\left(1, \frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}\right)
$$

$\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7=
$$

$$
7\left(0.15627563031297760000+\frac{1}{10} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \sqrt{10-2 \sqrt{5}}+\right.
$$

$$
\left.\frac{1}{10} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}\right)
$$

Series representations:

$$
\begin{gathered}
\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right. \\
\left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7=
\end{gathered}
$$

$1.4000000000000000000(0.7813781515648880000+$

$$
1.0000000000000000000 \exp \left(i \pi\left[\frac{\arg (10-x-2 \sqrt{5})}{2 \pi}\right]\right) \sqrt{x}
$$

$$
\begin{aligned}
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{2}!\left(1+2 k_{1}\right)}(-1)^{k_{1}+k_{2}} x^{-k_{2}} T_{1+2 k_{1}}\left(\frac{\sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \\
& { }_{2} F_{1}\left(\frac{1}{2}+k_{1}, 1+k_{1} ; 2+2 k_{1} ;-4\right)\left(-\frac{1}{2}\right)_{k_{2}}(10-x-2 \sqrt{5})^{k_{2}}+ \\
& 1.0000000000000000000 \exp \left(i \pi\left[\frac{\arg (10-x+2 \sqrt{5})}{2 \pi}\right) \sqrt{x}\right.
\end{aligned}
$$

$$
\begin{gathered}
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{2}!\left(1+2 k_{1}\right)}(-1)^{k_{1}+k_{2}} x^{-k_{2}} T_{1+2 k_{1}}\left(\frac{\sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \\
{ }_{2} F_{1}\left(\frac{1}{2}+k_{1}, 1+k_{1} ; 2+2 k_{1} ;-4\right)\left(-\frac{1}{2}\right)_{k_{2}} \\
\left.(10-x+2 \sqrt{5})^{k_{2}}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{gathered}
$$

$$
\begin{gathered}
\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right. \\
\left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7=
\end{gathered}
$$

$0.700000000000000000001 .5627563031297760000+1.0000000000000000000$
$\sqrt{9-2 \sqrt{5}} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{1+2 k_{2}}\left(-\frac{1}{5}\right)^{k_{2}} 4^{1+2 k_{2}}\binom{\frac{1}{2}}{k_{1}} F_{1+2 k_{2}}$
$(9-2 \sqrt{5})^{-k_{1}}\left(\frac{\sqrt{10-2 \sqrt{5}}}{(4-2(1+\sqrt{5}))\left(1+\sqrt{1+\frac{16{\sqrt{10-2 \sqrt{5}^{5}}}^{5(4-2(1+\sqrt{5}))^{2}}}{}}\right)}\right)^{1+2 k_{2}}+$
$1.0000000000000000000 \sqrt{9+2 \sqrt{5}}$

$$
\left.\begin{array}{c}
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{1+2 k_{2}}\left(-\frac{1}{5}\right)^{k_{2}} 4^{1+2 k_{2}}\binom{\frac{1}{2}}{k_{1}} F_{1+2 k_{2}}(9+2 \sqrt{5})^{-k_{1}} \\
(4+2(-1+\sqrt{5}))\left(1+\sqrt{1+{\frac{16{\sqrt{10+2 \sqrt{5}^{5}}}^{2}}{5(4+2(-1+\sqrt{5}))^{2}}}_{2}}\right)
\end{array}\right)
$$

$$
\begin{aligned}
& \left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right. \\
& \left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7= \\
& (1.5627563031297760000+
\end{aligned}
$$

$\left.1.0000000000000000000 \exp \left(i \pi \left\lvert\, \frac{\arg (10-x-2 \sqrt{5})}{2 \pi}\right.\right]\right)$
$\sqrt{x} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{1}!\left(1+2 k_{2}\right)}(-1)^{k_{1}+k_{2}} 4^{1+2 k_{2}}$

$$
5^{-k_{2}} x^{-k_{1}} F_{1+2 k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}(10-x-2 \sqrt{5})^{k_{1}}
$$

$1.0000000000000000000 \exp \left(i \pi\left\lfloor\frac{\arg (10-x+2 \sqrt{5})}{2 \pi}\right\rfloor\right) \sqrt{x}$

$$
\begin{aligned}
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{1}!\left(1+2 k_{2}\right)}(-1)^{k_{1}+k_{2}} 4^{1+2 k_{2}} \times 5^{-k_{2}} \\
& x^{-k_{1}} F_{1+2 k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}(10-x+2 \sqrt{5})^{k_{1}} \\
& \binom{\sqrt{10+2 \sqrt{5}}}{(4+2(-1+\sqrt{5}))\left(1+\sqrt{1+\frac{16{\sqrt{10+2 \sqrt{5}^{5}}}^{2}}{5(4+2(-1+\sqrt{5}))^{2}}}\right)}
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

Integral representations:

$$
\begin{aligned}
& \left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right. \\
& \left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7= \\
& 1.0939294121908432000+\int_{0}^{1}\left(\left(7 \left((-1+\sqrt{5})^{2}(1+\sqrt{5}) \sqrt{2(5+\sqrt{5})^{2}}+\right.\right.\right. \\
& \left.\left.{\sqrt{10-2 \sqrt{5}^{2}}}^{2}\left(-(-1+\sqrt{5})(1+\sqrt{5})^{2}+2 t^{2} \sqrt{2(5+\sqrt{5})^{2}}\right)\right)\right) / \\
& \left.\left(10\left((-1+\sqrt{5})^{2}+t^{2}{\sqrt{10-2 \sqrt{5}^{2}}}^{2}\right)\left((1+\sqrt{5})^{2}+t^{2} \sqrt{2(5+\sqrt{5})^{2}}\right)\right)\right) d t
\end{aligned}
$$

$$
\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.
$$

$$
\left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7=1.0939294121908432000+
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{7 i \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}{\sqrt{10-2 \sqrt{5}^{2}}}^{2}\left(1+\frac{4 \sqrt{10-2 \sqrt{5}}^{2}}{(4-2(1+\sqrt{5}))^{2}}\right)^{-s}}{20 \pi^{3 / 2}(4-2(1+\sqrt{5}))}-\right.
$$

$$
{\underline{7 i \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\sqrt{10+2 \sqrt{5}^{5}}}^{2}\left(1+\frac{4 \sqrt{10+2 \sqrt{5}}^{2}}{(4+2(-1+\sqrt{5}))^{2}}\right)^{-s}}^{-s}
$$

$$
20 \pi^{3 / 2}(4+2(-1+\sqrt{5}))
$$

$d s$ for $0<\gamma<\frac{1}{2}$

$$
\left.\begin{array}{l}
\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right. \\
\left.\frac{1}{10} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right) \sqrt{10+2 \sqrt{5}}\right) 7=1.0939294121908432000+ \\
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{7 \times 4^{-1-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s){\sqrt{10-2 \sqrt{5}^{2}}}^{2}\left(\frac{\sqrt{10-2 \sqrt{5}}_{(4-2(1+\sqrt{5}))^{2}}}{}{ }^{-5}\right.}{5 i \pi \Gamma\left(\frac{3}{2}-s\right)(4-2(1+\sqrt{5}))}+\right. \\
\left.\frac{7 \times 4^{-1-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s){\sqrt{10+2 \sqrt{5}^{2}}}^{2}\left(\frac{{\sqrt{10+2 \sqrt{5}^{5}}}^{2}}{(4+2(-1+\sqrt{5}))^{2}}\right)^{-s}}{5 i \pi \Gamma\left(\frac{3}{2}-s\right)\left(4+2\left(-1+\sqrt{5}^{2}\right)\right)}\right) \\
d s \text { for } 0<\gamma<\frac{1}{2}
\end{array}\right)
$$

$\left(\left((0.2301764608269284 * 2 \mathrm{Pi})^{\wedge} 8\right)\right)^{\wedge} 1 / 6$

Input interpretation:

$\sqrt[6]{(0.2301764608269284 \times 2 \pi)^{8}}$

Result:

1.635514386305617...
$1.63551438 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$
$\left(5^{*} 1 / \mathrm{Pi}^{\wedge} 3\right)(((\operatorname{colog}(0.2301764608269284))))^{\wedge} 6$

Input interpretation:

$\left(5 \times \frac{1}{\pi^{3}}\right)(-\log (0.2301764608269284))^{6}$
$\log (x)$ is the natural logarithm

Result:

1.61990599812454...
1.619905998...

This result is a good approximation to the value of the golden ratio 1,618033988749...

Alternative representations:

$\frac{(-\log (0.23017646082692840000))^{6} 5}{\pi^{3}}=\frac{5\left(-\log _{e}(0.23017646082692840000)\right)^{6}}{\pi^{3}}$
$\frac{(-\log (0.23017646082692840000))^{6} 5}{\pi^{3}}=\frac{5 \mathrm{Li}_{1}(0.76982353917307160000)^{6}}{\pi^{3}}$
$\frac{(-\log (0.23017646082692840000))^{6} 5}{\pi^{3}}=\frac{5\left(-\log (a) \log _{a}(0.23017646082692840000)\right)^{6}}{\pi^{3}}$

Series representations:

$$
\begin{aligned}
& \frac{(-\log (0.23017646082692840000))^{6} 5}{\pi^{3}}=\frac{5\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.76982353917307160000)^{k}}{k}\right)^{6}}{\pi^{3}} \\
& \frac{(-\log (0.23017646082692840000))^{6} 5}{\pi^{3}}= \\
& \frac{1}{\pi^{3}} 5\left(2 i \pi \left[\left.\frac{\arg (0.23017646082692840000-x)}{2 \pi} \right\rvert\,+\log (x)-\right.\right. \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.23017646082692840000-x)^{k} x^{-k}}{k}\right)^{6} \text { for } x<0
\end{aligned}
$$

$$
\frac{(-\log (0.23017646082692840000))^{6} 5}{\pi^{3}}=\frac{1}{\pi^{3}}
$$

$$
5\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.23017646082692840000-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.
$$

$$
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.23017646082692840000-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{6}
$$

Integral representation:

$\frac{(-\log (0.23017646082692840000))^{6} 5}{\pi^{3}}=\frac{5\left(\int_{1}^{0.23017646082602840000} \frac{1}{t} d t\right)^{6}}{\pi^{3}}$
$\left(\left(\left((0.1562756303129776)+1 / 10 \operatorname{sqrt}(((10-2 \operatorname{sqrt}(5)))) \tan ^{\wedge}-1[(2 \operatorname{sqrt}(10-\right.\right.\right.$
$2 \operatorname{sqrt}(5))) /((4-2(\operatorname{sqrt}(5)+1)))]+\operatorname{sqrt}((10+2 \operatorname{sqrt}(5))) / 10 \tan ^{\wedge}-1$
$[(2 \operatorname{sqrt}(10+2 \operatorname{sqrt}(5))) /((4+2(\operatorname{sqrt}(5)-1)))])))^{\wedge} 1 / 128$

Input interpretation:

$$
\left.\begin{array}{c}
\left(0.1562756303129776+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right. \\
\left.\left(\frac{1}{10} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)
\end{array}\right)(1 / 128)
$$

Result:

0.988589744523409512...
(result in radians)
$0.98858974 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$
$\left(64^{*} 34\right) /\left(\left(((0.1562756303129776)+1 / 10 \operatorname{sqrt}(((10-2 \operatorname{sqrt}(5))))) \tan ^{\wedge}-1[(2 \operatorname{sqrt}(10-\right.\right.$ $2 \operatorname{sqrt}(5))) /((4-2(\operatorname{sqrt}(5)+1)))]+\operatorname{sqrt}((10+2 \operatorname{sqrt}(5))) / 10 \tan ^{\wedge}-1$
$[(2 \operatorname{sqrt}(10+2 \operatorname{sqrt}(5))) /((4+2(\operatorname{sqrt}(5)-1)))])))-55$
Where 34 and 55 are Fibonacci numbers

Input interpretation:

$(64 \times 34) /\left(0.1562756303129776+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\left(\frac{1}{10} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Result:

9398.616552198847...
(result in radians)
$9398.616552 \ldots$. result practically equal to the rest mass of Botton eta meson 9398

Alternative representations:

$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55=-55+
$$

$2176 /\left(0.15627563031297760000+\frac{1}{10} \operatorname{sc}^{-1}\left(\left.\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})} \right\rvert\, 0\right) \sqrt{10-2 \sqrt{5}}+\right.$
$\left.\frac{1}{10} \operatorname{sc}^{-1}\left(\left.\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})} \right\rvert\, 0\right) \sqrt{10+2 \sqrt{5}}\right)$
$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55=
$$

$$
-55+2176 /\left(0.15627563031297760000+\frac{1}{10} \tan ^{-1}\left(1, \frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)\right.
$$

$$
\left.\sqrt{10-2 \sqrt{5}}+\frac{1}{10} \tan ^{-1}\left(1, \frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}\right)
$$

$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\begin{gathered}
\left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55= \\
-55+2176 /\left(0.15627563031297760000+\frac{1}{10} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)\right. \\
\left.\sqrt{10-2 \sqrt{5}}+\frac{1}{10} i \tanh ^{-1}\left(-\frac{2 i \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \sqrt{10+2 \sqrt{5}}\right)
\end{gathered}
$$

Series representations:
$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55=
$$

$-\left(\int_{55.00000000000000000}-394.0736073332338604+\right.$
$1.0000000000000000000 \sqrt{9-2 \sqrt{5}}$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{1+2 k_{2}}\left(-\frac{1}{5}\right)^{k_{2}} 4^{1+2 k_{2}}\binom{\frac{1}{2}}{k_{1}} F_{1+2 k_{2}}(9-2 \sqrt{5})^{-k_{1}}
$$

$1.0000000000000000000 \sqrt{9+2 \sqrt{5}}$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{1+2 k_{2}}\left(-\frac{1}{5}\right)^{k_{2}} 4^{1+2 k_{2}}\binom{\frac{1}{2}}{k_{1}} F_{1+2 k_{2}}(9+2 \sqrt{5})^{-k_{1}}
$$

$$
(1.5627563031297760000+1.0000000000000000000 \sqrt{9-2 \sqrt{5}}
$$

$$
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{1+2 k_{2}}\left(-\frac{1}{5}\right)^{k_{2}} 4^{1+2 k_{2}}\binom{\frac{1}{2}}{k_{1}} F_{1+2 k_{2}}(9-2 \sqrt{5})^{-k_{1}}
$$

$1.0000000000000000000 \sqrt{9+2 \sqrt{5}}$
$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55=
$$

$-\int(55.00000000000000000(-197.03680366661693018+$

$$
\begin{aligned}
& 1.0000000000000000000 \exp \left(i \pi\left|\frac{\arg (10-x-2 \sqrt{5})}{2 \pi}\right|\right) \sqrt{x} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{2}!\left(1+2 k_{1}\right)}(-1)^{k_{1}+k_{2}} x^{-k_{2}} T_{1+2 k_{1}}\left(\frac{\sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) 2^{2} F_{1} \\
& \left(\frac{1}{2}+k_{1}, 1+k_{1} ; 2+2 k_{1} ;-4\right)\left(-\frac{1}{2}\right)_{k_{2}}(10-x-2 \sqrt{5})^{k_{2}}+
\end{aligned}
$$

$$
1.0000000000000000000 \exp \left(i \pi\left\lfloor\left.\frac{\arg (10-x+2 \sqrt{5})}{2 \pi} \right\rvert\,\right)\right.
$$

$$
\sqrt{x} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{2}!\left(1+2 k_{1}\right)}(-1)^{k_{1}+k_{2}} x^{-k_{2}}
$$

$$
T_{1+2 k_{1}}\left(\frac{\sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) 2 F_{1}\left(\frac{1}{2}+k_{1}, 1+k_{1} ; 2+2 k_{1} ;-4\right)
$$

$$
\left.\left.\left(-\frac{1}{2}\right)_{k_{2}}(10-x+2 \sqrt{5})^{k_{2}}\right)\right) /
$$

$(0.7813781515648880000+1.0000000000000000000$

$$
\begin{aligned}
& \exp \left(i \pi\left[\frac{\arg (10-x-2 \sqrt{5})}{2 \pi}\right]\right) \sqrt{x} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{2}!\left(1+2 k_{1}\right)}(-1)^{k_{1}+k_{2}} x^{-k_{2}} T_{1+2 k_{1}}\left(\frac{\sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right) \\
& \quad{ }_{2} F_{1}\left(\frac{1}{2}+k_{1}, 1+k_{1} ; 2+2 k_{1} ;-4\right)\left(-\frac{1}{2}\right)_{k_{2}}(10-x-2 \sqrt{5})^{k_{2}}+
\end{aligned}
$$

$1.0000000000000000000 \exp \left(i \pi\left[\frac{\arg (10-x+2 \sqrt{5})}{2 \pi}\right]\right) \sqrt{x}$

$$
\begin{gathered}
\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{1}{k_{2}!\left(1+2 k_{1}\right)}(-1)^{k_{1}+k_{2}} x^{-k_{2}} T_{1+2 k_{1}}\left(\frac{\sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right) \\
{ }_{2} F_{1}\left(\frac{1}{2}+k_{1}, 1+k_{1} ; 2+2 k_{1} ;-4\right)\left(-\frac{1}{2}\right)_{k_{2}} \\
\left.\left.(10-x+2 \sqrt{5})^{k_{2}}\right)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{gathered}
$$

$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\begin{aligned}
& \left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55= \\
& -55+2176 /\left(0.15627563031297760000+\frac{1}{10} \exp \left(i \pi \left\lvert\, \frac{\arg (10-x-2 \sqrt{5})}{2 \pi}\right.\right]\right) \\
& \sqrt{x}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}(10-x-2 \sqrt{5})^{k}}{k!}\right) \\
& \left(\tan ^{-1}(x)+\pi\left\{\frac{\arg \left(i\left(-x+\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)\right)}{2 \pi}\right\rfloor+\right. \\
& \left.\frac{1}{2} i \sum_{k=1}^{\infty} \frac{\left.\left(-(-i-x)^{-k}+(i-x)^{-k}\right)\left(-x+\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(1+\sqrt{5})}\right)^{k}\right)}{k}\right)+\frac{1}{10} \\
& \exp \left(i \pi\left[\frac{\arg (10-x+2 \sqrt{5})}{2 \pi}\right]\right) \sqrt{x}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}(10-x+2 \sqrt{5})^{k}}{k!}\right) \\
& \left(\tan ^{-1}(x)+\pi\left[\left.\frac{\arg \left(i\left(-x+\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right)\right)}{2 \pi} \right\rvert\,+\right.\right. \\
& \left.\left.\frac{1}{2} i \sum_{k=1}^{\infty} \frac{\left(-(-i-x)^{-k}+(i-x)^{-k}\right)\left(-x+\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(-1+\sqrt{5})}\right)^{k}}{k}\right)\right)
\end{aligned}
$$

for ($i x \in \mathbb{R}$ and $i x<-1$ and $x \in \mathbb{R}$ and $x<0$)

Integral representations:

$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55=
$$

$$
-55+2176 /(0.15627563031297760000+
$$

$$
\begin{gathered}
\int_{0}^{1}\left(\left((-1+\sqrt{5})^{2}(1+\sqrt{5}) \sqrt{2(5+\sqrt{5})^{2}}+{\sqrt{10-2 \sqrt{5}^{2}}}^{2}\right.\right. \\
\left.\left(-(-1+\sqrt{5})(1+\sqrt{5})^{2}+2 t^{2} \sqrt{2(5+\sqrt{5})^{2}}\right)\right) / \\
\left(10\left((-1+\sqrt{5})^{2}+t^{2}{\sqrt{10-2 \sqrt{5}^{2}}}^{2}\right)\right. \\
\left.\left.\left((1+\sqrt{5})^{2}+t^{2}{\sqrt{2(5+\sqrt{5}})^{2}}_{2}^{2}\right)\right) d t\right)
\end{gathered}
$$

$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\begin{aligned}
& \left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55= \\
& -55+2176 / 0.15627563031297760000+ \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{i \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}{\sqrt{10-2 \sqrt{5}^{2}}}^{2}\left(1+\frac{4 \sqrt{10-2 \sqrt{5}}_{(4-2(1+\sqrt{5}))^{2}}}{}{ }^{-5}\right.}{20 \pi^{3 / 2}(4-2(1+\sqrt{5}))}-\right.
\end{aligned}
$$

$$
\begin{aligned}
& d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$(64 \times 34) /\left(0.15627563031297760000+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\begin{gathered}
\left.\frac{1}{10} \sqrt{10+2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)-55= \\
-55+2176 /(0.15627563031297760000+ \\
\int_{-i \infty+\gamma}^{i \infty \infty+\gamma}\left(\frac{4^{-1-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s){\sqrt{10-2 \sqrt{5}^{2}}}^{2}\left(\frac{\sqrt{10-2 \sqrt{5}}^{2}}{(4-2(1+\sqrt{5}))^{2}}\right)^{-s}}{5 i \pi \Gamma\left(\frac{3}{2}-s\right)\left(4-2\left(1+\sqrt{5}^{5}\right)\right)}+\right. \\
\\
\left.\quad \frac{4^{-1-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s){\sqrt{10+2 \sqrt{5}^{2}}}^{2}\left(\frac{\sqrt{10+2 \sqrt{5}}^{2}}{(4+2(-1+\sqrt{5}))^{2}}\right)^{-s}}{5 i \pi \Gamma\left(\frac{3}{2}-s\right)\left(4+2\left(-1+\sqrt{5}^{5}\right)\right)}\right) \\
d s\left(\begin{array}{l}
\text { for } 0<\gamma<\frac{1}{2}
\end{array}\right)
\end{gathered}
$$

Now, we have that:

$$
\begin{gathered}
\cos 2 x-\left(1+\frac{1}{3}\right) \cos 4 x+\left(1+\frac{1}{3}+\frac{1}{5}\right) \cos 6 x-\& c \\
=\frac{\pi}{4}(\cos x-\cos 3 x+\cos 5 x-\& c)
\end{gathered}
$$

$$
x=6 / 13
$$

$\mathrm{Pi} / 4 *((\cos (6 / 13)-\cos (3 * 6 / 13)+\cos (5 * 6 / 13)))$

Input:

$\frac{\pi}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(3 \times \frac{6}{13}\right)+\cos \left(5 \times \frac{6}{13}\right)\right)$

Exact result:

$\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)$

Decimal approximation:

$0.030056243651600759532848775534928356656353146768202475357 \ldots$
0.0300562436516....

Alternate forms:

$\frac{1}{4} \pi \cos \left(\frac{6}{13}\right)\left(1-2 \cos \left(\frac{12}{13}\right)\right)^{2}$
$\frac{1}{4}\left(\pi \cos \left(\frac{6}{13}\right)-\pi \cos \left(\frac{18}{13}\right)+\pi \cos \left(\frac{30}{13}\right)\right)$
$\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)\right)+\frac{1}{4} \pi \cos \left(\frac{30}{13}\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi=\frac{1}{4} \pi\left(\cosh \left(\frac{6 i}{13}\right)-\cosh \left(\frac{18 i}{13}\right)+\cosh \left(\frac{30 i}{13}\right)\right) \\
& \frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi= \\
& \frac{1}{4} \pi\left(\cosh \left(-\frac{6 i}{13}\right)-\cosh \left(-\frac{18 i}{13}\right)+\cosh \left(-\frac{30 i}{13}\right)\right) \\
& \frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi=\frac{1}{4} \pi\left(\frac{1}{\sec \left(\frac{6}{13}\right)}-\frac{1}{\sec \left(\frac{18}{13}\right)}+\frac{1}{\sec \left(\frac{30}{13}\right)}\right)
\end{aligned}
$$

Series representations:

$\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi=\sum_{k=0}^{\infty} \frac{\left(\frac{9}{169}\right)^{k} 4^{-1+k}\left(1-9^{k}+25^{k}\right) e^{i k \pi} \pi}{(2 k)!}$
$\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi=$
$\sum_{k=0}^{\infty} \frac{\pi \cos \left(\frac{k \pi}{2}+z_{0}\right)\left(\left(\frac{6}{13}-z_{0}\right)^{k}-\left(\frac{18}{13}-z_{0}\right)^{k}+\left(\frac{30}{13}-z_{0}\right)^{k}\right)}{4 k!}$

$$
\begin{aligned}
& \frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi= \\
& \sum_{k=0}^{\infty}\left(\frac{1}{4} \pi\left(\frac{(-1)^{-1+k}\left(\frac{6}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\frac{(-1)^{-1+k}\left(\frac{30}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right)-\frac{(-1)^{-1+k}\left(\frac{18}{13}-\frac{\pi}{2}\right)^{1+2 k} \pi}{4(1+2 k)!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi= \\
& \frac{\pi}{4}+\int_{0}^{1}-\frac{3}{26} \pi\left(\sin \left(\frac{6 t}{13}\right)-3 \sin \left(\frac{18 t}{13}\right)+5 \sin \left(\frac{30 t}{13}\right)\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi= \\
& \quad \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{-225 /\left(169_{s}\right)+s}\left(1-e^{144 /\left(169_{s)}\right)}+e^{216 /\left(169_{s}\right)}\right) \sqrt{\pi}}{8 \sqrt{s}} d s \text { for } \gamma>0
\end{aligned}
$$

$$
\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi=
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma} i \frac{\left(\frac{169}{225}\right)^{s}\left(-1+\left(\frac{25}{9}\right)^{s}-25^{s}\right) \sqrt{\pi} \Gamma(s)}{8 \Gamma\left(\frac{1}{2}-s\right)} d s \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi=
$$

$$
\left.\begin{array}{r}
\int_{\frac{\pi}{2}}^{\frac{30}{13}}\left(-\frac{1}{4} \pi \sin (t)+\frac{1}{\frac{30}{13}-\frac{\pi}{2}}\left(\frac{6}{13}-\frac{\pi}{2}\right)\left(-\frac{1}{4} \pi \sin \left(\frac{-\frac{12 \pi}{13}-\frac{6 t}{13}+\frac{\pi t}{2}}{-\frac{30}{13}+\frac{\pi}{2}}\right)+\right.\right. \\
\frac{\left(\frac{18}{13}-\frac{\pi}{2}\right) \pi \sin \left(\frac{\left(\frac{6 \pi}{13}-\frac{18\left(-\frac{12 \pi}{13}-\frac{6 t}{13}+\frac{\pi t}{2}\right)}{13\left(-\frac{30}{13}+\frac{\pi}{2}\right)}+\frac{\pi\left(-\frac{12 \pi}{13}-\frac{6 t}{13}+\frac{\pi t}{2}\right)}{2\left(-\frac{30}{13}+\frac{\pi}{2}\right)}\right.}{-\frac{6}{13}+\frac{\pi}{2}}\right)}{4\left(\frac{6}{13}-\frac{\pi}{2}\right)}
\end{array}\right)
$$

$1 /\left(\left(\left(\left(\operatorname{Pi} / 4^{*}(((((\cos (6 / 13)-\cos (3 * 6 / 13)+\cos (5 * 6 / 13))))))\right)\right)\right)\right)$

Input:

$\frac{1}{\frac{\pi}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(3 \times \frac{6}{13}\right)+\cos \left(5 \times \frac{6}{13}\right)\right)}$

Exact result:

$\frac{4}{\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}$

Decimal approximation:

$33.27095732891895151670851438881489360400123069525117845205 \ldots$
33.2709573289...

Alternate forms:

$\frac{4 \sec \left(\frac{6}{13}\right)}{\pi\left(1-2 \cos \left(\frac{12}{13}\right)\right)^{2}}$
$\frac{4}{\left(\frac{1}{2}\left(e^{-(6 i) / 13}+e^{(6 i) / 13}\right)+\frac{1}{2}\left(-e^{-(18 i) / 13}-e^{(18 i) / 13}\right)+\frac{1}{2}\left(e^{-(30 i) / 13}+e^{(30 i) / 13}\right)\right) \pi}$
$4 /\left(4 \pi \cos ^{5}\left(\frac{6}{13}\right)-4 \pi \cos ^{3}\left(\frac{6}{13}\right)+\pi \cos \left(\frac{6}{13}\right)-\right.$

$$
\left.8 \pi \sin ^{2}\left(\frac{6}{13}\right) \cos ^{3}\left(\frac{6}{13}\right)+4 \pi \sin ^{4}\left(\frac{6}{13}\right) \cos \left(\frac{6}{13}\right)+4 \pi \sin ^{2}\left(\frac{6}{13}\right) \cos \left(\frac{6}{13}\right)\right)
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=\frac{1}{\frac{1}{4} \pi\left(\cosh \left(\frac{6 i}{13}\right)-\cosh \left(\frac{18 i}{13}\right)+\cosh \left(\frac{30 i}{13}\right)\right)} \\
& \frac{1}{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=\frac{1}{\frac{1}{4} \pi\left(\cosh \left(-\frac{6 i}{13}\right)-\cosh \left(-\frac{18 i}{13}\right)+\cosh \left(-\frac{30 i}{13}\right)\right)} \\
& \frac{1}{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=\frac{1}{\frac{1}{4} \pi\left(\frac{1}{\operatorname{scc}\left(\frac{6}{13}\right)}-\frac{1}{\operatorname{scc}\left(\frac{18}{13}\right)}+\frac{1}{\sec \left(\frac{30}{13}\right)}\right)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=\frac{4}{\pi \sum_{k=0}^{\infty} \frac{\left(\frac{36}{169}\right)^{k}\left(1-9^{k}+25^{k}\right) e^{i k \pi}}{(2 k)!}} \\
& \frac{1}{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=\frac{4}{\frac{1}{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}}=\frac{\pi \sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(\left(\frac{6}{13}-z_{0}\right)^{k}-\left(\frac{18}{13}-z_{0}\right)^{k}+\left(\frac{30}{13}-z_{0}\right)^{k}\right)}{k!}}{4} \\
& \frac{1}{4} \\
& \pi \sum_{k=0}^{\infty}\left(\frac{(-1)^{-1+k}\left(\frac{6}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\frac{(-1)^{k}\left(\frac{18}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\frac{\left.(-1)^{-1+k\left(\frac{30}{13}-\frac{\pi}{2}\right)^{1+2 k}}\right)}{(1+2 k)!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}= \\
& \frac{52}{\pi\left(-13+\int_{0}^{1} 6\left(\sin \left(\frac{6 t}{13}\right)-3 \sin \left(\frac{18 t}{13}\right)+5 \sin \left(\frac{30 t}{13}\right)\right) d t\right)} \\
& \frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi \\
& \frac{1}{8 i} \\
& \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-225 /(169 s)+s}\left(1-e^{144 /(169 s)}+e^{216 /(169 s)}\right)}{\sqrt{s}} d s
\end{aligned} \text { for } \gamma>0
$$

$$
\frac{1}{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=\frac{8 i}{\sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{\left(\frac{169}{225}\right)^{s}\left(-1+\left(\frac{25}{9}\right)^{s}-25^{s}\right) \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}
$$

$$
\text { for } 0<\gamma<\frac{1}{2}
$$

We note that:
$1 /(((2+\operatorname{sqrt}(10)))) * 1 /((((\operatorname{Pi} / 4 *(((((\cos (6 / 13)-\cos (3 * 6 / 13)+\cos (5 * 6 / 13)))))))))))$
Input:
$\frac{1}{2+\sqrt{10}} \times \frac{1}{\frac{\pi}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(3 \times \frac{6}{13}\right)+\cos \left(5 \times \frac{6}{13}\right)\right)}$

Exact result:

$\frac{4}{(2+\sqrt{10}) \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}$

Decimal approximation:

$6.445015072636318478083414584744417454350813563799129227586 \ldots$
6.44501507263....

Alternate forms:

$$
\frac{4 \sec \left(\frac{6}{13}\right)}{(2+\sqrt{10}) \pi\left(1-2 \cos \left(\frac{12}{13}\right)\right)^{2}}
$$

$$
\frac{2 \sqrt{10}-4}{3 \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}
$$

$\frac{4}{(2+\sqrt{10})\left(\frac{1}{2}\left(e^{-(6 i) / 13}+e^{(6 i) / 13}\right)+\frac{1}{2}\left(-e^{-(18 i) / 13}-e^{(18 i) / 13}\right)+\frac{1}{2}\left(e^{-(30 i) / 13}+e^{(30 i) / 13}\right)\right) \pi}$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}= \\
& \frac{1}{\frac{1}{4}\left(\pi\left(\cosh \left(\frac{6 i}{13}\right)-\cosh \left(\frac{18 i}{13}\right)+\cosh \left(\frac{30 i}{13}\right)\right)\right)(2+\sqrt{10})} \\
& \frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}= \\
& \frac{1}{\frac{1}{4}\left(\pi\left(\cosh \left(-\frac{6 i}{13}\right)-\cosh \left(-\frac{18 i}{13}\right)+\cosh \left(-\frac{30 i}{13}\right)\right)\right)(2+\sqrt{10})} \\
& \frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}= \\
& \frac{1}{\frac{1}{4}\left(\pi\left(\frac{1}{\sec \left(\frac{6}{13}\right)}-\frac{1}{\sec \left(\frac{18}{13}\right)}+\frac{1}{\sec \left(\frac{30}{13}\right)}\right)\right)(2+\sqrt{10})}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}= \\
& \frac{(2+\sqrt{10}) \pi \sum_{k=0}^{\infty} \frac{\left(\frac{36}{169}\right)^{k}\left(1-9^{k}+25^{k}\right) e^{i k \pi}}{(2 k)!}}{\frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}=} \\
& \frac{4}{(2+\sqrt{10}) \pi \sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(\left(\frac{6}{13}-z_{0}\right)^{k}-\left(\frac{18}{13}-z_{0}\right)^{k}+\left(\frac{30}{13}-z_{0}\right)^{k}\right)}{k!}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}= \\
& \frac{4}{(2+\sqrt{10}) \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\left(\frac{6}{13}-\frac{\pi}{2}\right)^{1+2 k}+\left(\frac{18}{13}-\frac{\pi}{2}\right)^{1+2 k}-\left(\frac{30}{13}-\frac{\pi}{2}\right)^{1+2 k}\right)}{(1+2 k)!}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}= \\
& -\frac{52}{(2+\sqrt{10}) \pi\left(-13+\int_{0}^{1} 6\left(\sin \left(\frac{6 t}{13}\right)-3 \sin \left(\frac{18 t}{13}\right)+5 \sin \left(\frac{30 t}{13}\right)\right) d t\right)} \\
& \frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}= \\
& \frac{8 i}{(2+\sqrt{10}) \sqrt{\pi} \int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{e^{-225 /(169 s)+5}\left(1-e^{\left.144 /(169 s)+e^{216 /(169 s)}\right)}\right.}{\sqrt{s}} d s} \text { for } \gamma>0
\end{aligned}
$$

$$
\frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}=
$$

$$
\frac{8 i}{(2+\sqrt{10}) \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{\left(\frac{169}{225}\right)^{s}\left(-1+\left(\frac{25}{0}\right)^{s}-25^{s}\right) \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s} \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{aligned}
& \frac{1}{\frac{1}{4}\left(\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)\right)(2+\sqrt{10})}= \\
& -\left(4 /(2+\sqrt{10}) \pi \int_{\frac{\pi}{2}}^{\frac{30}{13}}\left(\sin (t)+\frac{1}{\frac{30}{13}-\frac{\pi}{2}}\left(\frac{6}{13}-\frac{\pi}{2}\right)\right) \sin \left(\frac{-\frac{12 \pi}{13}-\frac{6 t}{13}+\frac{\pi t}{2}}{-\frac{30}{13}+\frac{\pi}{2}}\right)-\right. \\
& \left.\frac{\left(\frac{18}{13}-\frac{\pi}{2}\right) \sin \left(\frac{\frac{6 \pi}{13}-\frac{18\left(-\frac{12 \pi}{13}-\frac{6 t}{13}+\frac{\pi t}{2}\right)}{13\left(-\frac{30}{13}+\frac{\pi}{2}\right)}+\frac{\pi\left(-\frac{12 \pi}{13}-\frac{6 t}{13}+\frac{\pi t}{2}\right)}{2\left(-\frac{30}{13}+\frac{\pi}{2}\right)}}{-\frac{6}{13}+\frac{\pi}{2}}\right)}{\frac{6}{13}-\frac{\pi}{2}}\right) d t
\end{aligned}
$$

The result $6.44501507263 \ldots$ is very near to the following Fermi's formula:

$$
\begin{aligned}
& \text { E-3. the every eollisuirus. } \\
& \text { ale parties extreme velativistie. } \\
& \qquad \frac{W_{n}}{V}=\frac{3}{2} \frac{6.494}{\pi^{2} \hbar^{3} c^{3}}(k T)^{4} \\
& 6.494=6 \sum_{1}^{\infty} \frac{1}{3^{4}}=\pi^{4} / 15
\end{aligned}
$$

Indeed:
$6.494 \approx 6.445015 \ldots$.

And:
$\left[55 * 1 /\left(\left(\left(1 /\left(\left(\left(\left(\operatorname{Pi} / 4^{*}\left(\left(\left(\left(\left(\cos (6 / 13)-\cos (3 * 6 / 13)+\cos \left(5^{*} 6 / 13\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right]^{*} 1 / 10^{\wedge} 26$

Input:

$$
\left(55 \times \frac{1}{\frac{1}{\frac{\pi}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(3 \times \frac{6}{13}\right)+\cos \left(5 \times \frac{6}{13}\right)\right)}}\right) \times \frac{1}{10^{26}}
$$

Exact result:

$11 \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)$
80000000000000000000000000

Decimal approximation:

$1.6530934008380417743066826544210596160994230722511361 \ldots \times 10^{-26}$
$1.653093400838 \ldots * 10^{-26}$

Alternate forms:

$11 \pi \cos \left(\frac{6}{13}\right)\left(1-2 \cos \left(\frac{12}{13}\right)\right)^{2}$
80000000000000000000000000
$\frac{11\left(\pi \cos \left(\frac{6}{13}\right)-\pi \cos \left(\frac{18}{13}\right)+\pi \cos \left(\frac{30}{13}\right)\right)}{80000000000000000000000000}$
$\frac{11 \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)\right)}{80000000000000000000000000}+\frac{11 \pi \cos \left(\frac{30}{13}\right)}{80000000000000000000000000}$

Alternative representations:

$$
\begin{aligned}
& \frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{36}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)}}=\frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\cosh \left(\frac{6 i}{13}\right)-\cosh \left(\frac{18 i}{13}\right)+\cosh \left(\frac{30 i}{13}\right)\right)}} \\
& \frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{36}{13}\right)+\cos \left(\frac{56}{13}\right)\right)}}=\frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\cosh \left(-\frac{6 i}{13}\right)-\cosh \left(-\frac{18 i}{13}\right)+\cosh \left(-\frac{30 i}{13}\right)\right)}}
\end{aligned}
$$

$$
\frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{36}{13}\right)+\cos \left(\frac{56}{13}\right)\right)}}=\frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\frac{1}{\sec \left(\frac{6}{13}\right)}-\frac{1}{\sec \left(\frac{18}{13}\right)}+\frac{1}{\sec \left(\frac{30}{13}\right)}\right)}}
$$

Series representations:

$$
\begin{aligned}
& \frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{36}{13}\right)+\cos \left(\frac{566}{13}\right)\right)}}=\sum_{k=0}^{\infty} \frac{11\left(\frac{9}{169}\right)^{k} 4^{-14+k}\left(1-9^{k}+25^{k}\right) e^{i k \pi} \pi}{298023223876953125(2 k)!} \\
& \frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3.6}{13}\right)+\cos \left(\frac{5 \cdot 6}{13}\right)\right)}}=\sum_{k=0}^{\infty} \frac{11 \pi \cos \left(\frac{k \pi}{2}+z_{0}\right)\left(\left(\frac{6}{13}-z_{0}\right)^{k}-\left(\frac{18}{13}-z_{0}\right)^{k}+\left(\frac{30}{13}-z_{0}\right)^{k}\right)}{80000000000000000000000000 k!} \\
& \frac{55}{\frac{10^{26}}{\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right)}}=\sum_{k=0}^{\infty}\left(\frac{11 \pi\left(\frac{(-1)^{-1+k}\left(\frac{6}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\frac{(-1)^{-1+k}\left(\frac{30}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right)}{80000000000000000000000000}-\right. \\
& 11(-1)^{-1+k}\left(\frac{18}{13}-\frac{\pi}{2}\right)^{1+2 k} \pi \\
& 80000000000000000000000000(1+2 k)!
\end{aligned}
$$

Integral representations:

55
$\frac{100^{26}}{\frac{1}{4} \pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{36}{13}\right)+\cos \left(\frac{566}{13}\right)\right)}$
$\int_{-i \infty+y}^{i \infty+\gamma}-\frac{11 i e^{-225 /(169 s)+s}\left(1-e^{144 /(169 s)}+e^{216 /(169 s)}\right) \sqrt{\pi}}{160000000000000000000000000 \sqrt{s}} d s$ for $\gamma>0$

The result
$1.6530934008380417743066826544210596160994230722511361 \ldots \times 10^{-26}$
$1.6530934 \ldots{ }^{*} 10^{-26}$ is very near to the following Fermi's formula:

$$
\sigma=\frac{2 \pi}{\hbar v}\left(\frac{e_{2}^{2} \hbar^{2}}{2 \mu^{2} c^{2}}\right)^{2} \frac{p^{2}}{2 \pi^{2} \hbar^{3} v} \approx \frac{1}{4 \pi}\left(\frac{e_{2}^{2}}{\mu c^{2}}\right)^{2}=1.6 \times 10^{-26}
$$

concerning:

$$
\begin{aligned}
& \text { D-7 Scattering of pious by nucleons } \\
& N+\Pi^{+} \rightarrow P \rightarrow N+\Pi^{+} \\
& \frac{\left(\frac{e_{2} \hbar c}{\sqrt{2 \Omega \mu c^{2}}}\right)^{2}}{\mu c^{2}}=\frac{e_{2}^{2} \hbar^{2}}{2 \Omega \mu^{2} c^{2}} \quad \frac{\left(\frac{1}{\sqrt{w}}\right)^{2}}{\omega} \approx \frac{1}{\omega \omega^{2}} \\
& \sigma=\frac{2 \pi}{\hbar v\left(\frac{e_{2}^{2} \hbar^{2}}{2 \mu^{2} c^{2}}\right)^{2} \frac{\rho^{2}}{2 \pi^{2} \hbar^{3} v} \approx \frac{1}{4 \pi}\left(\frac{e_{2}^{2}}{\mu c^{2}}\right)^{2}=1.6 \times 10^{-26}}
\end{aligned}
$$

And:
$\left.\left(\left(\left(\left(\operatorname{Pi} / 4 *\left(\left(\left(\left(\left(\cos (6 / 13)-\cos (3 * 6 / 13)+\cos \left(5^{*} 6 / 13\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 256$

Input:

$\sqrt[256]{\frac{\pi}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(3 \times \frac{6}{13}\right)+\cos \left(5 \times \frac{6}{13}\right)\right)}$

Exact result:

$$
\frac{\sqrt[256]{\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}}{\sqrt[128]{2}}
$$

Decimal approximation:

$0.986403109020707361875628432482561015756333670654230871995 \ldots$
$0.986403109020 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Alternate forms:

$$
\begin{aligned}
& \frac{\sqrt[256]{\pi \cos \left(\frac{6}{13}\right)-\pi \cos \left(\frac{18}{13}\right)+\pi \cos \left(\frac{30}{13}\right)}}{\sqrt[128]{2}} \\
& \frac{256}{\left(\frac{1}{2}\left(e^{-(6 i) / 13}+e^{(6 i) / 13}\right)+\frac{1}{2}\left(-e^{-(18 i) / 13}-e^{(18 i) / 13}\right)+\frac{1}{2}\left(e^{-(30 i) / 13}+e^{(30 i) / 13}\right)\right) \pi} \\
& \sqrt[128]{2}
\end{aligned}
$$

All 256th roots of $1 / 4 \pi(\cos (6 / 13)-\cos (18 / 13)+\cos (30 / 13))$:

$$
\frac{e^{0} \sqrt[256]{\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}}{\sqrt[128]{2}}
$$

$$
\frac{e^{(i \pi) / 128} \sqrt[256]{\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}}{\sqrt[128]{2}} \approx 0.98611+0.024208 i
$$

$$
\frac{e^{(i \pi) / 64} 256 \sqrt{\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}}{\sqrt[128]{2}} \approx 0.98521+0.04840 i
$$

$$
\frac{e^{(3 i \pi) / 128} 256 \sqrt{\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}}{\sqrt[128]{2}} \approx 0.98373+0.07256 i
$$

$$
\frac{e^{(i \pi) / 32} 256 \sqrt{\pi\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{18}{13}\right)+\cos \left(\frac{30}{13}\right)\right)}}{\sqrt[128]{2}} \approx 0.98165+0.09668 i
$$

Alternative representations:

$$
\begin{aligned}
& \sqrt[256]{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}= \\
& \sqrt[256]{\frac{1}{4} \pi\left(\cosh \left(\frac{6 i}{13}\right)-\cosh \left(\frac{18 i}{13}\right)+\cosh \left(\frac{30 i}{13}\right)\right)} \\
& \sqrt[256]{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}= \\
& \sqrt[256]{\frac{1}{4} \pi\left(\cosh \left(-\frac{6 i}{13}\right)-\cosh \left(-\frac{18 i}{13}\right)+\cosh \left(-\frac{30 i}{13}\right)\right)} \\
& \sqrt{\left.\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=\sqrt[256]{\frac{1}{4} \pi\left(\frac{1}{\sec \left(\frac{6}{13}\right)}-\frac{1}{\sec \left(\frac{18}{13}\right)}+\frac{1}{\sec \left(\frac{30}{13}\right)}\right)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \sqrt[256]{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=\frac{\sqrt[256]{\pi} \sqrt[256]{\sum_{k=0}^{\infty} \frac{\left(\frac{36}{169}\right)^{k}\left(1-9^{k}+25^{k}\right) e^{i k \pi}}{(2 k)!}}}{\sqrt[256]{\frac{128}{2}}} \\
& \sqrt[2\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi]{\sqrt[256]{\pi} \sqrt[256]{\sum_{k=0}^{\infty} \frac{\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(\left(\frac{6}{13}-z_{0}\right)^{k}-\left(\frac{18}{13}-z_{0}\right)^{k}+\left(\frac{30}{13}-z_{0}\right)^{k}\right)}{k!}}} \\
& \sqrt[256]{\frac{128}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi} \\
& \sqrt[256]{\pi} \sqrt[256]{\sum_{k=0}^{\infty}\left(\frac{(-1)^{-1+k}\left(\frac{6}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\frac{(-1)^{k}\left(\frac{18}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\frac{(-1)^{-1+k}\left(\frac{30}{13}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right)} \\
& \sqrt[128]{2}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \sqrt[256]{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}= \\
& \frac{256}{\frac{\pi}{13}} \sqrt[256]{13+\int_{0}^{1}-6\left(\sin \left(\frac{6 t}{13}\right)-3 \sin \left(\frac{18 t}{13}\right)+5 \sin \left(\frac{30 t}{13}\right)\right) d t} \\
& \sqrt[128]{2}
\end{aligned}
$$

$$
\sqrt[256]{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}=
$$

$$
\frac{\sqrt[512]{\pi} \sqrt[256]{-i \int_{-i}^{i \infty+\gamma+\gamma} \frac{e^{-225 /(169 s)+s}\left(1-e^{144 /(169 s)}+e^{216 /(169 s)}\right)}{\sqrt{s}} d s}}{2^{3 / 256}} \text { for } \gamma>0
$$

$$
\begin{aligned}
& \sqrt[256]{\frac{1}{4}\left(\cos \left(\frac{6}{13}\right)-\cos \left(\frac{3 \times 6}{13}\right)+\cos \left(\frac{5 \times 6}{13}\right)\right) \pi}= \\
& \frac{\sqrt[512]{\pi} \sqrt[256]{-i \int_{-i \infty \infty+\gamma}^{i \infty+\gamma}-\frac{\left(\frac{169}{225}\right)^{s}\left(-1+\left(\frac{25}{9}\right)^{s}-25^{s}\right) \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s}}{2^{3 / 256}} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Now, we have that:
On page 374, Ramanujan announces some expressions for certain values of the exponential function. For example, he states that

$$
\begin{equation*}
e^{\frac{\pi}{4} \sqrt{78}}=4 \sqrt{3}(75+52 \sqrt{2}) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{\frac{\pi}{4} \sqrt{130}}=12(323+40 \sqrt{65}) \tag{5}
\end{equation*}
$$

From the sum
we obtain:
$\exp (((\mathrm{Pi} / 4) * \operatorname{sqrt}(78)))+4 \operatorname{sqrt}(3)(75+52 \operatorname{sqrt}(2))$

Input:

$\exp \left(\frac{\pi}{4} \sqrt{78}\right)+4 \sqrt{3}(75+52 \sqrt{2})$

Exact result:

$4 \sqrt{3}(75+52 \sqrt{2})+e^{1 / 2 \sqrt{39 / 2} \pi}$

Decimal approximation:

2058.218217515272934328477863254190789096533359619891371897...
2058.21821751...

Property:

$4 \sqrt{3}(75+52 \sqrt{2})+e^{1 / 2 \sqrt{39 / 2} \pi}$ is a transcendental number

Alternate forms:

$300 \sqrt{3}+208 \sqrt{6}+e^{1 / 2 \sqrt{39 / 2} \pi}$
$4 \sqrt{3(11033+7800 \sqrt{2})}+e^{1 / 2 \sqrt{39 / 2} \pi}$

Series representations:

$$
\begin{aligned}
& \exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})=\exp \left(\frac{1}{4} \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(78-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+ \\
& 300 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 208{\sqrt{z_{0}}}^{2} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(2-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}
\end{aligned}
$$

$$
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

$$
\begin{aligned}
& \exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})= \\
& \exp \left(\frac{1}{4} \pi \exp \left(i \pi\left\lfloor\frac{\arg (78-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(78-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& 300 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 208 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x}^{2} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(2-x)^{k_{1}}(3-x)^{k_{2}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}
\end{aligned}
$$

$$
\text { for }(x \in \mathbb{R} \text { and } x<0)
$$

$$
\begin{aligned}
& \exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})= \\
& \exp \left(\frac{1}{4} \pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(78-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(78-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(78-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+ \\
& \quad 300\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 208\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(2-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}} z_{0}^{-k_{1}-k_{2}}} k_{1}!k_{2}!}{}
\end{aligned}
$$

And:
$55+\exp (((\mathrm{Pi} / 4) * \operatorname{sqrt}(78)))+4 \operatorname{sqrt}(3)(75+52 \operatorname{sqrt}(2))$

Input:

$55+\exp \left(\frac{\pi}{4} \sqrt{78}\right)+4 \sqrt{3}(75+52 \sqrt{2})$

Exact result:

$55+4 \sqrt{3}(75+52 \sqrt{2})+e^{1 / 2 \sqrt{39 / 2} \pi}$
Decimal approximation:
2113.218217515272934328477863254190789096533359619891371897...
$2113.2182175 \ldots$ result very near to the rest mass of strange D meson 2112.3

Property:

$55+4 \sqrt{3}(75+52 \sqrt{2})+e^{1 / 2 \sqrt{39 / 2} \pi}$ is a transcendental number

Alternate forms:

$55+300 \sqrt{3}+208 \sqrt{6}+e^{1 / 2 \sqrt{39 / 2} \pi}$
$55+4 \sqrt{3(11033+7800 \sqrt{2})}+e^{1 / 2 \sqrt{39 / 2} \pi}$

Series representations:

$$
\begin{aligned}
& 55+\exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})= \\
& 55+\exp \left(\frac{1}{4} \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(78-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+ \\
& 300 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 208{\sqrt{z_{0}}}^{2} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(2-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}
\end{aligned}
$$

$$
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

$$
\begin{aligned}
& 55+\exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})= \\
& 55+\exp \left(\frac{1}{4} \pi \exp \left(i \pi\left[\frac{\arg (78-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(78-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& 300 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& \left.208 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right) \exp \left(i \pi \left\lvert\, \frac{\arg (3-x)}{2 \pi}\right.\right]\right) \sqrt{x}^{2} \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(2-x)^{k_{1}}(3-x)^{k_{2}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}
\end{aligned}
$$

$$
\begin{aligned}
& 55+\exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})=55+ \\
& \quad \exp \left(\frac{1}{4} \pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(78-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(78-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(78-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+ \\
& \quad 300\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 208\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \quad \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(2-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}
\end{aligned}
$$

And:
$[\exp (((\mathrm{Pi} / 4) * \mathrm{sqrt}(130)))+12(323+40 \operatorname{sqrt}(65))]$

Input:

$$
\exp \left(\frac{\pi}{4} \sqrt{130}\right)+12(323+40 \sqrt{65})
$$

Exact result:

$12(323+40 \sqrt{65})+e^{1 / 2 \sqrt{65 / 2} \pi}$

Decimal approximation:

15491.76743836655172138137828341012317278305215849229906315...
15491.7674383...

Property:

$12(323+40 \sqrt{65})+e^{1 / 2} \sqrt{65 / 2} \pi$ is a transcendental number

Alternate form:

$3876+480 \sqrt{65}+e^{1 / 2} \sqrt{65 / 2} \pi$

Series representations:

$$
\begin{aligned}
& \exp \left(\frac{\sqrt{130} \pi}{4}\right)+12(323+40 \sqrt{65})= \\
& 3876+\exp \left(\frac{1}{4} \pi \sqrt{129} \sum_{k=0}^{\infty} 129^{-k}\binom{\frac{1}{2}}{k}\right)+480 \sqrt{64} \sum_{k=0}^{\infty} 64^{-k}\binom{\frac{1}{2}}{k} \\
& \exp \left(\frac{\sqrt{130} \pi}{4}\right)+12(323+40 \sqrt{65})= \\
& 3876+\exp \left(\frac{1}{4} \pi \sqrt{129} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{129}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+480 \sqrt{64} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{64}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \exp \left(\frac{\sqrt{130} \pi}{4}\right)+12(323+40 \sqrt{65})= \\
& 3876+\exp \left(\frac{1}{4} \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(130-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+ \\
& 480 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(65-z_{0}\right)^{k} z_{0}^{-k}}{k!} \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

From which we obtain:

$$
144-29+1 / 3 *[\exp (((\operatorname{Pi} / 4) * \operatorname{sqrt}(130)))+12(323+40 \operatorname{sqrt}(65))]
$$

Where 144 is a Fibonacci number and 29 is a Lucas number

Input:

$$
144-29+\frac{1}{3}\left(\exp \left(\frac{\pi}{4} \sqrt{130}\right)+12(323+40 \sqrt{65})\right)
$$

Exact result:

$115+\frac{1}{3}\left(12(323+40 \sqrt{65})+e^{1 / 2 \sqrt{65 / 2} \pi}\right)$

Decimal approximation:

5278.922479455517240460459427803374390927684052830766354383...
5278.9224....result very near to the rest mass of B meson 5279.15

Property:

$115+\frac{1}{3}\left(12(323+40 \sqrt{65})+e^{1 / 2} \sqrt{65 / 2} \pi\right)$ is a transcendental number

Alternate forms:

$1407+160 \sqrt{65}+\frac{1}{3} e^{1 / 2 \sqrt{65 / 2} \pi}$
$\frac{1}{3}\left(4221+480 \sqrt{65}+e^{1 / 2 \sqrt{65 / 2} \pi}\right)$
$115+\frac{1}{3}\left(3876+480 \sqrt{65}+e^{1 / 2 \sqrt{65 / 2} \pi}\right)$

Series representations:

$$
\begin{aligned}
& 144-29+\frac{1}{3}\left(\exp \left(\frac{\pi \sqrt{130}}{4}\right)+12(323+40 \sqrt{65})\right)= \\
& \frac{1}{3}\left(4221+\exp \left(\frac{1}{4} \pi \sqrt{129} \sum_{k=0}^{\infty} 129^{-k}\binom{\frac{1}{2}}{k}\right)+480 \sqrt{64} \sum_{k=0}^{\infty} 64^{-k}\binom{\frac{1}{2}}{k}\right) \\
& 144-29+\frac{1}{3}\left(\exp \left(\frac{\pi \sqrt{130}}{4}\right)+12(323+40 \sqrt{65})\right)= \\
& \frac{1}{3}\left(4221+\exp \left(\frac{1}{4} \pi \sqrt{129} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{129}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+480 \sqrt{64} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{64}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& 144-29+\frac{1}{3}\left(\exp \left(\frac{\pi \sqrt{130}}{4}\right)+12(323+40 \sqrt{65})\right)= \\
& \frac{1}{3}\left(4221+\exp \left(\frac{1}{4} \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(130-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+\right. \\
& \left.\quad 480 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(65-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

We have also:
$(64 * 32+64 * 16+64 * 3)+29+4((([\exp (((\mathrm{Pi} / 4) * \operatorname{sqrt}(78)))+4 \operatorname{sqrt}(3)(75+52 \operatorname{sqrt}(2))]+$ $[\exp (((\operatorname{Pi} / 4) * \operatorname{sqrt}(130)))+12(323+40 \operatorname{sqrt}(65))])))$

Where 29 and 4 are Lucas numbers

Input:

$$
\begin{aligned}
& (64 \times 32+64 \times 16+64 \times 3)+29+ \\
& \quad 4\left(\left(\exp \left(\frac{\pi}{4} \sqrt{78}\right)+4 \sqrt{3}(75+52 \sqrt{2})\right)+\left(\exp \left(\frac{\pi}{4} \sqrt{130}\right)+12(323+40 \sqrt{65})\right)\right)
\end{aligned}
$$

Exact result:

$3293+4\left(4 \sqrt{3}(75+52 \sqrt{2})+12(323+40 \sqrt{65})+e^{1 / 2 \sqrt{39 / 2} \pi}+e^{1 / 2 \sqrt{65 / 2} \pi}\right)$

Decimal approximation:

$73492.94262352729862283942458665725584751834207244876174019 \ldots$
73492.94262...

Alternate forms:

$18797+1200 \sqrt{3}+832 \sqrt{6}+1920 \sqrt{65}+4 e^{1 / 2 \sqrt{39 / 2} \pi}+4 e^{1 / 2 \sqrt{65 / 2} \pi}$
$1200 \sqrt{3}+832 \sqrt{6}+1920 \sqrt{65}+4 e^{1 / 2 \sqrt{65 / 2} \pi}+4 e^{1 / 2 \sqrt{39 / 2} \pi}+18797$

$$
\begin{aligned}
3293+4 & (4(969+\sqrt{3(323033+6000 \sqrt{195}+520 \sqrt{30(847+16 \sqrt{195})})})+ \\
& \left.e^{1 / 2 \sqrt{39 / 2} \pi}+e^{1 / 2 \sqrt{65 / 2} \pi}\right)
\end{aligned}
$$

Series representations:

$(64 \times 32+64 \times 16+64 \times 3)+29+4\left(\left(\exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})\right)+\right.$

$$
\left.\left(\exp \left(\frac{\sqrt{130} \pi}{4}\right)+12(323+40 \sqrt{65})\right)\right)=
$$

$18797+4 \exp \left(\frac{1}{4} \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(78-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+$

$$
4 \exp \left(\frac{1}{4} \pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(130-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)+
$$

$$
\sum_{k=0}^{\infty} \frac{240(-1)^{k}\left(-\frac{1}{2}\right)_{k} \sqrt{z_{0}}\left(5\left(3-z_{0}\right)^{k}+8\left(65-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!}+
$$

$$
832{\sqrt{z_{0}}}^{2} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(2-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$(64 \times 32+64 \times 16+64 \times 3)+29+4\left(\left(\exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})\right)+\right.$

$$
\left.\left(\exp \left(\frac{\sqrt{130} \pi}{4}\right)+12(323+40 \sqrt{65})\right)\right)=
$$

$18797+4 \exp \left(\frac{1}{4} \pi \exp \left(i \pi\left[\frac{\arg (78-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(78-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+$
$4 \exp \left(\frac{1}{4} \pi \exp \left(i \pi\left\lfloor\frac{\arg (130-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(130-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+\sum_{k=0}^{\infty} \frac{1}{k!} 240$
$(-1)^{k} x^{-k}\left(5(3-x)^{k} \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right)+8(65-x)^{k} \exp \left(i \pi\left\lfloor\frac{\arg (65-x)}{2 \pi}\right\rfloor\right\rfloor\right)$
$\left(-\frac{1}{2}\right)_{k} \sqrt{x}+832 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right)$
$\sqrt{x}^{2} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(2-x)^{k_{1}}(3-x)^{k_{2}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}$
for ($x \in \mathbb{R}$ and $x<0$)

$$
\begin{aligned}
& (64 \times 32+64 \times 16+64 \times 3)+29+ \\
& \quad 4\left(\left(\exp \left(\frac{\sqrt{78} \pi}{4}\right)+4 \sqrt{3}(75+52 \sqrt{2})\right)+\left(\exp \left(\frac{\sqrt{130} \pi}{4}\right)+12(323+40 \sqrt{65})\right)\right)=
\end{aligned}
$$

$18797+4 \exp \left(\frac{1}{4} \pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(78-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(78-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right.$
$\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(78-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+4 \exp \left(\frac{1}{4} \pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(130-z_{0}\right) /(2 \pi)\right\rfloor}\right.$
$\left.z_{0}^{1 / 2\left(1+\arg \left(130-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(130-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+$
$\sum_{k=0}^{\infty} \frac{1}{k!} 240(-1)^{k}\left(-\frac{1}{2}\right)_{k} z_{0}^{1 / 2-k}\left(5\left(3-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}+\right.$ $\left.8\left(65-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(65-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(65-z_{0}\right) /(2 \pi)\right\rfloor}\right)+$
$832\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right]+1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}$ $\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(2-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}} z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!}$

Thence, we obtain the following mathematical connection:

$$
\begin{aligned}
& \left(3293+4\left(4 \sqrt{3}(75+52 \sqrt{2})+12(323+40 \sqrt{65})+e^{1 / 2 \sqrt{39 / 2} \pi}+e^{1 / 2} \sqrt{65 / 2} \pi\right)\right)=73492.94262 \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow \\
& \binom{{I_{21}}_{<} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon},} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i\left(T^{r}+t\right)}\right|^{2} d t \ll}{<H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
& /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p -brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Now, we have that:

$$
\begin{aligned}
& k_{1}=\frac{4 \pi}{3} \quad k_{2}=\frac{4 \pi^{2}}{45} \quad=\frac{16 \pi^{2}}{3} \int_{0}^{1}(1-x)^{3} x^{2} d x \\
& Q_{n}=K_{n} \omega^{3 n} \quad 1-3 x+3 x^{2}-x^{3} \frac{1}{3}-\frac{3}{4}+\frac{3}{5}-\frac{1}{6} \\
& k_{n+1} w^{3 n+3}=4 \pi \int_{0}^{w} p_{1}^{2} d p_{1} k_{n}\left(w-p_{1}\right)^{3 n} \\
& \frac{K_{n+1}}{K_{n}}=4 \pi \int_{0}^{1}(1-x)^{3 n} x^{2} d x \\
& \frac{20-45}{60}+36+10 \\
& \frac{4}{3 \times 6} \\
& =4 \pi \int_{0}^{1} y^{3 n}\left(1-2 y+y^{2}\right) d y= \\
& =4 \pi\left(\frac{1}{3 n+1}-\frac{2}{3 n+2}+\frac{1}{3 n+3}\right) \\
& =4 \pi \frac{9 x^{2}+15 x+6+9 x^{2}+9 n}{(3 n+1)(3 n+2)(3 n+3)}+2\left(4 x^{2}+\sqrt{2} x+3\right) \\
& =\frac{8 \pi}{(3 x+1)(3 x+2)(3 x+3)}
\end{aligned}
$$

We analyze:

$$
\begin{aligned}
& \frac{k_{n+1}}{k_{n}}=4 \pi \int_{0}^{1}(1-x)^{3 n} x^{2} d x \\
= & \frac{8 \pi}{(3 n+1)(3 n+2)(3 x+3)}
\end{aligned}
$$

For $\mathrm{n}=2$, we obtain:
$(8 \mathrm{Pi}) /((((3 * 2+1)(3 * 2+2)(3 * 3+3))))$

Input:

$\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}$

Result:

$\frac{\pi}{84}$

Decimal approximation:

0.037399912542735633791221945039041701002347254754465545487...
$0.0373999125427 \ldots$

Property:

$\frac{\pi}{84}$ is a transcendental number

Alternative representations:

$\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=\frac{1440^{\circ}}{672}$
$\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=-\frac{8}{672} i \log (-1)$
$\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=\frac{8}{672} \cos ^{-1}(-1)$

Series representations:

$\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=\frac{1}{21} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$
$\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=\sum_{k=0}^{\infty}-\frac{(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{21(1+2 k)}$
$\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=\frac{1}{84} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)$

Integral representations:

$$
\begin{aligned}
& \frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=\frac{1}{21} \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=\frac{1}{42} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t \\
& \frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}=\frac{1}{42} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{aligned}
$$

And for the previous Ramanujan formula

$$
\begin{gathered}
\cos 2 x-\left(1+\frac{1}{3}\right) \cos 4 x+\left(1+\frac{1}{3}+\frac{1}{5}\right) \cos 6 x-\& c \\
=\frac{\pi}{4}(\cos x-\cos 3 x+\cos 5 x-\& c)
\end{gathered}
$$

For $n=0.45418 \approx 5 / 11$ we obtain
$\mathrm{Pi} / 4^{*}\left(\left(\cos (0.45418)-\cos (3 * 0.45418)+\cos \left(5^{*} 0.45418\right)\right)\right)$

Input:

$\frac{\pi}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418))$

Result:

0.037361304485236103253372193064995066345212530662528957648
$0.0373613044852 \ldots$

Rational approximation:

$$
\frac{4374}{117073}
$$

Alternative representations:

$\frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi=$ $\frac{1}{4} \pi(\cosh (0.45418 i)-\cosh (1.36254 i)+\cosh (2.2709 i))$

$$
\begin{aligned}
& \frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi= \\
& \frac{1}{4} \pi\left(\frac{1}{\sec (0.45418)}-\frac{1}{\sec (1.36254)}+\frac{1}{\sec (2.2709)}\right) \\
& \frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi= \\
& \frac{1}{4} \pi(\cosh (-0.45418 i)-\cosh (-1.36254 i)+\cosh (-2.2709 i))
\end{aligned}
$$

Series representations:
$\frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi=$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} e^{-1.57852 k}\left(1-e^{2.19722 k}+e^{3.21888 k}\right) \pi}{4(2 k)!}
$$

$\frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi=$ $\sum_{k=0}^{\infty} \frac{\pi \cos \left(\frac{k \pi}{2}+z_{0}\right)\left(\left(0.45418-z_{0}\right)^{k}-\left(1.36254-z_{0}\right)^{k}+\left(2.2709-z_{0}\right)^{k}\right)}{4 k!}$
$\frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi=$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\left(0.45418-\frac{\pi}{2}\right)^{1+2 k}+\left(1.36254-\frac{\pi}{2}\right)^{1+2 k}-\left(2.2709-\frac{\pi}{2}\right)^{1+2 k}\right) \pi}{4(1+2 k)!}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi= \\
& 0.25 \pi+\int_{0}^{1} \pi(-0.113545 \sin (0.45418 t)+ \\
& 0.340635 \sin (1.36254 t)-0.567725 \sin (2.2709 t)) d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi= \\
& \quad \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-1.80495 / s+s}\left(e^{0.515699 / s}-e^{1.34082 / s}+e^{1.75338 / s}\right) \sqrt{\pi}}{8 i \sqrt{s}} d s \text { for } \gamma>0
\end{aligned}
$$

$$
\frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi=
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{e^{-0.254058 s}\left(-1+e^{1.02165 s}-e^{3.21888 s}\right) \Gamma(s) \sqrt{\pi}}{8 i \Gamma\left(\frac{1}{2}-s\right)} d s \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{aligned}
& \frac{1}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418)) \pi= \\
& \begin{aligned}
\int_{\frac{\pi}{2}}^{2.2709} & \frac{1}{-4.5418+\pi} \pi\left((0.22709-0.25 \pi) \sin \left(\frac{\pi(-1.81672+t)-0.90836 t}{-4.5418+\pi}\right)+\right. \\
& (1.13545-0.25 \pi) \sin (t)+(-0.68127+0.25 \pi) \\
& \left.\sin \left(\frac{\pi(0.825118-3.63344 t)+\pi^{2}(-0.90836+t)+2.47535 t}{(-4.5418+\pi)(-0.90836+\pi)}\right)\right) d t
\end{aligned}
\end{aligned}
$$

Or:
$\mathrm{Pi} / 4 *((\cos (5 / 11)-\cos (3 * 5 / 11)+\cos (5 * 5 / 11)))$

Input:

$\frac{\pi}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(3 \times \frac{5}{11}\right)+\cos \left(5 \times \frac{5}{11}\right)\right)$

Exact result:

$\frac{1}{4} \pi\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{15}{11}\right)+\cos \left(\frac{25}{11}\right)\right)$

Decimal approximation:

0.036981193275882485818809620579675010044251744554803733743...
$0.03698119327 \ldots$

Alternate forms:

$\frac{1}{4} \pi \cos \left(\frac{5}{11}\right)\left(1-2 \cos \left(\frac{10}{11}\right)\right)^{2}$
$\frac{1}{4}\left(\pi \cos \left(\frac{5}{11}\right)-\pi \cos \left(\frac{15}{11}\right)+\pi \cos \left(\frac{25}{11}\right)\right)$
$\frac{1}{4} \pi\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{15}{11}\right)\right)+\frac{1}{4} \pi \cos \left(\frac{25}{11}\right)$

Alternative representations:

$\frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi=\frac{1}{4} \pi\left(\cosh \left(\frac{5 i}{11}\right)-\cosh \left(\frac{15 i}{11}\right)+\cosh \left(\frac{25 i}{11}\right)\right)$
$\frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi=$
$\frac{1}{4} \pi\left(\cosh \left(-\frac{5 i}{11}\right)-\cosh \left(-\frac{15 i}{11}\right)+\cosh \left(-\frac{25 i}{11}\right)\right)$

$$
\frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi=\frac{1}{4} \pi\left(\frac{1}{\sec \left(\frac{5}{11}\right)}-\frac{1}{\sec \left(\frac{15}{11}\right)}+\frac{1}{\sec \left(\frac{25}{11}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi=\sum_{k=0}^{\infty} \frac{\left(\frac{25}{121}\right)^{k}\left(1-9^{k}+25^{k}\right) e^{i k \pi} \pi}{4(2 k)!} \\
& \frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi= \\
& \sum_{k=0}^{\infty} \frac{\pi \cos \left(\frac{k \pi}{2}+z_{0}\right)\left(\left(\frac{5}{11}-z_{0}\right)^{k}-\left(\frac{15}{11}-z_{0}\right)^{k}+\left(\frac{25}{11}-z_{0}\right)^{k}\right)}{4 k!} \\
& \frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi= \\
& \sum_{k=0}^{\infty}\left(\frac{1}{4} \pi\left(\frac{(-1)^{-1+k}\left(\frac{5}{11}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}+\frac{(-1)^{-1+k}\left(\frac{25}{11}-\frac{\pi}{2}\right)^{1+2 k}}{(1+2 k)!}\right)-\frac{(-1)^{-1+k}\left(\frac{15}{11}-\frac{\pi}{2}\right)^{1+2 k} \pi}{4(1+2 k)!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi= \\
& \frac{\pi}{4}+\int_{0}^{1}-\frac{5}{44} \pi\left(\sin \left(\frac{5 t}{11}\right)-3 \sin \left(\frac{15 t}{11}\right)+5 \sin \left(\frac{25 t}{11}\right)\right) d t
\end{aligned}
$$

$$
\frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi=
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{-625 /(484 s)+s}\left(1-e^{100 /(121 s)}+e^{150 /(121 s)}\right) \sqrt{\pi}}{8 \sqrt{s}} d s \text { for } \gamma>0
$$

$$
\frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi=
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{i\left(\frac{121}{625}\right)^{s} 2^{-3+2 s}\left(-1+\left(\frac{25}{9}\right)^{s}-25^{s}\right) \sqrt{\pi} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)} d s \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\left.\begin{array}{l}
\frac{1}{4}\left(\cos \left(\frac{5}{11}\right)-\cos \left(\frac{3 \times 5}{11}\right)+\cos \left(\frac{5 \times 5}{11}\right)\right) \pi= \\
\int_{\frac{\pi}{2}}^{2 \frac{25}{11}}\left(-\frac{1}{4} \pi \sin (t)+\frac{1}{\frac{25}{11}-\frac{\pi}{2}}\left(\frac{5}{11}-\frac{\pi}{2}\right)\left(-\frac{1}{4} \pi \sin \left(\frac{-\frac{10 \pi}{11}-\frac{5 t}{11}+\frac{\pi t}{2}}{-\frac{25}{11}+\frac{\pi}{2}}\right)+\right.\right. \\
\left.\frac{\left(\frac{15}{11}-\frac{\pi}{2}\right) \pi \sin \left(\frac{\left(\frac{5 \pi}{11}-\frac{15\left(-\frac{10 \pi}{11}-\frac{5 t}{11}\right.}{11\left(-\frac{\pi t}{11}+\frac{\pi}{2}\right)}+\frac{\pi\left(-\frac{10 \pi}{11}-\frac{5 t}{11}+\frac{\pi t}{2}\right)}{2\left(-\frac{25}{11}+\frac{\pi}{2}\right)}\right.}{-\frac{5}{11}+\frac{\pi}{2}}\right)}{4\left(\frac{5}{11}-\frac{\pi}{2}\right)}\right)
\end{array}\right) d t
$$

We note that the two results $0.0373999125427 \ldots$ and $0.0373613044852 \ldots$. are very near. Furthermore:
$((((8 \mathrm{Pi}) /((((3 * 2+1)(3 * 2+2)(3 * 3+3)))))))^{\wedge} 1 / 256$

Input:

$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}$

Exact result:

$\frac{\sqrt[256]{\frac{\pi}{21}}}{\sqrt[128]{2}}$

Decimal approximation:

$0.987245756622518632898983325424964734972583221117935454100 \ldots$
$0.9872457566225 \ldots$

Property:

$\frac{\sqrt[256]{\frac{\pi}{21}}}{\sqrt[128]{2}}$ is a transcendental number

All 256th roots of $\boldsymbol{\pi} / \mathbf{8 4}$:
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{0}}{\sqrt[128]{2}} \approx 0.987246$ (real, principal root)
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{(i \pi) / 128}}{\sqrt[128]{2}} \approx 0.986948+0.024228 i$
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{(i \pi) / 64}}{\sqrt[128]{2}} \approx 0.986057+0.048442 i$
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{(3 i \pi) / 128}}{\sqrt[128]{2}} \approx 0.984571+0.07263 i$
$\frac{\sqrt[256]{\frac{\pi}{21}} e^{(i \pi) / 32}}{\sqrt[128]{2}} \approx 0.982492+0.09677 i$

Alternative representations:

$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}=\sqrt[256]{\frac{1440^{\circ}}{672}}$
$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}=\sqrt[256]{-\frac{8}{672} i \log (-1)}$
$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}=\sqrt[256]{\frac{8}{672} \cos ^{-1}(-1)}$

Series representations:

$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}=\frac{\sqrt[256]{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}{\sqrt[256]{21}}$
$\sqrt[256]{\frac{8 \pi}{\frac{8 \times 2+1)(3 \times 2+2)(3 \times 3+3)}{(3 \times 21}}}=\frac{\sqrt[256]{\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}}{\sqrt[25]{21}}$
$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}=\frac{\sqrt[256]{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}}{\sqrt[128]{256} \sqrt{21}}$

Integral representations:

$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}=\frac{\sqrt[256]{\int_{0}^{1} \sqrt{1-t^{2}} d t}}{\sqrt[256]{21}}$
$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}=\frac{\sqrt[256]{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}}{\sqrt[256]{42}}$
$\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}=\frac{\sqrt[256]{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}}{\sqrt[256]{42}}$

And:
$\left(\left(\left(\left(\operatorname{Pi} / 4^{*}\left(\left(\cos (0.45418)-\cos (3 * 0.45418)+\cos \left(5^{*} 0.45418\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 256$

Input:

$\sqrt[256]{\frac{\pi}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418))}$

Result:

0.987241773569774971127901758550986993748276054428144565796
0.9872417735697.....

Thence, we obtain the following mathematical connection:

$$
\begin{gathered}
\left(\sqrt[256]{\frac{8 \pi}{(3 \times 2+1)(3 \times 2+2)(3 \times 3+3)}}\right)=0.9872457566225 \ldots \Rightarrow \\
\Rightarrow\left(\sqrt[256]{\frac{\pi}{4}(\cos (0.45418)-\cos (3 \times 0.45418)+\cos (5 \times 0.45418))}\right)=0.9872417735697 \ldots .
\end{gathered}
$$

$0.9872457566225 \approx 0.9872417735697 \ldots$. results also very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{54 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .1 \text {, }}=$
and to the dilator value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Now:

$$
k_{1}=\frac{4 \pi}{3} \quad k_{2}=\frac{4 \pi^{2}}{45}
$$

$4 \mathrm{Pi} / 3+\left(4 \mathrm{Pi}^{\wedge} 2\right) / 45$
Input:
$4 \times \frac{\pi}{3}+\frac{1}{45}\left(4 \pi^{2}\right)$

Result:
$\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}$

Decimal approximation:

5.066088373772111750735479266583883946512999146477100261425...
5.066088373...

Property:

$\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}$ is a transcendental number
Alternate form:
$\frac{4}{45} \pi(15+\pi)$

Alternative representations:

$\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=240^{\circ}+\frac{4}{45}\left(180^{\circ}\right)^{2}$
$\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=\frac{4}{3} \cos ^{-1}(-1)+\frac{4}{45} \cos ^{-1}(-1)^{2}$
$\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=-\frac{4}{3} i \log (-1)+\frac{4}{45}(-i \log (-1))^{2}$

Series representations:
$\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=\frac{4 \pi}{3}+\frac{8}{15} \sum_{k=1}^{\infty} \frac{1}{k^{2}}$
$\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=\frac{4 \pi}{3}-\frac{16}{15} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}$
$\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=\frac{4 \pi}{3}+\frac{32}{45} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{2}}$

Integral representations:

$$
\begin{aligned}
& \frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=\frac{16}{45}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)\left(15+4 \int_{0}^{1} \sqrt{1-t^{2}} d t\right) \\
& \frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=\frac{8}{45}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)\left(15+2 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right) \\
& \frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}=\frac{8}{45}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)\left(15+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)
\end{aligned}
$$

And:
$\left(\left(\left(4 \mathrm{Pi} / 3+\left(4 \mathrm{Pi}^{\wedge} 2\right) / 45\right)\right)\right)^{\wedge} 3+5$

Input:

$\left(4 \times \frac{\pi}{3}+\frac{1}{45}\left(4 \pi^{2}\right)\right)^{3}+5$

Result:

$5+\left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}$

Decimal approximation:

135.0224317825415255515361914289691258146464964409024574509...
$135.02243178 \ldots$ result very near to the rest mass of Pion meson 134.9766

Property:

$5+\left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}$ is a transcendental number

Alternate forms:

$\frac{216000 \pi^{3}+43200 \pi^{4}+2880 \pi^{5}+64 \pi^{6}+455625}{91125}$
$5+\frac{64 \pi^{3}}{27}+\frac{64 \pi^{4}}{135}+\frac{64 \pi^{5}}{2025}+\frac{64 \pi^{6}}{91125}$

Alternative representations:

$$
\begin{aligned}
& \left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=5+\left(240^{\circ}+\frac{4}{45}\left(180^{\circ}\right)^{2}\right)^{3} \\
& \left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=5+\left(\frac{4 \pi}{3}+\frac{24 \zeta(2)}{45}\right)^{3} \\
& \left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=5+\left(\frac{4}{3} \cos ^{-1}(-1)+\frac{4}{45} \cos ^{-1}(-1)^{2}\right)^{3}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=5+\left(\frac{4 \pi}{3}+\frac{8}{15} \sum_{k=1}^{\infty} \frac{1}{k^{2}}\right)^{3} \\
& \left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=5+\left(\frac{4 \pi}{3}-\frac{16}{15} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}}\right)^{3} \\
& \left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=5+\left(\frac{4 \pi}{3}+\frac{32}{45} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{2}}\right)^{3}
\end{aligned}
$$

Integral representations:

$$
\left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=
$$

$$
5+\frac{\left(\sqrt{3}+32 \oint_{0}^{\frac{1}{4}} \sqrt{-(-1+t) t} d t\right)^{3}\left(20+\sqrt{3}+32 \int_{0}^{\frac{1}{4}} \sqrt{-(-1+t) t} d t\right)^{3}}{8000}
$$

$$
\left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=\frac{1}{91125}
$$

$$
\left(455625+1728000\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{3}+691200\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{4}+\right.
$$

$$
\left.92160\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{5}+4096\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{6}\right)
$$

$\left(\frac{4 \pi}{3}+\frac{4 \pi^{2}}{45}\right)^{3}+5=\frac{1}{91125}$

$$
\left(455625+1728000\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{3}+691200\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{4}+\right.
$$

$$
\left.92160\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{5}+4096\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{6}\right)
$$

$4 \mathrm{Pi}^{\wedge} 2 / 45 * 1 /((4 \mathrm{Pi}) / 3)=$
$=4 \mathrm{Pi}^{\wedge} 2 / 45 * 3 /((4 \mathrm{Pi}))$

Input:

$4 \times \frac{\pi^{2}}{45} \times \frac{3}{4 \pi}$

Result:

$\frac{\pi}{15}$

Decimal approximation:

0.209439510239319549230842892218633525613144626625007054731
$0.209439510239 \ldots$.

Property:

$\frac{\pi}{15}$ is a transcendental number

Alternative representations:

$\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\frac{12\left(180^{\circ}\right)^{2}}{45\left(720^{\circ}\right)}$
$\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\frac{12 \cos ^{-1}(-1)^{2}}{45\left(4 \cos ^{-1}(-1)\right)}$
$\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\frac{12(-i \log (-1))^{2}}{45(-4 i \log (-1))}$

Series representations:

$$
\begin{aligned}
& \frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\frac{4}{15} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\sum_{k=0}^{\infty} \frac{4(-1)^{k}\left(956 \times 5^{-2 k}-5 \times 239^{-2 k}\right)}{17925(1+2 k)} \\
& \frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\frac{1}{15} \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\frac{4}{15} \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\frac{2}{15} \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t \\
& \frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}=\frac{2}{15} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{aligned}
$$

This result
$4 \times \frac{\pi^{2}}{45} \times \frac{3}{4 \pi}$
$0.209439510239319549230842892218633525613144626625007054731 \ldots$
is very near to the previous Ramanujan expression:
$0.1562756303129776+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+$
$\left(\frac{1}{10} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)$
$0.2301764608269284 \ldots$
(result in radians)
Furthermore, we obtain:
$\left(\left(\left(((0.1562756303129776)+1 / 10 \operatorname{sqrt}(((10-2 \operatorname{sqrt}(5))))) \tan ^{\wedge}-1[(2 \operatorname{sqrt}(10-\right.\right.\right.$
$2 \operatorname{sqrt}(5))) /((4-2(\operatorname{sqrt}(5)+1)))]+\operatorname{sqrt}((10+2 \operatorname{sqrt}(5))) / 10 \tan ^{\wedge}-1$
$[(2 \operatorname{sqrt}(10+2 \operatorname{sqrt}(5))) /((4+2(\operatorname{sqrt}(5)-1)))]))))^{\wedge} 1 / 128$

Input interpretation:

$\left(0.1562756303129776+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right)+\right.$

$$
\left.\left(\frac{1}{10} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right) \wedge(1 / 128)
$$

Result:

0.988589744523409512...
(result in radians)
0.9885897445234.....

And:
$\left(\left(\left(\left(4 \mathrm{Pi}^{\wedge} 2 / 45 * 3 /((4 \mathrm{Pi}))\right)\right)\right)\right)^{\wedge} 1 / 128$

Input:

$\sqrt[128]{4 \times \frac{\pi^{2}}{45} \times \frac{3}{4 \pi}}$

Exact result:

$\sqrt[128]{\frac{\pi}{15}}$

Decimal approximation:

0.987860841377183814071620011690442378654802904475647523726
$0.987860841377 \ldots$

Property:

$\sqrt[128]{\frac{\pi}{15}}$ is a transcendental number

All 128th roots of $\boldsymbol{\pi} / \mathbf{1 5}$:
$\sqrt[128]{\frac{\pi}{15}} e^{0} \approx 0.987861$ (real, principal root)
$\sqrt[128]{\frac{\pi}{15}} e^{(i \pi) / 64} \approx 0.986671+0.048472 i$
$\sqrt[128]{\frac{\pi}{15}} e^{(i \pi) / 32} \approx 0.983104+0.09683 i$
$\sqrt[128]{\frac{\pi}{15}} e^{(3 i \pi) / 64} \approx 0.977169+0.14495 i$

$$
\sqrt[128]{\frac{\pi}{15}} e^{(i \pi) / 16} \approx 0.968879+0.19272 i
$$

Alternative representations:

$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\sqrt[128]{\frac{12\left(180^{\circ}\right)^{2}}{45\left(720^{\circ}\right)}}$
$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\sqrt[128]{\frac{72 \zeta(2)}{45(4 \pi)}}$
$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\sqrt[128]{\frac{12 \cos ^{-1}(-1)^{2}}{45\left(4 \cos ^{-1}(-1)\right)}}$

Series representations:

$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\frac{\sqrt[64]{2} \sqrt[128]{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}{\sqrt[128]{15}}$
$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\frac{\sqrt[128]{\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{\left.1+2 k-4 \times 239^{1+2 k}\right)}\right.}{1+2 k}}}{\sqrt[128]{15}}$
$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\frac{\sqrt[128]{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}}{\sqrt[128]{15}}$

Integral representations:

$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\sqrt[128]{\frac{2}{15}} \sqrt[128]{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}$
$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\sqrt[128]{\frac{2}{15}} \sqrt[128]{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}$
$\sqrt[128]{\frac{(4 \times 3) \pi^{2}}{(4 \pi) 45}}=\frac{\sqrt[64]{2} \sqrt[128]{\int_{0}^{1} \sqrt{1-t^{2}} d t}}{\sqrt[128]{15}}$

Thence, the following mathematical connection:

$$
\left(\begin{array}{c}
\left(\begin{array}{c}
0.1562756303129776+\frac{1}{10} \sqrt{10-2 \sqrt{5}} \tan ^{-1}\left(\frac{2 \sqrt{10-2 \sqrt{5}}}{4-2(\sqrt{5}+1)}\right.
\end{array}\right)^{+} \\
\left.\left.\left.\left(\frac{1}{10} \sqrt{10+2 \sqrt{5}}\right) \tan ^{-1}\left(\frac{2 \sqrt{10+2 \sqrt{5}}}{4+2(\sqrt{5}-1)}\right)\right)\right)_{(1 / 128)}\right)=0.9885897445234 \ldots . \Rightarrow \\
\Rightarrow\left(\sqrt[128]{4 \times \frac{\pi^{2}}{45} \times \frac{3}{4 \pi}}\right)=0.987860841377 \ldots
\end{array}\right)
$$

$0.9885897445234 \ldots \approx 0.987860841377 \ldots$ results also very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .1 \text {, }}=$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

Acknowledgments

I would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his availability and kindness towards me

References

Elementary particles - Spring 1951 - Enrico Fermi

```
Elerrertary Pasteveles
    Spriig}195
```

Block notes - Enrico Fermi, University of Chicago - 1951

```
E. Fermi
Institute for Nuclear Studies
University of Chicago
Chicago 37, Illinois
```

Bruce C. Berndt - Ramanujan's Notebooks (paper) - University of Illinois Ramanujan's Notebooks

Working mostly in isolation, Ramanujan noted striking and sometimes still unproved results in series, special functions and number theory.

Bruce C. Berndt
University of Illinois,
Urbana, IL 61801

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

