Unknown Summations

Yuly Shipilevsky
Toronto, Ontario, Canada

Abstract

We introduce a set of finite and infinite summations which looks like were never considered yet.

1. Let us introduce the following finite summation:

$$
S_{1}(2019)=1+2^{3}+3^{4}+4^{5}+\ldots+2019^{2020}
$$

and, more generally,

$$
S_{1}(n)==1+2^{3}+3^{4}+4^{5}+\ldots+n^{n+1}=\sum_{i=1}^{n} i^{i+1}
$$

The corresponding infinite summation (series) is the following:

$$
S_{1}=1+1 / 2^{3}+1 / 3^{4}+1 / 4^{5}+\ldots
$$

2. Let us introduce the following finite summation:

$$
S_{2}(2019)=1+2^{2}+3^{3}+4^{4}+\ldots+2019^{2019}
$$

and, more generally,

$$
\mathrm{S}_{2}(\mathrm{n})==1+2^{2}+3^{3}+4^{4}+\ldots+\mathrm{n}^{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}^{\mathrm{i}}
$$

The corresponding infinite summation (series) is the following:

$$
S_{2}=1+1 / 2^{2}+1 / 3^{3}+1 / 4^{4}+\ldots
$$

3. Let us introduce the following finite summation:

$$
S_{3}(2019)=1+2+3^{2}+4^{3}+\ldots+2019^{2018}
$$

and, more generally,

$$
S_{3}(n)==1+2+3^{2}+4^{3}+\ldots+n^{n-1}=\sum_{i=1}^{n} i^{i-1}
$$

The corresponding infinite summation (series) is the following:

$$
S_{3}=1+1 / 2+1 / 3^{2}+1 / 4^{3}+\ldots
$$

4. Conclusions.

Despite the above-introduced summations and series looks very simple, they were never considered elsewhere yet.

REFERENCES

[1] K. H. Rosen, J. G. Michaels,Handbook of Discrete and Combinatorial Mathematics, CRC Press, 1999.
[2] S. Thompson, M. Gardner. Calculus Made Easy, 1998.
[3] Кречмар Василий Августович Задачник по алгебре, 1937.
[4] Series List http://www.tug.org/texshowcase/cheat.pdf
[5] List of Mathematical Series
https://en.wikipedia.org/wiki/List_of_mathematical_series

