
version 1.0 Open Arity 1

Number Theory beyond Frege
On the necessity of open arity

Hannes Hutzelmeyer

Summary

A closer look at mathematical proofs led Gottlob Frege to realize that Aristotle's syllogism logic was not

sufficient for many theorems. He developped what today is called first-order predicate logic. It is usually

thought that predicate logic is sufficient for the theory of natural numbers. However, this first step of

modern logic development again is not sufficient. One needs another step, especially to allow for so-

called open arity of arrays. This second step cannot be done in general in object-language based on

predicate logic but only by metalanguage. Therefore one needs something like the FUME-method (put

forward by the author) which allows for a precise treatment of both language levels. Dot-dot-dot … is

not admissible in predicate logics as it needs some kind of recursion. In metalanguage, however, one has

to introduce some basic recursion right from the setup (but it is much weaker than primitive recursion).

For natural numbers two examples are given, one for a concrete version of Robinson arithmetic and one

for recursive arithmetic. Without the second step to metalanguage one cannot express some of the most

important so-called theorems of number theory in a direct fashion, leave alone prove them. Actually

some are not theorems but metatheorems. The examples comprise Chinese remainders, Gödel's beta-

function, little Gauss's summing up of numbers, Euclid's unlimited primes and the canonical

representation of a natural number (fundamental theorem of natural arithmetic).

After one has included the second step which allows one to talk about open arities in metalanguage one

can tackle the problem of talking about number-arrays in object language. One can do this to a certain

extent by coding number-arrays by (usually) two numbers. This can be done even in Robinson arithmetic

using 'Gödel's beta-function'. But one has to make use of the second step before one can return to object-

language. Of course, the introduction of two tiers, i.e. object-language and metalanguage, is necessary

for many other areas of mathematics, if not to say, most of them.

Contact: Hutzelmeyer@pai.de

https://pai.de

Copyright

All rights reserved. No reproduction of this publication may be made without written permission.

Any person who does any unauthorized act in relation to this publication may be liable to

criminal prosecution and civil claims for damages.

mailto:Hutzelmeyer@pai.de
https://pai.de/

version 1.0 Open Arity 2

1 Beyond the conventional paradigm of logic of mathematics

It all started in the year of 1879 when Gottlieb Frege put forward his revolutionary 'Begriffsschrift'. Until

then the syllogism logic of Aristotle had been considered to be sufficient as the basis of logical reasoning

and therefore also of mathematics. Besides the usual logical characters      quantors 

and variables like e.g.1 or 13 were introduced together with the rules for omnition 1 ...and

entition 2 ... as well as relation-constant and function-constant strings that allowed for expressing

mathematical sentences in a proper fashion. Freges notation differs from this modern form, but that is

irrelevant.

The author was confronted with this status when started studying physics, mathematics and philosophy

of science in the year of 1960. For a long time he did not enter the field of number theory , however, he

always had a bad feeling about theorems of number theory, that he could not relate to the axiomatic

approach to, say Robinson arithmetic. The problem to start with is not the proving of theorems of number

theory. The first problem is just to write down sentences that are called theorems of number theory.

Mathematicans and logicians have constructed complicated systems of so-called classical and

intuitionistic logic, theory of types, axiomatic set theory and so on. But are these methods really sufficient

for expressing basic sentences of number theory, leave alone proving them in a purely deductive fashion

from basically true sentences or axioms ? The author contradicts this question and shows a way out by

the FUME-method. He claims that you need both object language and metalanguage being formulated

with the rigor of formal logic and some basic recursion thrown in. The examples of section 3 to 7 will -

hopefully - clarify his reasoning. The problem is called open arity. It is not the only reason for the

FUME-method, but it is a particularily striking one. 'Dot-dot-dot' … is just not a legitmate language

element in a precise language. For a short introduction to the FUME-method download file Snark1.1

.pdf from https://pai.de .

Heuristically speaking, sequences consist of some kind of infinitely many constituents with a definite

start and no end, with a line-arrangement, one constituent put behind another. An array is a finite ordered

collection of constituents with a start and an end (where the constituents are separated by a special

character). It has an arity given by a natural number that is the count of its constituents. An example for

an array is the alphabet of letters separated by commas 'a, b, … z' with arity 26, but also the simple array

of zeros separated by semicolons '0;0;0;0;0' is an example with arity 5.

Of course this examples are not satisfactory, one needs a precise description for arrays. The FUME-

method will be applied as one obviously needs a language that allows for some recursion. If the

constituents are taken from a calcule of the object language Funcish, one has to define arrays in meta-

language Mencish. The systems of Funcish are called calcules by the author, they are not to be confused

with various calculus-systems or the calculus of real numbers. There are concrete and abstract calcules.

The font-method is used to distiguish between the various levels of languages: Times New Roman of all

styles for normal text in English e.g. , Symbol and Arial boldface italics for metalanguage Mencish e.g.

number-array1and normal Symbol and Arial for object language Funcish e.g. 1101.

The other frontier where usual predicate logic is not sufficient for mathematics is connected with higher

than first-order logic. Axiomatic set theoty claims that all of infinity mathematics is covered by it. The

author, however, has some doubts. Anyhow, the conventional approach to real numbers necessitates

second-order logics (for some transcendency axiom, be it Dedekind cuts, interval nesting, Cauchy series

or whatever). In group theory second-order is just around the corner, as factors, subgroups, normal

subgroups, kernels etc. are not first-order entities.

Mathematicians usually do not even mention that there might be a problem at the foundations. And

physicists happily use transcendental mathematics although no one has ever measured anything but a

rational number. How about dimensionless constants in physics? Sommerfeld's fine-structure constant,

is it a real number and is there a deeper reason for its size. You see, once one is thinking about

transcendental numbers, one is entering the field of theology, which shows that the name of this numbers

has been chosen perfectly!

https://pai.de/Church-s-thesis/Snark-counterexample;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303265&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303265?id=338130
https://pai.de/Church-s-thesis/Snark-counterexample;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303265&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303265?id=338130
https://pai.de/

version 1.0 Open Arity 3

2 Metalingual introduction of number-arrays and more

In metalanguage Mencish there are straightforward metaproperties of strings like number , number-

array, variable , sentence or formula and metafunctions for string-replacement  and character-

deletion  , the relevant examples are given in appendix A. One can define number-array strings

by the simple recursion in metalanguage Mencish

number-array :: number ¦ number-array  number

However, one has to find a way to talk about number-array strings in Funcish. This will be possible by

coding number-array strings by number strings. That is what it is all about. The following

metadefinitions are a little abbreviated, but straightforward, the necessary recursions are admissible in

Mencish. For definiteness it is done for the concrete calcule ALPHA of Robinson decimal1) natural

arithmetic (as described in the next section). However, the only feature that is used are the decimal

numbers themselves, so that the metadefinitions can be transferred to other concrete arithmetic calcules

like e.g. LAMBDA of decimal pinition arithmetic (which allows for primitive recursive functions):

   0 if not number

succession 1 2 3 … else decimal succession, recursively defined as follows:

   01  12 … 89 910

   1011 1112 … 819

   1910 with concatenation

  1 2 3 … decimal length, count of char, recursively defined as follows:

length  21 if char 2 1 2 1   with char 2

  0 if not number-array

arity 1 2 3 … else decimal arity, defined as follows (count of semicolon strings):

 1 0123456789

  0 if 1 not number-array or if 2 not number

projects array-constituent or if 2 number but not less than 1

 number else constituent at position 3) 2, recursively defined as follows:

 false if 1 or2 are not number number strings

minority if number strings, recursively defined as follows:

    1 11212 
     11  1221

12 number-array1 number22 1

2 01 2 102  number1 2 

34 number-array332

1  3 1 2 41  3 1 2 

And one defines distinct-variable-array and omny strings with a little more complicated recursion using

binary metarelation  , that states that string 1 is suitably containing string 2 .

1 distinct-variable-array1variable123

 distinct-variable-array2variable32 31 2 3

omni ::  variable¦ omni  variable

1 omny1omni1 distinct-variable-array 1  

1) using decimal numbers is just for convenience
2)  ,  , ,  , with double symbols defined with decimal numbers correspond to

general  ,  , ,  ,  with double symbols defined with petit numbers
3) an array has constituents, place numbers constituent from left 1 to arity a, position numbers from 0 to a-1

version 1.0 Open Arity 4

3 Robinson natural numbers arithmetic and Gödel's beta-function

In the following the concrete calcules ALPHA of Robinson arithmetic and LAMBDA of pinition

arithmetic this will be investigated with respect to arrays. One cannot directly talk about number-array

strings of unspecified arity within Funcish as one cannot express it e.g. in ALPHA with dot-dot-dot and

one cannot name a variable ? so that the arity is properly represented: 12… ?… 

Concrete calcule ALPHA of Robinson decimal natural arithmetic uses the following alphabet which is

not the shortest one, but it is tried keep as close to conventional logic language as possible:

Arial 8, petit-number for variables Arial 12, normal size numbers for decimal individuals

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Symbol 12, general logic symbols, special calcule symbols

                  

The ontological basis of concrete calcules ALPHA of decimal Robinson arithmetic consists of decimal-

number strings (0 1 2 …), unary succession function-constant  , binary addition function-constant

 , binary multiplication function-constant  and binary minority relation-constant  . The

start of derivations of THEOREM strings is given by so-called Basiom strings (corresponding to Axiom

strings of abstract calcules). In the usual fashion there are:

Start-existence, injectivity, unary and multary induction of succession  .

Right zero and right iteration of addition 

Right zero and right iteration of multiplication 

Diagonal succession, iteration succession, non-reflexitivity and antisymmetry of minority  .

The so-called 'chinese remainder theorem' is actually a metatheorem ; it is necessary for Gödel's beta-

function; both necessitate open arities.

Chinese remainder metatheorem : if the constituents of a number-array 2 of arity1 are pairwise

coprime and if they are larger than the corresponding constituents of a number-array 3 of same arity,

then there is exactly one number 10 (less than the product of the constituents of 2) such that every

constituent of 3 is obtained as remainder of the division of 10 by the corresponding one of 2. This

flowery wording has to be translated into precise metalanguage 1) . Some string manipulations of section

2 are needed: relation-constant and function-constant strings  ,  , 

and  .

123number111number-array2

number-array32131

456number4number5number641

5246341565

78number7number874827

TRUTH12351281311

9number9TRUTH    pairwise coprime

91012345678912

10number10109   product of constituents of number-array

111213number11number12

number131111221113311

TRUTH110 13121  limited as 110

Obviously there is no chance to write this down in object-language! The 'Chinese remainder' is not a

THEOREM of calcule ALPHA but a metatheorem of its metacalcule ALPHA .

1) Both, object-language Funcish and metalanguage Mencish obey the so-called 'Calculation Criterion of Truth' : a

computer can decide if a certain step of reasoning is in accordance with the rules.

version 1.0 Open Arity 5

In conventional notation: Gödel's beta-function gbeta(x,y,z)=divrem(x,y(z+1)+1) with the division

remainder function allows for coding an array of numbers with arity a by two codes x and y with positions

z from 0 to a-1 or places from 1 to a . Just like above: the so-called 'Gödel's betafunction theorem' is

actually a metatheorem .

Gödel's beta-function metatheorem : a number-array 5 of arity4 can be coded by two number strings

1 and 2 such that every constituent of the number-array can be obtained using a suitable ternary UNEX-

formulo XFOgbeta 1) that represents Gödel's beta-function in calcule ALPHA and that has free variable

strings 0 for result, 1 ,2 as codes and 3 as position inside the array, 31 .

45number4number-array545

12number1number2

36number334number66 34

TRUTHXFOgbeta 11 22 3306

It is proven by taking

XFOgbeta 20232001023

and applying the Chinese remainder metatheorem . The auxiliary bound variable20 is chosen such that

it does not easily collide with free variable strings when the XFOgbeta is inserted in a phrase string;

obviously 20 is limited by 1 .

Based on Gödel's beta-function metatheorem one can talk talk about number-array strings of any arity

in the following way within concrete calcule ALPHA of decimal Robinson arithmetic. Interpret variable

4 as arity,1 and2 as codes, 3 as position within number-array and 0 as unique result:

123404340XFOgbeta… 

If one does not like the idea of two code number strings one can combine them into one number by so-

called anti-diagonal pair coding that also can be represented in calcule ALPHA , conventionally written

as pair of row and column p=adp(j,k)=j+((j+k)(j+k+1))/2 and its inverse functions for row

j=adr(p)=p-(ada(p)(ada(p)+1))/2 and for column k=adc(p)=((ada(p)+1)(ada(p)+2))/2-(p+1) with

corresponding UNEX-formulo strings, including auxiliary function ada(p)=(brt(8p+1)-1)/2 with entire

square-root function brt(n) . Five more extra-individual-constant strings with bound variable strings that

do not collide in the following applications (see binary metarelation of appendix A) .

binary UNEX-formulo : for antidiagoanl pair

XFOadp0011212 simple, necessary for bisection

unary UNEX-formulo : for entire square root, antidiagonal auxiliary, row and column

XFObrt00132001323213200

XFOada000081

 320000132321320000

XFOadr33XFOada03300333311

XFOadc33XFOada03300113333

Inserting this properly in XFOgbeta gives the desired (but somewhat lengthy) result.

1) XFOgbeta is an extra-individual-constant that is used like a makro in programming languages, just a name for

a string that is to be expanded wherever it appears (one has to take care that no collision of bound variable strings appear)

version 1.0 Open Arity 6

4 Recursive natural numbers arithmetic

The choice for a concrete calcule of recursive natural arithmetic is the concrete calcule LAMBDA of

decimal pinitive arithmetic. It uses the following alphabet which is not the shortest possible one, but it

is tried keep as close to conventional logic language as possible:

Arial 8, petit-number for variables Arial 12, normal size numbers for decimal individuals

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Symbol 12, general logic symbols, special calcule symbols

                  

List of 38 (plus 1 extra) characters for ontological basis of calcule LAMBDA

sort:: 

sort-array:: sort ¦ sort-array  sort

decimal:: number :: 0 ¦ 1 ¦ 2 ¦ … correct definition see section 5

basis-ingredient:: sort ¦ decimal ¦ basis-function-constant ¦ basis-relation-constant

basis-function-constant::  ¦ sort-array ¦  pinitive functions, decimal synaption

basis-relation-constant:: ¦     pinity, minority

pinon-catena :: pinon ¦ pinon-catena pinon

pinon-array :: pinon ¦ pinon-array ; pinon
pinon :: 0 ¦ 1 ¦ 2 pinon pinon ¦ 8 pinon pinon-catena 9 only 4 cases

pinon strings are natural numbers that code primitive recursive functions, when they replace  in basis-

function-constant string  or sort-array resp. : 0 codes the zero function, 1 codes succession. The

third case 2 pinon pinon codes straight recursion, where the left pinon of intrinsic arity m gives the initial

value and the right pinon of intrinsic arity n gives the iteration function (the intrinsic arity of the new

pinon is max(m+1,n-1)). The last case 8 pinon pinon-catena 9 codes composition of functions with any

intrinsic arity: the left pinon is the function where the pinon strings of the pinon-array are plugged in.

The PINITOR calculator that does the calculating is not described here, neither the basic true sentences,

that include a schema of sentences (or as the author prefers to call it a mater of sentences) meaning that

they are enumerasbly infinite many (by the way: for a proper introduction of sentence schemata one has

to use metalanguage).

The basis-function-constant gives the decimal synaption of two strings, which is basically

concatenation, except that no leading 0 is admissible. Actually the definition among the basis-ingredient

strings is redundant, as it can be given by a pinon .The same is true for basis-relation-constant  and

 as they can be defined using pinon piny and emiy resp. as codes of characteristic functions.

Primitive recursive functions are obtained by pinon strings, these precede as codes the basis-function-

constant strings  and sort-array . If a number is not a pinon string the primitive function with

this code is simply put to 0 for all input.. Many examples are given in the publication 'Programming

primitive recursive functions and beyond' that can be downloaded as file C6-C7-Pinon.pdf on the

homepage https://pai.de of the author. Very few examples for coding of primitive recursive functions by

decimal numbers are given here:

It is a funny observation that pinitive functions have a Janus face. They have been designed to represent

primitive recursive functions, e.g.

2201112 the addition of two numbers with pinon add22011 e.g. 22011112

But the following is defined too and gives a funny function:

10   the value for all codes at 0 where the result is put to 0 if 1 is not a pinon code.

By the way: it will turn out that one can talk about number-array strings within LAMBDA ; however,

this calcule has the shortcoming that it necessitates enumerably many basis-function-constant strings,

as there is no limit on the arity for the sort-array strings of primitive recursive functions.

https://pai.de/Church-s-thesis/Programming-functions;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303053&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303053?id=338120
https://pai.de/

version 1.0 Open Arity 7

The strange functions that can be obtained by putting variables into code position can be generalized to

so-called processive functions. Composition of functions produces so-called scheme strings (not to

confuse with schemata (or matres) of sentences, conventionally they are called 'general terms'). One

realizes that scheme strings that are obtained from function-constant strings by inserting number and

variable strings and compositions thereof represent functions. The world of processive functions is very

rich, e.g. it comprises straightforwardly Ackermann function and other hyperexponentiations .

There is a straightforward way in calcule LAMBDA to talk about number-array strings3 of arity given

by number 1 . They can be represented by code number string 2 , is expressed by the metatheorem :

34 number303number-array4 43

1 number1

25 number2 23 number5 5 43

 TRUTH523 

The proof is quite trivial, one can program a unary primitive recursive function, given any finite count

of values of a given arity for the low end of the value table.

Based on this metatheorem one can talk talk about number-array strings of any arity in the following

way within concrete calcule LAMBDA of decimal pinitive arithmetic:

1230323… 12… 

As opposed to the preceding section one can talk about the constituent of an number-array string in a

direct way. The reason for this is that concrete calcule LAMBDA allows for primitive recursion and

one does not have to take refuge to representation of functions using Gödel's beta-function technique.

But still one has to go the detour in metalanguage in order to correctly refer to number-array strings as

one can only express in metalanguage what is meant by a number-array string.

5 Little Gauss's theorem

Everybody knows the anectode of little Gauss reinventing the method of summing up numbers that was

found by Indian mathematician Aryabhata in 499 AD: conventionally written with dot-dot-dot:

(1+2+3+4+ … +n)=n(n+1)/2

How to express it in connection with concrete calcule ALPHA of decimal Robinson arithmetic? And

another question is, how to prove it? It is not a THEOREM but a schema (or as the author prefers to call

it 'mater') of THEOREM strings. Therefore it has to be expressed differently:

a) metatheorem of Little Gauss

that is producing successively the trivial THEOREM strings:

212=221

2123=331

21234=441
…

12number1number-array2 

32 13  32 31        initial final

34number3number456234 successive

2 346 2534253464 3

TRUTH22987654321002

111          multi-addition

version 1.0 Open Arity 8

The proof is based on induction for the scheme 111 where the start is 11 and the induction

is based on 1111111121

b) THEOREM with Gödel's beta-function

One can give a representation of the Successive-number-array starting from 1 up to arity 4 using

Gödel's beta-function-technique (the existence of 1 and 2 are guaranteed by Gödel's beta-function

metatheorem (it may be made unique by choosing the smallest 1) . The first auxiliary THEOREM states

that one can represent the ascending arraySuccessive-number-array by Gödel's beta-function codes:

412334XFOgbeta03

and a representation of the successive-sum array thereof

412XFOgbeta3001

3340XFOgbetaXFOgbeta 33003

And one can thus state THEOREM of little Gauss:

412XFOgbeta3001

3340XFOgbetaXFOgbeta33003

0XFOgbeta340044

And one can prove it based on Gödel's beta-function metatheorem and the induction for the scheme

331.

c) THEOREM in a concrete calcule with recursive arithmetic

It is a different story in the concrete calcule LAMBDA of decimal pinitive arithmetic where one has the

tools of primitive recursion. The number-array 1;2;3;4; … ;1 is coded by arity 1 and pinon 21 .

Given two strings 1) and zllisu and zrblisp one can construct a pinon for every 2 by concatenating

them to zllisu 2 zrblisp . For a given arity this pinon sums up the constituents and there is a pinon

carl for carlation, conventionally written as (x(x+1))/2. The THEOREM of little Gauss reads:

1zllisu 1zrblisp1carl1

This means: once one has realized that number-array strings can be represented by their arity and a code,

one can express the THEOREM of little Gauss perfectly in LAMBDA and it can be proven within

LAMBDA too.

1) the extra-individual-constant strings are again used like a makro in programming languages just names for strings

that are to be expanded wherever they appear in synaptions

version 1.0 Open Arity 9

6 Euclid's theorem of unlimited primes

Contrary to the preceding section it is not problem to express the THEOREM of unlimited primes properly

in concrete calcule ALPHA of decimal Robinson arithmetic. One starts off with unary formula FAprime

FAprime11313213132311311

that defines prime number strings and then one can express the THEOREM :

1FAprime2FAprime1212

However the proof needs arrays of open arity. This means that for a proof one has to use the second

step and move from object-language to metalanguage (and back). The translation of the THEOREM into

a metatheorem and the arrangements for the proof are a bit tedious but trivial. Successive-prime-array

strings come handy, example 23571113

1Successive-prime-array1number-array17127

23number2number345123

1235142314235TRUTH

FAprime12TRUTHFAprime13236TRUTH

FAprime1662366236

a) metatheorem

1number1TRUTHFAprime11

2number2TRUTHFAprime1212

For the proof construct 4 from Successive-prime-array as successor of the product of its constituents.

Metalingual proofs can be lengthy (and a bit boring in its details), so just a sketch is given as usual:

Successive-prime-array3323

5Successive-prime-array5352

439876543210120

b) THEOREM with Gödel's beta-function

The idea is to use number-array strings as e.g. in conventional notation: 1, 2, 6, 30, 210, 2310 that are

are generated by successive products of prime number strings. For a given prime number 1 one can

find the corresponding number-array that ends with the constituent that is the product of all preceding

primes, its successor is a prime number greater than the considered one. This can be done using Gödel's

beta-function technique with codes 4 , 5 and arity 6 with the quaternary formula :

FAeuprXFOgbeta14253001    starts at 1

7XFOgbeta14253607    6 is arity

8XFOgbeta14253608871 ends for 1

9961011XFOgbeta142539010 all prime

XFOgbeta14253901011FAprime111

1912XFOgbeta142539011121112

131312FAprime1131213   consecutive

For the proof take the construction of a prime number 0 greater than 1 :

1FAprime456FAeupr142536

0XFOgbeta142536FAprime1010

c) It is a different story in the concrete calcule LAMBDA of decimal pinitive arithmetic where one has

the tools of primitive recursion. There one can express the Successive-prime-arrayby means of code and

perform the proof within the calcule.

version 1.0 Open Arity 10

7 Fundamental theorem of natural arithmetic

The Fundamental theorem of natural arithmetic (canonical representation of a natural numbers by

unique prime-power decomposition) is illustrated by the example 504222337 . It

cannot be expressed immediately in concrete calcule ALPHA of decimal Robinson arithmetic as a

THEOREM . First one has to take refuge to the corresponding metatheorem:

a) fundamental metatheorem of natural arithmetic

Ascending-prime-array strings come handy, example 222337 ,

1Ascending-prime-array1number-array1FAprime11

23number2number345123

1235142314235TRUTH

FAprime12TRUTHFAprime132323

for expressing the metatheorem :

1number1112Ascending-prime-array2TRUTH1

29876543210120

3Ascending-prime-array3TRUTH1

39876543210130

23

The first part states the existence and the second part takes care of uniqueness:The proof necessitates

induction, preferably in the form of infinite descent.

b) fundamental THEOREM in Robinson natural arithmetic with Gödel's beta-function

The idea is to use number-array strings of products of successive powers of ascending primes, for the

above example: 1872504 , the last one being the number in question. Firstly the binary formula prime-

power-pairFApripopair is defined which is true if the first argument 1 is a prime number and the

second argument 2 is a power thereof, e.g. 5 and 125 are such a pair.

FApripopair11313213132311311

3334233341333533351

The fundamental THEOREM of natural arithmetic in concrete calcule ALPHA looks a little bit

complicated (and extends to about 30 lines if one expands formula strings XFOgbeta and

FApripopair), where the first part states the existence and the second part takes care of uniqueness:

111456XFOgbeta14253001 start 1

XFOgbeta14253601     end with 1

77689XFOgbeta14253708 successive values 

XFOgbeta14253709     are

1011FApripopair11028FApripopair11129prime-powers

071011        ascending primes


242526XFOgbeta1242253001  and the

XFOgbeta12422532601     decomposition

772689XFOgbeta1242253708 is unique

XFOgbeta1242253709

1011FApripopair11028FApripopair11129 one could pick

071011626151560   the smallest 4)

XFOgbeta1425315XFOgbeta124225326

version 1.0 Open Arity 11

c) fundamental THEOREM of natural arithmetic in a concrete calcule with recursive arithmetic

It is a different story in the concrete calcule LAMBDA of decimal pinitive arithmetic where one has the

tools of primitive recursion. There one can express the Ascending-prime-arrayby means of its arity and

a pinon code and perform the proof within the calcule where one has the possibility of limited sums and

products as was mentioned at the end of section 5.

8 Open arity in other areas of mathematics and conclusion

Open arity and related features are needed in many other areas of mathematics, e.g.

- axiom schemata of separation and replacement of axiomatic set theory

- induction and recursion for functions of any arity in number theories.

- an infinite count of functions for proper defintion of recursive functions

- geometrical space of unspecified dimension (how to express n-tuples)

- definition and use polynomials, say for integer, rational or algebraic arithmetics

- systems of unspecified finite cardinality (e.g. finite groups and Galois fields).

- finite and infinite graph theories and many more.

All of them can be treated properly by the FUME-method with the two-tiers of languages Funcish and

Mencish. Of course common English can be used as an unprecise supralanguage to talk about everything.

However, it is important to know about the shortcomings of unprecise language. Supralanguage English

(or any other natural language) is but a means to express comments and to reason in a plausibible fashion.

The precise talking has to be done in Mencish and Funcish:

Figure 1 Hierarchy of languages and codices pertinent to the FUME-method

 for two example calcules, an abstract and a concrete one

A logic with only one tier is not sufficient for the foundation of mathematics. Extending predicate logics

to theory of types, introducing axiomatic set theory and other constructions does not solve the problem.

One needs at least two tiers, a precise object-language together with a precise metalanguage.

English

abstract calcule sigma

metacalcule sigma

concrete calcule ALPHA

metacalcule ALPHA

codex ALPHA

supra

meta

object

infra

Mencish

Funcish

talks about

nothing

talks precisely about

talks precisely about

version 1.0 Open Arity 12

Appendix A Selected basic metaindividuals, metarelations and metafunctions

syntactic metaproperties in general (sort )

petit-number string with only 0,1,2,3,4,5,6,7,8,9 (for convention decimals are used)

number string with only 0,1,2,3,4,5,6,7,8,9 (for convention decimals are used)

number-array array of number strings separated by semicolon

variable formulo string followed by petit-number

variable-array array of variable strings separated by semicolon

omny multiple distinct omnicle strings e.g. 2113
pattern built up from function-constant strings with number and variable strings

term pattern with number strings only

scheme pattern with at least one variable strings only

phrase built up from equalities of pattern strings and from relation-constant strings using

 full predicative logic

sentence phrase with no free variable strings

formula phrase with at least one variable (arity is count of distinct variable strings), no 0

formulo like formula but with 0 (which is left out for arity count)

Successive-prime-array array of number strings, that are successive primes

Ascending-prime-array array of number strings, that are ascending (not necessarily successive) primes

alethic metaproperties in general

UNEX-formulo representing a function by a formulo with unique existence of output for input

TRUTH any alethic sentence

THEOREM quantive alethic sentence that is not basic

Axiom , Basiom sentence introduced as basic TRUTH (in abstract or concrete calcule resp.)

metaindividuals in calcule ALPHA l (sort )

XFOgbeta ternary UNEX-formulo representing Gödel's beta-function,

XFOadp binary UNEX-formulo representing antidiagonal pair coding

XFOada unary UNEX-formulo representing auxiliary function for antidiagonal pair coding

XFOadr unary UNEX-formulo representing row decoding function of antidiagonal pair

XFOadc unary UNEX-formulo representing column decoding function of antidiagonal pair

FAprime  unary formula characterizing number strings

FAeupr unary formula of products of successive primes, ending at the given argument 1

FApripopair binary formula , so that 1 is a prime and 2 is a power thereof

syntactic binary metarelations in general and in calcule ALPHA

 matching length of strings

 smaller length of strings

   soutaining (suitably containing, i.e. in a way that avoids disambiguities)

   suitably-free-in

   suitably-bound-in

   compatible (no collision of bound variable strings in constructing phrase strings)

 natural-minority, smaller with respect to numbering by number

syntactic metafunctions in general and in calcule ALPHA

   synaption (concatenation except for leading 0)

 character-deletion

 string-replacement

 succession with respect to number (10 characters)

 length as number, e.g. 14

  arity as number, e.g.1231115

 projection: substring of array in second place at position with number in first place

version 1.0 Open Arity 13

Appendix B Gödel's beta-function and more in abstract Robinson-Crusoe arithmetic

Based on the observation that one only needs the UNEX-formulo technique for representation of functions

in concrete calcule ALPHA of Robinson decimal natural number arithmetic one remembers equation

(x+y)2=x2+y2+2xy (in classical notation) to produce an eaven weaker calcule. This time the abstract

counter piece is introduced. The interesting feature is that one can leave away the binary function

multiplication ; unary quadration is sufficient.

The ontological basis of abstract calcule alphakappa of Robinson-Crusoe natural number arithmetic

comprises the following ingredients:

sort :: 

basis-individual-constant:: n    nullum

basis-function-constant::  ¦  ¦  succession, addition, quadration

basis-relation-constant::     minority

extra-individual-constant:: un    unus

 Axiom strings

A1 11n

A2 121212

A3 11n212

A4 11n1

A5 121212

A6 1nn

A7 11111

A8 11n

A9 1n1n1

A10 12121212

A11 12121212

Axiom matres for the unary and multary case of induction:

1sentence11

Axiom11n1111111

123formula1omny2sentence2113

Axiom211n11111113

One uses the following binary UNEX-formulo for the introduction of multiplication:

XFOmul 121200

One has a unary formula in Robinson-Crusoe arithmetic to express that a number string is prime:

FAprime 3031u303031311

3031303111

As well one can represent Gödel's beta-function in Robinson-Crusoe arithmetic by a ternary UNEX-

formulo using auxiliary bound variable strings 21 and 22 that are limited by 12 :

2112122121

22212021202222

XFOgbeta 20212223232121

2120212022222201023

