$\pi(n)$ and the sum of consecutive prime numbers

Juan Moreno Borrallo

November 18, 2019
email: juan.morenoborrallo@gmail.com

Abstract

In this paper it is proved that the sum of consecutive prime numbers up to the square root of a given natural number $S(n)$ is asymptotically equivalent to the prime counting function $\pi(n)$. Also, they are found some solutions such that $\pi(n)=S(n)$. Finally, they are listed the prime numbers p_{k} such that $\pi\left(p_{k}\right)=S\left(p_{k}\right)$, and exposed some conjectures regarding this type of prime numbers.

1 Introduction

We define the prime counting function up to a given natural number n as

$$
\pi(n)=\#\{p \in P \mid p \leq n\}
$$

We define the sum of consecutive prime numbers up to the integer part of the square root of a given natural number n as

$$
\begin{equation*}
S(n)=\sum_{p \leq \sqrt{n}} p \tag{1}
\end{equation*}
$$

We define p_{k} as the last prime number which is a term of $S(n)$.
We define set Q as the set of values of n such that $\pi(n)=S(n)$.
We define set M as the set of values of n such that $\pi(n)=S(n)$ and n is some prime number.

2 Asymptotic equivalence of $\pi(n)$ and $S(n)$

It can be stated the following

Theorem.

$$
\begin{equation*}
S(n) \sim \pi(n) \tag{2}
\end{equation*}
$$

Proof.

By partial summation

$$
\begin{equation*}
S(n)=(\lfloor\sqrt{n}\rfloor \pi(\sqrt{n}))-\sum_{m=2}^{\lfloor\sqrt{n}\rfloor-1} \pi(m) \tag{3}
\end{equation*}
$$

Where $\lfloor\sqrt{n}\rfloor$ denotes the integer part of \sqrt{n}.

By the Prime Number Theorem with error term, there exists a constant C such that

$$
\begin{equation*}
\left|\pi(x)-\frac{x}{\log x}\right| \leq C \frac{x}{\log ^{2} x} \quad \text { for } x \geq 2 \tag{4}
\end{equation*}
$$

Therefore, substituting $\pi(\sqrt{n})$ and $\pi(m)$ by the application of the Prime Number Theorem on (3)

$$
\begin{equation*}
S(n)=\left(\lfloor\sqrt{n}\rfloor \frac{\sqrt{n}}{\log (\sqrt{n})}\right)-\sum_{m=2}^{\lfloor\sqrt{n}\rfloor-1} \frac{m}{\log (m)}+O\left(\frac{n}{\log ^{2}(\sqrt{n})}\right) \tag{5}
\end{equation*}
$$

Applying Riemman Sums theory to the sum on the right of (3)

$$
\begin{equation*}
\sum_{m=2}^{\lfloor\sqrt{n}\rfloor-1} \frac{m}{\log (m)}=\int_{2}^{\lfloor\sqrt{n}\rfloor} \frac{x}{\log (x)} d x+O\left(\frac{n}{\log ^{2}(\sqrt{n})}\right) \tag{6}
\end{equation*}
$$

Solving the integral by partial integration, we have that

$$
\begin{gather*}
\int_{2}^{\lfloor\sqrt{n}\rfloor} \frac{x}{\log (x)} d x=\left[\frac{x^{2}}{2 \log (x)}\right]_{2}^{\lfloor\sqrt{n}\rfloor}+\int_{2}^{\lfloor\sqrt{n}\rfloor} \frac{x}{2 \log ^{2}(x)}= \\
=\frac{n}{2 \ln (\lfloor\sqrt{n}\rfloor)}+O\left(\frac{n}{\log ^{2}(\sqrt{n})}\right) \tag{7}
\end{gather*}
$$

It is easy to see that

$$
\begin{equation*}
\frac{n}{2 \log (\lfloor\sqrt{n}\rfloor)} \sim \frac{n}{\log n} \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{m=2}^{\lfloor\sqrt{n}\rfloor-1} \frac{m}{\log (m)} \sim \frac{n}{\log (n)}+O\left(\frac{n}{\log ^{2}(\sqrt{n})}\right) \tag{9}
\end{equation*}
$$

Regarding the left product on (3) it can be seen that

$$
\begin{equation*}
\lfloor\sqrt{n}\rfloor \frac{\sqrt{n}}{\log (\sqrt{n})} \sim \frac{n}{\log (\sqrt{n})}=\frac{n}{\frac{1}{2} \log (n)}=\frac{2 n}{\log (n)} \tag{10}
\end{equation*}
$$

Substituting (9) and (10) on (3), we have that

$$
\begin{equation*}
S(n) \sim \frac{2 n}{\log (n)}-\frac{n}{\log (n)}+O\left(\frac{n}{\log ^{2}(\sqrt{n})}\right) \tag{11}
\end{equation*}
$$

As

$$
\begin{equation*}
\frac{2 n}{\log (n)}-\frac{n}{\log (n)}=\frac{n}{\log (n)} \tag{12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
S(n) \sim \frac{n}{\log (n)} \tag{13}
\end{equation*}
$$

And subsequently, as by the Prime Number Theorem,

$$
\begin{equation*}
\pi(n) \sim \frac{n}{\log (n)} \tag{14}
\end{equation*}
$$

It can be stated that

$$
\begin{equation*}
S(n) \sim \pi(n) \tag{15}
\end{equation*}
$$

3 The existence of solutions $\pi(n)=S(n)$

After noticing the Theorem exposed at the Introduction Section, it has been studied the set Q of solutions such that $\pi(n)=S(n)$.

As a result, it has been found that Q is non empty, and that the first solutions are

$\{Q\}$	n	$\pi(n)=S(n)$
q_{1}	11	5
q_{2}	12	5
q_{3}	29	10
q_{4}	30	10
q_{5}	59	17
q_{6}	60	17
q_{7}	179	41
q_{8}	180	41
q_{9}	389	77
\ldots	\ldots	\ldots

It can be easily noticed that the first value of n with a concrete $\pi(n)=S(n)$ seems to be always a prime number. As the prime counting function up to some composite number equals the prime counting function up to the inmediate prior prime number, considering the set $M=\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$ as the set of values of n such that $\pi(n)=S(n)$ and n is some prime number, if $\pi\left(m_{k}=p_{n}\right)=$ $S\left(m_{k}=p_{n}\right)$, then, as $\pi\left(m_{k}\right)=\pi\left(m_{k}+1\right)=\pi\left(m_{k}+2\right)=\ldots=\pi\left(p_{n+1}-1\right)$, it follows that all the composite numbers between m_{k} and p_{n+1} are intersection points.

4 Some conjectures regarding the solutions $\pi(n)=$ $S(n)$

It can be conjectured that the first value of n with a concrete $\pi(n)=S(n)$ will be always a prime number. This conjecture assumes the truth of the following

Conjecture. It does not exist any squared prime number p^{2} such that $\pi\left(p^{2}\right)=$ $S\left(p^{2}\right)$ except of $p_{1}=2$. That is,

$$
\pi\left(p_{n}^{2}\right) \neq \sum_{k=1}^{n} p_{k}
$$

If the Conjecture were false, then it could happen that $S\left(p_{n}<p^{2}\right)=S\left(p^{2}\right)-p$, so it would imply that $S\left(p_{n}\right)=S\left(p_{n}+1\right)=S\left(p_{n}+2\right)=\ldots=S\left(p^{2}-1\right)=$ $S\left(p^{2}\right)-p$, and if $\pi\left(p_{n}\right)=S\left(p^{2}\right)$, then suddenly $\pi\left(p^{2}\right)=S\left(p^{2}\right)$, and $p^{2} \in Q$, whereas p_{n} does not, and p^{2} would be the first of a series of consecutive elements of Q until p_{n+1}.

The conjecture has been tested and found to be true for the first thousands of primes.

If we focus only on set M, we get the following table

$\{M\}$	n	$\pi(n)=S(n)$	p_{k}	k
m_{1}	11	5	3	2
m_{2}	29	10	5	3
m_{3}	59	17	7	4
m_{4}	179	41	13	6
m_{5}	389	77	19	8
m_{6}	541	100	23	9
m_{7}	5399	712	73	21
m_{8}	12401	1480	109	29
m_{9}	13441	1593	113	30
m_{10}	40241	4227	199	46
m_{11}	81619	7982	283	61
m_{12}	219647	19580	467	91
m_{13}	439367	36888	661	121
m_{14}	1231547	95165	1109	186
m_{15}	1263173	97405	1123	188
m_{16}	1279021	98534	1129	189
m_{17}	1699627	128112	1303	213
m_{18}	1718471	129419	1307	214
m_{19}	1756397	132059	1321	216
\ldots	\ldots	\ldots	\ldots	\ldots

It can be seen that the set of k values is dense enough to formulate the following
Conjecture. Set M has infinitely many elements.
As $M \subset Q$, the Conjecture implies that $\pi(n)$ intersects $S(n)$ infinitely many times, so $S(n)$ is not only asymptotically equivalent to $\pi(n)$: it is infinitely many times equal to $\pi(n)$.

Finally, it implies also that the number of primes between p_{n}^{2} and p_{n+1}^{2}, on average, do not differ much from p_{n+1}.

References

[1] Newman, Donald J. (1980). "Simple analytic proof of the prime number theorem" ${ }^{\prime \prime}$ American Mathematical Monthly. 87 (9): 693-696.
[2] Harrison, John (2009). "Formalizing an analytic proof of the Prime Number Theorem" ${ }^{\prime \prime}$ Journal of Automated Reasoning. 43 (3): 243-261.
[3] Goldfeld, Dorian (2004). "The elementary proof of the prime number theorem: an historical perspective". In Chudnovsky, David; Chudnovsky, Gregory; Nathanson, Melvyn. Number theory (New York, 2003). New York: Springer-Verlag. pp. 179-192.
[4] Tesoro, Rafael (2011). "Aspectos analíticos del Teorema de los Números Primos". pp. 11-16.
[5] Jakimczuk, Rafael (2014). "Sums of Primes: An Asymptotic Expansion". International Journal of Contemporary Mathematical Sciences. 16 (9): 761-765
[6] Apostol, Tom (1976). "Introduction to Analytic Number Theory". Undergraduate Texts in Mathematics, Springer-Verlag.
[7] Sinha, Nilotpal Kanti (2015). "On the asymptotic expansion of the sum of the first n primes". arXiv:1011.1667.

