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Summary 
 

 

A closer look at mathematical proofs led Gottlob Frege to realize that Aristotle's syllogism logic was not 

sufficient for many theorems. He developped what today is called first-order predicate logic. It is usually 

thought that predicate logic is sufficient for the theory of natural numbers. However, this first step of 

modern logic development again is not sufficient. One needs another step, especially to allow for so-

called open arity of arrays. This second step cannot be done in general in object-language based on 

predicate logic but only by metalanguage. Therefore one needs something like the FUME-method (put 

forward by the author) which allows for a precise treatment of both language levels. Dot-dot-dot …  is 

not admissible in predicate logics as it needs some kind of recursion. In metalanguage, however, one has 

to introduce some basic recursion right from the setup (but it is much weaker than primitive recursion). 
 

For natural numbers two examples are given, one for a concrete version of  Robinson arithmetic and one 

for recursive arithmetic. Without the second step to metalanguage one cannot express some of the most 

important so-called theorems of number theory in a direct fashion, leave alone prove them. Actually 

some are not theorems but metatheorems. The examples comprise Chinese remainders, Gödel's beta-

function, little Gauss's summing up of numbers, Euclid's unlimited primes and the canonical 

representation of a natural number (fundamental theorem of natural arithmetic). 
 

After one has included the second step which allows one to talk about open arities in metalanguage one 

can tackle the problem of talking about number-arrays in object language. One can do this to a certain 

extent by coding number-arrays by (usually) two numbers. This can be done even in Robinson arithmetic 

using 'Gödel's beta-function'. But one has to make use of  the second step before one can return to object-

language. Of course, the introduction of two tiers, i.e. object-language and metalanguage, is necessary 

for many other areas of mathematics, if not to say, most of them. 
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1  Beyond the conventional paradigm of logic of mathematics 
 

It all started in the year of 1879 when Gottlieb Frege put forward his revolutionary 'Begriffsschrift'. Until 

then the syllogism logic of Aristotle had been considered to be sufficient as the basis of logical reasoning 

and therefore also of mathematics. Besides the usual logical characters           quantors   

and variables like e.g.1 or 13 were introduced together with the rules for omnition 1 ...and 

entition 2 ... as well as relation-constant and function-constant strings that allowed for expressing 

mathematical sentences in a proper fashion. Freges notation differs from this modern form, but that is 

irrelevant. 
 

The author was confronted with this status when started studying physics, mathematics and philosophy 

of science in the year of 1960. For a long time he did not enter the field of number theory , however, he 

always had a bad feeling about theorems of number theory, that he could not relate to the axiomatic 

approach to, say Robinson arithmetic. The problem to start with is not the proving of theorems of number 

theory. The first problem is just to write down sentences that are called theorems of number theory. 

Mathematicans and logicians have constructed complicated systems of so-called classical and 

intuitionistic logic, theory of types, axiomatic set theory and so on. But are these methods really sufficient 

for expressing basic sentences of number theory, leave alone proving them in a purely deductive fashion 

from basically true sentences or axioms ? The author contradicts this question and shows a way out by 

the FUME-method. He claims that you need both object language and metalanguage being formulated 

with the rigor of formal logic and some basic recursion thrown in. The examples of section 3 to 7 will - 

hopefully - clarify his reasoning. The problem is called open arity. It is not the only reason for the 

FUME-method, but it is a particularily striking one. 'Dot-dot-dot' … is just not a legitmate language 

element in a precise language. For a short introduction to the FUME-method download file  Snark1.1 

.pdf from https://pai.de . 
 

Heuristically speaking, sequences consist of some kind of infinitely many constituents with a definite 

start and no end, with a line-arrangement, one constituent put behind another. An array is a finite ordered 

collection of  constituents with a  start and an end (where the constituents are separated by a special 

character). It has an arity given by a natural number that is the count of its constituents. An example for 

an array is the alphabet of letters separated by commas 'a, b, …  z' with arity 26, but also the simple array 

of zeros separated by semicolons '0;0;0;0;0' is an example with arity 5. 
 

Of course this examples are not satisfactory, one needs a precise description for arrays. The FUME-

method will be applied as one obviously needs a language that allows for some recursion. If the 

constituents are taken from a calcule of the object language Funcish, one has to define arrays in meta-

language Mencish. The systems of Funcish are called calcules by the author, they are not to be confused 

with various calculus-systems or the calculus of real numbers. There are concrete and abstract calcules. 
 

The font-method is used to distiguish between the various levels of languages: Times New Roman of all 

styles for normal text in English e.g. , Symbol and Arial boldface italics for metalanguage Mencish e.g. 

number-array1and normal Symbol and Arial for object language Funcish e.g. 1101.  
 

The other frontier where usual predicate logic is not sufficient for mathematics is connected with higher 

than first-order logic. Axiomatic set theoty claims that all of infinity mathematics is covered by it. The 

author, however, has some doubts. Anyhow, the conventional approach to real numbers necessitates 

second-order logics (for some transcendency axiom, be it Dedekind cuts, interval nesting, Cauchy series 

or whatever). In group theory second-order is just around the corner, as factors, subgroups, normal 

subgroups, kernels etc. are not first-order entities.  
 

Mathematicians usually do not even mention that there might be  a problem at the foundations. And 

physicists happily use transcendental mathematics although no one has ever measured anything but a 

rational number. How about dimensionless constants in physics? Sommerfeld's fine-structure constant, 

is it a real number and is there a deeper reason for its size. You see, once one is thinking about 

transcendental numbers, one is entering the field of theology, which shows that the name of this numbers 

has been chosen perfectly!  

https://pai.de/Church-s-thesis/Snark-counterexample;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303265&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303265?id=338130
https://pai.de/Church-s-thesis/Snark-counterexample;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303265&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303265?id=338130
https://pai.de/
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2  Metalingual introduction of number-arrays and more 
 

In metalanguage Mencish there are straightforward metaproperties of strings like  number , number-

array, variable , sentence or formula and metafunctions for string-replacement    and character-

deletion   , the relevant examples are given in appendix A. One can define number-array strings 

by the simple recursion in metalanguage Mencish 
 

number-array :: number ¦  number-array  number 
 

However, one has to find a way to talk about number-array strings in Funcish. This will be possible by 

coding number-array strings by number strings. That is what it is all about. The following 

metadefinitions are a little abbreviated, but straightforward, the necessary recursions are admissible in 

Mencish. For definiteness it is done for the concrete calcule ALPHA of Robinson decimal1) natural 

arithmetic (as described in the next section). However, the only feature that is used are the decimal 

numbers themselves, so that the metadefinitions  can be transferred to other concrete arithmetic calcules 

like e.g. LAMBDA of decimal pinition arithmetic (which allows for primitive recursive functions): 
 

   0  if not number 

succession  1 2 3  … else decimal succession, recursively defined as follows: 

   01  12    … 89 910 

   1011 1112   … 819 

   1910    with concatenation 
 

  1 2 3  … decimal length, count of char, recursively defined as follows: 

length   21 if char 2 1 2  1    with  char 2 
 

  0 if not number-array 

arity   1 2 3  … else decimal arity, defined as follows (count of semicolon strings): 

   1 0123456789 
 

  0  if 1 not number-array or if 2 not number 

projects array-constituent   or if 2 number but not less than 1 

   number else constituent at position 3) 2, recursively defined as follows: 
 

   false  if 1 or2 are not number number strings 

minority     if number strings, recursively defined as follows: 

     1 11212 
     11  1221
 

12 number-array1 number22 1 

2 01 2 102  number1 2 

34 number-array332

1  3 1 2 41  3 1 2  
 

And one defines distinct-variable-array and omny strings with a little more complicated recursion using 

binary metarelation  , that states that string 1 is suitably containing string 2 . 
 

1 distinct-variable-array1variable123

 distinct-variable-array2variable32 31 2 3
 

omni ::   variable¦  omni  variable 
 

1 omny1omni1 distinct-variable-array 1  
 

 

 

1) using decimal numbers is just for convenience  
2)  ,  , ,  , with double symbols defined with decimal numbers correspond to 

general  ,  , ,  ,   with double symbols defined with petit numbers  
3) an array has constituents, place numbers constituent from left  1 to arity a, position numbers from 0 to a-1  
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3  Robinson natural numbers arithmetic and Gödel's beta-function 
 

In the following the concrete calcules ALPHA of Robinson arithmetic and LAMBDA of pinition 

arithmetic this will be investigated with respect to arrays. One cannot directly talk about number-array 

strings of unspecified arity within Funcish as one cannot express it e.g. in ALPHA with dot-dot-dot and 

one cannot name a variable ? so that the arity is properly represented: 12… ?…    
 

Concrete calcule ALPHA of Robinson decimal natural arithmetic uses the following alphabet which is 

not the shortest one, but it is tried keep as close to conventional logic language as possible: 
 

Arial 8, petit-number for variables  Arial 12, normal size numbers for decimal individuals 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 
Symbol 12, general logic symbols, special calcule symbols 

                   
 

 

The ontological basis of concrete calcules ALPHA of decimal Robinson arithmetic consists of decimal-

number strings (0 1 2 … ), unary succession function-constant  , binary addition function-constant 

 , binary multiplication function-constant  and binary minority relation-constant  . The 

start of derivations of THEOREM   strings is given by so-called Basiom strings (corresponding to Axiom 

strings of abstract calcules). In the usual fashion there are: 
 

Start-existence, injectivity, unary and multary induction of succession  .  

Right zero and right iteration of addition  

Right zero and right iteration of multiplication 

Diagonal succession, iteration succession, non-reflexitivity and antisymmetry of minority  . 
 

The so-called 'chinese remainder theorem' is actually a metatheorem ; it is necessary for Gödel's beta-

function; both necessitate open arities.  
 

Chinese remainder metatheorem : if the constituents of a number-array 2 of arity1 are pairwise 

coprime and if they are larger than the corresponding constituents of a number-array 3 of same arity, 

then there is exactly one number 10 (less than the product of the constituents of 2 ) such that every 

constituent of 3 is obtained as remainder of the division of 10 by the corresponding one of 2. This 

flowery wording has to be translated into precise metalanguage 1) . Some string manipulations of section 

2 are needed: relation-constant and function-constant strings  ,  ,  

and  . 
 

123number111number-array2

number-array32131

456number4number5number641

5246341565

78number7number874827

TRUTH12351281311

9number9TRUTH    pairwise coprime

91012345678912

10number10109   product of constituents of number-array

111213number11number12

number131111221113311

TRUTH110 13121  limited as 110 

 

Obviously there is no chance to write this down in object-language! The 'Chinese remainder' is not a 

THEOREM of calcule ALPHA but a metatheorem of its metacalcule ALPHA . 
 

 

 

 
1)  Both, object-language Funcish and metalanguage Mencish obey the so-called 'Calculation Criterion of Truth' :  a 

computer can decide if a certain step of reasoning is in accordance with the rules.  
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In conventional notation: Gödel's beta-function gbeta(x,y,z)=divrem(x,y(z+1)+1) with the division 

remainder function allows for coding an array of numbers with arity a by two codes x and y with positions 

z from 0 to a-1 or places from 1 to a . Just like above: the so-called 'Gödel's betafunction theorem' is 

actually a metatheorem . 
 

Gödel's beta-function metatheorem : a number-array 5 of arity4 can be coded by two number strings 

1 and 2 such that every constituent of the number-array can be obtained using a suitable ternary UNEX- 

formulo XFOgbeta 1) that represents Gödel's beta-function in calcule  ALPHA and that has free variable 

strings 0 for result, 1 ,2 as codes and 3 as position inside the array, 31 . 
 

45number4number-array545

12number1number2

36number334number66 34 

TRUTHXFOgbeta 11 22 3306
 

It is proven by taking  
 
 

XFOgbeta 20232001023 
 

 

and applying the Chinese remainder metatheorem . The auxiliary bound variable20 is chosen such that 

it does not easily collide with free variable strings when the XFOgbeta is inserted in a phrase string; 

obviously 20 is limited by 1 .  
 

 

Based on Gödel's beta-function metatheorem one can talk talk about number-array strings of any arity 

in the following way within concrete calcule ALPHA of decimal Robinson arithmetic. Interpret variable 

4 as arity,1 and2 as codes, 3 as position within number-array and 0 as unique result:  
 

123404340XFOgbeta…  
 

 

If one does not like the idea of two code number strings one can combine them into one number by so-

called anti-diagonal pair coding that also can be represented in calcule ALPHA , conventionally written 

as pair of row and column  p=adp(j,k)=j+((j+k)(j+k+1))/2  and its inverse functions for row  

j=adr(p)=p-(ada(p)(ada(p)+1))/2  and for column  k=adc(p)=((ada(p)+1)(ada(p)+2))/2-(p+1)  with 

corresponding UNEX-formulo strings, including auxiliary function ada(p)=(brt(8p+1)-1)/2  with entire 

square-root function  brt(n) . Five more extra-individual-constant  strings with bound variable strings that 

do not collide in the following applications (see binary metarelation of appendix A ) . 
 

binary UNEX-formulo : for antidiagoanl pair 

 

XFOadp0011212 simple, necessary for bisection 
 

unary UNEX-formulo : for entire square root, antidiagonal auxiliary, row and column 

 

XFObrt00132001323213200 
 

XFOada000081

 320000132321320000 
 

XFOadr33XFOada03300333311 
 

XFOadc33XFOada03300113333
 

Inserting this properly in XFOgbeta gives the desired (but somewhat lengthy) result.  

 

 

1)  XFOgbeta is an  extra-individual-constant  that is used like a makro in programming languages, just a name for 

a string that is to be expanded wherever it appears (one has to take care that no collision of bound variable strings appear) 
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4  Recursive natural numbers arithmetic 
 

The choice for a concrete calcule of recursive natural arithmetic is the concrete calcule LAMBDA of 

decimal pinitive arithmetic. It uses the following alphabet which is not the shortest possible one, but it 

is tried keep as close to conventional logic language as possible:  
 

Arial 8, petit-number for variables  Arial 12, normal size numbers for decimal individuals 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 
Symbol 12, general logic symbols, special calcule symbols 

                    
 

List of 38 (plus 1 extra ) characters for ontological basis of calcule LAMBDA 
 

sort::     

sort-array::   sort  ¦  sort-array  sort   

decimal::  number ::  0  ¦  1  ¦  2  ¦  …   correct definition see section 5 
 

basis-ingredient::  sort  ¦  decimal  ¦  basis-function-constant  ¦  basis-relation-constant 

basis-function-constant::   ¦  sort-array  ¦    pinitive functions, decimal synaption 

basis-relation-constant:: ¦      pinity, minority  
 

pinon-catena  ::  pinon  ¦  pinon-catena pinon   

pinon-array ::   pinon  ¦  pinon-array ; pinon  
pinon ::   0  ¦  1  ¦  2 pinon  pinon  ¦  8 pinon pinon-catena 9  only 4 cases 
 

pinon strings are natural numbers that code primitive recursive functions, when they replace  in basis-

function-constant string  or sort-array resp. : 0 codes the zero function, 1 codes succession. The 

third case 2 pinon  pinon codes straight recursion, where the left pinon of intrinsic arity m gives the initial 

value and the right pinon of intrinsic arity n gives the iteration function (the intrinsic arity of the new 

pinon is max(m+1,n-1) ). The last case 8 pinon pinon-catena 9 codes composition of functions with any 

intrinsic arity: the left pinon  is the function where the pinon strings of the pinon-array are plugged in.  

The PINITOR calculator that does the calculating is not described here, neither the basic true sentences, 

that include a schema of sentences (or as the author prefers to call it a mater of sentences) meaning that 

they are enumerasbly infinite many (by the way: for a proper introduction of sentence schemata one has 

to use metalanguage).  
 

The basis-function-constant gives the decimal synaption of two strings, which is basically 

concatenation, except that no leading 0 is admissible. Actually the definition among the basis-ingredient 

strings is redundant, as it can be given by a pinon .The same is true for basis-relation-constant  and  

 as they can be defined using pinon piny  and emiy resp. as codes of characteristic functions.
 

Primitive recursive functions are obtained by pinon strings, these  precede as codes the  basis-function-

constant strings   and  sort-array . If a number is not a pinon string the primitive function with 

this code is simply put to 0 for all input.. Many examples are given in the publication 'Programming 

primitive recursive functions and beyond' that can be downloaded as file C6-C7-Pinon.pdf on the 

homepage https://pai.de of the author. Very few examples for coding of primitive recursive functions by 

decimal numbers are given here: 

 

It is a funny observation that pinitive functions have a Janus face. They have been designed to represent 

primitive recursive functions, e.g. 

 

2201112 the addition of two numbers with pinon add22011 e.g. 22011112 
 

But the following is defined too and gives a funny function: 
 

10   the value for all codes at 0 where the result is put to 0 if 1 is not a  pinon code.  
 

By the way: it will turn out that one can talk about number-array strings within LAMBDA ; however, 

this calcule has the shortcoming that it necessitates enumerably many basis-function-constant strings, 

as there is no limit on the arity for the sort-array strings of primitive recursive functions.  

https://pai.de/Church-s-thesis/Programming-functions;focus=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303053&path=download.action&frame=CMTOI_de_dtag_hosting_hpcreator_widget_Download_19303053?id=338120
https://pai.de/
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The strange functions that can be obtained by putting variables into code position can be generalized to 

so-called processive functions. Composition of functions produces so-called scheme strings (not to 

confuse with schemata (or matres) of sentences, conventionally they are called 'general terms'). One 

realizes that scheme strings that are obtained from function-constant strings by inserting number and 

variable strings and compositions thereof represent functions. The world of processive functions is very 

rich, e.g. it comprises straightforwardly Ackermann function and other hyperexponentiations . 
 

There is a straightforward way in calcule LAMBDA to talk about number-array strings3 of arity given 

by number 1 . They can be represented by code number string 2 , is expressed by the metatheorem : 

 

34 number303number-array4 43

1 number1

25 number2 23 number5 5 43 

 TRUTH523 
 

The proof is quite trivial, one can program a unary primitive recursive function, given any finite count 

of values of a given arity for the low end of the value table.
 

Based on this metatheorem one can talk talk about number-array strings of any arity in the following 

way within concrete calcule LAMBDA of decimal pinitive arithmetic:  

 

1230323… 12…  
 

As opposed to the preceding section one can talk about the constituent of an number-array string in a 

direct way. The reason for this is that concrete calcule LAMBDA allows for primitive recursion and 

one does not have to take refuge to representation of functions using Gödel's beta-function technique. 
 

But still one has to go the detour in metalanguage in order to correctly refer to number-array strings as 

one can only express in metalanguage what is meant by a number-array string.   
 

 

 

5  Little Gauss's theorem 
 

Everybody knows the anectode of little Gauss reinventing the method of summing up numbers that was 

found by Indian mathematician Aryabhata in 499 AD: conventionally written with dot-dot-dot:  

(1+2+3+4+ … +n)=n(n+1)/2 
 

How to express it in connection with concrete calcule ALPHA of decimal Robinson arithmetic? And 

another question is, how to prove it? It is not a THEOREM  but a  schema ( or as the author prefers to call 

it 'mater') of THEOREM  strings. Therefore it has to be expressed differently:  

 

a)  metatheorem of Little Gauss 
 

that is producing successively the trivial THEOREM  strings: 
 

212=221 

2123=331 

21234=441 
… 
 

12number1number-array2   

32 13  32 31        initial  final 

34number3number456234 successive

2 346 2534253464 3

TRUTH22987654321002

111          multi-addition
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The proof is based on induction for the scheme 111 where the start  is 11 and the induction 

is based on  1111111121 
 

 

b)  THEOREM  with Gödel's beta-function 
 

One can give a representation of the Successive-number-array starting from 1 up to arity 4 using 

Gödel's beta-function-technique (the existence of 1 and 2 are guaranteed by Gödel's beta-function 

metatheorem  (it may be made unique by choosing the smallest 1 ) . The first auxiliary THEOREM  states 

that one can represent the ascending arraySuccessive-number-array by Gödel's beta-function codes: 

 

412334XFOgbeta03 
 

and a representation of the successive-sum array thereof  
 

412XFOgbeta3001

3340XFOgbetaXFOgbeta 33003 
 

And one can thus state THEOREM  of little Gauss: 

 

412XFOgbeta3001

3340XFOgbetaXFOgbeta33003

0XFOgbeta340044 

 

And one can prove it based on Gödel's beta-function metatheorem and the induction for the scheme 

331. 
 

 

c)  THEOREM  in a concrete calcule with recursive arithmetic 
 

It is a different story in the concrete calcule LAMBDA of decimal pinitive arithmetic where one has the 

tools of primitive recursion. The number-array 1;2;3;4; … ;1 is coded by arity 1 and pinon 21 . 

Given two strings 1) and zllisu and  zrblisp one can construct a pinon for every 2  by concatenating 

them to zllisu 2 zrblisp . For a given arity this pinon sums up the constituents and there is a pinon 

carl for carlation, conventionally written as (x(x+1))/2. The THEOREM  of little Gauss reads:  
 

1zllisu 1zrblisp1carl1 
 

 

This means: once one has realized that number-array strings can be represented by their arity and a code, 

one can express the THEOREM  of little Gauss perfectly in LAMBDA and it can be proven within 

LAMBDA too. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1)  the extra-individual-constant  strings are again used like a makro in programming languages just names for strings 

that are to be expanded wherever they appear in synaptions   
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6  Euclid's theorem of unlimited primes 
 

Contrary to the preceding section it is not problem to express the THEOREM of unlimited primes properly 

in concrete calcule ALPHA of decimal Robinson arithmetic. One starts off with unary formula FAprime   
 

FAprime11313213132311311 
 

that defines prime number strings and then one can express the THEOREM :  

 

1FAprime2FAprime1212
 

However the proof needs arrays of open arity. This means that for a proof one has to use the second 

step and move from object-language to metalanguage (and back). The translation of the THEOREM  into 

a metatheorem and the arrangements for the proof are a bit tedious but trivial. Successive-prime-array 

strings come handy, example 23571113 
 

1Successive-prime-array1number-array17127

23number2number345123

1235142314235TRUTH

FAprime12TRUTHFAprime13236TRUTH

FAprime1662366236 
 

a)  metatheorem 

 

1number1TRUTHFAprime11

2number2TRUTHFAprime1212
 

For the proof construct 4 from Successive-prime-array as successor of the product of its constituents. 

Metalingual proofs can be lengthy (and a bit boring in its details), so just a sketch is given as usual: 

Successive-prime-array3323

5Successive-prime-array5352 
 

439876543210120 
 

b)  THEOREM  with Gödel's beta-function 
 

The idea is to use number-array strings as e.g. in conventional notation: 1, 2, 6, 30, 210, 2310 that are 

are generated by successive products of prime number strings. For a given prime number 1 one can 

find the corresponding number-array that ends with the constituent that is the product of all preceding 

primes, its successor is a prime number greater than the considered one. This can be done using Gödel's 

beta-function technique with codes 4 , 5 and arity 6 with the quaternary formula : 
 

FAeuprXFOgbeta14253001    starts at 1

7XFOgbeta14253607    6 is arity

8XFOgbeta14253608871 ends for 1

9961011XFOgbeta142539010 all prime

XFOgbeta14253901011FAprime111 

1912XFOgbeta142539011121112

131312FAprime1131213   consecutive 

 

For the proof take the construction of a prime number 0 greater than 1 : 

1FAprime456FAeupr142536

0XFOgbeta142536FAprime1010 

 

c)  It is a different story in the concrete calcule LAMBDA of decimal pinitive arithmetic where one has 

the tools of primitive recursion. There one can express the Successive-prime-arrayby means of code and 

perform the proof within the calcule.   
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7  Fundamental theorem of natural arithmetic 
 

The Fundamental theorem of natural arithmetic (canonical representation of a natural numbers by 

unique prime-power decomposition) is illustrated by the example  504222337 . It 

cannot be expressed immediately in concrete calcule ALPHA of decimal Robinson arithmetic as a 

THEOREM . First one has to take refuge to the corresponding metatheorem:  

 

a)  fundamental  metatheorem of natural arithmetic 
 

Ascending-prime-array strings come handy, example 222337 , 
 

1Ascending-prime-array1number-array1FAprime11

23number2number345123

1235142314235TRUTH

FAprime12TRUTHFAprime132323
 

for expressing the metatheorem : 
 

1number1112Ascending-prime-array2TRUTH1

29876543210120 

3Ascending-prime-array3TRUTH1

39876543210130

23
 

The first part states the existence and the second part takes care of uniqueness:The proof necessitates 

induction, preferably in the form of infinite descent. 
 

 

b)  fundamental THEOREM in Robinson natural arithmetic with Gödel's beta-function 
 

The idea is to use number-array strings of products of successive powers of ascending primes, for the 

above example: 1872504 , the last one being the number in question. Firstly the binary formula prime-

power-pairFApripopair is defined which is true if the first argument 1 is a prime number and the 

second argument 2 is a power thereof, e.g. 5 and 125 are such a pair.  
 

FApripopair11313213132311311

3334233341333533351 
 

The fundamental THEOREM of natural arithmetic in concrete calcule ALPHA looks a little bit 

complicated (and extends to about 30 lines if one expands formula strings XFOgbeta and 

FApripopair), where the first part states the existence and the second part takes care of uniqueness: 
 

111456XFOgbeta14253001 start 1

XFOgbeta14253601     end with 1

77689XFOgbeta14253708 successive values 

XFOgbeta14253709     are 

1011FApripopair11028FApripopair11129prime-powers 

071011        ascending primes 


242526XFOgbeta1242253001  and the

XFOgbeta12422532601     decomposition

772689XFOgbeta1242253708 is unique 

XFOgbeta1242253709 

1011FApripopair11028FApripopair11129 one could pick 

071011626151560   the smallest 4 )

XFOgbeta1425315XFOgbeta124225326 
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c)  fundamental THEOREM  of natural arithmetic in a concrete calcule with recursive arithmetic 
 

It is a different story in the concrete calcule LAMBDA of decimal pinitive arithmetic where one has the 

tools of primitive recursion. There one can express the Ascending-prime-arrayby means of its arity and 

a pinon code and perform the proof within the calcule where one has the possibility of limited sums and 

products as was mentioned at the end of section 5.  
 

 

 

8  Open arity in other areas of mathematics and conclusion 
 

Open arity and related features are needed in many other areas of mathematics, e.g. 
 

- axiom schemata of separation and replacement of axiomatic set theory 

- induction and recursion for functions of any arity in number theories.  

- an infinite count of functions for proper defintion of recursive functions 

- geometrical space of unspecified dimension (how to express n-tuples) 

- definition and use polynomials, say for integer, rational or algebraic arithmetics 

- systems of unspecified finite cardinality (e.g. finite groups and Galois fields).  

- finite and infinite graph theories  and many more. 
 

All of them can be treated properly by the FUME-method with the two-tiers of languages Funcish and 

Mencish. Of course common English can be used as an unprecise supralanguage to talk about everything. 

However, it is important to know about the shortcomings of unprecise language. Supralanguage English 

(or any other natural language) is but a means to express comments and to reason in a plausibible fashion. 

The precise talking has to be done in Mencish and Funcish: 

 

  
 

Figure 1  Hierarchy of languages and codices pertinent to the FUME-method 

    for two example calcules, an abstract and a concrete one 
 

 

A logic with only one tier is not sufficient for the foundation of mathematics. Extending predicate logics 

to theory of types, introducing axiomatic set theory and other constructions does not solve the problem. 

One needs at least two tiers, a precise object-language together with a precise metalanguage. 
 

  

English 

abstract calcule sigma 

metacalcule sigma 

concrete calcule ALPHA 

metacalcule ALPHA 

codex ALPHA 

supra 

meta 

object 

infra 

Mencish 

Funcish 

talks about 

nothing 

talks precisely about 

talks precisely about 
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Appendix A  Selected basic metaindividuals, metarelations and metafunctions 
 

syntactic metaproperties in general (sort  ) 

petit-number  string with only  0,1,2,3,4,5,6,7,8,9 (for convention decimals are used) 

number  string with only  0,1,2,3,4,5,6,7,8,9 (for convention decimals are used) 

number-array  array of number strings separated by semicolon 

variable  formulo string followed by petit-number 

variable-array  array of variable strings separated by semicolon 

omny   multiple distinct omnicle strings e.g. 2113 
pattern   built up from function-constant strings with number and variable strings 

term   pattern with number strings only 

scheme  pattern with at least one variable strings only 

phrase   built up from equalities of pattern strings and from relation-constant strings using 

   full predicative logic 

sentence  phrase with no free variable strings 

formula  phrase with at least one variable (arity is count of distinct variable strings), no 0 

formulo  like formula but with 0 (which is left out for arity count) 

Successive-prime-array array of number strings, that are successive primes 

Ascending-prime-array array of number strings, that are ascending (not necessarily successive) primes 
 

alethic metaproperties in general 

UNEX-formulo  representing a function by a formulo with unique existence of output for input 

TRUTH   any alethic sentence 

THEOREM  quantive alethic sentence that is not basic 

Axiom , Basiom sentence introduced as basic TRUTH (in abstract or concrete calcule resp.) 

 

metaindividuals in calcule  ALPHA l (sort  ) 

XFOgbeta  ternary UNEX-formulo representing Gödel's beta-function, 

XFOadp   binary UNEX-formulo representing antidiagonal pair coding 

XFOada  unary UNEX-formulo representing auxiliary function for antidiagonal pair coding  

XFOadr  unary UNEX-formulo representing row decoding function of antidiagonal pair 

XFOadc  unary UNEX-formulo representing column decoding function of antidiagonal pair 

FAprime  unary formula characterizing number strings 

FAeupr  unary formula of products of successive primes, ending at the given argument 1 

FApripopair  binary formula , so that 1 is a prime and 2 is a power thereof 
 

syntactic binary metarelations in general and in calcule  ALPHA 

    matching length of strings 

    smaller length of strings  

   soutaining (suitably containing, i.e. in a way that avoids disambiguities) 

   suitably-free-in 

    suitably-bound-in 

   compatible (no collision of bound variable strings in constructing phrase strings)
 

   natural-minority, smaller with respect to numbering by number 
 

syntactic metafunctions in general and in calcule  ALPHA 

   synaption (concatenation except for leading 0 )

    character-deletion

    string-replacement 

 

    succession with respect to number (10 characters) 

    length as number, e.g. 14 

  arity as number, e.g.1231115 

  projection: substring of array in second place at position with number in first place  
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Appendix B  Gödel's beta-function and more in abstract Robinson-Crusoe arithmetic 
 

Based on the observation that one only needs the UNEX-formulo technique for representation of functions 

in concrete calcule ALPHA of Robinson decimal natural number arithmetic one remembers equation 

(x+y)2=x2+y2+2xy (in classical notation) to produce an eaven weaker calcule. This time the abstract 

counter piece is introduced. The interesting feature is that one can leave away the binary function 

multiplication ; unary quadration is sufficient. 
 

The ontological basis of abstract calcule alphakappa of Robinson-Crusoe natural number arithmetic 

comprises the following ingredients: 

 

sort ::     

basis-individual-constant:: n     nullum 

basis-function-constant::   ¦    ¦    succession, addition, quadration 

basis-relation-constant::     minority  
 

extra-individual-constant:: un    unus 

 

 Axiom strings 
 

A1 11n

A2 121212

A3 11n212

A4 11n1

A5 121212

A6 1nn

A7 11111

A8 11n

A9 1n1n1

A10 12121212

A11 12121212 
 

Axiom matres for the unary and multary case of induction: 
 

1sentence11

Axiom11n1111111
 

123formula1omny2sentence2113

Axiom211n11111113
 

One uses the following binary UNEX-formulo for the introduction of multiplication: 
 

XFOmul 121200 
 

 

One has a unary formula in Robinson-Crusoe arithmetic to express that a  number string is prime: 

 
 

FAprime 3031u303031311

3031303111 
 

As well one can represent Gödel's beta-function in Robinson-Crusoe arithmetic by a ternary UNEX-

formulo using auxiliary bound variable strings 21 and 22 that are limited by 12 : 

2112122121 

22212021202222 
 
 

XFOgbeta 20212223232121

2120212022222201023 
 
 


