The Navier-Stokes problem

Daniel Thomas Hayes

November 21, 2019
A proposed solution to the millennium problem on the existence and smoothness of the Navier-Stokes equations.

1. Introduction

The Navier-Stokes equations are thought to govern the motion of a fluid in \mathbb{R}^{d} where $d \in \mathbb{N}$, see $[1,3]$. Let $\mathbf{u}=\mathbf{u}(\mathbf{x}, t) \in \mathbb{R}^{d}$ be the velocity and let $p=p(\mathbf{x}, t) \in \mathbb{R}$ be the pressure, each dependent on position $\mathbf{x} \in \mathbb{R}^{d}$ and time $t \geqslant 0$. We take the externally applied force to be identically zero. The fluid is assumed to be incompressible with constant viscosity $v \geqslant 0$ and to fill all of \mathbb{R}^{d}. The NavierStokes equations can then be written as

$$
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u} & =v \nabla^{2} \mathbf{u}-\nabla p, \tag{1}\\
\nabla \cdot \mathbf{u} & =0 \tag{2}
\end{align*}
$$

with initial condition

$$
\begin{equation*}
\mathbf{u}(\mathbf{x}, 0)=\mathbf{u}_{0} \tag{3}
\end{equation*}
$$

where $\mathbf{u}_{0}=\mathbf{u}_{0}(\mathbf{x}) \in \mathbb{R}^{d}$. In these equations

$$
\begin{equation*}
\nabla=\left(\frac{\partial}{\partial \mathbf{x}_{1}}, \frac{\partial}{\partial \mathbf{x}_{2}}, \ldots, \frac{\partial}{\partial \mathbf{x}_{d}}\right) \tag{4}
\end{equation*}
$$

is the gradient operator and

$$
\begin{equation*}
\nabla^{2}=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial \mathbf{x}_{i}{ }^{2}} \tag{5}
\end{equation*}
$$

is the Laplacian operator. When $v=0$, equations (1), (2), (3) are called the Euler equations. Solutions of (1), (2), (3) are to be found with

$$
\begin{equation*}
\mathbf{u}_{0}\left(\mathbf{x}+e_{i}\right)=\mathbf{u}_{0}(\mathbf{x}) \tag{6}
\end{equation*}
$$

for $1 \leqslant i \leqslant d$ where e_{i} is the $i^{\text {th }}$ unit vector in \mathbb{R}^{d}. The initial condition \mathbf{u}_{0} is a given C^{∞} divergence-free vector field on \mathbb{R}^{d}. A solution of (1), (2), (3) is then accepted to be physically reasonable [3] if

$$
\begin{equation*}
\mathbf{u}\left(\mathbf{x}+e_{i}, t\right)=\mathbf{u}(\mathbf{x}, t), \quad p\left(\mathbf{x}+e_{i}, t\right)=p(\mathbf{x}, t) \tag{7}
\end{equation*}
$$

on $\mathbb{R}^{d} \times[0, \infty)$ for $1 \leqslant i \leqslant d$ and

$$
\begin{equation*}
\mathbf{u}, p \in C^{\infty}\left(\mathbb{R}^{d} \times[0, \infty)\right) \tag{8}
\end{equation*}
$$

2010 Mathematics Subject Classification. Primary 35Q30; Secondary 76D03.

2. Solution to the Navier-Stokes problem

I provide a proof of the following theorem [2,3,6].
Theorem. Take $v>0$. Let \mathbf{u}_{0} be any smooth, divergence-free vector field satisfying (6). Then there exist smooth functions \mathbf{u}, p on $\mathbb{R}^{d} \times[0, \infty)$ that satisfy (1), (2), (3), (7), (8).

Proof. It is sufficient to rule out the possibility that there is a smooth, divergencefree \mathbf{u}_{0} for which (1), (2), (3) have a solution with a finite blowup time [3].
Let the Fourier series of \mathbf{u}, p be

$$
\begin{align*}
& \tilde{\mathbf{u}}=\sum_{\mathbf{L}=-\infty}^{\infty} \mathbf{u}_{\mathbf{L}} \mathrm{e}^{\mathrm{i} \mathbf{L \mathbf { L } \cdot \mathbf { x }}}, \tag{9}\\
& \tilde{p}=\sum_{\mathbf{L}=-\infty}^{\infty} p_{\mathbf{L}} \mathrm{e}^{\mathrm{i} \mathrm{k} \mathbf{L} \cdot \mathbf{x}} \tag{10}
\end{align*}
$$

respectively. Here $\mathbf{u}_{\mathbf{L}}=\mathbf{u}_{\mathbf{L}}(t) \in \mathbb{C}^{d}, p_{\mathbf{L}}=p_{\mathbf{L}}(t) \in \mathbb{C}, \mathrm{i}=\sqrt{-1}, k=2 \pi$, and $\sum_{\mathbf{L}=-\infty}^{\infty}$ denotes the sum over all $\mathbf{L} \in \mathbb{Z}^{d}$. The initial condition \mathbf{u}_{0} is a Fourier series [2] of which is convergent for all $\mathbf{x} \in \mathbb{R}^{d}$. Substituting $\mathbf{u}=\tilde{\mathbf{u}}, p=\tilde{p}$ into (1) gives

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t} \mathrm{e}^{\mathrm{i} k \mathbf{L} \cdot \mathbf{x}}+\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left(\mathbf{u}_{\mathbf{L}} \cdot \mathrm{i} k \mathbf{M}\right) \mathbf{u}_{\mathbf{M}} \mathrm{e}^{\mathrm{i} k(\mathbf{L}+\mathbf{M}) \cdot \mathbf{x}} \\
& =-\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}} \mathrm{e}^{\mathrm{i} \mathbf{L} \mathbf{L} \cdot \mathbf{x}}-\sum_{\mathbf{L}=-\infty}^{\infty} \mathrm{i} k \mathbf{L} p_{\mathbf{L}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \tag{11}
\end{align*}
$$

Equating like powers of the exponentials in (11) yields

$$
\begin{equation*}
\frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \mathrm{i} k \mathbf{M}\right) \mathbf{u}_{\mathbf{M}}=-v k^{2}|\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}}-\mathrm{i} k \mathbf{L} p_{\mathbf{L}} \tag{12}
\end{equation*}
$$

on using the Cauchy product type formula [4]

$$
\begin{equation*}
\sum_{l=-\infty}^{\infty} a_{l} x^{l} \sum_{m=-\infty}^{\infty} b_{m} x^{m}=\sum_{l=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{l-m} b_{m} x^{l} \tag{13}
\end{equation*}
$$

Substituting $\mathbf{u}=\tilde{\mathbf{u}}$ into (2) gives

$$
\begin{equation*}
\sum_{\mathbf{L}=-\infty}^{\infty} \mathrm{i} k \mathbf{L} \cdot \mathbf{u}_{\mathbf{L}} \mathrm{e}^{\mathrm{i} k \mathbf{L} \cdot \mathbf{x}}=0 \tag{14}
\end{equation*}
$$

Equating like powers of the exponentials in (14) yields

$$
\begin{equation*}
\mathbf{L} \cdot \mathbf{u}_{\mathbf{L}}=0 \tag{15}
\end{equation*}
$$

Applying $\mathbf{L} \cdot$ to (12) and noting (15) leads to

$$
\begin{equation*}
p_{\mathbf{L}}=-\sum_{\mathbf{M}=-\infty}^{\infty}\left(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}}\right)\left(\mathbf{u}_{\mathbf{M}} \cdot \hat{\mathbf{L}}\right) \tag{16}
\end{equation*}
$$

where p_{0} is arbitrary and $\hat{\mathbf{L}}=\mathbf{L} /|\mathbf{L}|$ is the unit vector in the direction of \mathbf{L}. Then substituting (16) into (12) gives

$$
\begin{equation*}
\frac{\partial \mathbf{u}_{\mathbf{L}}}{\partial t}=-\sum_{\mathbf{M}=-\infty}^{\infty}\left(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \mathrm{i} k \mathbf{M}\right) \mathbf{u}_{\mathbf{M}}-v k^{2}|\mathbf{L}|^{2} \mathbf{u}_{\mathbf{L}}+\sum_{\mathbf{M}=-\infty}^{\infty} \mathrm{i} k \mathbf{L}\left(\mathbf{u}_{\mathbf{L}-\mathbf{M}} \cdot \hat{\mathbf{L}}\right)\left(\mathbf{u}_{\mathbf{M}} \cdot \hat{\mathbf{L}}\right) \tag{17}
\end{equation*}
$$

where $\mathbf{u}_{\mathbf{0}}=\mathbf{u}_{\mathbf{0}}(0)$. The equations for $\mathbf{u}_{\mathbf{L}}$ are to be solved for all $\mathbf{L} \in \mathbb{Z}^{d}$.
Let

$$
\begin{gather*}
\mathbf{u}_{\mathbf{L}}=\mathbf{a}_{\mathbf{L}}+\mathbf{i} \mathbf{b}_{\mathbf{L}}, \tag{18}\\
p_{\mathbf{L}}=c_{\mathbf{L}}+\mathrm{i} d_{\mathbf{L}} \tag{19}
\end{gather*}
$$

where $\mathbf{a}_{\mathbf{L}} \in \mathbb{R}^{d}, \mathbf{b}_{\mathbf{L}} \in \mathbb{R}^{d}, c_{\mathbf{L}} \in \mathbb{R}$, and $d_{\mathbf{L}} \in \mathbb{R}$. Substituting (18), (19) into (12) gives

$$
\begin{align*}
& \frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t}+\mathrm{i} \frac{\partial \mathbf{b}_{\mathbf{L}}}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}}+\mathrm{i} \mathbf{b}_{\mathbf{L}-\mathbf{M}}\right) \cdot \mathrm{i} k \mathbf{M}\right)\left(\mathbf{a}_{\mathbf{M}}+\mathrm{i} \mathbf{b}_{\mathbf{M}}\right) \\
& =-v k^{2}|\mathbf{L}|^{2}\left(\mathbf{a}_{\mathbf{L}}+\mathrm{i} \mathbf{b}_{\mathbf{L}}\right)-\mathrm{i} k \mathbf{L}\left(c_{\mathbf{L}}+\mathrm{i} d_{\mathbf{L}}\right) \tag{20}
\end{align*}
$$

Equating real and imaginary parts in (20) gives

$$
\begin{align*}
& \frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(-\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}\right)=-v k^{2}|\mathbf{L}|^{2} \mathbf{a}_{\mathbf{L}}+k \mathbf{L} d_{\mathbf{L}} \tag{21}\\
& \frac{\partial \mathbf{b}_{\mathbf{L}}}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}\right)=-v k^{2}|\mathbf{L}|^{2} \mathbf{b}_{\mathbf{L}}-k \mathbf{L} c_{\mathbf{L}} \tag{22}
\end{align*}
$$

Substituting (18) into (15) gives

$$
\begin{equation*}
\mathbf{L} \cdot\left(\mathbf{a}_{\mathbf{L}}+i \mathbf{b}_{\mathbf{L}}\right)=0 \tag{23}
\end{equation*}
$$

Equating real and imaginary parts in (23) gives

$$
\begin{align*}
\mathbf{L} \cdot \mathbf{a}_{\mathbf{L}} & =0, \tag{24}\\
\mathbf{L} \cdot \mathbf{b}_{\mathbf{L}} & =0 \tag{25}
\end{align*}
$$

From (21) and in light of (24) it is possible to write

$$
\begin{equation*}
\frac{\partial \mathbf{a}_{\mathbf{L}}}{\partial t} \cdot \hat{\mathbf{a}}_{\mathbf{L}}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(-\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}\right) \cdot \hat{\mathbf{a}}_{\mathbf{L}}=-v k^{2}|\mathbf{L}|^{2} \mathbf{a}_{\mathbf{L}} \cdot \hat{\mathbf{a}}_{\mathbf{L}} \tag{26}
\end{equation*}
$$

where $\hat{\mathbf{a}}_{\mathbf{L}}=\mathbf{a}_{\mathbf{L}} /\left|\mathbf{a}_{\mathbf{L}}\right|$ is the unit vector in the direction of $\mathbf{a}_{\mathbf{L}}$. Then (26) implies

$$
\begin{equation*}
\frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(-\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}\right) \cdot \hat{\mathbf{a}}_{\mathbf{L}}=-v k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \tag{27}
\end{equation*}
$$

From (27) it is possible to write

$$
\begin{equation*}
\frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t} \leqslant \sum_{\mathbf{M}=-\infty}^{\infty}\left(\left|\mathbf{a}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{b}_{\mathbf{M}}\right|+\left|\mathbf{b}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right|\right)+v k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \tag{28}
\end{equation*}
$$

on using the Cauchy-Schwarz inequality [5]

$$
\begin{equation*}
|\mathbf{a} \cdot \mathbf{b}| \leqslant|\mathbf{a} \||\mathbf{b}| . \tag{29}
\end{equation*}
$$

It then follows from (28) that

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| \mathbf{x} \mid} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}-\mathbf{M}}\right| k\left|\mathbf{M} \|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}| \mathbf{x} \mid}\right. \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}-\mathbf{M}}\right| k\left|\mathbf{M} \| \mathbf{a}_{\mathbf{M}}\right| \mathbf{e}^{k|\mathbf{L}||\mathbf{x}|}+\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}||\mathbf{x}|} \tag{30}
\end{align*}
$$

implying that

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| \mathbf{x} \mid} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| k\left|\mathbf{M} \|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}+\mathbf{M}| \mathbf{x} \mid}\right. \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| k\left|\mathbf{M} \| \mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|}+\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| x \mid} \mid \tag{31}
\end{align*}
$$

in light of (13), which yields

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{a}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| \mathbf{x} \mid} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| k|\mathbf{M}|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k(\mathbf{L}|+| \mathbf{M})|\mathbf{x}|} \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}|)|\mathbf{x}|}+\sum_{\mathbf{L}=-\infty}^{\infty} \gamma k^{2}|\mathbf{L}|^{2}\left|\mathbf{a}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}||\mathbf{x}|} \tag{32}
\end{align*}
$$

on using the triangle inequality [5]

$$
\begin{equation*}
|\mathbf{a}+\mathbf{b}| \leqslant|\mathbf{a}|+|\mathbf{b}| . \tag{33}
\end{equation*}
$$

From (22) and in light of (25) it is possible to write

$$
\begin{equation*}
\frac{\partial \mathbf{b}_{\mathbf{L}}}{\partial t} \cdot \hat{\mathbf{b}}_{\mathbf{L}}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}\right) \cdot \hat{\mathbf{b}}_{\mathbf{L}}=-v k^{2}|\mathbf{L}|^{2} \mathbf{b}_{\mathbf{L}} \cdot \hat{\mathbf{b}}_{\mathbf{L}} \tag{34}
\end{equation*}
$$

where $\hat{\mathbf{b}}_{\mathbf{L}}=\mathbf{b}_{\mathbf{L}} /\left|\mathbf{b}_{\mathbf{L}}\right|$ is the unit vector in the direction of $\mathbf{b}_{\mathbf{L}}$. Then (34) implies

$$
\begin{equation*}
\frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t}+\sum_{\mathbf{M}=-\infty}^{\infty}\left(\left(\mathbf{a}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{a}_{\mathbf{M}}-\left(\mathbf{b}_{\mathbf{L}-\mathbf{M}} \cdot k \mathbf{M}\right) \mathbf{b}_{\mathbf{M}}\right) \cdot \hat{\mathbf{b}}_{\mathbf{L}}=-v k^{2}|\mathbf{L}|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \tag{35}
\end{equation*}
$$

From (35) it is possible to write

$$
\begin{equation*}
\frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t} \leqslant \sum_{\mathbf{M}=-\infty}^{\infty}\left(\left|\mathbf{a}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right|+\left|\mathbf{b}_{\mathbf{L}-\mathbf{M}}\right| k\left|\mathbf{M} \| \mathbf{b}_{\mathbf{M}}\right|\right)+v k^{2}|\mathbf{L}|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \tag{36}
\end{equation*}
$$

on using the Cauchy-Schwarz inequality. It then follows from (36) that

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| \mathbf{x} \mid} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}||\mathbf{x}|} \\
& +\left.\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}-\mathbf{M}}\right| k|\mathbf{M}|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}| x \mid}\left|+\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}\right| \mathbf{L}\right|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| x \mathbf{x} \mid} \tag{37}
\end{align*}
$$

implying that

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| \mathbf{x} \mid} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| k\left|\mathbf{M} \| \mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|} \\
& +\left.\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| k\left|\mathbf{M} \|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k|\mathbf{L}+\mathbf{M}||\mathbf{x}|}+\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}\right| \mathbf{L}\right|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}||\mathbf{x}|} \tag{38}
\end{align*}
$$

in light of (13), which yields

$$
\begin{align*}
& \sum_{\mathbf{L}=-\infty}^{\infty} \frac{\partial\left|\mathbf{b}_{\mathbf{L}}\right|}{\partial t} \mathrm{e}^{k|\mathbf{L}| \mathbf{x} \mid} \leqslant \sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| k\left|\mathbf{M} \| \mathbf{a}_{\mathbf{M}}\right| \mathrm{e}^{k(\mathbf{L}|+| \mathbf{M})|\mathbf{x}|} \\
& +\sum_{\mathbf{L}=-\infty}^{\infty} \sum_{\mathbf{M}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| k|\mathbf{M}|\left|\mathbf{b}_{\mathbf{M}}\right| \mathrm{e}^{k(\mathbf{L}|+|\mathbf{M}|)|\mathbf{x}|}+\sum_{\mathbf{L}=-\infty}^{\infty} v k^{2}|\mathbf{L}|^{2}\left|\mathbf{b}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| x \mid} \tag{39}
\end{align*}
$$

on using the triangle inequality.
Let

$$
\begin{align*}
& \psi=\sum_{\mathbf{L}=-\infty}^{\infty}\left|\mathbf{a}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X}, \tag{40}\\
& \phi=\sum_{\mathbf{L}=-\infty}^{\infty}\left|\mathbf{b}_{\mathbf{L}}\right| \mathrm{e}^{k|\mathbf{L}| X} \tag{41}
\end{align*}
$$

where $X=|\mathbf{x}|$ and note that

$$
\begin{equation*}
|\tilde{\mathbf{u}}| \leqslant Q \tag{42}
\end{equation*}
$$

where $Q=\psi+\phi$. Then (32) can be written as

$$
\begin{equation*}
\frac{\partial \psi}{\partial t} \leqslant \psi \frac{\partial \phi}{\partial X}+\phi \frac{\partial \psi}{\partial X}+v \frac{\partial^{2} \psi}{\partial X^{2}} \tag{43}
\end{equation*}
$$

and (39) can be written as

$$
\begin{equation*}
\frac{\partial \phi}{\partial t} \leqslant \psi \frac{\partial \psi}{\partial X}+\phi \frac{\partial \phi}{\partial X}+v \frac{\partial^{2} \phi}{\partial X^{2}} . \tag{44}
\end{equation*}
$$

Adding (43) and (44) yields

$$
\begin{equation*}
\frac{\partial Q}{\partial t} \leqslant Q \frac{\partial Q}{\partial X}+v \frac{\partial^{2} Q}{\partial X^{2}} . \tag{45}
\end{equation*}
$$

Here $\left.Q\right|_{t=0}$ converges for all $X \geqslant 0$ since $\left.\tilde{\mathbf{u}}\right|_{t=0}$ converges for all $\mathbf{x} \in \mathbb{R}^{d}$. Note also that

$$
\begin{equation*}
\frac{\partial^{s} Q}{\partial X^{s}} \geqslant 0 \text { for } s \geqslant 0 . \tag{46}
\end{equation*}
$$

At points where Q is a maximum,

$$
\begin{equation*}
\frac{\partial Q}{\partial t} \geqslant 0 . \tag{47}
\end{equation*}
$$

The extreme case is then $Q=\Omega$ where

$$
\begin{equation*}
\frac{\partial \Omega}{\partial t}=\Omega \frac{\partial \Omega}{\partial X}+v \frac{\partial^{2} \Omega}{\partial X^{2}} \tag{48}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Omega=\lambda \frac{\partial A}{\partial X} / A=\lambda \frac{\partial}{\partial X} \log _{\mathrm{e}} A \tag{49}
\end{equation*}
$$

where λ is a constant. Substituting (49) into (48) gives

$$
\begin{equation*}
\lambda \frac{\partial}{\partial X}\left(\frac{\partial A}{\partial t} / A\right)=\lambda^{2} \frac{1}{2} \frac{\partial}{\partial X}\left(\left(\frac{\partial A}{\partial X} / A\right)^{2}\right)+\lambda v \frac{\partial}{\partial X}\left(\left(\frac{\partial^{2} A}{\partial X^{2}} A-\left(\frac{\partial A}{\partial X}\right)^{2}\right) / A^{2}\right) . \tag{50}
\end{equation*}
$$

Then with $\lambda=2 v$, equation (50) gives

$$
\begin{equation*}
\frac{\partial}{\partial X}\left(\frac{\partial A}{\partial t} / A\right)=v \frac{\partial}{\partial X}\left(\frac{\partial^{2} A}{\partial X^{2}} / A\right) \tag{51}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\frac{\partial A}{\partial t}=v \frac{\partial^{2} A}{\partial X^{2}}+h A \tag{52}
\end{equation*}
$$

where $h=h(t)$ is arbitrary.
Let

$$
\begin{equation*}
A=\sum_{l=0}^{\infty} A_{l} \mathrm{e}^{k l X} \tag{53}
\end{equation*}
$$

where $A_{l}=A_{l}(t)$. Substituting (53) into (52) gives

$$
\begin{equation*}
\sum_{l=0}^{\infty} \frac{\partial A_{l}}{\partial t} \mathrm{e}^{k l X}=\sum_{l=0}^{\infty} v k^{2} l^{2} A_{l} l^{k l X}+\sum_{l=0}^{\infty} A_{l} h \mathrm{e}^{k l X} . \tag{54}
\end{equation*}
$$

Equating like powers of the exponentials in (54) yields

$$
\begin{equation*}
\frac{\partial A_{l}}{\partial t}=v k^{2} l^{2} A_{l}+A_{l} h \tag{55}
\end{equation*}
$$

Equation (55) is easily solved to find

$$
\begin{equation*}
A_{l}=c_{l} e^{v k^{2} l^{2}+\int h d t} \tag{56}
\end{equation*}
$$

where c_{l} are constants. It then follows that

$$
\begin{equation*}
\Omega=2 v \frac{\partial}{\partial X} \log _{\mathrm{e}}\left(\sum_{l=0}^{\infty} c_{l} \mathrm{e}^{v k^{2} l^{l} t} \mathrm{e}^{k l X}\right) \tag{57}
\end{equation*}
$$

It is sufficient to take X to be in a finite domain due to the spatially periodic boundary conditions. Then Ω has no finite-time singularity and

$$
\begin{equation*}
|\tilde{\mathbf{u}}| \leqslant \Omega . \tag{58}
\end{equation*}
$$

\therefore blowup is ruled out.

References

[1] Batchelor G. 1967. An introduction to fluid dynamics. Cambridge U. Press, Cambridge.
[2] Doering C. 2009. The 3D Navier-Stokes problem. Annu. Rev. Fluid Mech. 41: 109-128.
[3] Fefferman C. 2000. Existence and smoothness of the Navier-Stokes equation. Clay Mathematics Institute. Official problem description.
[4] Hardy G. 1949. Divergent series. Oxford University Press.
[5] Kreyszig E. 1989. Introductory functional analysis with applications. Wiley Classics Lib.
[6] Ladyzhenskaya O. 1969. The mathematical theory of viscous incompressible flows. Gordon and Breach, New York.

