A nice rational estimator of $\{\sqrt{n}\}$

Juan Moreno Borrallo

November 25, 2019
email: juan.morenoborrallo@gmail.com

Abstract

In this paper it is proposed a nice rational estimator of the fractional part of the square root of any positive integer n.

1 Main result

Theorem. Let it be n some positive integer number, $\lfloor\sqrt{n}\rfloor$ the integer part of the square root of n, and $\{\sqrt{n}\}$ the fractional part of the square root of n. Then, we can affirm that

$$
n \geq\left(\lfloor\sqrt{n}\rfloor+\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}\right)^{2}>n-\frac{1}{4}
$$

Corollary.

$$
\{\sqrt{n}\} \geq \frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}>\{\sqrt{n}\}-\left(\sqrt{n}-\sqrt{n-\frac{1}{4}}\right)
$$

2 Proof of the main result

2.1 Proof of the Theorem

Expanding, we find that

$$
\begin{gathered}
\left(\lfloor\sqrt{n}\rfloor+\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}\right)^{2}= \\
=\lfloor\sqrt{n}\rfloor^{2}+\frac{\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)^{2}}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}+2\lfloor\sqrt{n}\rfloor\left(\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}\right)
\end{gathered}
$$

Using the identity

$$
\frac{a}{a+1}+\frac{1}{a+1}=1
$$

And asigning the value $a=2\lfloor\sqrt{n}\rfloor$, we get that

$$
2\lfloor\sqrt{n}\rfloor\left(\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}\right)=\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)-\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}
$$

Substituting, we find that

$$
\begin{gathered}
\left(\lfloor\sqrt{n}\rfloor+\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}\right)^{2}= \\
=\lfloor\sqrt{n}\rfloor^{2}+\frac{\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)^{2}}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}+\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)-\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}
\end{gathered}
$$

As

$$
\lfloor\sqrt{n}\rfloor^{2}+\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)=n
$$

Substituting, we get that

$$
\begin{gathered}
\left(\lfloor\sqrt{n}\rfloor+\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}\right)^{2}= \\
=n+\frac{\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)^{2}}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}-\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}
\end{gathered}
$$

Expanding, we obtain that

$$
\begin{gathered}
\frac{\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)^{2}}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}-\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}= \\
=\frac{\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)^{2}-\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)(2\lfloor\sqrt{n}\rfloor+1)}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}= \\
=\frac{\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)\left(\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)-(2\lfloor\sqrt{n}\rfloor+1)\right)}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}
\end{gathered}
$$

The maximum of $n-\lfloor\sqrt{n}\rfloor^{2}$ can be found at $2\lfloor\sqrt{n}\rfloor$, as by definition of the integer part $\lfloor\sqrt{n}\rfloor$,

$$
n<(\lfloor\sqrt{n}\rfloor+1)^{2}=\lfloor\sqrt{n}\rfloor^{2}+2\lfloor\sqrt{n}\rfloor+1
$$

Subsequently, the value of the expression $\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)-(2\lfloor\sqrt{n}\rfloor+1)$ is always less than 0 .

Besides, the expression $\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)\left(\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)-(2\lfloor\sqrt{n}\rfloor+1)\right)$ is maximized at the value $n-\lfloor\sqrt{n}\rfloor^{2}=\frac{2\lfloor\sqrt{n}\rfloor+1}{2}$. As this value can not exist, being $n-\lfloor\sqrt{n}\rfloor^{2}$ some positive integer and $\frac{2\lfloor\sqrt{n}\rfloor+1}{2}$ not being some positive integer, we get that
$0 \geq \frac{\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)\left(\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)-(2\lfloor\sqrt{n}\rfloor+1)\right)}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}>\frac{\left(\frac{2\lfloor\sqrt{n}\rfloor+1}{2}\right)\left(\left(\frac{2\lfloor\sqrt{n}\rfloor+1}{2}\right)-(2\lfloor\sqrt{n}\rfloor+1)\right)}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}$
Expanding the right side of the inequation, we get that

$$
\begin{gathered}
\frac{\left(\frac{2\lfloor\sqrt{n}\rfloor+1}{2}\right)\left(\left(\frac{2\lfloor\sqrt{n}\rfloor+1}{2}\right)-(2\lfloor\sqrt{n}\rfloor+1)\right)}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}= \\
=\frac{\left(\frac{2\lfloor\sqrt{n}\rfloor+1}{2}\right)\left(-\left(\frac{2\lfloor\sqrt{n}\rfloor+1}{2}\right)\right)}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}= \\
=\frac{-\left(\frac{2\lfloor\sqrt{n}\rfloor+1}{2}\right)^{2}}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}=-\frac{1}{4}
\end{gathered}
$$

Subsequently, substituting, we find that

$$
0 \geq \frac{\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)\left(\left(n-\lfloor\sqrt{n}\rfloor^{2}\right)-(2\lfloor\sqrt{n}\rfloor+1)\right)}{(2\lfloor\sqrt{n}\rfloor+1)^{2}}>-\frac{1}{4}
$$

And therefore, we get that

$$
n \geq\left(\lfloor\sqrt{n}\rfloor+\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}\right)^{2}>n-\frac{1}{4}
$$

As we wanted to prove.

2.2 Proof of the Corollary

By definition,

$$
\lfloor\sqrt{n}\rfloor+\{\sqrt{n}\}=\sqrt{n}
$$

By the Theorem proved,

$$
\sqrt{n} \geq\lfloor\sqrt{n}\rfloor+\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}>\sqrt{n-\frac{1}{4}}
$$

Therefore, substracting, we get that

$$
\begin{gathered}
\lfloor\sqrt{n}\rfloor+\{\sqrt{n}\}-\lfloor\sqrt{n}\rfloor-\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}<\sqrt{n}-\sqrt{n-\frac{1}{4}} \\
\{\sqrt{n}\}-\frac{n-\lfloor\sqrt{n}\rfloor^{2}}{2\lfloor\sqrt{n}\rfloor+1}<\sqrt{n}-\sqrt{n-\frac{1}{4}}
\end{gathered}
$$

As we wanted to prove.

