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Abstract:  This paper comprises extracts from previous articles showing how 

Einstein’s general relativity equations can describe different forces by 

substituting the associated constants. The articles depended upon a new solution 

of Einstein’s equations which is compatible with electromagnetic theory. 

 

A theory is the more impressive the greater the simplicity of its premises 

is, the more different kinds of things it relates, and the more extended its 

area of applicability........I do not see any reason to assume that the 

heuristic significance of the principle of general relativity is restricted to 

gravitation ...... a deeper knowledge of the foundations of physics seem 

doomed to me unless the basic concepts are in accordance with general 

relativity from the beginning...  

 A. Einstein. 

 

1. Introduction 

 Einstein’s general relativity theory of gravitation is remarkable and has been 

approved in various experiments, but some unreasonable physics has been 

assimilated on the way. For example: 

 (a) Given the rationality of electromagnetism and quantum theory, the concept of 

gravity being due to geometrical spacetime curvature is strangely detached and lacks 

physical mechanism or real substance, but it appears like an ethereal fabric of 

spacetime which propagates at the velocity of electromagnetism. 

(b) Gravitational singularities can occur even though physicists understand that 

singularities are not founded on reality.  

(c) Energy conservation is not well defined in general relativity theory. Thus, the 

ultimate source of kinetic energy acquired by a falling body is a problem. 
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(d) Inertial acceleration of a person inside a lift/elevator appears superficially like 

gravity but in detail it is energetically different from spacetime curvature. 

 (e) Fantastic non-falsifiable geometric theories for unification have been fabricated. 

 Given the experimental success of Einstein’s theory, it is appropriate to search 

for a new solution of the field equations wherein gravitons exist analogous to the 

virtual-photon field of the electric force. Gravity is probably a quantum process 

because a gamma ray may decay to produce a proton and anti-proton with their 

gravitational and electromagnetic fields. The spacetime manifold has zero energy 

density in contrast to a graviton field and this difference influences the precession of 

Mercury’s orbit enough to rule out the option of spacetime curvature.  

 In the following Sections the results from previous articles will be presented 

together to illustrate the prospects of Einstein’s Equations. In Section 2 the 

electromagnetic nature of gravity will be supported through a new solution of the 

equations. Section 3 confirms the need for this solution by re-considering 

Mercury’s orbital precession. Section 4 covers gravitational collapse to form dense 

bodies without singularities. Section 5 describes a model of the accelerating 

universe starting from a primeval electromagnetic particle. Section 6 shows how the 

new solution format can be applied to real models of the electron, proton, and 

charmonium, without point particles. Section 7 covers the hydrogen atom energy 

levels. Section 8 describes an auxiliary gravitational field which induces flat rotation 

curves and spiral structures in galaxies. Finally, in Section 9 the measured weight-

reduction of a spinning wheel appears to be incompatible with theory of spacetime 

curvature.  

 

2. The universal solution of Einstein’s equations.  

 A few features of this solution will be quoted from reference [1] to demonstrate 

its quantum nature for gravity and correspondence with electromagnetism. Einstein 

searched for a covariant form of Poisson’s equation and invented the concept of 

spacetime curvature to account for gravity acting through empty space. However, 

there is an alternative interpretation of gravity as a quantum field interaction, in 

Minkowski spacetime. Then the metric tensor component g describes the variance 

in the physical structure of a test particle due to interactions with a gravitational 

field.  
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Einstein’s equations are written 

  Rg)(RkT μν2/1μνμν −=− ,     (2.1) 

where for the new solution, R represents a field tensor consisting of potential 

derivatives and is equated to the real energy and stress terms of T  By solving 

Eq.(2.1) for the exterior spherically symmetric static field, while assigning T to the 

real gravitational field energy and momentum, we get 

   2211
44 )rc/GM1(gg −=−= ,               (2.2a) 

with 

   423
3

2
2

1
1

4
4 r8/GMTTTT +=−=−== ,                  (2.2b) 

which is independent of Schwarzschild’s solution ( rc/GM21g 2
44 −= ). 

Gravitational force is then due to momentum transfer between the real graviton 

fields of bodies, existing in flat spacetime. The form of the T is analogous to the 

electromagnetic field and also indicates that field gravitons are circularly polarised 

and travel at the velocity of light.  

  In reference [1, Section 7] it is shown that the trajectory of a test graviton in a 

gravitational field is bent to convey momentum towards the gravitating body, 

thereby causing attraction in a classically understood manner. 

Einstein’s equations could theoretically provide a positive sign in Eq.(2.2a) 

signifying repulsive anti-gravity of a test particle in the gravitational field of a 

negative mass M. Therefore to avoid concepts of negative mass we will consider the 

electromagnetic analogy as follows. From reference [1, Section 13], the analogous 

expression to Eq.(2.2a) for like electron charges with ( = g44)  is  

   )rcm/e1( 2
o

2+= ,      (2.5) 

then a positive electric charge q1 would repel a positive charge q2 with force 

   21 q)r/q(F 2
es =  .      (2.6) 

However, in [1, Eq.(58)], the radial magnetic force between like current elements is 

found to be attractive 

   )dI)(r/dI(F 2211

2
em −= .     (2.7) 

This can be taken to mean that it is a magnetic aspect of electromagnetic gravitons 

that produces the attractive gravitational force. 
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 In reference [1, Section 15] a graviton is proposed to have spin 2: 

   == 2)2/(2sg h  ,      (2.8) 

where h' is a gravito-Planck’s constant described in reference [6a] for planetary 

parameters in the Solar System which are functions of the atomic fine structure 

constant [6b]. This implies that there exists an equivalent gravitational 

dimensionless constant: 

   
2

22

e

Gm
where,

137

1

c

Gm
=


=

 h

h


,    (2.9) 

and (e/m) is the electronic charge/mass ratio. 

 

3. The obscure precession of Mercury’s orbit. 

The orbit of planet Mercury has been calculated by several investigators [3] 

in order to explain the observed precession of the perihelion as the sum of general 

precession in longitude, perturbation by the planets, solar oblateness, and 

43arcsec/cy for general relativity. However, when applying Eq.(2.2a) to the problem 

of Mercury’s orbit, Weinberg [2, Eq.(8.6.10)] shows that the precession should be 

given by 

   cysec/arc9.35)e1(a/GM5 2 −= .   (3.1) 

To account for this 7arcsec/cy difference, an additional contribution to Mercury’s 

orbital precession has recently been identified due to the Sun’s motion around the 

barycentre [4]. This produces a quadrupole moment in the energy of Mercury which 

has to be included when integrating the equations of motion. Thus, imagine the Sun 

and Jupiter rapidly orbiting the barycentre so that the Sun takes on a blurred toroidal 

appearance. Mercury would then orbit the average position of the Sun at the 

barycentre, like for an oblate Sun, but there would be a quadrupole moment in its 

energy which would cause precession. Consequently, even for the Sun moving at 

12.5m/s around the barycentre due to Jupiter, a small quadrupole component will 

remain which is calculated to generate 7arcsec/cy precession of Mercury’s orbit. In 

effect, Mercury has to chase the Sun moving around the barycentre due to Jupiter, 

which makes Mercury’s binding energy non-Newtonian. [By analogy, a pendulum 

will not swing sinusoidally while the suspension pivot is being moved around]. 
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Hence to fit the observations, only 35.9arcsec/cy precession due to general relativity 

theory is required as in (3.1), rather than 43arcsec/cy for standard theory.  

My error in original paper [1, Section 6] led to derived precession of 

43arcsec/cy. To correct this error, (D/B) of Eq.(22b) therein should have been 

evaluated to produce  

   

( ) ( )
2

2/122

o

2/122

r
LC vr

c/v1

m
vr

c/v1

m


−

=

−

.  (3.2) 

On the left hand side is the coordinate angular momentum for a particle of 

coordinate mass mr (representing Mercury, say) travelling at orbital velocity vC . On 

the right, the first term is the local angular momentum for a particle of local mass mo 

travelling at local velocity vL . The final term ( = g44) derives from (mr = mo) and 

(vC = vL ). In addition to this angular momentum factor () which causes precession 

there is a further precession term to be added due to special relativistic length 

contraction around the orbit. Namely, when the orbiting particle travels locally 

measured distance 2r, it actually travels coordinate distance 2r (1– v2/c2)−1/2 which 

is interpreted as precession by the coordinate observer. For a circular orbit we have 

(1– v2/c2)1/2 =  , consequently, to satisfy total particle covariance of action 

(angular momentum x angle) the particle actually travels 2− coordinate radians 

per local revolution. Given this, the analysis method shown in reference [1, Eq.(23)] 

leads to the correct precession 35.9arcsec/cy. Thus, Nature rules consistently over 

all. 

 

4.  Gravitational collapse without singularities 

Gravitational collapse of diffuse material has been investigated using the new 

solution of Einstein’s equations of general relativity [5]. Accreting mass converts to 

kinetic energy then radiation, so that a singularity cannot be produced. Fully 

collapsed bodies now have real physical properties such as nuclear hard core density 

in collapsed stars, or around 104kg/l in the Galaxy centre, see Figure 1. 
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Fig. 1  Variation of body mass (in units of Solar mass) with density,  for bodies at 

 their gravitational radius. 

 

In [1] it was shown that the gravitational field induces mass particles to fall by 

converting their own mass (potential energy) into kinetic energy which is lost as 

radiation upon impact. We can calculate how much free diffuse matter is required to 

build a body of current mass M up to its ultimate gravitational radius (R0 = GM0/c
2). 

For a mass element (m) of free diffuse material falling inward, only a part (M) is 

added to M:  

   )rc/GM1(mM 2−=    ,     (4.1) 

This expression may be integrated for (m) to find that it is impossible to build a 

body up to its gravitational radius because infalling matter is increasingly less 

effective at adding mass. Energetic -rays may be produced by single conversion of 

infalling particles. Collapse will cease when the core material pressure and kinetic 

energy are able to resist self-gravity. Any sudden collapse to a denser state may 

release enough energy to blast away the outer material in a super-nova event, 

leaving the imploded core to become a cool dark body. Thus, the original 

proposition of singularities should have driven a search for a natural solution to 

satisfy Eddington. 
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5. Model of the accelerating universe 

Repulsive gravity at large distances can be introduced into the universal 

solution of Einstein’s equations by adding a cosmological constant  to exclude 

dark energy. For a new cosmological model [7], the big-bang singularity can be 

replaced by a granular primeval particle, and expansion rate is limited at the velocity 

of light. Then the inflation postulate, flatness and horizon problems in the standard 

model of cosmology do not arise.  Graviton field properties can be related to proton 

dimensions via the electromagnetic factor (e2/Gm2).  

 

5.1 Problems with the standard model  

In reference [7], when using the standard Robertson-Walker metric: 

  222222

2

2
22 dtdsinrdr

kr1

dr
)t(Rds +













++
−

−=   ,  (5.1) 

the universe has non-Einsteinian super-luminal expansion at the beginning and also 

at large radii where  dominates, see Figure 2. In addition, the ethereal nature of 

space-time exploded into existence at the big-bang singularity followed by 

inexplicable inflation. Infinite space and the correct density of material were 

instantaneously created for the observed flat universe. Total energy, mass and size 

are not definitive. There are energy conservation, flatness and horizon problems. 

Continuous creation of dark energy throughout infinite space is now required. 

Evidently, after years of tackling these unsolved problems, a simpler intelligible 

model is to be welcomed. 
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Fig.2.   Friedmann-Lemaitre model: variation of expansion velocity relative to the 

velocity of light /c)a( , radius (a, Gly), and acceleration (ä) with universal time (t, 

Gyr). Universal mass has been set at MU = (4/3)a3 = 1.085x1052 kg, with the 

change from deceleration to accelerated expansion occurring at radius 6.08Gly 

corresponding to epoch 7.15Gyr from the big-bang. The present age of the universe 

is 13.7Gyr and its radius is 10.6Gly. 

 

5.2 External coordinate-observer cosmology: the ECO-model 

We shall now consider the universal expansion from the point of view of an 

observer located at rest far outside of the material universe in field-free Minkowski 

spacetime where time-rate is not dilated by the expansion velocity [7]. Then to 

satisfy Einstein’s relativity principles, this model will be controlled by the velocity 

of light, and the cosmological principle will not apply because the big-bang is just 

an explosion of a primeval particle into an existing volume of space at some 

arbitrary origin. Before exploding, this particle of finite mass, radius R and 

complex structure was in equilibrium internally. The current material universe now 

occupies a spherical volume of uniform density which is still expanding into free 

space, see Figure 3. 
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Fig. 3.   New ECO-model, showing how the expansion velocity )c/R(  , the radius (R), and 

the acceleration )R(   vary with coordinate-frame time (t Gyr). Universal mass is currently 

(MU = 1.085x1052 kg), with the change from deceleration to accelerated expansion occurring 

at radius 6.08Gly, corresponding to 9.59Gyr from the big-bang. The present coordinate age 

of the universe is 17.5Gyr, and its radius is 10.6Gly. For illustration purposes, the effect of a 

finite k value (±0.1) is also shown. 

 

The metric for the ECO-model is to be: 

   222222222 dtc
c

v
1dsinrdrdr

)4/kr1(

)t(R
ds

2

2

22

2









−+++

+
−=  . (5.2) 

R(t) takes real units of radial length from r and represents the outer radius of the 

material universe, i.e.  )t(RR , and cv)t(R = . The primeval particle 

dimension R will be defined shortly. Coordinate-frame time t is that measured by 

an external observer situated at rest far from the expanding universal material. Local 

time () for a co-moving observer is dilated due to the velocity of expansion as   

[d = dt(1-v2/c2)1/2 ]. 

 The primeval particle had all its material in thermodynamic equilibrium, 

circulating coherently at velocity c, before exploding and converting to mass plus 

much radiation which would have been mostly lost from the slower expanding mass. 



10 

 

Expansion is moderated by the velocity of light, allowing time for equalisation of 

the radiation temperature.  

 

5.3 Properties of the primeval particle  

 The size of R can be specified if the primeval particle was of mass (Mu ≈ 

7.75 x 1052 kg) to produce a gravitational strength factor expressed as: 

   







=





























=



G

E

137

1

Gm

e

c

e

c

mGM

2

22
u




   ,   (5.3) 

where (m = mp/9) is the proton-pearl/gluon mass in [8],   is Planck’s constant/2π, 

( 137/1c/e2  ) is the fine structure constant, (e/m = E1/2) is the electronic 

charge/mass ratio, and (E/G = 4.1659x1042). The primeval mass relative to a proton-

pearl mass is then: 

   80
22

u
10169.4

G

E

m

m

m

M
=


















=





 .   (5.4) 

This primeval mass Mu exploded into the pre-existing infinite space to yield free 

radiation plus the residual universal mass (MU = 1.085x1052kg). 

A proton-pearl classical electromagnetic radius is given by: 

   m1038.1cm/er 1722
o

−==   ,    (5.5) 

whereas a gravitational radius for mass Mu may be: 

   )G/E(rGly08.6c/GMR o
2

uu ===   ,   (5.6) 

therefore the primeval mass Mu was like a super-pearl of radius ( orR = ). Such 

a particle is unlike Lemaitre's 'primeval atom' in which space and time were created 

during disintegration. 

According to our proton model [8], the super-pearl consisted of many smaller 

spinning seeds which may have grown into strings of galaxies with dense cores. 

These therefore did not have to form entirely from subsequently accreted matter. 

Some of the primeval material might have been restricted in its expansion by 

bordering pressure so as to become dark matter, but if it now falls into stars it may 

well convert into radiation. 
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6. Models of particles 

Einstein’s equations are proposed to be universal and applicable to particles as 

for a unified field theory. They can describe electromagnetic, nuclear, strong and 

weak force fields by introducing experimental data. The particles themselves must 

be structured, rather than the theoretical singularities which are convenient for 

describing interactions between particles. 

 

6.1 Model of the Electron 

The electron model [9] is based on the universal solution of Einstein's equations 

of general relativity [1] applied to electromagnetism.  The electron body has the 

design of a helically wound hollow torus, see Figure 4. Total mass of the electron 

constitutes this core plus the exterior radial field energy. Such a structured electron 

experiences relativistic time dilation, length contraction, and energy variation due to 

velocity or applied force fields. 

     Charge is due to a radial field of electromagnetic quanta tied to their core 

source but propagating out and back at the velocity of light. For opposite charges, 

the field is inductive and causes attractive motion but no energy exchange occurs.   

Then for example, a positron and electron at rest far apart may attract each other and 

fall together by converting their own rest mass energy to kinetic energy.  Upon 

collision, two photons are emitted of total energy 2h = mo(+)
 c2 + mo(-) c

2.  During 

the fall at separation r, where the coordinate rest mass would be [mr = mo(1-

e2/moc
2r)], we have (in cgs units for simplicity): 

  














r

e
2

2

  =   ( )2
r

2
o cmcm2 −   =  

( ) 











−
−

2
r2/122

2
r cm

c/v1

cm
2 .       (6.1.1) 

         [coordinate  [coordinate        [coordinate  

     PE lost]    rest mass lost]             KE gained]  

Evidently, potential energy is the same thing as rest mass energy and may convert to 

kinetic energy of the particle. 
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Fig.4   Schematic diagram of toroidal electron model. 

 

 For charges of the same sign to approach each other, it is necessary to increase 

their kinetic energy (initial velocity v1) by means of a separate accelerator field.  

Then in a head-on collision, this KE converts to rest mass energy as the particles 

slow towards zero velocity due to the repulsive field.  At the instant of closest 

approach (R) we have: 

  

( )
2

2/1
22

2
o

2
2

o cm2

c/v1

c2m
    

R

e
 2  cm 2 1

1

=

−

=













+    ,         (6.1.2) 

where the left side is total rest mass energy, and on the right side is the relativistic 

initial rest mass plus kinetic energy.  Again, potential energy (e2/R) represents rest 

mass energy with R decreasing as v1 increases. In addition, the electron radius also 

decreases as its kinetic energy increases, (ro1 = e2/m1c
2). Furthermore, the electron 

charge increases to cause running of the fine structure constant, see [10]. This all 

leads to the electron acting more point-like. 

  For the metric tensor component [ 2222 )rcm/e1( −= ], Einstein's field 

equations for the electric field of a spherically-symmetric static electron may be 

written: 

   )1(r
dr

d

r

1
T)c/E(8T)c/E(8 2

2

4
4

41
1

4 −==  ,                (6.1.3) 

 

 

torus : principle 

radius re = 137ro , 

and mass ½mc2 . 
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radial field energy 
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             with torus 
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
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
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

 
=−=− ,              (6.1.4) 

where √E = (e/m) is the electronic charge/mass ratio. Upon substituting , these 

simplify to: 

  
4

2
4
4

1
1

r8

e
TT


==  , and   

4

2
3
3

2
2

r8

e
TT


−==   .         (6.1.5) 

Here, the negative sign for 2
2T  means that the electric field quanta have tangential 

momentum orthogonal to the radial direction. The radial momentum density 1
1T  is 

equal to the energy density 4
4T  because the field quanta travel at the velocity of light 

with unitary helicity. Total energy of the field may be found by integration from the 

classical electron radius )mc/er( 22
o =  to infinity: 

  2
2

4

4

2

0 cm
r2

e
drT

r
r4W

2

1

oo

=== 


  .           (6.1.6) 

This explains why renormalisation in QED theory, using the classical electron radius 

(r0), is a way of handling a real electron. 

 

6.2 Model of the Proton 

Our proton model [8] is compatible with electron and muon models, and the 

hadronic potential is analogous to the Yukawa potential. Einstein's equations of 

general relativity can be employed to predict a nucleonic coupling constant.  

The Klein-Gordon wave equation will be taken as the basis of our inter-

nucleon potential: 

   









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




 ,          (6.2.1) 

where (rl =  /ml c = 1.89278 fm) is the proton-pearl Compton radius, rather than the 

standard pionic radius. If wavefunction Ψ is proportional to potential V(r), then: 

   ( )
( )
r

r/rexp
arV Y

−
−=   ,             (6.2.2) 

where aY represents a hadronic/nuclear charge.  
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 For a relativistic expression using Einstein's equations, we must define the 

metric tensor component for the proton of mass mp : 

   












 −














−=

r

)r/r(exp

cm

a
21

2
p

2
2 Y                () 

Given (  = 0) at the effective proton radius (rp = ħ/mpc = 0.2103fm) this becomes: 
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And, the empirical coordinate potential VC is given by: 

       ( ) )1(cmVa 2
pcY −= .              (6.2.5) 

Thus the hadronic charge strength aY in terms of the electronic charge e is given by: 

  2pp
2
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e570171.76
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  ,           (6.2.6) 

so a nucleonic coupling constant Y is definable as: 
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 .            (6.2.7) 

 Using (6.2.3), energy-momentum tensor components for a conserved 

spherically-symmetric radial field evaluate to: 
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see (6.1.3), (6.1.4) and [1]; Y is the NN hadronic constant equal to (137e2/mp
2). 

Integration of 4

4T  from rp to infinity yields the total field energy equal to half the 

proton mass energy: 
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 Hard core repulsion will be attributed to field modulation due to the spinning 

proton core. Gluonic charge (g ≈ 11.94e) operating around the spin-loop is also 

involved. This effect can be incorporated by changing (6.2.4) thus: 
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and the nucleon natural quiescent potential is then given by: 
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 Now for pp interactions, the expression (6.2.11) has to be adjusted to take into 

account the finite size of a colliding proton such that the closest approach distance is 

actually 2rp in contrast to the above rp for the infinitesimal theoretical test particle. 

Therefore, (6.2.11) becomes a coupling metric tensor component: 
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The coupling potential is given by: 

  ( )( )1cmVa COUPLINGCOUPLINGY
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Given this, a good fit to experimental data can be achieved by squaring and scaling to 

derive the real nucleon interaction potential: 

 

2
p

2
p

2

)V()r2(

)cm/2()Va(Va

COUPLING

YCOUPLINGYNINTERACTIOY /()

=

=
.         (6.2.15) 

This is plotted in Figure 5, and it fits the 1S0 component given by Stoks et al. (1994) 

after adding relativistic correction, see [8].  
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Fig.5. Nucleon interaction potential. Bold-line: potential Eq.(6.2.15). Triangles: relativistic 

correction. Dashed-line: enhanced attraction between a nucleon and anti-nucleon. 

 

In our proton model [8], we identify the gluons of QCD theory as the 9 

pearls constituting 3 trineons (analogous to quarks) carrying colour charge quanta. 

The logarithmic potential is taken to describe the gluon colour field between 

trineons: 
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where the proton radius is [rp = 137(e2/mpc
2)]. Potential (6.2.16) will apply to a 

linear field, such as for a flux-tube of gluons with colour charge linking the trineons 

around the proton spin-loop.  The metric tensor component for Einstein's equations 

will take the form: 
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then the tangential momentum/stress density for the colour field charge particles, is 

derived as: 
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The longitudinal momentum density 1
1T  is made compatible with 2

2T  by specifying 

the form: 
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Integration of this 4
4T  from (r = rot = Smp /c

2) to (r = ∞), will yield the total colour 

field energy amounting to 25% of the proton mass energy: 
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This colour field material is wrapped around the proton spin-loop multiple times.  

Our proton model has been used to help interpret the running of (S) with 

momentum transfer in a collision process, see [10]. The strong coupling constant 

derived therein (S = 1.0406845) describes the gluon coupling which binds the 

proton’s components together. It can be related to the above nuclear constant (Y = 

0.55876) of (6.2.7) which binds nuclei together: 
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where (g ≈ 11.94e) is an equivalent gluonic charge and (en = 2.718282). The total 

charge carried by gluons is (aT = aY + g) so there is a strength constant (T) given by: 

  SYT 3c/)ga( 2 +=   ,            (6.2.22) 

which reminds us of 3 trineons in a proton. Then (6.2.16) can also be written: 
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where the denominator equals the distance between trineons around the spin-loop.  

 

6.3   A Model of Charmonium 

 A composite model of charmonium has been developed, based on the 

logarithmic confinement potential [11]. The quark-antiquark pair of total mass MC 

orbit around the centre of mass with their colour fields confined within a toroidal 

flux-tube of characteristic radius rq1, see Figure 6. Then the potential energy for the  
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antiquark in the field of the quark may be written as: 
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which implies the metric tensor component: 
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 There is a solution of Einstein’s Equations for a static linear colour field found 

in a flux-tube. Upon introducing γ from (6.3.2) we get: 
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Fig. 6  Schematic diagram of charmonium in which quark and antiquark 

gluons emit their colour fields into a toroidal flux-tube.  
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Integration of energy density 4
4T  from (rz = rq1 exp(-2√2),  = 0) to (r1 = ∞) will then 

lead to the total colour field energy. This integration represents the colour field 

wrapped in many turns around the circumference: 
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On the left, (4rz
2) is a workable representative area for the flux-tube. Upon setting 

[rz = SMC/c2], then the total colour field energy is 12.5% of the charmonium total 

mass energy: 
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The source gluons carrying the colour field account for the same amount of mass 

energy. Tangential momentum density may also be integrated to get a similar result: 
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therefore on average the colour field charge and quanta have unitary helicity. 

 All these results for the proton spin-loop and toroidal charmonium structure 

point to the realistic nature of the logarithmic potential. On the other hand, it appears 

that the popular Coulomb + linear potential [V(r) = − r + r/a2] cannot be viable 

because the corresponding momentum density 2
2T  would integrate to infinity, as 

would the classical energy density term (dV(r)/dr)2 . 

 

7 General relativistic theory of hydrogen energy-levels 

 Einstein’s equations of general relativity may be applied to the hydrogen atom 

if electromagnetic field energies of the proton and electron are introduced, [1] [12]. 

This solution produces hydrogen energy-levels identical to the Dirac solution [13] 

when spin is neglected. The concept of space-time curvature has to be replaced by a 

description of a particle’s time and length variation caused by the field environment; 

which is analogous to Lorentz transformation for particles in an acceleration field. 
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 Briefly, an electron of local rest mass mo at radius r from the proton would have 

a coordinate rest mass [mr = (mo - e
2/co

2r) =  mo] due to loss of potential energy 

(mass energy). If the electron is actually orbiting at local velocity vlocal, its 

relativistic local mass is increased to {ml = mo /[1 – (vlocal /co)
2] 1/2}. Then the 

coordinate total electron energy should be (E =  ml co
2), which will be confirmed 

from the geodesic equations as follows. 

 The geodesic equations for the electron trajectory in the proton's Coulomb field 

will be taken as [14] (Tolman 1934, p207): 

  A      /ds)(dr(dr/ds) (dt/ds) 222222 =−− − ,            (7.1)

   B(dt/ds)2 = ,                (7.2) 

   D/ds)(dr2 = ,                (7.3) 

where ds is an element of local time or space, [ 2 = (1 – e2/moco
2 r)2 ] is to be the 

metric tensor component, (A = 1) for particles, (A = 0) for quanta, B represents total 

electron energy, D is an angular momentum constant.   

 From Eq.(7.1) and Eq.(7.2) for a circular electron orbit we have: 

  24222 B/)dt/d(r =−  ,              (7.4) 

where [r(d/dt) = vcoord] is the electron velocity according to the coordinate observer. 

And from Eq.(7.1), putting (A = 0, ds = 0), we get for the coordinate velocity of 

light in the orbit, (ccoord =  co).  Therefore, all velocities in the orbit are reduced by 

factor , according to the coordinate observer.  Equation (7.4) may then be written: 

 2
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22 )c/v(1)c/v(1)c/v(1B/ −=−=−= .        (7.5) 

We need to simplify this by relating  to (v/c) through two conditions: (a) For large 

radius orbit we expect [e2/2r ≈ (1/2)mov
2].  (b) For minimum radius at the electron 

classical radius (r = ro), we have (vlocal = co), where ( = 0) and (e2/ro = mo co
2).  In 

general therefore, (e2/r = mov
2

local ), and then { = [1 – (vlocal/co)
2]}. Thus, from 

Eq.(7.5) the electron total energy constant may take different forms: 

 1/21/221/22
oo

21/22   ](v/c)[1   r] c/me1[  ](v/c)[1 /   B =−=−=−= .           (7.6) 
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So the orbiting electron has coordinate energy E = Bmoco
2 =  ml co

2 as derived 

earlier. Equation (7.2) shows that the orbiting electron's local time element ds is 

decreased relative to coordinate time dt by [1−(v/c)2]1/2, due to local field plus its 

own velocity. 

 When (r = n2ao), (ao = ħ2/moe
2), (α = e2/ ħc) for hydrogen, this gives coordinate 

electron energy: 

  
,)n/1(cmEthen

,)n/1()cm/E(B

2/1222
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2/1222
oo

−=

−==
               (7.7) 

which is identical to Dirac’s particular solution for radial quantum number equal to 

zero. This result is very important because it demonstrates successful application of 

Einstein’s general relativity field theory of particles to quantum theory. That is, the 

Coulomb field and gravitational field are similar conserved tensor fields obeying 

Einstein's equations. Einstein’s interpretation of his geometric theory cannot lead to 

Eq.(7.7). For stability there are exactly n de Broglie wavelengths around the circular 

orbit due to the electron's increased local relativistic mass, in spite of its reduced 

coordinate energy. However, the question arises as to how the general relativity 

analysis which produced Eq.(7.7) can satisfy the Dirac analysis built upon special 

relativity. It appears that Dirac's analysis is automatically set so that the 

wavefunctions satisfy local dimensions of scale and time (the special relativity 

frame) in order to fit the real local de Broglie wavelengths.  

 

8   Auxiliary gravitational field in galaxies. 

A theory has been developed of a relativistic auxiliary gravitational field [15] 

which accounts for the empirical success of Milgrom’s modified Newtonian 

dynamics theory. Essential links with atomic physics rule out any applicability of 

spacetime curvature. This so-called gravito-cordic field theory explains the observed 

structure within galaxies in addition to reducing the need for dark matter. Field 

resonance causes galactic material to form into flat rotation curves. The angular 

momentum proportional to mass-squared relationship is also attributed to this field, 

and gravitational lensing is significant. 
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8.1    Gravito-cordic field theory.  

A characteristic acceleration factor ao is fundamental to this field and has 

been optimised in a way to include atomic physics: 

  210
o sm10x116.1a −−=  .                          (8.1) 

The gravito-cordic field exists within a galaxy in addition to normal Newtonian 

gravity (gN), and orbiting bodies experience both forces simultaneously acting 

towards the galactic centre.  The total gravitational acceleration has been derived as: 
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This field satisfies the solar system criteria and the flat galaxy rotation curves 

already fitted with Milgrom's MOND calculations. Figure 7 shows how the 

asymptotic relationship holds for g , so only small changes are required in the mass 

distribution predicted by Milgrom’s g . 

                  

  Fig. 7.  Comparison of accelerations versus normalised radius  

(a) gN  Newton, (b) g  Milgrom, (c) g Wayte, and (d) gM Moffat,.  

 

Einstein’s equations are a mathematical description of any conserved 

energetic field so they can be applied to a conserved gravito-cordic field. For 

example, consider a galaxy in which surface mass density is exponential with radius, 

and then the galactic mass distribution is given by integration: 
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where Mmax is the total disk mass and rc is the characteristic radius. Now, let this 

radial mass distribution be roughly equivalent to a spherical galaxy of bulk density: 
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so that Einstein’s equations describing the spherically-symmetric static field in polar 

coordinates can be applied, (see [14] p242).  For the line element: 

  22222222 dtedsinrdrdreds  +−−−= ,   (8.5) 

the tensor component 4
4T  is expressed in terms of e−  thus: 
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Now for an interior field suspended by angular momentum, e− is a potential 

function and the field strength can be equated to the total field in (8.2): 
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Upon introducing mass (8.3), it is necessary to integrate this numerically to get e− . 

For large galaxies (Mmax = 1011MΘ, rc ~ 7kpc), such that on average (GMmax/rc
2ao ~ 

2.5), then for (R = r/rc) we have: 
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 Upon introducing this into (8.7), integration yields: 
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so that the negative potential energy at small R is 3 times the Newtonian value 

alone. 

 If the gravito-cordic term is removed from the right side of (8.7), then only the 

Newtonian field is considered such that integration for e−  has the form: 
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then we can evaluate tensor component 4
4T  in equation (8.6) as: 
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which is an equivalent energy density not bulk density (8.4) because galactic orbital 

angular momentum has not been incorporated.  

By comparison, the total field (8.9) substituted in (8.6), yields for small r :  
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which is a stronger effective energy density due to the gravito-cordic field. 

 

8.2   Gravitational lensing. 

Observations indicate that the gravito-cordic field causes relativistic light 

deflection analogous to normal gravity.  Figure 8 illustrates the calculated deflection 

for a cluster of 100 galaxies (1013 MΘ) within radius 1Mpc.   

 

              

 Fig. 8  The relativistic deflection of light travelling through a cluster of galaxies due 

to the Newtonian component (_____), and the gravito-cordic component (- - - -). 

Cluster size has been set at:    rm = 1Mpc, and Q = M/r = 1013MΘ / Mpc. 
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8.3   Resonance and quantisation in galaxy orbits. 

 It is thought that the gravito-cordic field induces resonance in disc galaxy 

orbits to produce flat rotation curves, bar or spiral structures and galactic rings. 

Hydrogen atoms are the main source of the field because their gravitational de 

Broglie wavelength shows a fit to galactic dimensions. Matter will accumulate in 

the grand spiral and other energy node-lines to produce inter-arm branches.  

 

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          
 Fig. 9.  The proposed quantisation node pattern for two galactic spiral 

arm/branch  intersection regions, marked in the photographs. The galactic 

material in both the  main spiral and branch is seen to be aligned along the 

node lines. Parts a, b, M51;  parts c, d, NGC2523.  

 

Figure 9(a) illustrates M51 with one such branch marked for analysis. The 

arm/branch intersection region is magnified in (b) to reveal the proposed myriad of 

quantisation nodes. Thus, the main spiral arm at P lies at 23deg from circular and 

has tangent CPD which joins nodes of the same phase. At the same time, the branch 
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tangent EPF lies at 51deg from circular and also joins nodes of similar phase. The 

figure shows that angles i2 and i1 are simply connected by:  

 

   ( ) ( ) 2/icoticot 12 −=   .           (8.13a) 

 

The barred galaxy NGC2523 has an inner ring and a strongly bifurcated spiral 

arm, see Figure 9 (c). After correction for inclination of the galaxy, part (d) shows 

the proposed nodal pattern at the fork where the spiral arm lies at 14deg from 

circular and the branch lies at 45deg, so that: 

  ( ) ( ) −= 12 icoticot    .           (8.13b) 

 

8.4   The J proportional to M2 law. 

 According to gravito-cordic theory, there is an optimum material velocity for 

implementing the quantisation phenomenon in primeval hydrogen: 

  201c)137/4(v 2
z =  kms-1.             (8.14) 

Then, within the universal expansion, turbulent spherical volumes may have 

separated when they had this preferred rotation velocity: 

  ( )  z

2/1

z r3/4Gv     ,                                               (8.15)  

where  is the average gas density and M = (4/3)rz
3. Variation in  produced a 

range of galactic masses. After separation, the angular momentum of a randomly 

rotating spherical volume is  

   ( ) zz rMv5/3J   ,  or   2pMJ   .           (8.16) 

Here p is a constant equal to (3/5)(G/vz), as drawn on Figure 10, namely:  

 p201 = 2.00 x10-15 g-1 cm2 s-1 =  2.00 x10-16   kg-1 m2 s-1 .         (8.17) 

 Clusters of galaxies and disc galaxies agree with (8.17) while other systems 

correspond to their own preferred quantisation wavelengths, see [16]. Classically, 

there is no explanation for the specific sizes of existing bodies nor for the gaps 

between them. 
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 Fig. 10  The angular momentum versus mass2 relationship for astronomical bodies, 

showing a theoretical straight line for J = 2.00 x 10-15 M2  over 40 decades.  

 

 

9 The phenomenon of weight-reduction of a spinning wheel. 

 An investigation has been conducted into weight-reduction of a spinning wheel 

[17]. When subjected to forced precession and controlled lifting, a spinning wheel 

does indeed lose 8% of its weight, as measured by a load-cell. That is, some of the 

gravitational potential energy acquired during lifting is supplied by the horizontal 

force causing the precession.  Consequently, the vertical lifting force is less than 

Mg on average, see Figure 11. The explanation for this weight-reduction follows 

directly from the requirement of energy conservation throughout the process. No 

thrust or mass-reduction occurs. Analysis for this effect was enabled by using the 

Principle of Equivalence. 

It is comprehensible that Earth’s real graviton field possessing energy and 

transverse momentum (2.2b) may interact with the spinning wheel to convert 

horizontally applied work into vertical potential energy. On the other hand, it could 

be a problem for energy-free vacuum spacetime geometry to do this. 
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Fig. 11 A typical measure of gyroscope weight during the lifting and forced 

precession period.  Normal precession from 3.5 to 6 seconds gives weight Mg as 

expected.  Lifting and pulling first increases the measured weight considerably as the 

wheel is accelerated upwards. Then as the lifting and pulling are decreased, the wheel 

rises upward for a while due to its inertia and its measured weight falls well below Mg 

and even negative as kinetic energy converts to gravitational potential energy.  This 

excursion below Mg is greater in area than that above and may be regarded as 

evidence for weight-reduction overall.  

 

 

Conclusion 

 The electromagnetic nature of gravity was suggested through a new solution of 

Einstein’s equations of general relativity. Need for this solution was confirmed by 

considering Mercury’s orbital precession in detail. Gravitational collapse to form a 

singularity was then proven to be impossible. A model of the accelerating universe 

starting from a primeval electromagnetic particle was described which did not 

suffer from the many standard model problems. The new solution was applied to 

other forces of nature to show that particles have unique structures consisting of 

electromagnetic material. Real models of the electron, proton, and charmonium, led 
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to derivation of the strong coupling constant. Each particle has mass due to core 

material plus field energy. Hydrogen atomic energy levels were calculated to be 

compatible with Dirac’s analysis. A gravito-cordic field operating in galaxies was 

described which encourages the formation of flat rotation curves, spiral structures, 

and the angular momentum proportional to mass2 law. Finally, the observed weight-

reduction of a spinning wheel was described but it appeared to be incompatible with 

spacetime curvature theory. Given these new applications for Einstein’s Equations, 

useful knowledge will increase. 
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