In the following I talk about functions in particolar I study the behavior of this near infity
assuming the notion of function, limit and derivate is know.
Let a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow+\infty} f(x)=+\infty$ if $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}>1$ than exist $\mathrm{a}(\infty) \in \mathbb{R}$ such that $\forall x_{0} \geqslant a(\infty) \lim _{x \rightarrow x_{0}} f(x)=+\infty$ so the function f is not bijective.

Example 0.1. Let function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $x \mapsto x^{2}$. $\lim _{x \rightarrow+\infty} \frac{x^{2}}{x}=+\infty>1$ so the funcion is bijective for $\mathrm{x} \in\left[0, \mathrm{a}(\infty)\left[\subset \mathbb{R}\right.\right.$ and $f(x) \in\left[0, \infty\left[\right.\right.$ so $f^{-1}(x):[0, \infty[\rightarrow[0, a(\infty)]$ with $\lim _{x \rightarrow+\infty} f^{-1}(x)=a(\infty)$.

An important result is the following
Theorem 0.2. Let f a function, f have an oblique asymptote if and only if f' have an orizontal asymptote.

Proof. we prove the Theorem for x tends $+\infty$ (idem for x tends $-\infty$)
$\Rightarrow) \mathrm{f}$ have asymptote $\mathrm{y}=\mathrm{mx}+\mathrm{q}$ for x tends $+\infty$ so $\mathrm{q}=\lim _{x \rightarrow+\infty}(f(x)-m x) \cdot \frac{d}{d x}(q)=$ $0=\lim _{x \rightarrow+\infty} \frac{d}{d x} f-m \Rightarrow \lim _{x \rightarrow+\infty} f^{\prime}=m$.
$\Leftarrow) \mathrm{f}^{\prime}$ have an asymptote $\mathrm{y}=\mathrm{m}$ that is $\lim _{x \rightarrow+\infty} f^{\prime}-m=0 \Rightarrow \int 0 d x=c_{1}=\lim _{x \rightarrow+\infty} \int\left(f^{\prime}-\right.$ $m) d x=\lim _{x \rightarrow+\infty}\left(f-m x+c_{2}\right)$ if $q=c_{1}-c_{2}$ so $\mathrm{q}=\lim _{x \rightarrow+\infty}(f-m x)$.

Example 0.3. Let the function $\mathrm{y}=\ln (\mathrm{x}) \mathrm{y}^{\prime}=\frac{1}{x} \lim _{x \rightarrow+\infty} \frac{1}{x}=0$ so y^{\prime} have an orizzontal asymptote $\mathrm{y}=0$ so the function have asymptote $\mathrm{y}=\mathrm{q}$ where q is the real $\mathrm{a}(\infty)$.

