$\pi(n)$ and the sum of consecutive prime numbers

Juan Moreno Borrallo

November 18, 2019

email: juan.morenoborrallo@gmail.com

Abstract

In this paper it is proved that the sum of consecutive prime numbers up to the square root of a given natural number S(n) is asymptotically equivalent to the prime counting function $\pi(n)$. Also, they are found some solutions such that $\pi(n) = S(n)$. Finally, they are listed the prime numbers p_k such that $\pi(p_k) = S(p_k)$, and exposed some conjectures regarding this type of prime numbers.

1 Introduction

We define the prime counting function up to a given natural number n as

$$\pi(n) = \# \{ p \in P \mid p \le n \}$$

We define the sum of consecutive prime numbers up to the integer part of the square root of a given natural number n as

$$S(n) = \sum_{p < \sqrt{n}} p \tag{1}$$

We define p_k as the last prime number which is a term of S(n).

We define set Q as the set of values of n such that $\pi(n) = S(n)$.

We define set M as the set of values of n such that $\pi(n) = S(n)$ and n is some prime number.

2 Asymptotic equivalence of $\pi(n)$ and S(n)

It can be stated the following

Theorem.

$$S(n) \sim \pi(n) \tag{2}$$

Proof.

By partial summation

$$S(n) = \left(\left\lfloor\sqrt{n}\right\rfloor\pi(\sqrt{n})\right) - \sum_{m=2}^{\left\lfloor\sqrt{n}\right\rfloor-1}\pi(m)$$
(3)

Where $\lfloor \sqrt{n} \rfloor$ denotes the integer part of \sqrt{n} .

By the Prime Number Theorem with error term, there exists a constant C such that

$$\left|\pi(x) - \frac{x}{\log x}\right| \le C \frac{x}{\log^2 x} \qquad \text{for } x \ge 2 \tag{4}$$

Therefore, substituting $\pi(\sqrt{n})$ and $\pi(m)$ by the application of the Prime Number Theorem on (3)

$$S(n) = \left(\left\lfloor\sqrt{n}\right\rfloor \frac{\sqrt{n}}{\log(\sqrt{n})}\right) - \sum_{m=2}^{\left\lfloor\sqrt{n}\right\rfloor - 1} \frac{m}{\log(m)} + O\left(\frac{n}{\log^2(\sqrt{n})}\right)$$
(5)

Applying Riemman Sums theory to the sum on the right of (3)

$$\sum_{m=2}^{\lfloor\sqrt{n}\rfloor-1} \frac{m}{\log(m)} = \int_{2}^{\lfloor\sqrt{n}\rfloor} \frac{x}{\log(x)} dx + O\left(\frac{n}{\log^{2}(\sqrt{n})}\right)$$
(6)

Solving the integral by partial integration, we have that

$$\int_{2}^{\lfloor\sqrt{n}\rfloor} \frac{x}{\log(x)} dx = \left[\frac{x^2}{2\log(x)}\right]_{2}^{\lfloor\sqrt{n}\rfloor} + \int_{2}^{\lfloor\sqrt{n}\rfloor} \frac{x}{2\log^2(x)} = \frac{n}{2\ln(\lfloor\sqrt{n}\rfloor)} + O\left(\frac{n}{\log^2(\sqrt{n})}\right)$$
(7)

It is easy to see that

$$\frac{n}{2\log\left(\lfloor\sqrt{n}\rfloor\right)} \sim \frac{n}{\log n} \tag{8}$$

Thus

$$\sum_{m=2}^{\lfloor\sqrt{n}\rfloor-1} \frac{m}{\log(m)} \sim \frac{n}{\log(n)} + O\left(\frac{n}{\log^2(\sqrt{n})}\right)$$
(9)

Regarding the left product on (3) it can be seen that

$$\left\lfloor \sqrt{n} \right\rfloor \frac{\sqrt{n}}{\log(\sqrt{n})} \sim \frac{n}{\log(\sqrt{n})} = \frac{n}{\frac{1}{2}\log(n)} = \frac{2n}{\log(n)}$$
(10)

Substituting (9) and (10) on (3), we have that

$$S(n) \sim \frac{2n}{\log(n)} - \frac{n}{\log(n)} + O\left(\frac{n}{\log^2(\sqrt{n})}\right)$$
(11)

 \mathbf{As}

$$\frac{2n}{\log\left(n\right)} - \frac{n}{\log\left(n\right)} = \frac{n}{\log\left(n\right)} \tag{12}$$

Thus

$$S(n) \sim \frac{n}{\log\left(n\right)} \tag{13}$$

And subsequently, as by the Prime Number Theorem,

$$\pi(n) \sim \frac{n}{\log(n)} \tag{14}$$

It can be stated that

$$S(n) \sim \pi(n) \tag{15}$$

3 The existence of solutions $\pi(n) = S(n)$

After noticing the Theorem exposed at the Introduction Section, it has been studied the set Q of solutions such that $\pi(n) = S(n)$.

As a result, it has been found that Q is non empty, and that the first solutions are

$\{Q\}$	n	$\pi\left(n\right) = S\left(n\right)$			
q_1	11	5			
q_2	12	5			
q_3	29	10			
q_4	30	10			
q_5	59	17			
q_6	60	17			
q_7	179	79 41 30 41 39 77			
q_8	180				
q_9	389				

It can be easily noticed that the first value of n with a concrete $\pi(n) = S(n)$ seems to be always a prime number. As the prime counting function up to some composite number equals the prime counting function up to the inmediate prior prime number, considering the set $M = \{m_1, m_2, ..., m_k\}$ as the set of values of n such that $\pi(n) = S(n)$ and n is some prime number, if $\pi(m_k = p_n) =$ $S(m_k = p_n)$, then, as $\pi(m_k) = \pi(m_k + 1) = \pi(m_k + 2) = ... = \pi(p_{n+1} - 1)$, it follows that all the composite numbers between m_k and p_{n+1} are intersection points.

4 Some conjectures regarding the solutions $\pi(n) = S(n)$

It can be conjectured that the first value of n with a concrete $\pi(n) = S(n)$ will be always a prime number. This conjecture assumes the truth of the following

Conjecture. It does not exist any squared prime number p^2 such that $\pi(p^2) = S(p^2)$ except of $p_1 = 2$. That is,

$$\pi\left(p_n^2\right) \neq \sum_{k=1}^n p_k$$

If the Conjecture were false, then it could happen that $S(p_n < p^2) = S(p^2) - p$, so it would imply that $S(p_n) = S(p_n + 1) = S(p_n + 2) = \dots = S(p^2 - 1) = S(p^2) - p$, and if $\pi(p_n) = S(p^2)$, then suddenly $\pi(p^2) = S(p^2)$, and $p^2 \in Q$, whereas p_n does not, and p^2 would be the first of a series of consecutive elements of Q until p_{n+1} .

The conjecture has been tested and found to be true for the first thousands of primes.

$\{M\}$	n	$\pi\left(n\right) = S\left(n\right)$	p_k	k
m_1	11	5	3	2
m_2	29	10	5	3
m_3	59	17	7	4
m_4	179	41	13	6
m_5	389	77	19	8
m_6	541	100	23	9
m_7	5399	712	73	21
m_8	12401	1480	109	29
m_9	13441	1593	113	30
m_{10}	40241	4227	199	46
m_{11}	81619	7982	283	61
m_{12}	219647	19580	467	91
m_{13}	439367	36888	661	121
m_{14}	1231547	95165	1109	186
m_{15}	1263173	97405	1123	188
m_{16}	1279021	98534	1129	189
m_{17}	1699627	128112	1303	213
m_{18}	1718471	129419	1307	214
m_{19}	1756397	$132\overline{059}$	1321	216

If we focus only on set M, we get the following table

It can be seen that the set of k values is dense enough to formulate the following

Conjecture. Set M has infinitely many elements.

As $M \subset Q$, the Conjecture implies that $\pi(n)$ intersects S(n) infinitely many times, so S(n) is not only asymptotically equivalent to $\pi(n)$: it is infinitely many times equal to $\pi(n)$.

Finally, it implies also that the number of primes between p_n^2 and p_{n+1}^2 , on average, do not differ much from p_{n+1} .

References

- [1] Newman, Donald J. (1980). "Simple analytic proof of the prime number theorem". American Mathematical Monthly. 87 (9): 693-696.
- Harrison, John (2009). "Formalizing an analytic proof of the Prime Number Theorem". Journal of Automated Reasoning. 43 (3): 243-261.
- [3] Goldfeld, Dorian (2004). "The elementary proof of the prime number theorem: an historical perspective". In Chudnovsky, David; Chudnovsky, Gregory; Nathanson, Melvyn. Number theory (New York, 2003). New York: Springer-Verlag. pp. 179–192.
- [4] Tesoro, Rafael (2011). "Aspectos analíticos del Teorema de los Números Primos". pp. 11-16.
- [5] Jakimczuk, Rafael (2014). "Sums of Primes: An Asymptotic Expansion". International Journal of Contemporary Mathematical Sciences. 16 (9): 761-765
- [6] Apostol, Tom (1976). "Introduction to Analytic Number Theory". Undergraduate Texts in Mathematics, Springer-Verlag.
- [7] Sinha, Nilotpal Kanti (2015). "On the asymptotic expansion of the sum of the first n primes". arXiv:1011.1667.