Further Ramanujan's equations applied to various sectors of Particle Physics and Cosmology: some possible new mathematical connections. IV

Michele Nardelli¹, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further Ramanujan formulas and described new possible mathematical connections with some sectors of Particle Physics and Cosmology

¹ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10 - 80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" -Università degli Studi di Napoli "Federico II" – Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

https://www.freepressjournal.in/health/ramanujan-formula-explains-black-holes

https://www.mobipicker.com/first-picture-black-hole-finally-snapped-sagittarius-captured-glory/

From:

Manuscript Book Of Srinivasa Ramanujan Volume 1

Page 253

1 \$ (0) + \$ (1) + \$ (L) + \$ (3) + ac $\phi(r) = \frac{\phi(ri) - \phi(ri)}{i(e^{i\pi r} - i)} dr.$ Ax + 2 + Azh = BzP - 5 61 -7 (2) -+ 11 (23) 5+13 (23) - 201 「中での 少(-r)+3×中で(x7)、少(-r?). $\frac{(1-x)^5(1-x^{1/5}(1-x^{3/5}(1-x^{3/5})^5(1-x^{4/5})^5)}{(1-x^{5/5})(1-x^{1/5})(1-x^{1/5})(1-x^{2/5})^5}$ $1 - 5\left(\frac{x}{1+x} - \frac{3x^3}{1+x^3} + \frac{1}{1+x^3}\right)$ $+ \frac{11 \times 11}{1 + \times 11} - \frac{12 \times 11}{1 + 1}$

For x = 2, we obtain:

 $\frac{1-5(2/(1+2)-(3*2^3)/(1+2^3)+(4*2^4)}{(1+2^4)-(1+2^7)+(9*2^9)/(1+2^9)+(11*2^{11})/(1+2^{11})-(12*2^{12})/(1+2^{12})}$

Input:

 $1 - 5\left(\frac{2}{1+2} - \frac{3 \times 2^3}{1+2^3} + \frac{4 \times 2^4}{1+2^4} - \frac{7 \times 2^7}{1+2^7} + \frac{9 \times 2^9}{1+2^9} + \frac{11 \times 2^{11}}{1+2^{11}} - \frac{12 \times 2^{12}}{1+2^{12}}\right)$

Exact result:

-5 242 700 117 403 441 953

Decimal approximation:

 $-12.9949304429428042155050741587105097124096065438192046428\ldots$

-12.9949304429428.....

$7+11*((((1-5(2/(1+2)-(3*2^3)/(1+2^3)+(4*2^4)/(1+2^4)-(7*2^7)/(1+2^7)+(9*2^9)/(1+2^9)+(11*2^{11})/(1+2^{11})-(12*2^{12})/(1+2^{12}))))))^2$

Where 7 and 11 are Lucas numbers

Input:

 $7+11\left(1-5\left(\frac{2}{1+2}-\frac{3\times 2^3}{1+2^3}+\frac{4\times 2^4}{1+2^4}-\frac{7\times 2^7}{1+2^7}+\frac{9\times 2^9}{1+2^9}+\frac{11\times 2^{11}}{1+2^{11}}-\frac{12\times 2^{12}}{1+2^{12}}\right)\right)^2$

Exact result: 303 484 307 550 793 130 042 162 765 409 440 454 209

Decimal approximation:

1864.550389386138323433859642667399848280464491929658113380... 1864.550389.... result practically equal to the rest mass of D meson 1864.84

Page 260

For x = 2, we obtain:

 $1+240((1/(e^{44-1})+2^{3}/(e^{84-1})+3^{3}/(e^{124-1})))$

Input:

1 + 240	(1	2 ³	3^{3})	
	$e^{44} - 1$	$e^{84} - 1$	$e^{124} - 1$	

Decimal approximation:

1.0000000000000018674717378721112273859584943229034676537...

 $1.00000000000000018674717378721112273859584943229034676537\ldots$

Alternate forms:

$$1 + \frac{240}{e^{44} - 1} + \frac{1920}{e^{84} - 1} + \frac{6480}{e^{124} - 1}$$

Alternative representation:

$$\begin{split} 1 + 240 \left(\frac{1}{e^{44} - 1} + \frac{2^3}{e^{84} - 1} + \frac{3^3}{e^{124} - 1} \right) = \\ 1 + 240 \left(\frac{1}{\exp^{44}(z) - 1} + \frac{2^3}{\exp^{84}(z) - 1} + \frac{3^3}{\exp^{124}(z) - 1} \right) \text{ for } z = 1 \end{split}$$

Series representations:

$$\begin{split} 1+240\left(\frac{1}{e^{44}-1}+\frac{2^{3}}{e^{84}-1}+\frac{3^{3}}{e^{124}-1}\right) = \\ 1+\frac{240}{-1+\sum_{k=0}^{\infty}\frac{44^{k}}{k!}}+\frac{1920}{-1+\sum_{k=0}^{\infty}\frac{84^{k}}{k!}}+\frac{6480}{-1+\sum_{k=0}^{\infty}\frac{124^{k}}{k!}} \\ 1+240\left(\frac{1}{e^{44}-1}+\frac{2^{3}}{e^{84}-1}+\frac{3^{3}}{e^{124}-1}\right) = \\ 1+\frac{240}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{44}}+\frac{1920}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{84}}+\frac{6480}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{124}} \\ 1+240\left(\frac{1}{e^{44}-1}+\frac{2^{3}}{e^{84}-1}+\frac{3^{3}}{e^{124}-1}\right) = \\ 1+\frac{6480}{-1+\frac{6480}{-1+\frac{1}{\left(\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!}\right)^{124}}}+\frac{1920}{-1+\frac{1}{\left(\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!}\right)^{84}}}+\frac{240}{-1+\frac{240}{\left(\sum_{k=0}^{\infty}\frac{(-1)^{k}}{k!}\right)^{124}}} \end{split}$$

$$1-504((1/(e^{44-1})+2^{5}/(e^{84-1})+3^{5}/(e^{124-1})))$$

Input:

$$1 - 504 \left(\frac{1}{e^{44} - 1} + \frac{2^5}{e^{84} - 1} + \frac{3^5}{e^{124} - 1} \right)$$

Decimal approximation:

0.9999999999999999960783093504685660226319393489434666881702...

0.999999999999999999960783093504685660226319393489434666881702...

Alternate forms: $1 - \frac{504}{e^{44} - 1} - \frac{16128}{e^{84} - 1} - \frac{122472}{e^{124} - 1}$

Alternative representation:

$$\begin{split} 1 - 504 \left(\frac{1}{e^{44} - 1} + \frac{2^5}{e^{84} - 1} + \frac{3^5}{e^{124} - 1} \right) = \\ 1 - 504 \left(\frac{1}{\exp^{44}(z) - 1} + \frac{2^5}{\exp^{84}(z) - 1} + \frac{3^5}{\exp^{124}(z) - 1} \right) \text{ for } z = 1 \end{split}$$

Series representations:

$$\begin{split} 1 - 504 \left(\frac{1}{e^{44} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1} \right) &= \\ 1 - \frac{504}{-1 + \sum_{k=0}^{\infty} \frac{44^{k}}{k!}} - \frac{16128}{-1 + \sum_{k=0}^{\infty} \frac{84^{k}}{k!}} - \frac{122472}{-1 + \sum_{k=0}^{\infty} \frac{124^{k}}{k!}} \\ 1 - 504 \left(\frac{1}{e^{44} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1} \right) &= \\ 1 - \frac{504}{-1 + \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{44}} - \frac{16128}{-1 + \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{84}} - \frac{122472}{-1 + \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{124}} \\ 1 - 504 \left(\frac{1}{e^{44} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1} \right) &= \\ 1 - \frac{122472}{-1 + \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{124}} - \frac{16128}{-1 + \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{84}} - \frac{504}{-1 + \left(\sum_{k=0}^{\infty} \frac{1}{k!} \right)^{124}} \end{split}$$

Now, we have:

Input:

$$1 + 240\left(\frac{1}{e^{44} - 1} + \frac{2^3}{e^{84} - 1} + \frac{3^3}{e^{124} - 1}\right) - \left(1 - 504\left(\frac{1}{e^{44} - 1} + \frac{2^5}{e^{84} - 1} + \frac{3^5}{e^{124} - 1}\right)\right)$$

Exact result: 240 $\left(\frac{1}{e^{44}-1} + \frac{8}{e^{84}-1} + \frac{27}{e^{124}-1}\right) + 504 \left(\frac{1}{e^{44}-1} + \frac{32}{e^{84}-1} + \frac{243}{e^{124}-1}\right)$

Decimal approximation:

 $5.7891623874035452047540191453794367794835417410027362...\times10^{-17}\\5.7891623874\ldots*10^{-17}$

Property: 240 $\left(\frac{1}{-1+e^{44}} + \frac{8}{-1+e^{84}} + \frac{27}{-1+e^{124}}\right) + 504 \left(\frac{1}{-1+e^{44}} + \frac{32}{-1+e^{84}} + \frac{243}{-1+e^{124}}\right)$

Alternate forms: $\frac{744}{e^{44}-1} + \frac{18\,048}{e^{84}-1} + \frac{128\,952}{e^{124}-1}$ $24\left(\frac{31}{e^{44}-1}+\frac{752}{e^{84}-1}+\frac{5373}{e^{124}-1}\right)$

Alternative representation:

$$\begin{split} 1+240\left(\frac{1}{e^{44}-1}+\frac{2^3}{e^{84}-1}+\frac{3^3}{e^{124}-1}\right)-\left(1-504\left(\frac{1}{e^{44}-1}+\frac{2^5}{e^{84}-1}+\frac{3^5}{e^{124}-1}\right)\right)=\\ 1+240\left(\frac{1}{\exp^{44}(z)-1}+\frac{2^3}{\exp^{84}(z)-1}+\frac{3^3}{\exp^{124}(z)-1}\right)-\\ \left(1-504\left(\frac{1}{\exp^{44}(z)-1}+\frac{2^5}{\exp^{84}(z)-1}+\frac{3^5}{\exp^{124}(z)-1}\right)\right) \text{ for } z=1 \end{split}$$

Series representations:

$$\begin{split} 1+240\left(\frac{1}{e^{44}-1}+\frac{2^3}{e^{84}-1}+\frac{3^3}{e^{124}-1}\right) - \left(1-504\left(\frac{1}{e^{44}-1}+\frac{2^5}{e^{84}-1}+\frac{3^5}{e^{124}-1}\right)\right) = \\ \frac{744}{-1+\sum_{k=0}^{\infty}\frac{44^k}{k!}} + \frac{18\,048}{-1+\sum_{k=0}^{\infty}\frac{84^k}{k!}} + \frac{128\,952}{-1+\sum_{k=0}^{\infty}\frac{124^k}{k!}} \\ 1+240\left(\frac{1}{e^{44}-1}+\frac{2^3}{e^{84}-1}+\frac{3^3}{e^{124}-1}\right) - \left(1-504\left(\frac{1}{e^{44}-1}+\frac{2^5}{e^{84}-1}+\frac{3^5}{e^{124}-1}\right)\right) = \\ \frac{744}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{44}} + \frac{18\,048}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{84}} + \frac{128\,952}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{124}} \\ 1+240\left(\frac{1}{e^{44}-1}+\frac{2^3}{e^{84}-1}+\frac{3^3}{e^{124}-1}\right) - \left(1-504\left(\frac{1}{e^{44}-1}+\frac{2^5}{e^{84}-1}+\frac{3^5}{e^{124}-1}\right)\right) = \\ \frac{128\,952}{-1+\frac{1}{\left(\sum_{k=0}^{\infty}\frac{(-1)^k}{k!}\right)^{124}}} + \frac{18\,048}{-1+\frac{1}{\left(\sum_{k=0}^{\infty}\frac{(-1)^k}{k!}\right)^{84}}} + \frac{744}{-1+\frac{1}{\left(\sum_{k=0}^{\infty}\frac{(-1)^k}{k!}\right)^{44}}} \end{split}$$

1)+3^5/(e^124-1))))))]^1/4096

Input:

$$4096 \sqrt{1+240\left(\frac{1}{e^{44}-1}+\frac{2^3}{e^{84}-1}+\frac{3^3}{e^{124}-1}\right) - \left(1-504\left(\frac{1}{e^{44}-1}+\frac{2^5}{e^{84}-1}+\frac{3^5}{e^{124}-1}\right)\right)}$$

Decimal approximation:

0.990913613323507297570412713702190684262962706545067827156...

0.9909136133235..... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}} \approx 0.9991104684$$

and to the dilaton value **0**. **989117352243** = ϕ

Property:

4096 240	240	1	8	27	. 504	(1	32	243
	240	$-1 + e^{44}$	$-1 + e^{84}$	$-1 + e^{124}$)+504	$(-1+e^{44})$	$+\frac{1}{-1+e^{84}}$	$\left(\frac{1}{-1+e^{124}}\right)$

is a transcendental number

Alternate forms:

$$2^{3/4096} \sqrt[4096]{3\left(\frac{31}{e^{44}-1} + \frac{752}{e^{84}-1} + \frac{5373}{e^{124}-1}\right)}$$

$$2^{3/4096} \\ \left(\left(3 \left(6156 + 12\,312\,e^4 + 18\,468\,e^8 + 24\,624\,e^{12} + 30\,780\,e^{16} + 36\,936\,e^{20} + 43\,092\,e^{24} + 49\,248\,e^{28} + 55\,404\,e^{32} + 61\,560\,e^{36} + 67\,716\,e^{40} + 67\,747\,e^{44} + 67\,778\,e^{48} + 67\,809\,e^{52} + 67\,840\,e^{56} + 67\,871\,e^{60} + 67\,902\,e^{64} + 67\,933\,e^{68} + 67\,964\,e^{72} + 67\,995\,e^{76} + 68\,026\,e^{80} + 62\,653\,e^{84} + 57\,280\,e^{88} + 51\,907\,e^{92} + 46\,534\,e^{96} + 41\,161\,e^{100} + 35\,788\,e^{104} + 30\,415\,e^{108} + 25\,042\,e^{112} + 19\,669\,e^{116} + 14\,296\,e^{120} + 8140\,e^{124} + 7357\,e^{128} + 6574\,e^{132} + 5791\,e^{136} + 5008\,e^{140} + 4225\,e^{144} + 3442\,e^{148} + 2659\,e^{152} + 1876\,e^{156} + 1093\,e^{160} + 310\,e^{164} + 279\,e^{168} + 248\,e^{172} + 217\,e^{176} + 186\,e^{180} + 155\,e^{184} + 124\,e^{188} + 93\,e^{192} + 62\,e^{196} + 31\,e^{200} \right) \right) / \\ \left(-1 - 2\,e^4 - 3\,e^8 - 4\,e^{12} - 5\,e^{16} - 6\,e^{20} - 7\,e^{24} - 8\,e^{28} - 9\,e^{32} - 10\,e^{36} - 11\,e^{60} - 11\,e^{64} - 11\,e^{68} - 11\,e^{72} - 11\,e^{76} - 11\,e^{80} - 10\,e^{84} - 9\,e^{88} - 8\,e^{92} - 7\,e^{96} - 6\,e^{100} - 5\,e^{104} - 4\,e^{108} - 3\,e^{112} - 2\,e^{116} - e^{120} + e^{124} + 2\,e^{128} + 3\,e^{132} + 4\,e^{136} + 5\,e^{140} + 6\,e^{144} + 7\,e^{148} + 8\,e^{152} + 9\,e^{156} + 10\,e^{160} + 11\,e^{164} + 11\,e^{168} + 11\,e^{172} + 11\,e^{176} + 11\,e^{176} + 11\,e^{180} + 11\,e^{126} + 11\,e^{126} + 11\,e^{120} + 11\,e^{200} + 11\,e^{204} + 10\,e^{208} + 9\,e^{212} + 8\,e^{216} + 7\,e^{220} + 6\,e^{224} + 5\,e^{228} + 4\,e^{232} + 3\,e^{236} + 2\,e^{240} + e^{244} \right) \right) \land (1/4096)$$

All 4096th roots of 240 $(1/(e^{44} - 1) + 8/(e^{84} - 1) + 27/(e^{124} - 1)) + 504$ $(1/(e^{44} - 1) + 32/(e^{84} - 1) + 243/(e^{124} - 1)):$

$$\begin{split} &40\% \sqrt{240 \left(\frac{1}{e^{44}-1} + \frac{8}{e^{84}-1} + \frac{27}{e^{124}-1}\right) + 504 \left(\frac{1}{e^{44}-1} + \frac{32}{e^{84}-1} + \frac{243}{e^{124}-1}\right) e^{0}} \\ &\approx 0.990914 \text{ (real, principal root)} \\ &40\% \sqrt{240 \left(\frac{1}{e^{44}-1} + \frac{8}{e^{84}-1} + \frac{27}{e^{124}-1}\right) + 504 \left(\frac{1}{e^{44}-1} + \frac{32}{e^{84}-1} + \frac{243}{e^{124}-1}\right) e^{(i\pi)/2048}} \\ &\approx 0.990912 + 0.0015200 i \\ &40\% \sqrt{240 \left(\frac{1}{e^{44}-1} + \frac{8}{e^{84}-1} + \frac{27}{e^{124}-1}\right) + 504 \left(\frac{1}{e^{44}-1} + \frac{32}{e^{84}-1} + \frac{243}{e^{124}-1}\right) e^{(i\pi)/1024}} \\ &\approx 0.990909 + 0.0030401 i \\ &40\% \sqrt{240 \left(\frac{1}{e^{44}-1} + \frac{8}{e^{84}-1} + \frac{27}{e^{124}-1}\right) + 504 \left(\frac{1}{e^{44}-1} + \frac{32}{e^{84}-1} + \frac{243}{e^{124}-1}\right) e^{(i\pi)/2048}} \\ &\approx 0.990903 + 0.0045601 i \\ &40\% \sqrt{240 \left(\frac{1}{e^{44}-1} + \frac{8}{e^{84}-1} + \frac{27}{e^{124}-1}\right) + 504 \left(\frac{1}{e^{44}-1} + \frac{32}{e^{84}-1} + \frac{243}{e^{124}-1}\right) e^{(i\pi)/2048}} \\ &\approx 0.990903 + 0.0045601 i \\ &40\% \sqrt{240 \left(\frac{1}{e^{44}-1} + \frac{8}{e^{84}-1} + \frac{27}{e^{124}-1}\right) + 504 \left(\frac{1}{e^{44}-1} + \frac{32}{e^{84}-1} + \frac{243}{e^{124}-1}\right) e^{(i\pi)/2048}} \\ &\approx 0.990903 + 0.0045601 i \\ &40\% \sqrt{240 \left(\frac{1}{e^{44}-1} + \frac{8}{e^{84}-1} + \frac{27}{e^{124}-1}\right) + 504 \left(\frac{1}{e^{44}-1} + \frac{32}{e^{84}-1} + \frac{243}{e^{124}-1}\right) e^{(i\pi)/512}} \\ &\approx 0.990895 + 0.006080 i \end{aligned}$$

Alternative representation:

$$\begin{split} &4096 \sqrt{1+240\left(\frac{1}{e^{44}-1}+\frac{2^3}{e^{84}-1}+\frac{3^3}{e^{124}-1}\right) - \left(1-504\left(\frac{1}{e^{44}-1}+\frac{2^5}{e^{84}-1}+\frac{3^5}{e^{124}-1}\right)\right)} = \\ & \left(1+240\left(\frac{1}{\exp^{44}(z)-1}+\frac{2^3}{\exp^{84}(z)-1}+\frac{3^3}{\exp^{124}(z)-1}\right) - \\ & \left(1-504\left(\frac{1}{\exp^{44}(z)-1}+\frac{2^5}{\exp^{84}(z)-1}+\frac{3^5}{\exp^{124}(z)-1}\right)\right) \right) \wedge (1/4) \\ & 4096) \text{ for } z = 1 \end{split}$$

Series representations:

$$\begin{split} &4006 \sqrt{1+240} \left(\frac{1}{e^{44}-1} + \frac{2^3}{e^{84}-1} + \frac{3^3}{e^{124}-1}\right) - \left(1-504 \left(\frac{1}{e^{44}-1} + \frac{2^5}{e^{84}-1} + \frac{3^5}{e^{124}-1}\right)\right) = \\ &\left(240 \left(\frac{1}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{44}} + \frac{8}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{84}} + \frac{27}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{124}}\right) + \\ & 504 \left(\frac{1}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{44}} + \frac{32}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{84}} + \frac{243}{-1+\left(\sum_{k=0}^{\infty}\frac{1}{k!}\right)^{124}}\right)\right) \wedge (1/4096) \\ & 4006 \sqrt{1+240} \left(\frac{1}{e^{44}-1} + \frac{2^3}{e^{84}-1} + \frac{3^3}{e^{124}-1}\right) - \left(1-504 \left(\frac{1}{e^{44}-1} + \frac{2^5}{e^{84}-1} + \frac{3^5}{e^{124}-1}\right)\right) = \\ & \left(240 \left(\frac{27}{-1+\frac{1}{\left(\sum_{k=0}^{\infty}\frac{(-1)^k}{k!}\right)^{124}} + \frac{8}{-1+\frac{1}{\left(\sum_{k=0}^{\infty}\frac{(-1)^k}{k!}\right)^{84}} + \frac{1}{-1+\frac{1}{\left(\sum_{k=0}^{\infty}\frac{(-1)^k}{k!}\right)^{44}}\right) + \end{split} \right. \end{split}$$

$$504 \left(\frac{243}{-1 + \frac{1}{\left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}\right)^{1/24}}} + \frac{32}{-1 + \frac{1}{\left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}\right)^{8/4}}} + \frac{1}{-1 + \frac{1}{\left(\sum_{k=0}^{\infty} \frac{(-1)^k}{k!}\right)^{4/4}}} \right) \right) \uparrow (1/4)$$

$$4096)$$

$$\begin{split} &400\% \left\{ 1 + 240 \left(\frac{1}{e^{44} - 1} + \frac{2^3}{e^{84} - 1} + \frac{3^3}{e^{124} - 1} \right) - \left(1 - 504 \left(\frac{1}{e^{44} - 1} + \frac{2^5}{e^{84} - 1} + \frac{3^5}{e^{124} - 1} \right) \right) = \\ & \left(240 \left(\frac{1}{-1 + \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!} \right)^{44}} + \frac{8}{-1 + \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!} \right)^{84}} + \frac{27}{-1 + \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!} \right)^{124}} \right) + \\ & 504 \left(\frac{1}{-1 + \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!} \right)^{44}} + \frac{32}{-1 + \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!} \right)^{84}} + \frac{32}{-1 + \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!} \right)^{84}} + \frac{243}{-1 + \left(\sum_{k=0}^{\infty} \frac{(-1+k)^2}{k!} \right)^{124}} \right) \right) \land (1/4096) \end{split}$$

Integral representation:

$$(1+z)^{a} = \frac{\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \frac{\Gamma(s)\,\Gamma(-a-s)}{z^{s}}\,ds}{(2\,\pi\,i)\,\Gamma(-a)} \quad \text{for } (0 < \gamma < -\operatorname{Re}(a) \text{ and } |\operatorname{arg}(z)| < \pi)$$

And:

Input interpretation:

$$2\sqrt{\log_{0.9909136133}\left(1+240\left(\frac{1}{e^{44}-1}+\frac{2^{3}}{e^{84}-1}+\frac{3^{3}}{e^{124}-1}\right)-\left(1-504\left(\frac{1}{e^{44}-1}+\frac{2^{5}}{e^{84}-1}+\frac{3^{5}}{e^{124}-1}\right)\right)-\pi+\frac{1}{\phi}}$$

 $\log_b(x)$ is the base- b logarithm ϕ is the golden ratio

Result:

125.47644...

125.47644.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representation:

$$\begin{split} & 2\sqrt{\log_{0.990914}} \bigg(1+240 \left(\frac{1}{e^{44}-1}+\frac{2^3}{e^{84}-1}+\frac{3^3}{e^{124}-1}\right) - \\ & \left(1-504 \left(\frac{1}{e^{44}-1}+\frac{2^5}{e^{84}-1}+\frac{3^5}{e^{124}-1}\right)\right) - \pi + \frac{1}{\phi} = \\ & -\pi + \frac{1}{\phi} + 2\sqrt{\frac{\log\Bigl(240 \left(\frac{1}{-1+e^{44}}+\frac{8}{-1+e^{84}}+\frac{27}{-1+e^{124}}\right)+504 \left(\frac{1}{-1+e^{44}}+\frac{2^5}{-1+e^{84}}+\frac{3^5}{-1+e^{124}}\right) \right)}{\log(0.990914)} \end{split}$$

Series representations:

$$\begin{split} & 2 \sqrt{\log_{0.900914} \left(1+240 \left(\frac{1}{e^{44}-1} + \frac{2^3}{e^{84}-1} + \frac{3^3}{e^{124}-1} \right) - \left(1-504 \left(\frac{1}{e^{44}-1} + \frac{2^5}{e^{84}-1} + \frac{3^5}{e^{124}-1} \right) \right) \right) - \pi + \frac{1}{\phi} = \\ & \left(1-504 \left(\frac{1}{e^{44}-1} + \frac{2^5}{e^{84}-1} + \frac{3^5}{e^{124}-1} \right) \right) \right) - \pi + \frac{1}{\phi} = \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-\frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + \frac{744}{-1 + e^{44}} + \frac{18048}{1 - 1 + e^{84}} + \frac{128952}{1 + e^{84}} + \frac{3^3}{-1 + e^{124}} \right) \right) - \pi + \frac{1}{\phi} = \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-\frac{1}{1 + 240} \left(\frac{1}{e^{44}-1} + \frac{2^3}{e^{84}-1} + \frac{3^3}{e^{124}-1} + \frac{3}{e^{124}-1} \right) - \\ & \left(1-504 \left(\frac{1}{e^{44}-1} + \frac{2^5}{e^{84}-1} + \frac{3^5}{e^{124}-1} \right) \right) \right) - \pi + \frac{1}{\phi} = \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) \right) } \\ & \sum_{k=0}^{\infty} \left(\frac{1}{k} \right) \left(-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) \right) \right)^{-k} \\ & 2 \sqrt{\log_{0.900914} \left(1 + 240 \left(\frac{1}{e^{44}-1} + \frac{2^3}{e^{84}-1} + \frac{3^3}{e^{124}-1} \right) - \\ & \left(1-504 \left(\frac{1}{e^{44}-1} + \frac{2^5}{e^{84}-1} + \frac{3^{2}}{e^{124}-1} \right) \right) - \pi + \frac{1}{\phi} = \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) \right) \\ & \sum_{k=0}^{\infty} \frac{(-1)^k \left(-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) \right) \\ & \sum_{k=0}^{\infty} \frac{(-1)^k \left(-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) \right) \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) \right) } \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) \right) } \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) \right) } \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-1 + \log_{0.900914} \left(24 \left(\frac{31}{-1 + e^{44}} + \frac{752}{-1 + e^{84}} + \frac{5373}{-1 + e^{124}} \right) } \right) } \\ & \frac{1}{\phi} - \frac{1}{\phi} - \frac{1}{\phi} - \frac{1}{\phi} - \frac{1}{\phi} - \frac{1}{\phi} - \frac{1}{\phi} -$$

In conclusion:

 $(8/((sqrt(729)*64^{6})))*1/[1+240((1/(e^{44-1})+2^{3}/(e^{84-1})+3^{3}/(e^{124-1})))-((((1-504((1/(e^{44-1})+2^{5}/(e^{84-1})+3^{5}/(e^{124-1}))))))))]-987$

where 987 is the mass of the scalar meson $f_0(980)$

Mass ~ 987 OLLER 99C RVUE $\pi\pi \rightarrow \pi\pi$, K K, $\eta\eta$

990 ±20 OUR ESTIMATE (<u>http://pdg.lbl.gov/2019/listings/rpp2019-list-f0-980.pdf</u>)

$$\frac{\mathbf{Input:}}{\sqrt{729 \times 64^6}} \times \frac{1}{1 + 240\left(\frac{1}{e^{44} - 1} + \frac{2^3}{e^{84} - 1} + \frac{3^3}{e^{124} - 1}\right) - \left(1 - 504\left(\frac{1}{e^{44} - 1} + \frac{2^5}{e^{84} - 1} + \frac{3^5}{e^{124} - 1}\right)\right)} - 987$$

Exact result:

$$\frac{1}{231928233984\left(240\left(\frac{1}{e^{44}-1}+\frac{8}{e^{84}-1}+\frac{27}{e^{124}-1}\right)+504\left(\frac{1}{e^{44}-1}+\frac{32}{e^{84}-1}+\frac{243}{e^{124}-1}\right)\right)}-987$$

Decimal approximation:

73491.45297213316327945104616731626451390589928225492526220... 73491.45297213...

Property:

-987+

 $\frac{1}{231928233984\left(240\left(\frac{1}{-1+e^{44}}+\frac{8}{-1+e^{84}}+\frac{27}{-1+e^{124}}\right)+504\left(\frac{1}{-1+e^{44}}+\frac{32}{-1+e^{84}}+\frac{243}{-1+e^{124}}\right)\right)}$ is a transcendental number

Alternate forms:

 $\frac{1}{5566\,277\,615\,616\left(\frac{31}{e^{44}-1}+\frac{752}{e^{84}-1}+\frac{5373}{e^{124}-1}\right)}-987$

and also:

golden ratio+ $1/10^{13*1}/[1+240((1/(e^{44-1})+2^{3}/(e^{84-1})+3^{3}/(e^{124-1})))-((((1-504((1/(e^{44-1})+2^{5}/(e^{84-1})+3^{5}/(e^{124-1}))))))))]$

Input:

 $\phi + \frac{1}{10^{13}} \times \frac{1}{1 + 240 \left(\frac{1}{e^{44} - 1} + \frac{2^3}{e^{84} - 1} + \frac{3^3}{e^{124} - 1}\right) - \left(1 - 504 \left(\frac{1}{e^{44} - 1} + \frac{2^5}{e^{84} - 1} + \frac{3^5}{e^{124} - 1}\right)\right)}$

 ϕ is the golden ratio

Decimal approximation:

1728.983640757473947316464488291056939068720652229081559397...

1728.9836407....

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross– Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Property:

$$\frac{1}{10\,000\,000\,000\,000\,\left(240\left(\frac{1}{-1+e^{44}}+\frac{8}{-1+e^{84}}+\frac{27}{-1+e^{124}}\right)+504\left(\frac{1}{-1+e^{44}}+\frac{32}{-1+e^{84}}+\frac{243}{-1+e^{124}}\right)\right)} + \phi \text{ is a transcendental number}$$

Alternate forms:

$$\phi + \frac{1}{240\,000\,000\,000\,000\left(\frac{31}{e^{44}-1} + \frac{752}{e^{84}-1} + \frac{5373}{e^{124}-1}\right)}$$

1

Alternative representations:

$$\begin{split} & \phi + \frac{1}{\left(1 + 240\left(\frac{1}{e^{44} - 1} + \frac{2^{3}}{e^{84} - 1} + \frac{3^{3}}{e^{124} - 1}\right) - \left(1 - 504\left(\frac{1}{e^{44} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1}\right)\right)\right) 10^{13}} = \\ & -2\cos(216^{\circ}) + \frac{1}{10^{13}\left(240\left(\frac{1}{-1 + e^{44}} + \frac{8}{-1 + e^{84}} + \frac{27}{-1 + e^{124}}\right) + 504\left(\frac{1}{-1 + e^{44}} + \frac{2^{5}}{-1 + e^{84}} + \frac{3^{5}}{-1 + e^{124}}\right)\right)} \\ & \phi + \frac{1}{\left(1 + 240\left(\frac{1}{e^{44} - 1} + \frac{2^{3}}{e^{84} - 1} + \frac{3^{3}}{e^{124} - 1}\right) - \left(1 - 504\left(\frac{1}{e^{44} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1}\right)\right)\right) 10^{13}} = \\ & 2\cos\left(\frac{\pi}{5}\right) + \frac{1}{10^{13}\left(240\left(\frac{1}{-1 + e^{44}} + \frac{8}{-1 + e^{84}} + \frac{27}{-1 + e^{124}}\right) + 504\left(\frac{1}{-1 + e^{44}} + \frac{2^{5}}{e^{124} - 1}\right)\right)\right) 10^{13}} = \\ & \frac{1}{10^{13}\left(240\left(\frac{1}{e^{44} - 1} + \frac{2^{3}}{e^{84} - 1} + \frac{3^{3}}{e^{124} - 1}\right) - \left(1 - 504\left(\frac{1}{e^{44} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1}\right)\right)\right) 10^{13}} = \\ & \frac{1}{10^{13}\left(240\left(\frac{1}{e^{44} - 1} + \frac{2^{3}}{e^{84} - 1} + \frac{3^{3}}{e^{124} - 1}\right) - \left(1 - 504\left(\frac{1}{e^{44} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1}\right)\right)}\right) + \\ & 10^{13}\left(240\left(\frac{1}{e^{44} - 1} + \frac{2^{3}}{e^{84} - 1} + \frac{2^{7}}{e^{124} + 1}\right) + 504\left(\frac{1}{e^{14} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1}\right)\right)\right) + \\ & 10^{13}\left(240\left(\frac{1}{e^{44} - 1} + \frac{2^{3}}{e^{124} - 1}\right) + 504\left(\frac{1}{e^{14} - 1} + \frac{2^{5}}{e^{84} - 1} + \frac{3^{5}}{e^{124} - 1}\right)\right) + \\ & 10^{13}\left(240\left(\frac{1}{e^{44} - 1} + \frac{2^{3}}{e^{84} - 1 + e^{84} + \frac{27}{e^{14} - 1 + e^{84} + \frac{25}{e^{14} - 1 + e^{84} + \frac{35}{e^{124} - 1}}\right)\right) + \\ & 10^{13}\left(240\left(\frac{1}{e^{14} - 1} + \frac{2^{3}}{e^{14} - 1 + e^{14} + \frac{27}{e^{14} - 1 + e^{14} + \frac{25}{e^{14} - 1 + e^{124} + \frac{25}{e^{14} - 1 + e^{14} + \frac{25}{e^{14} - 1 +$$

We have also the following mathematical connections:

$$\left(\frac{1}{2^{31928}2^{33984}\left(2^{40}\left(\frac{1}{e^{44}-1}+\frac{8}{e^{84}-1}+\frac{27}{e^{124}-1}\right)+504\left(\frac{1}{e^{44}-1}+\frac{32}{e^{84}-1}+\frac{243}{e^{124}-1}\right)\right)}-987\right)=73491.4529..\Rightarrow$$

$$\Rightarrow -3927 + 2 \begin{pmatrix} 13 \\ \sqrt{13} & N \exp\left[\int d\hat{\sigma} \left(-\frac{1}{4u^2} \mathbf{P}_i D \mathbf{P}_i\right)\right] |B_p\rangle_{\rm NS} + \\ \int \left[d\mathbf{X}^{\mu}\right] \exp\left\{\int d\hat{\sigma} \left(-\frac{1}{4v^2} D \mathbf{X}^{\mu} D^2 \mathbf{X}^{\mu}\right)\right\} |\mathbf{X}^{\mu}, \mathbf{X}^i = 0\rangle_{\rm NS} \end{pmatrix} =$$

$$-3927 + 2\sqrt[13]{2.2983717437 \times 10^{59}} + 2.0823329825883 \times 10^{59}$$

= 73490.8437525.... ⇒

$$\Rightarrow \left(A(r) \times \frac{1}{B(r)} \left(-\frac{1}{\phi(r)} \right) \times \frac{1}{e^{\Lambda(r)}} \right) \Rightarrow$$

 $\Rightarrow \left(\begin{array}{c} -0.000029211892 \times \frac{1}{0.0003644621} \left(-\frac{1}{0.0005946833} \right) \times \frac{1}{0.00183393} \right) = \\ = 73491.78832548118710549159572042220548025195726563413398700... \end{array}$

 $= 73491.7883254... \Rightarrow$

$$\left(I_{21} \ll \int_{-\infty}^{+\infty} \exp\left(-\left(\frac{t}{H}\right)^{2}\right) \Big| \sum_{\lambda \leqslant p^{1-\epsilon_{2}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)} \Big|^{2} dt \ll \right) \\ \ll H\left\{ \left(\frac{4}{\epsilon_{2} \log T}\right)^{2r} (\log T) (\log X)^{-2\beta} + (\epsilon_{2}^{-2r} (\log T)^{-2r} + \epsilon_{2}^{-r} h_{1}^{r} (\log T)^{-r}) T^{-\epsilon_{1}} \right\} \right) \\ /(26 \times 4)^{2} - 24 = \left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2} - 24} \right) = 73493.30662...$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general

asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Page 262

For x = 2 and z = 1, we obtain:

1/4*sqrt(2(1-2)) ((((1-1232*2(1-2)+7936*2^2(1-2)^2))))

Input:

 $\frac{1}{4}\sqrt{2(1-2)}\left(1-1232\times2(1-2)+7936\times2^2(1-2)^2\right)$

Result:

 $\frac{34209\,i}{2\,\sqrt{2}}$

Decimal approximation:

12094.70793880530213111424239162239039244747629619250415882... i

Polar coordinates:

 $r \approx 12\,094.7$ (radius), $\theta = 90^{\circ}$ (angle) 12094.7

From which:

2Pi(((1/4*sqrt(2(1-2)) ((((1-1232*2(1-2)+7936*2^2(1-2)^2)))))))-2517.9i+18i

Where 2517.9 is the rest mass of charmed Sigma baryon and 18 is a Lucas number

Input interpretation:

 $2\,\pi\left(\frac{1}{4}\,\sqrt{2\,(1-2)}\,\left(1-1232\times2\,(1-2)+7936\times2^2\,(1-2)^2\right)\right)+i\times(-2517.9)+18\,i$

i is the imaginary unit

Result:

73493.4... i

Polar coordinates:

r = 73493.4 (radius), $\theta = 90^{\circ}$ (angle) 73493.4

We have the following mathematical connections:

$$\left(2\pi \left(\frac{1}{4} \sqrt{2(1-2)} (1-1232 \times 2(1-2)+7936 \times 2^{2}(1-2)^{2}} \right) + i \times (-2517.9) + 18i \right) = 73493.4 \Rightarrow$$

$$\Rightarrow -3927 + 2 \left(\int_{13}^{13} \frac{N \exp \left[\int d\bar{\sigma} \left(-\frac{1}{4u^{2}} P_{i} D P_{i} \right) \right] |Bp\rangle_{NS} + \int [dX^{\mu}] \exp \left\{ \int d\bar{\sigma} \left(-\frac{1}{4v^{2}} DX^{\mu} D^{2} X^{\mu} \right) \right\} |X^{\mu}, X^{i} = 0 \rangle_{NS} \right) =$$

$$-3927 + 2 \int_{13}^{13} 2.2983717437 \times 10^{59} + 2.0823329825883 \times 10^{59}$$

$$= 73490.8437525.... \Rightarrow$$

$$\Rightarrow \left(A(r) \times \frac{1}{B(r)} \left(-\frac{1}{\phi(r)} \right) \times \frac{1}{e^{\Lambda(r)}} \right) \Rightarrow$$

$$\Rightarrow \left(-0.000029211892 \times \frac{1}{0.0003644621} \left(-\frac{1}{0.0005946833} \right) \times \frac{1}{0.00183393} \right) =$$

$$= 73491.78832548118710549159572042220548025195726563413398700...$$

$$= 73491.7883254... \Rightarrow$$

$$\left(I_{21} \ll \int_{-\infty}^{+\infty} \exp\left(-\left(\frac{t}{H}\right)^{2}\right) \Big| \sum_{\lambda \leqslant P^{1-\varepsilon_{3}}} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)} \Big|^{2} dt \ll \right) / (\log T)^{2r} (\log T) (\log T)^{-2\beta} + (\varepsilon_{2}^{-2r} (\log T)^{-2r} + \varepsilon_{2}^{-r} h_{1}^{r} (\log T)^{-r}) T^{-\varepsilon_{1}} \right) / (26 \times 4)^{2} - 24 = \left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2} - 24} \right) = 73493.30662...$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Series representations:

$$\frac{1}{4} (2\pi) \left(\sqrt{2(1-2)} (1-1232 \times 2(1-2)+7936 \times 2^{2}(1-2)^{2}) \right) - i 2517.9 + 18 i = -2499.9 i + 17104.5 \pi \sqrt{-3} \sum_{k=0}^{\infty} (-3)^{-k} \left(\frac{1}{2} \atop k\right)$$

$$\frac{1}{4} (2\pi) \left(\sqrt{2(1-2)} (1-1232 \times 2(1-2)+7936 \times 2^{2}(1-2)^{2}) \right) - i 2517.9 + 18 i = -2499.9 i + 17104.5 \pi \sqrt{-3} \sum_{k=0}^{\infty} \frac{3^{-k} (-\frac{1}{2})_{k}}{k!}$$

$$\frac{1}{4} (2\pi) \left(\sqrt{2(1-2)} (1-1232 \times 2(1-2)+7936 \times 2^{2}(1-2)^{2}) \right) - i 2517.9 + 18 i = -2499.9 i + 17104.5 \pi \sqrt{-3} \sum_{k=0}^{\infty} \frac{3^{-k} (-\frac{1}{2})_{k}}{k!}$$

$$\frac{1}{4} (2\pi) \left(\sqrt{2(1-2)} (1-1232 \times 2(1-2)+7936 \times 2^{2}(1-2)^{2}) \right) - i 2517.9 + 18 i = -2499.9 i + \frac{8552.25 \pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} (-3)^{-s} \Gamma(-\frac{1}{2}-s) \Gamma(s)}{\sqrt{\pi}}$$

And we have also:

(golden ratio)i+1/7(((1/4*sqrt(2(1-2)) ((((1-1232*2(1-2)+7936*2^2(1-2)^2)))))))) Where 7 is a Lucas number

Input:
$$\phi i + \frac{1}{7} \left(\frac{1}{4} \sqrt{2(1-2)} \left(1 - 1232 \times 2(1-2) + 7936 \times 2^2(1-2)^2 \right) \right)$$

i is the imaginary unit

Result:

 $i\phi + \frac{4887}{2}i$

Decimal approximation:

1729.433453818078770721667785637564265610216922921592071265...i 1729.4334538...i

Polar coordinates:

 $r \approx 1729.43$ (radius), $\theta = 90^{\circ}$ (angle) 1729.43

This result is very near to the mass of candidate glueball $f_0(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-Zagier theorem. The number 1728 is one less than the Hardy–Ramanujan number 1729

Alternate forms:

$$\frac{\frac{1}{4}i\left(2+2\sqrt{5}+4887\sqrt{2}\right)}{\frac{1}{4}i\left(4\phi+4887\sqrt{2}\right)}$$
$$\frac{i\left(2\sqrt{2}\phi+4887\right)}{2\sqrt{2}}$$

Minimal polynomial: 4096 x⁸ + 48 911 935 488 x⁶ + 219 028 548 929 138 048 x⁴ + $435\,916\,988\,159\,174\,541\,467\,808\,x^{2}$ + $325\,340\,282\,449\,154\,359\,113\,161\,898\,961$

Series representations:

$$\begin{split} \phi \, i + \frac{\sqrt{2 \, (1-2)} \, \left(1 - 1232 \times 2 \, (1-2) + 7936 \times 2^2 \, (1-2)^2\right)}{4 \times 7} \\ \phi \, i + \frac{4887}{4} \, \sqrt{-3} \, \sum_{k=0}^{\infty} (-3)^{-k} \begin{pmatrix} \frac{1}{2} \\ k \end{pmatrix} \\ \phi \, i + \frac{\sqrt{2 \, (1-2)} \, \left(1 - 1232 \times 2 \, (1-2) + 7936 \times 2^2 \, (1-2)^2\right)}{4 \times 7} \\ \phi \, i + \frac{4887}{4} \, \sqrt{-3} \, \sum_{k=0}^{\infty} \frac{3^{-k} \left(-\frac{1}{2}\right)_k}{k!} \\ \phi \, i + \frac{\sqrt{2 \, (1-2)} \, \left(1 - 1232 \times 2 \, (1-2) + 7936 \times 2^2 \, (1-2)^2\right)}{4 \times 7} \\ = \frac{4887 \, \sum_{j=0}^{\infty} \, \operatorname{Res}_{s=-\frac{1}{2}+j} \, (-3)^{-s} \, \Gamma\left(-\frac{1}{2} - s\right) \Gamma(s)}{8 \, \sqrt{\pi}} \end{split}$$

We have also:

 $(golden ratio)i + 1/7(((1/4*sqrt(2(1-2)) ((((1-x*2(1-2)+7936*2^2(1-2)^2))))))) = 1/2)$ 1729.433453818i

Input interpretation: $\phi_i + \frac{1}{7} \left(\frac{1}{4} \sqrt{2(1-2)} \left(1 - x \times 2(1-2) + 7936 \times 2^2 (1-2)^2 \right) \right) = 1729.433453818 i$

φ is the golden ratio i is the imaginary unit

 $\frac{\textbf{Result:}}{\frac{i(2\,x+31\,745)}{14\,\sqrt{2}}} + i\,\phi = 1729.433453818\,i$

Alternate forms:

$$\frac{ix}{7\sqrt{2}} = 0.\times 10^{-27} + 124.450793489 i$$
$$\frac{ix}{7\sqrt{2}} - (0.\times 10^{-26} + 124.450793489 i) = 0$$
$$\frac{1}{28} i \left(\sqrt{2} (2x + 31745) + 28\phi\right) = 1729.433453818 i$$

Expanded form:

 $\frac{ix}{7\sqrt{2}} + \frac{i\sqrt{5}}{2} + \frac{4535i}{2\sqrt{2}} + \frac{i}{2} = 1729.433453818i$

Alternate form assuming x is real:

$$i\left(\frac{x}{7\sqrt{2}} + \frac{\sqrt{5}}{2} + \frac{4535}{2\sqrt{2}} + \frac{1}{2}\right) = 1729.433453818 i$$

Solution: *x* ≈ 1232.0000000 1232

Or:

ix / ((7sqrt(2))) = 0.×10^-26 + 124.450793489 i

Input interpretation:

 $\frac{ix}{7\sqrt{2}} = 0 \times 10^{-26} + 124.450793489 i$

i is the imaginary unit

Result:

 $\frac{ix}{7\sqrt{2}} = 124.451i$

Alternate form:

 $\frac{ix}{7\sqrt{2}} - 124.451 \, i = 0$

Real solution:

 $x \approx 1232$. 1232 result equal to the rest mass of Delta baryon 1232

From which:

 $i1232 / ((7sqrt(2))) = 0.\times 10^{-26} + x i$

Input interpretation:

 $i \times \frac{1232}{7\sqrt{2}} = 0 \times 10^{-26} + x i$

i is the imaginary unit

Result:

$$88 i \sqrt{2} = 0 + i x$$

Alternate forms:

i x = 124.451 i 124.451 i - i x = 0 $88 i \sqrt{2} = i x$

Real solution:

x ≈ 124.451 124.451

124.451 + 1/golden ratio

Input interpretation:

 $124.451 + \frac{1}{\phi}$

 ϕ is the golden ratio

Result:

125.069...

125.069.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representations:

$$124.451 + \frac{1}{\phi} = 124.451 + \frac{1}{2\sin(54^{\circ})}$$
$$124.451 + \frac{1}{\phi} = 124.451 + -\frac{1}{2\cos(216^{\circ})}$$
$$124.451 + \frac{1}{\phi} = 124.451 + -\frac{1}{2\sin(666^{\circ})}$$

Page 265

For x = 2, we obtain:

 $(1+2)/(1-2) - 2^2 (1+2^3)/(1-2^2) + 2^6(1+2^5)/(1-2^5) - 2^12(1+2^7)/(1-2^7)$

Input:

 $\frac{1+2}{1-2} - 2^2 \times \frac{1+2^3}{1-2^2} + 2^6 \times \frac{1+2^5}{1-2^5} - 2^{12} \times \frac{1+2^7}{1-2^7}$

Exact result:

16 147 113 3937

Decimal approximation:

4101.374904749809499618999237998475996951993903987807975615...

4101.3749047....

From which:

 $\frac{1/3 ((((1+2)/(1-2) - 2^2 (1+2^3)/(1-2^2) + 2^6(1+2^5)/(1-2^5) - 2^12(1+2^7)/(1-2^7))) + 18}{2^7}$

Where 18 is a Lucas number:

Input: $\frac{1}{3} \left(\frac{1+2}{1-2} - 2^2 \times \frac{1+2^3}{1-2^2} + 2^6 \times \frac{1+2^5}{1-2^5} - 2^{12} \times \frac{1+2^7}{1-2^7} \right) + 18$

Exact result:

5 453 237 3937

Decimal approximation:

1385.124968249936499872999745999491998983997967995935991871...

1385.124968249... result very near to the rest mass of Sigma baryon 1383.7

We have also:

 $1/((((1+2)/(1-2) - 2^2 (1+2^3)/(1-2^2) + 2^6(1+2^5)/(1-2^5) - 2^12(1+2^7)/(1-2^7)))^{1/4096}$

Input:

$$\frac{1}{4096\sqrt{\frac{1+2}{1-2} - 2^2 \times \frac{1+2^3}{1-2^2} + 2^6 \times \frac{1+2^5}{1-2^5} - 2^{12} \times \frac{1+2^7}{1-2^7}}}$$

Result:

4096 3937 16 147 113

Decimal approximation:

0.997971036345387497972446818795673207004582954744978818283...

0.997971036345.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{9^{5}\sqrt{5^{3}}} - 1}} \approx 0.9991104684$$

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}$$

and to the dilaton value **0**. **989117352243** = ϕ

Alternate form: $\frac{4096}{\sqrt{3937}}$ 16 147 113 $\frac{4095}{4096}$ 16 147 113

2 log base 0.997971036345 ((((1/((((1+2)/(1-2) - 2^2 (1+2^3)/(1-2^2) + 2^6(1+2^5)/(1-2^5) - 2^12(1+2^7)/(1-2^7)))))))^1/2 - Pi+1/golden ratio

Input interpretation:

$$2\sqrt{\log_{0.997971036345} \left(\frac{1}{\frac{1+2}{1-2} - 2^2 \times \frac{1+2^3}{1-2^2} + 2^6 \times \frac{1+2^5}{1-2^5} - 2^{12} \times \frac{1+2^7}{1-2^7}}\right) - \pi + \frac{1}{\phi}}$$

 $\log_{b}(x)$ is the base- b logarithm

Result:

125.4764413...

125.4764413.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representation:

Series representations:

$$\begin{split} & 2 \sqrt{\log_{0.5079710363450000} \left(\frac{1}{\frac{1+2}{1-2} - \frac{2^2 (1+2^3)}{1-2^2} + \frac{2^6 (1+2^5)}{1-2^5} - \frac{2^{12} (1+2^7)}{1-2^7} \right)} - \pi + \frac{1}{\phi} = \\ & \frac{1}{\phi} - \pi + 2 \sqrt{-\frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-\frac{16143176}{16147113}\right)^k}{k}}{\log(0.9979710363450000)}} \\ & 2 \sqrt{\log_{0.5079710363450000} \left(\frac{1}{\frac{1+2}{1-2} - \frac{2^2 (1+2^3)}{1-2^2} + \frac{2^6 (1+2^5)}{1-2^5} - \frac{2^{12} (1+2^7)}{1-2^7} \right)} - \pi + \frac{1}{\phi} = \\ & \frac{1}{\phi} - \pi + 2 \sqrt{\left(-1.00000000000000 \log \left(\frac{3937}{16147113}\right) - \left(\frac{492.3624510033 + \sum_{k=0}^{\infty} (-0.0020289636550000)^k G(k)\right)}{2 (1+k) (2+k)} + G(k) = \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j}} \right) \end{split}$$

$$2 \sqrt{\log_{0.9979710363450000} \left(\frac{1}{\frac{1+2}{1-2} - \frac{2^2 (1+2^3)}{1-2^2} + \frac{2^6 (1+2^5)}{1-2^5} - \frac{2^{12} (1+2^7)}{1-2^7} \right)} - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi + 2 \sqrt{\left(-1.000000000000 \log \left(\frac{3937}{16147113} \right) \right)} \left(\frac{492.3624510033 + \sum_{k=0}^{\infty} (-0.0020289636550000)^k G(k)}{2 (1+k) (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j} \right)}$$

1/4 log base 0.997971036345 ((((1/((((1+2)/(1-2) - 2^2 (1+2^3)/(1-2^2) + 2^6(1+2^5)/(1-2^5) - 2^12(1+2^7)/(1-2^7))))))^1/2 + 1/golden ratio

Input interpretation:

$$\frac{1}{4} \sqrt{\log_{0.997971036345} \left(\frac{1}{\frac{1+2}{1-2} - 2^2 \times \frac{1+2^3}{1-2^2} + 2^6 \times \frac{1+2^5}{1-2^5} - 2^{12} \times \frac{1+2^7}{1-2^7} \right)} + \frac{1}{\phi}$$

 $\log_b(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

16.61803399...

16.61803399.... result very near to the mass of the hypothetical light particle, the boson $m_x = 16.84$ MeV

Alternative representation:

$$\frac{1}{4} \sqrt{ \log_{0.9979710363450000} \left(\frac{1}{\frac{1+2}{1-2} - \frac{2^2 (1+2^3)}{1-2^2} + \frac{2^6 (1+2^5)}{1-2^5} - \frac{2^{12} (1+2^7)}{1-2^7} \right)} + \frac{1}{\phi} = \frac{1}{\phi} + \frac{1}{4} \sqrt{ \frac{\log \left(\frac{1}{\frac{-3-\frac{36}{3} + \frac{(1+2^5)2^6}{1-2^5} - \frac{(1+2^7)2^{12}}{1-2^7} \right)}{\log(0.9979710363450000)}} }$$

Series representations:

$$\begin{split} &\frac{1}{4} \sqrt{\log_{0.9979710363450000} \left(\frac{1}{\frac{1+2}{1-2} - \frac{2^2(1+2^3)}{1-2^2}} + \frac{2^6(1+2^5)}{1-2^5} - \frac{2^{12}(1+2^7)}{1-2^7}}{1-2^7} \right) + \frac{1}{\phi} = \\ &\frac{1}{\phi} + \frac{1}{4} \sqrt{-\frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-\frac{16143176}{16147113} \right)^k}{k}}{\log(0.9979710363450000)}} \\ &\frac{1}{4} \sqrt{\log_{0.9979710363450000} \left(\frac{1}{\frac{1+2}{1-2} - \frac{2^2(1+2^3)}{1-2^2} + \frac{2^6(1+2^5)}{1-2^5} - \frac{2^{12}(1+2^7)}{1-2^7} \right)} + \frac{1}{\phi} = \\ &\frac{1}{\phi} + \frac{1}{4} \sqrt{\left(-1.000000000000 \log \left(\frac{3937}{16147113} \right) \right)} \\ & \left(492.3624510033 + \sum_{k=0}^{\infty} (-0.0020289636550000)^k G(k) \right)} \right) \\ &\text{for} \left(G(0) = 0 \text{ and } \frac{(-1)^k k}{2(1+k)(2+k)} + G(k) = \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \end{split}$$

For x = 0.5, we obtain:

 $(1+0.5)/(1-0.5) - 0.5^2 (1+0.5^3)/(1-0.5^2) + 0.5^6(1+0.5^5)/(1-0.5^5) - 0.5^{12}(1+0.5^7)/(1-0.5^7)$

Input:

 $\frac{1+0.5}{1-0.5} - 0.5^2 \times \frac{1+0.5^3}{1-0.5^2} + 0.5^6 \times \frac{1+0.5^5}{1-0.5^5} - 0.5^{12} \times \frac{1+0.5^7}{1-0.5^7}$

Result:

2.641385079156877063754127508255016510033020066040132080264...

2.641385079.... result very near to the value of golden ratio square and to the M of black hole for $\ell = 4$ and $\omega = 0.75793$ (see Tables in Appendix)

And:

 $7*((((1+0.5)/(1-0.5) - 0.5^2 (1+0.5^3)/(1-0.5^2) + 0.5^6(1+0.5^5)/(1-0.5^5) - 0.5^12(1+0.5^7)/(1-0.5^7))))$ - golden ratio

Input:

$$7\left(\frac{1+0.5}{1-0.5}-0.5^2\times\frac{1+0.5^3}{1-0.5^2}+0.5^6\times\frac{1+0.5^5}{1-0.5^5}-0.5^{12}\times\frac{1+0.5^7}{1-0.5^7}\right)-\phi$$

 ϕ is the golden ratio

Result:

16.8717...

16.8717.... result very near to the mass of the hypothetical light particle, the boson $m_X = 16.84 \text{ MeV}$

Alternative representations:

$$7\left(\frac{1+0.5}{1-0.5} - \frac{0.5^2(1+0.5^3)}{1-0.5^2} + \frac{0.5^6(1+0.5^5)}{1-0.5^5} - \frac{0.5^{12}(1+0.5^7)}{1-0.5^7}\right) - \phi = 7\left(\frac{1.5}{0.5} - \frac{0.5^2(1+0.5^3)}{1-0.5^2} + \frac{(1+0.5^5)0.5^6}{1-0.5^5} - \frac{(1+0.5^7)0.5^{12}}{1-0.5^7}\right) - 2\sin(54^\circ)$$

$$7\left(\frac{1+0.5}{1-0.5} - \frac{0.5^2(1+0.5^3)}{1-0.5^2} + \frac{0.5^6(1+0.5^5)}{1-0.5^5} - \frac{0.5^{12}(1+0.5^7)}{1-0.5^7}\right) - \phi = 2\cos(216^\circ) + 7\left(\frac{1.5}{0.5} - \frac{0.5^2(1+0.5^3)}{1-0.5^2} + \frac{(1+0.5^5)0.5^6}{1-0.5^5} - \frac{(1+0.5^7)0.5^{12}}{1-0.5^7}\right)$$

$$7\left(\frac{1+0.5}{1-0.5} - \frac{0.5^2(1+0.5^3)}{1-0.5^2} + \frac{0.5^6(1+0.5^5)}{1-0.5^5} - \frac{0.5^{12}(1+0.5^7)}{1-0.5^7}\right) - \phi = 7\left(\frac{1.5}{0.5} - \frac{0.5^2(1+0.5^3)}{1-0.5^2} + \frac{(1+0.5^5)0.5^6}{1-0.5^5} - \frac{(1+0.5^7)0.5^{12}}{1-0.5^7}\right) + 2\sin(666^\circ)$$

We have also that:

 $((((((1+0.5)/(1-0.5) - 0.5^2 (1+0.5^3)/(1-0.5^2) + 0.5^6(1+0.5^5)/(1-0.5^5) - 0.5^12(1+0.5^7)/(1-0.5^7)))))^{1/2} - 7/10^{3}$

Where 7 is a Lucas number

Input:

$$\sqrt{\frac{1+0.5}{1-0.5} - 0.5^2 \times \frac{1+0.5^3}{1-0.5^2} + 0.5^6 \times \frac{1+0.5^5}{1-0.5^5} - 0.5^{12} \times \frac{1+0.5^7}{1-0.5^7} - \frac{7}{10^3}}$$

Result:

1.618233853682871406533461541916955260283062938905732469969...

1.61823385368287..... result that is a very good approximation to the value of the golden ratio 1,618033988749...

And:

 $\frac{1}{(((((1+0.5)/(1-0.5) - 0.5^2 (1+0.5^3)/(1-0.5^2) + 0.5^6(1+0.5^5)/(1-0.5^5) - 0.5^12(1+0.5^7)/(1-0.5^7)))))^{1/256}}{(1+0.5^7)/(1-0.5^7)))))^{1/256}}$

Input:

 $\frac{1}{256\sqrt{\frac{1+0.5}{1-0.5}-0.5^2\times\frac{1+0.5^3}{1-0.5^2}+0.5^6\times\frac{1+0.5^5}{1-0.5^5}-0.5^{12}\times\frac{1+0.5^7}{1-0.5^7}}}$

Result:

0.99621303...

0.99621303.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}} \approx 0.9991104684$$

and to the dilaton value **0**. 989117352243 = ϕ

Ň

Input interpretation:

$$\frac{1}{2} \log_{0.99621303} \left(\frac{1}{\frac{1+0.5}{1-0.5} - 0.5^2 \times \frac{1+0.5^3}{1-0.5^2} + 0.5^6 \times \frac{1+0.5^5}{1-0.5^5} - 0.5^{12} \times \frac{1+0.5^7}{1-0.5^7}} \right) - \pi + \frac{1}{\phi} \log_{10} \left(\frac{1}{1+0.5} - \frac{1}{1+0.5} + \frac{1+0.5^7}{1-0.5} + \frac{1+0.5^$$

 $\log_b(x)$ is the base- b logarithm

Result:

125.476...

125.476.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representation:

$$\frac{1}{2} \log_{0.996213} \left\{ \frac{1}{\frac{1+0.5}{1-0.5} - \frac{0.5^2 (1+0.5^3)}{1-0.5^2} + \frac{0.5^6 (1+0.5^5)}{1-0.5^5} - \frac{0.5^{12} (1+0.5^7)}{1-0.5^7}}{1-0.5^7} \right\} - \pi + \frac{1}{\phi} = -\pi + \frac{1}{\phi} + \frac{\log \left\{ \frac{1}{\frac{1.5}{0.5} - \frac{0.5^2 (1+0.5^3)}{1-0.5^2} + \frac{(1+0.5^5)0.5^6}{1-0.5^5} - \frac{(1+0.5^7)0.5^{12}}{1-0.5^7} \right\}}{2 \log(0.996213)}$$

Series representations:

$$\frac{1}{2} \log_{0.506213} \left(\frac{1}{\frac{1+0.5}{1-0.5} - \frac{0.5^2 (1+0.5^3)}{1-0.5^2} + \frac{0.5^6 (1+0.5^5)}{1-0.5^5} - \frac{0.5^{12} (1+0.5^7)}{1-0.5^7}}{1-0.5^7} \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k (-0.621411)^k}{k}}{2 \log(0.996213)}}{\left(\frac{\frac{1}{1+0.5} - \frac{0.5^2 (1+0.5^3)}{1-0.5} + \frac{0.5^6 (1+0.5^5)}{1-0.5^5} - \frac{0.5^{12} (1+0.5^7)}{1-0.5^7} \right)}{1-0.5^7} \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi - 131.782 \log(0.378589) - \frac{1}{2} \log(0.378589) \sum_{k=0}^{\infty} (-0.00378697)^k G(k)$$

for $\left(G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 (1+k) (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j} \right)$

For $\alpha\beta = \pi^2$; $\alpha = \pi$; $\beta = \pi$, from page 269, we obtain:

We have:

(A)

 $\begin{array}{l} e^{(-Pi*sqrt(3)) sqrt(golden ratio) * (144-3^2) & (((((1+1/4(1-Pi)))+((1*3)/(2*4))^2((1-Pi)^2))))/(((((1+1/4(Pi)))+((1*3)/(2*4))^2(Pi)^2))) \\ \end{array}$

Input:

$$e^{-\pi\sqrt{3}} \left(\sqrt{\phi} \left(144 - 3^2\right)\right) \times \frac{\left(1 + \frac{1}{4} \left(1 - \pi\right)\right) + \left(\frac{1\times3}{2\times4}\right)^2 \left(1 - \pi\right)^2}{\left(1 + \frac{1}{4} \pi\right) + \left(\frac{1\times3}{2\times4}\right)^2 \pi^2}$$

 ϕ is the golden ratio

$\frac{\text{Exact result:}}{\frac{135 \ e^{-\sqrt{3} \ \pi} \left(1 + \frac{1 - \pi}{4} + \frac{9}{64} \ (1 - \pi)^2\right) \sqrt{\phi}}{1 + \frac{\pi}{4} + \frac{9 \ \pi^2}{64}}$

Decimal approximation:

0.260195204189951575186354366427720969956895183696125161709...

0.260195204189....

Alternate forms:

$$\frac{135\sqrt{\frac{1}{2}\left(1+\sqrt{5}\right)} e^{-\sqrt{3}\pi} (89+\pi (9\pi - 34))}{64+\pi (16+9\pi)}$$

$$\frac{135\sqrt{\frac{1}{2}(1+\sqrt{5})} e^{-\sqrt{3}\pi}(89-34\pi+9\pi^2)}{64+16\pi+9\pi^2}}{\frac{12015\sqrt{\frac{1}{2}(1+\sqrt{5})} e^{-\sqrt{3}\pi}}{64+16\pi+9\pi^2}} - \frac{1215\sqrt{\frac{1}{2}(1+\sqrt{5})} e^{-\sqrt{3}\pi}\pi}{64+16\pi+9\pi^2} + \frac{1215\sqrt{\frac{1}{2}(1+\sqrt{5})} e^{-\sqrt{3}\pi}\pi^2}{64+16\pi+9\pi^2}$$

Series representations:

$$\frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\left(1-\pi\right)^{2}\right)\right)\sqrt{\phi}\left(144-3^{2}\right)}{\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\pi^{2}} = \frac{1}{64+16\pi+9\pi^{2}} 135 \exp\left(-\pi\sqrt{z_{0}}\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k}z_{0}^{-k}}{k!}\right)\left(89-34\pi+9\pi^{2}\right)}{\sqrt{z_{0}}\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k}z_{0}^{-k}}{k!} \text{ for not }\left(\left(z_{0}\in\mathbb{R} \text{ and } -\infty< z_{0}\leq0\right)\right)$$

$$\frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\left(1-\pi\right)^{2}\right)\right)\sqrt{\phi}\left(144-3^{2}\right)}{\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\pi^{2}}=\frac{1}{64+16\pi+9\pi^{2}} 135$$

$$\exp\left(-\pi\exp\left(i\pi\left\lfloor\frac{\arg(3-x)}{2\pi}\right\rfloor\right)\sqrt{x}\sum_{k=0}^{\infty}\frac{(-1)^{k}\left(3-x\right)^{k}x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)(89-34\pi+9\pi^{2})$$

$$\exp\left(i\pi\left\lfloor\frac{\arg(\phi-x)}{2\pi}\right\rfloor\right)\sqrt{x}\sum_{k=0}^{\infty}\frac{(-1)^{k}\left(\phi-x\right)^{k}x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \quad \text{for } (x\in\mathbb{R} \text{ and } x<0)$$

$$\frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\left(1-\pi\right)^{2}\right)\right)\sqrt{\phi}\left(144-3^{2}\right)}{\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\pi^{2}} = \frac{1}{64+16\pi+9\pi^{2}} 135$$

$$\exp\left(-\pi\left(\frac{1}{z_{0}}\right)^{1/2}\left[\arg(3-z_{0})/(2\pi)\right]}z_{0}^{1/2+1/2}\left[\arg(3-z_{0})/(2\pi)\right]}\sum_{k=0}^{\infty}\frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k}z_{0}^{-k}}{k!}\right]$$

$$(89-34\pi+9\pi^{2})\left(\frac{1}{z_{0}}\right)^{1/2}\left[\arg(\phi-z_{0})/(2\pi)\right]}z_{k=0}^{\infty}\frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k}z_{0}^{-k}}{k!}$$

Applying the formula for the calculation of a(n) regarding the coefficients of the "5th order" mock theta function $\psi_1(q)$, that for n = 105, provises a(n) = 171

 $a(n) \sim sqrt(phi) * exp(Pi*sqrt(n/15)) / (2*5^{(1/4)}sqrt(n))$

that is:

$$\sqrt{\phi} \times \frac{\exp\left(\pi \sqrt{\frac{n}{15}}\right)}{2\sqrt[4]{5} \sqrt{n}}$$

We obtain:

 $\begin{array}{l} e^{(-Pi*sqrt(3)) sqrt(golden ratio) * exp(Pi*sqrt(105/15)) / (2*5^{(1/4)*sqrt(105)}) \\ (((((1+1/4(1-Pi)))+((1*3)/(2*4))^{2}((1-Pi)))) \\ Pi)^{2}))))/(((((1+1/4(Pi)))+((1*3)/(2*4))^{2}(Pi)^{2}))) \end{array}$

Input:

$$e^{-\pi\sqrt{3}} \left(\sqrt{\phi} \times \frac{\exp\left(\pi\sqrt{\frac{105}{15}}\right)}{2\sqrt[4]{5}\sqrt{105}} \right) \times \frac{\left(1 + \frac{1}{4}\left(1 - \pi\right)\right) + \left(\frac{1\times3}{2\times4}\right)^2 \left(1 - \pi\right)^2}{\left(1 + \frac{1}{4}\pi\right) + \left(\frac{1\times3}{2\times4}\right)^2 \pi^2}$$

 ϕ is the golden ratio

Exact result:

$$\frac{e^{\sqrt{7} \pi - \sqrt{3} \pi} \left(1 + \frac{1 - \pi}{4} + \frac{9}{64} (1 - \pi)^2\right) \sqrt{\frac{\phi}{21}}}{2 \times 5^{3/4} \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right)}$$

Decimal approximation:

0.256093702921107596310464021381417270715454435367292467652...

0.25609370292....

Alternate forms: $\frac{\sqrt{\frac{1}{42} (1 + \sqrt{5})} e^{\left(\sqrt{7} - \sqrt{3}\right)\pi} (89 + \pi (9 \pi - 34))}{2 \times 5^{3/4} (64 + \pi (16 + 9 \pi))}$ $\frac{\sqrt{\frac{1}{42} (1 + \sqrt{5})} e^{\left(\sqrt{7} - \sqrt{3}\right)\pi} (89 - 34 \pi + 9 \pi^{2})}{2 \times 5^{3/4} (64 + 16 \pi + 9 \pi^{2})}$

$$\frac{89\sqrt{\frac{1}{42}\left(1+\sqrt{5}\right) e^{\sqrt{7}\pi-\sqrt{3}\pi}}}{128\times5^{3/4}\left(1+\frac{\pi}{4}+\frac{9\pi^2}{64}\right)} - \frac{17\sqrt{\frac{1}{42}\left(1+\sqrt{5}\right) e^{\sqrt{7}\pi-\sqrt{3}\pi}\pi}}{64\times5^{3/4}\left(1+\frac{\pi}{4}+\frac{9\pi^2}{64}\right)} + \frac{3\sqrt{\frac{3}{14}\left(1+\sqrt{5}\right)} e^{\sqrt{7}\pi-\sqrt{3}\pi}\pi^2}{128\times5^{3/4}\left(1+\frac{\pi}{4}+\frac{9\pi^2}{64}\right)}$$

Alternative representations:

$$\begin{split} \frac{\left(e^{-\pi\sqrt{3}}\right)\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} = \\ \frac{\exp\left(\pi\sqrt{\frac{105}{15}}\right)\left(1+\frac{2}{-1+\cosh\left(\left(-\frac{\pi\sqrt{3}}{2}\right)\right)}\right)\left(1+\frac{1-\pi}{4}+(1-\pi)^2\left(\frac{3}{8}\right)^2\right)\sqrt{\phi}}{\left(1+\frac{\pi}{4}+\pi^2\left(\frac{3}{8}\right)^2\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} \\ \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} \\ = \\ \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} \\ = \\ \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} \\ = \\ \frac{\left(w^a\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105}{15}}\right)} \\ = \\ \frac{\left(w^a\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} \\ = 0 \end{split}$$

Series representations:

$$\begin{split} & \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^{2}\left(1-\pi\right)^{2}\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^{2}\pi^{2}\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} = \\ & \left(\left(89-34\pi+9\pi^{2}\right)\exp\left(i\pi\left\lfloor\frac{\arg(\phi-x)}{2\pi}\right\rfloor\right)\right) \\ & \left(\exp\left(\pi\exp\left(i\pi\left\lfloor\frac{\arg(7-x)}{2\pi}\right\rfloor\right)\right)\sqrt{x}\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\left(7-x\right)^{k}x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \\ & \sum_{k_{1}=0}^{\infty}\sum_{k_{2}=0}^{\infty}\frac{\left(-1\right)^{k_{1}}\left(\phi-x\right)^{k_{1}}x^{-k_{1}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\pi\sqrt{3}\right)^{k_{2}}}{k_{1}!k_{2}!}\right) \\ & \left(2\sqrt[4]{5}\left(64+16\pi+9\pi^{2}\right)\exp\left(i\pi\left\lfloor\frac{\arg(105-x)}{2\pi}\right\rfloor\right)\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\left(105-x\right)^{k}x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\ & \text{for } (x\in\mathbb{R} \text{ and } x<0) \end{split}$$

$$\begin{split} & \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^{2}\left(1-\pi\right)^{2}\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^{2}\pi^{2}\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} = \\ & \left(\left(89-34\pi+9\pi^{2}\right)\exp\left(i\pi\left\lfloor\frac{\arg(\phi-x)}{2\pi}\right\rfloor\right)\right) \\ & \exp\left(\pi\exp\left(i\pi\left\lfloor\frac{\arg(7-x)}{2\pi}\right\rfloor\right)\sqrt{x}\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\left(7-x\right)^{k}x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \\ & \sum_{k_{1}=-\infty}^{\infty}\sum_{k_{2}=0}^{\infty}\frac{\left(-1\right)^{k_{2}}\left(\phi-x\right)^{k_{2}}x^{-k_{2}}I_{k_{1}}\left(-\pi\sqrt{3}\right)\left(-\frac{1}{2}\right)_{k_{2}}}{k_{2}!}\right)/\\ & \left(2\sqrt[4]{5}\left(64+16\pi+9\pi^{2}\right)\exp\left(i\pi\left\lfloor\frac{\arg(105-x)}{2\pi}\right\rfloor\right)\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\left(105-x\right)^{k}x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\ & \text{for } (x\in\mathbb{R} \text{ and } x<0) \end{split}$$

$$\begin{split} \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\left(1-\pi\right)^{2}\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\pi^{2}\right)\left(2\sqrt[4]{5}\sqrt{105}\right)} = \\ \left(\left(89-34\pi+9\pi^{2}\right)\exp\left(i\pi\left\lfloor\frac{\arg(\phi-x)}{2\pi}\right\rfloor\right)\right) \\ \exp\left(\pi\exp\left(i\pi\left\lfloor\frac{\arg(7-x)}{2\pi}\right\rfloor\right)\sqrt{x}\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\left(7-x\right)^{k}x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right) \\ \sum_{k_{1}=-\infty}^{\infty}\sum_{k_{2}=0}^{\infty}\frac{\left(-1\right)^{k_{1}+k_{2}}\left(\phi-x\right)^{k_{2}}x^{-k_{2}}I_{k_{1}}\left(\pi\sqrt{3}\right)\left(-\frac{1}{2}\right)_{k_{2}}}{k_{2}!}\right)/\\ \left(2\sqrt[4]{5}\left(64+16\pi+9\pi^{2}\right)\exp\left(i\pi\left\lfloor\frac{\arg(105-x)}{2\pi}\right\rfloor\right)\sum_{k=0}^{\infty}\frac{\left(-1\right)^{k}\left(105-x\right)^{k}x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\ for (x \in \mathbb{R} \text{ and } x < 0) \end{split}$$

Now, we have, for n = 105.4568:

(B)

 $\begin{array}{l} e^{(-Pi*sqrt(3)) sqrt(golden ratio) * exp(Pi*sqrt(105.4568/15)) / \\ (2*5^{(1/4)*sqrt(105.4568)) ((((((1+1/4(1-Pi)))+((1*3)/(2*4))^2((1-Pi)^2)))) / ((((((1+1/4(Pi)))+((1*3)/(2*4))^2(Pi)^2))) \\ \end{array}$

Input interpretation:

$$e^{-\pi\sqrt{3}} \left(\sqrt{\phi} \times \frac{\exp\left(\pi\sqrt{\frac{105.4568}{15}}\right)}{2\sqrt[4]{75}\sqrt{105.4568}} \right) \times \frac{\left(1 + \frac{1}{4}\left(1 - \pi\right)\right) + \left(\frac{1\times3}{2\times4}\right)^2 \left(1 - \pi\right)^2}{\left(1 + \frac{1}{4}\pi\right) + \left(\frac{1\times3}{2\times4}\right)^2 \pi^2} \right)$$

 ϕ is the golden ratio

Result:

 $0.260195576394423536617884891638021311979722755999036733990\ldots$

0.2601955763944.....

Alternative representations:

$$\begin{split} & \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi} \,\exp\left(\pi\sqrt{\frac{105.457}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)} = \\ & \frac{\exp\left(\pi\sqrt{\frac{105.457}{15}}\right)\left(1+\frac{2}{-\frac{1+\coth\left(-\frac{\pi\sqrt{3}}{2}\right)}{1}}\right)\left(1+\frac{1-\pi}{4}+(1-\pi)^2\left(\frac{3}{8}\right)^2\right)\sqrt{\phi}}{\left(1+\frac{\pi}{4}+\pi^2\left(\frac{3}{8}\right)^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)} \\ & \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi}\,\exp\left(\pi\sqrt{\frac{105.457}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)} = \\ & \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)} = \\ & \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi}\,\exp\left(\pi\sqrt{\frac{105.457}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)} = \\ & \frac{\left(w^a\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)} \, \text{ for } a + \frac{\sqrt{3}\pi}{\log(w)} = 0 \end{split}$$

$$\begin{split} \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105.457}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)} = \\ \left(\left(89-34\pi+9\pi^2\right)\exp\left(i\pi\left\lfloor\frac{\arg(\phi-x)}{2\pi}\right\rfloor\right)\right) \\ \exp\left(\pi\exp\left(i\pi\left\lfloor\frac{\arg(7.03045-x)}{2\pi}\right\rfloor\right)\sqrt{x}\sum_{k=0}^{\infty}\frac{(-1)^k\left(7.03045-x\right)^kx^{-k}\left(-\frac{1}{2}\right)_k}{k!}\right)\right) \\ \\ \sum_{k_1=0}^{\infty}\sum_{k_2=0}^{\infty}\frac{(-1)^{k_1}\left(\phi-x\right)^{k_1}x^{-k_1}\left(-\frac{1}{2}\right)_{k_1}\left(-\pi\sqrt{3}\right)^{k_2}}{k_1!k_2!}\right) \\ \left(2\sqrt[4]{5}\left(64+16\pi+9\pi^2\right)\exp\left(i\pi\left\lfloor\frac{\arg(105.457-x)}{2\pi}\right\rfloor\right)\right) \\ \\ \\ \sum_{k=0}^{\infty}\frac{(-1)^k\left(105.457-x\right)^kx^{-k}\left(-\frac{1}{2}\right)_k}{k!}\right) \text{ for } (x\in\mathbb{R} \text{ and } x<0) \\ \\ \frac{\left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\left(1-\pi\right)^2\right)\right)\sqrt{\phi}\exp\left(\pi\sqrt{\frac{105.457}{15}}\right)}{\left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right)} = \end{split}$$

$$\begin{pmatrix} \left(1 + \frac{\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 \pi^2 \right) \left(2 \sqrt[4]{5} \sqrt{105.457}\right) \\ \left((89 - 34 \pi + 9 \pi^2) \exp\left(i \pi \left\lfloor \frac{\arg(7.03045 - x)}{2 \pi} \right\rfloor \right) \\ \exp\left(\pi \exp\left(i \pi \left\lfloor \frac{\arg(7.03045 - x)}{2 \pi} \right\rfloor \right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^k (7.03045 - x)^k x^{-k} \left(-\frac{1}{2}\right)_k}{k!} \\ \\ \sum_{k_1 = -\infty}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_2} (\phi - x)^{k_2} x^{-k_2} I_{k_1} (-\pi \sqrt{3}) \left(-\frac{1}{2}\right)_{k_2}}{k_2!} \right) \\ \left(2 \sqrt[4]{5} \left(64 + 16 \pi + 9 \pi^2 \right) \exp\left(i \pi \left\lfloor \frac{\arg(105.457 - x)}{2 \pi} \right\rfloor \right) \\ \\ \\ \sum_{k=0}^{\infty} \frac{(-1)^k (105.457 - x)^k x^{-k} \left(-\frac{1}{2}\right)_k}{k!} \right) \text{ for } (x \in \mathbb{R} \text{ and } x < 0)$$

$$\begin{split} & \left(e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2(1-\pi)^2\right)\right)\sqrt{\phi} \exp\left(\pi\sqrt{\frac{105.457}{15}}\right) \\ & \quad \left(\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2\pi^2\right)\left(2\sqrt[4]{5}\sqrt{105.457}\right) \\ & \quad \left(89-34\pi+9\pi^2\right)\exp\left(i\pi\left\lfloor\frac{\arg(\phi-x)}{2\pi}\right\rfloor\right) \\ & \quad \exp\left(\pi\exp\left(i\pi\left\lfloor\frac{\arg(7.03045-x)}{2\pi}\right\rfloor\right)\sqrt{x}\sum_{k=0}^{\infty}\frac{(-1)^k\left(7.03045-x\right)^kx^{-k}\left(-\frac{1}{2}\right)_k}{k!}\right) \\ & \quad \sum_{k_1=-\infty}^{\infty}\sum_{k_2=0}^{\infty}\frac{(-1)^{k_1+k_2}\left(\phi-x\right)^{k_2}x^{-k_2}I_{k_1}\left(\pi\sqrt{3}\right)\left(-\frac{1}{2}\right)_{k_2}}{k_2!}\right) / \\ & \quad \left(2\sqrt[4]{5}\left(64+16\pi+9\pi^2\right)\exp\left(i\pi\left\lfloor\frac{\arg(105.457-x)}{2\pi}\right\rfloor\right) \\ & \quad \sum_{k=0}^{\infty}\frac{(-1)^k\left(105.457-x\right)^kx^{-k}\left(-\frac{1}{2}\right)_k}{k!}\right) \text{ for } (x\in\mathbb{R} \text{ and } x<0) \end{split}$$

We note that 0.25609370292.... is a value very near to the one just obtained 0.2601955763944..... and to that obtained previously 0.260195204189....

Now, we have:

((1+1/4(1-Pi)))/(1+1/4*Pi)

 $\frac{\text{Input:}}{\frac{1+\frac{1}{4}(1-\pi)}{1+\frac{1}{4}\pi}}$

Decimal approximation:

0.260223095401004095798576907344144886451828252715199207151...

0.2602230954.... result very near to 0.2601952 and 0.26019557

Property: $\frac{1+\frac{1-\pi}{4}}{1+\frac{\pi}{4}}$ is a transcendental number

Alternate forms: $\frac{5-\pi}{4+\pi}$

 $\frac{5-\pi}{4+\pi}$ $\frac{9}{4+\pi} - 1$ $-\frac{\pi-5}{4+\pi}$

Alternative representations:

$$\frac{1 + \frac{1 - \pi}{4}}{1 + \frac{\pi}{4}} = \frac{1 + \frac{1}{4} (1 - 180^{\circ})}{1 + \frac{180^{\circ}}{4}}$$
$$\frac{1 + \frac{1 - \pi}{4}}{1 + \frac{\pi}{4}} = \frac{1 + \frac{1}{4} (1 + i \log(-1))}{1 - \frac{1}{4} i \log(-1)}$$
$$\frac{1 + \frac{1 - \pi}{4}}{1 + \frac{\pi}{4}} = \frac{1 + \frac{1}{4} (1 - \cos^{-1}(-1))}{1 + \frac{1}{4} \cos^{-1}(-1)}$$

Series representations:

$$\frac{1+\frac{1-\pi}{4}}{1+\frac{\pi}{4}} = -\frac{-5+4\sum_{k=0}^{\infty}\frac{(-1)^k}{1+2k}}{4\left(1+\sum_{k=0}^{\infty}\frac{(-1)^k}{1+2k}\right)}$$

$$\frac{1+\frac{1-\pi}{4}}{1+\frac{\pi}{4}} = \frac{5+\sum_{k=0}^{\infty} \frac{4(-1)^k 1195^{-1-2k} \left(5^{1+2k}-4 \times 239^{1+2k}\right)}{1+2k}}{4+\sum_{k=0}^{\infty} -\frac{4(-1)^k 1195^{-1-2k} \left(5^{1+2k}-4 \times 239^{1+2k}\right)}{1+2k}}$$

$$\frac{1+\frac{1-\pi}{4}}{1+\frac{\pi}{4}} = -\frac{-5+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^k\left(\frac{1}{1+2k}+\frac{2}{1+4k}+\frac{1}{3+4k}\right)}{4+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^k\left(\frac{1}{1+2k}+\frac{2}{1+4k}+\frac{1}{3+4k}\right)}$$

Integral representations:

$$\frac{1+\frac{1-\pi}{4}}{1+\frac{\pi}{4}} = -\frac{-5+2\int_0^1 \frac{1}{\sqrt{1-t^2}} dt}{2\left(2+\int_0^1 \frac{1}{\sqrt{1-t^2}} dt\right)}$$

$$\frac{1+\frac{1-\pi}{4}}{1+\frac{\pi}{4}} = -\frac{-5+2\int_0^\infty \frac{1}{1+t^2} dt}{2\left(2+\int_0^\infty \frac{1}{1+t^2} dt\right)}$$
$$\frac{1+\frac{1-\pi}{4}}{1+\frac{\pi}{4}} = -\frac{-5+4\int_0^1 \sqrt{1-t^2} dt}{4\left(1+\int_0^1 \sqrt{1-t^2} dt\right)}$$

Thence, we have:

$$\left(e^{-\pi\sqrt{3}}\left(\sqrt{\phi} \times \frac{\exp\left(\pi\sqrt{\frac{105.4568}{15}}\right)}{2\sqrt[4]{45}\sqrt{105.4568}}\right) \times \frac{\left(1 + \frac{1}{4}\left(1 - \pi\right)\right) + \left(\frac{1\times3}{2\times4}\right)^{2}\left(1 - \pi\right)^{2}}{\left(1 + \frac{1}{4}\pi\right) + \left(\frac{1\times3}{2\times4}\right)^{2}\pi^{2}}\right) \cong \left(\frac{1 + \frac{1}{4}\left(1 - \pi\right)}{1 + \frac{1}{4}\pi}\right) \Rightarrow$$

 $\Rightarrow 0.2601955763944... \cong 0.2602230954...$

Now, from (A),we obtain:

 $[e^{(-Pi*sqrt(3)) sqrt(golden ratio) * (144-3^2) * (((((1+1/4(1-Pi)))+((1*3)/(2*4))^2((1-Pi)^2))))/((((((1+1/4(Pi)))+((1*3)/(2*4))^2(Pi)^2)))]^{1/256}$

Input:

$$256 \bigvee_{\substack{256 \\ 1}} e^{-\pi\sqrt{3}} \sqrt{\phi} \left(144 - 3^2\right) \times \frac{\left(1 + \frac{1}{4} \left(1 - \pi\right)\right) + \left(\frac{1\times3}{2\times4}\right)^2 \left(1 - \pi\right)^2}{\left(1 + \frac{1}{4} \pi\right) + \left(\frac{1\times3}{2\times4}\right)^2 \pi^2}$$

 ϕ is the golden ratio

Exact result:

$$3^{3/256} e^{-\left(\sqrt{3} \pi\right)/256} \sqrt{\frac{5\left(1+\frac{1-\pi}{4}+\frac{9}{64}\left(1-\pi\right)^2\right)}{1+\frac{\pi}{4}+\frac{9\pi^2}{64}}} \sqrt{\frac{512}{\sqrt{64}}}$$

Decimal approximation:

0.994754729940662054754900514698582010713986962187276737303...

0.9947547299406.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5}\sqrt[4]{5^{3}}}-1}} - \varphi + 1} = 1 - \frac{e^{-\pi\sqrt{5}}}{1+\frac{e^{-2\pi\sqrt{5}}}{1+\frac{e^{-3\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\frac{e^{-4\pi\sqrt{5}}}{1+\dots}}}} \approx 0.9991104684$$

and to the dilaton value **0**. **989117352243** = ϕ

Alternate forms:

$$3^{3/256} 5^{12} \sqrt{\frac{1}{2} \left(1 + \sqrt{5}\right)} e^{-\left(\sqrt{3}\pi\right)/256} 2^{56} \sqrt{\frac{5(89 + \pi(9\pi - 34))}{64 + \pi(16 + 9\pi)}}$$

 $3^{3/256} \sqrt[512]{\frac{1}{2} \left(1 + \sqrt{5}\right) e^{-\left(\sqrt{3}\pi\right)/256} \sqrt[256]{\frac{5 \left(89 - 34\pi + 9\pi^2\right)}{64 + 16\pi + 9\pi^2}}}$

All 256th roots of (135 e^{(-sqrt(3) π) (1 + (1 - π)/4 + 9/64 (1 - π)²) sqrt(ϕ))/(1 + π /4 + (9 π ²)/64):}

$$3^{3/256} e^{-\left(\sqrt{3} \pi\right)/256} \frac{5\left(1 + \frac{1-\pi}{4} + \frac{9}{64} (1-\pi)^2\right)}{1 + \frac{\pi}{4} + \frac{9\pi^2}{64}} e^{0.512\sqrt{\phi}} \approx 0.99475 \text{ (real. principal root)}$$

$$3^{3/256} e^{-\left(\sqrt{3} \pi\right)/256} \frac{5\left(1 + \frac{1-\pi}{4} + \frac{9}{64} (1-\pi)^2\right)}{1 + \frac{\pi}{4} + \frac{9\pi^2}{64}} e^{(i\pi)/128.512\sqrt{\phi}} \approx 0.99446 + 0.024413 i$$

$$3^{3/256} e^{-\left(\sqrt{3} \pi\right)/256} \sum_{256} \frac{5\left(1 + \frac{1-\pi}{4} + \frac{9}{64} (1-\pi)^2\right)}{1 + \frac{\pi}{4} + \frac{9\pi^2}{64}} e^{(i\pi)/64} \sum_{12}^{512} \sqrt{\phi} \approx 0.99356 + 0.04881 i$$

$$3^{3/256} e^{-\left(\sqrt{3} \pi\right)/256} \sum_{256} \frac{5\left(1 + \frac{1-\pi}{4} + \frac{9}{64} (1-\pi)^2\right)}{1 + \frac{\pi}{4} + \frac{9\pi^2}{64}} e^{(3i\pi)/128} \sum_{12}^{512} \sqrt{\phi} \approx 0.99206 + 0.07318 i$$

$$3^{3/256} e^{-\left(\sqrt{3} \pi\right)/256} \sum_{256} \frac{5\left(1 + \frac{1-\pi}{4} + \frac{9}{64} (1-\pi)^2\right)}{1 + \frac{\pi}{4} + \frac{9\pi^2}{64}} e^{(i\pi)/32} \sum_{12}^{512} \sqrt{\phi} \approx 0.98996 + 0.09750 i$$

$$256 \frac{e^{-\pi\sqrt{3}} \left(\left(1 + \frac{1-\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 (1-\pi)^2\right) \sqrt{\phi} \left(144 - 3^2\right)}{\left(1 + \frac{\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 \pi^2} = 3^{3/256} \frac{256}{\sqrt{5}} \int \left(\frac{1}{64 + 16\pi + 9\pi^2} \exp\left(-\pi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (3-z_0)^k z_0^{-k}}{k!}\right) \right) \\ \left(89 - 34\pi + 9\pi^2\right) \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (\phi - z_0)^k z_0^{-k}}{k!}\right) \land (1/256)$$
for not $\left(\left(z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0\right)\right)$

$$256 \sqrt{\frac{e^{-\pi\sqrt{3}} \left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2 (1-\pi)^2\right) \sqrt{\phi} \left(144-3^2\right)}{\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times 4}\right)^2 \pi^2}} = 3^{3/256} \frac{256}{5} \left(\frac{1}{64+16\pi+9\pi^2} \exp\left(-\pi \exp\left(i\pi \left\lfloor\frac{\arg(3-x)}{2\pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^k (3-x)^k x^{-k} \left(-\frac{1}{2}\right)_k}{k!}\right)}{k!}\right)}{(89-34\pi+9\pi^2) \exp\left(i\pi \left\lfloor\frac{\arg(\phi-x)}{2\pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^k (\phi-x)^k x^{-k} \left(-\frac{1}{2}\right)_k}{k!}\right)}{k!} \right)$$
$$(1/256) \text{ for } (x \in \mathbb{R} \text{ and } x < 0)$$

$$256 \boxed{ \frac{e^{-\pi\sqrt{3}} \left(\left(1 + \frac{1-\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 (1-\pi)^2 \right) \sqrt{\phi} \left(144 - 3^2\right)}{\left(1 + \frac{\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 \pi^2} = \\ 3^{3/256} \frac{256}{5} \sqrt{5} \left(\frac{1}{64 + 16\pi + 9\pi^2} \exp\left(-\pi \left(\frac{1}{z_0}\right)^{1/2 \lfloor \arg(3-z_0)/(2\pi) \rfloor} z_0^{1/2 + 1/2 \lfloor \arg(3-z_0)/(2\pi) \rfloor} \right) \right) \\ \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (3-z_0)^k z_0^{-k}}{k!} \left(89 - 34\pi + 9\pi^2\right) \left(\frac{1}{z_0}\right)^{1/2 \lfloor \arg(\phi-z_0)/(2\pi) \rfloor} \\ z_0^{1/2 + 1/2 \lfloor \arg(\phi-z_0)/(2\pi) \rfloor} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (\phi-z_0)^k z_0^{-k}}{k!} \right) \land (1/256)$$

Integral representation:

$$(1+z)^{a} = \frac{\int_{-i\infty+\gamma}^{i\infty+\gamma} \frac{\Gamma(s)\Gamma(-a-s)}{z^{s}} ds}{(2\pi i)\Gamma(-a)} \text{ for } (0 < \gamma < -\text{Re}(a) \text{ and } |\arg(z)| < \pi)$$

Input interpretation:

$$\frac{1}{2} \log_{0.99475472994} \left(e^{-\pi \sqrt{3}} \sqrt{\phi} \left(144 - 3^2 \right) \times \frac{\left(1 + \frac{1}{4} \left(1 - \pi \right) \right) + \left(\frac{1 \times 3}{2 \times 4} \right)^2 \left(1 - \pi \right)^2}{\left(1 + \frac{1}{4} \pi \right) + \left(\frac{1 \times 3}{2 \times 4} \right)^2 \pi^2} \right) - \pi + \frac{1}{\phi} \left(1 + \frac{1}{4} \pi \right) + \left(\frac{1 \times 3}{2 \times 4} \right)^2 \pi^2} \right)$$

 $\log_b(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

125.476441...

125.476441.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representation:

$$\begin{split} &\frac{1}{2}\log_{0.994754729940000} \left(\frac{e^{-\pi\sqrt{3}}\left(\left(1 + \frac{1-\pi}{4}\right) + \left(\frac{3}{2\times4}\right)^2 (1-\pi)^2\right)\sqrt{\phi} \left(144-3^2\right)}{\left(1 + \frac{\pi}{4}\right) + \left(\frac{3}{2\times4}\right)^2 \pi^2} \right) - \pi + \frac{1}{\phi} = \\ &-\pi + \frac{1}{\phi} + \frac{\log \left(\frac{135 \, e^{-\pi\sqrt{3}} \left(1 + \frac{1-\pi}{4} + (1-\pi)^2 \left(\frac{3}{8}\right)^2\right)\sqrt{\phi}}{1 + \frac{\pi}{4} + \pi^2 \left(\frac{3}{8}\right)^2} \right)}{2\log(0.994754729940000)} \end{split}$$

Series representations:

$$\begin{split} &\frac{1}{2}\log_{0,\infty475472\infty40000}\left(\frac{e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\left(1-\pi\right)^{2}\right)\sqrt{\phi}\left(144-3^{2}\right)}{\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\pi^{2}}\right)^{-\pi}+\frac{1}{\phi}=\\ &\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k}\left(-1+\frac{135}{2}e^{-\pi\sqrt{3}}\left(\frac{89-34\pi+9\pi^{2}}{64+16\pi+9\pi^{2}}\right)\right)^{k}}{2\log(0.994754729940000)}}{\frac{1}{2}\log_{0,\infty475472\infty40000}\left(\frac{e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\left(1-\pi\right)^{2}\right)\sqrt{\phi}\left(144-3^{2}\right)}{\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\pi^{2}}\right)^{-\pi}+\frac{1}{\phi}=\\ &\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty}\frac{\left(-1\right)^{k}\left(-1+\frac{135}{2}e^{-\pi\sqrt{3}}\left(1+\frac{1-\pi}{4}+\frac{9}{64}\left(1-\pi\right)^{2}\right)\sqrt{\phi}\right)^{k}}{1+\frac{\pi}{4}+\frac{9\pi^{2}}{64}}}{2\log(0.994754729940000)}}\\ &\frac{1}{2}\log_{0,\infty475472\infty40000}\left(\frac{e^{-\pi\sqrt{3}}\left(\left(1+\frac{1-\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\left(1-\pi\right)^{2}\right)\sqrt{\phi}\left(144-3^{2}\right)}{\left(1+\frac{\pi}{4}\right)+\left(\frac{3}{2\times4}\right)^{2}\pi^{2}}}\right)-\pi+\frac{1}{\phi}=\\ &\frac{1.000000000000}{\phi}-1.0000000000\pi+\log\left(\frac{135}{2}e^{-\pi\sqrt{3}}\left(89-34\pi+9\pi^{2}\right)\sqrt{\phi}}{64+16\pi+9\pi^{2}}\right)\\ &\left(-95.0739765123-0.50000000000\sum_{k=0}^{\infty}\left(-0.005245270060000\right)^{k}G(k)\right)\\ &for\left(G(0)=0 \text{ and }\frac{\left(-1\right)^{k}k}{2\left(1+k\right)\left(2+k\right)}+G(k)=\sum_{j=1}^{k}\frac{\left(-1\right)^{1+j}G\left(-j+k\right)}{1+j}\right) \end{split}$$

And:

Input interpretation:

$$\frac{1}{16} \log_{0.99475472994} \left(e^{-\pi \sqrt{3}} \sqrt{\phi} \left(144 - 3^2 \right) \times \frac{\left(1 + \frac{1}{4} \left(1 - \pi \right) \right) + \left(\frac{1 \times 3}{2 \times 4} \right)^2 \left(1 - \pi \right)^2}{\left(1 + \frac{1}{4} \pi \right) + \left(\frac{1 \times 3}{2 \times 4} \right)^2 \pi^2} \right) + \frac{1}{\phi} \left(\frac{1}{2} + \frac{1}{4} \pi \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{4} \pi \right)^2 \left(\frac{1}{4} + \frac$$

 $\log_b(x)$ is the base– b logarithm

 ϕ is the golden ratio

Result:

16.6180340...

16.6180340.... result very near to the mass of the hypothetical light particle, the boson $m_X = 16.84$ MeV

Alternative representation:

$$\begin{aligned} \frac{1}{16} \log_{0.994754729940000} \left\{ \frac{e^{-\pi \sqrt{3}} \left(\left(1 + \frac{1-\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 (1-\pi)^2 \right) \sqrt{\phi} \left(144 - 3^2 \right)}{\left(1 + \frac{\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 \pi^2} \right) + \frac{1}{\phi} = \\ \frac{1}{\phi} + \frac{\log \left(\frac{135 e^{-\pi \sqrt{3}} \left(1 + \frac{1-\pi}{4} + (1-\pi)^2 \left(\frac{3}{8}\right)^2 \right) \sqrt{\phi}}{1 + \frac{\pi}{4} + \pi^2 \left(\frac{3}{8}\right)^2} \right)}{16 \log(0.994754729940000)} \end{aligned}$$

$$\begin{aligned} \frac{1}{16} \log_{0.994754729940000} \left(\frac{e^{-\pi \sqrt{3}} \left(\left(1 + \frac{1-\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 (1-\pi)^2 \right) \sqrt{\phi} \left(144 - 3^2\right)}{\left(1 + \frac{\pi}{4}\right) + \left(\frac{3}{2 \times 4}\right)^2 \pi^2} \right) + \frac{1}{\phi} = \\ \frac{1}{\phi} - \frac{\sum_{k=1}^{\infty} \frac{\left(-1\right)^k \left(-1 + \frac{135 e^{-\pi \sqrt{3}} \left(89 - 34 \pi + 9 \pi^2\right) \sqrt{\phi}}{64 + 16 \pi + 9 \pi^2} \right)^k}{16 \log(0.994754729940000)} \end{aligned}$$

$$\begin{split} &\frac{1}{16} \log_{0.994754729940000} \left(\frac{e^{-\pi \sqrt{3}} \left(\left(1 + \frac{1-\pi}{4} \right) + \left(\frac{3}{2 \times 4} \right)^2 (1-\pi)^2 \right) \sqrt{\phi} \left(144 - 3^2 \right)}{\left(1 + \frac{\pi}{4} \right) + \left(\frac{3}{2 \times 4} \right)^2 \pi^2} \right) \right) + \frac{1}{\phi} = \\ &\frac{1.000000000000}{\phi} + \log \left(\frac{135 e^{-\pi \sqrt{3}} \left(89 - 34 \pi + 9 \pi^2 \right) \sqrt{\phi}}{64 + 16 \pi + 9 \pi^2} \right) \\ &\left(-11.88424706403 - 0.0625000000000 \sum_{k=0}^{\infty} (-0.005245270060000)^k G(k) \right) \right) \\ &\text{for} \left(G(0) = 0 \text{ and } \frac{(-1)^k k}{2 (1+k) (2+k)} + G(k) = \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \\ &\frac{1}{16} \log_{0.994754729940000} \left(\frac{e^{-\pi \sqrt{3}} \left(\left(1 + \frac{1-\pi}{4} \right) + \left(\frac{3}{2 \times 4} \right)^2 (1-\pi)^2 \right) \sqrt{\phi} \left(144 - 3^2 \right)}{\left(1 + \frac{\pi}{4} \right) + \left(\frac{3}{2 \times 4} \right)^2 \pi^2} \right) \right) + \frac{1}{\phi} = \\ &\frac{1.000000000000}{\phi} + \log \left(\frac{135 e^{-\pi \sqrt{3}} \left(89 - 34 \pi + 9 \pi^2 \right) \sqrt{\phi}}{64 + 16 \pi + 9 \pi^2} \right) \\ &\left(-11.88424706403 - 0.0625000000000 \sum_{k=0}^{\infty} (-0.005245270060000)^k G(k) \right) \\ &\text{for} \left(G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 (1+k) (2+k)} + \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \end{split}$$

Now, we have that:

sqrt(((((Pi^3/Pi)^1/8 - Pi))) ((1+1/4*Pi+(3/8)^2*Pi^2))

Input:

$$\sqrt[8]{\frac{\pi^{3}}{\pi}} - \pi \left(1 + \frac{1}{4}\pi + \left(\frac{3}{8}\right)^{2}\pi^{2}\right)$$

Exact result:

$$i\sqrt{\pi} - \sqrt[4]{\pi} \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right)$$

Decimal approximation:

4.269557122047694026135052484602024647520698045335108939187... i

4.269557122...

Polar coordinates:

 $r \approx 4.26956$ (radius), $\theta = 90^{\circ}$ (angle)

Alternate forms:

$$i\sqrt{\pi} - \sqrt[4]{\pi} \left(1 + \frac{1}{64}\pi(16 + 9\pi)\right)$$

 $\frac{1}{64}i\sqrt{\pi^{3/4} - 1}\sqrt[8]{\pi} (64 + 16\pi + 9\pi^2)$
 $i\sqrt{\pi^{3/4} - 1}\sqrt[8]{\pi} \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right)$

$$\sqrt{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right)} = \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right) \sqrt{-1 - \pi} + \sqrt[8]{\pi^2} \sum_{k=0}^{\infty} \left(-1 - \pi + \sqrt[8]{\pi^2}\right)^{-k} \left(\frac{1}{2}\right) \sqrt{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right)} = \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right) \sqrt{-1 - \pi} + \sqrt[8]{\pi^2} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-1 - \pi + \sqrt[8]{\pi^2}\right)^{-k} \left(-\frac{1}{2}\right)_k}{k!}$$

$$\sqrt{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right)} = \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right)\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^k z_0^{-k}}{k!}$$

for not ((z_0 \in \mathbb{R} and $-\infty < z_0 \le 0$))

 $3 sqrt((((((Pi^{3}/Pi)^{1/8} - Pi)))/(((Pi^{3}/Pi)^{1/8} - Pi)))$

Input:

$$3\sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi}}-\pi}{\sqrt[8]{\frac{\pi^3}{\pi}}-\pi}}$$

Exact result:

3 3

Multiplying the two results, we obtain:

 $3 sqrt((((((Pi^3/Pi)^1/8 - Pi)))/(((Pi^3/Pi)^1/8 - Pi)))) * sqrt((((Pi^3/Pi)^1/8 - Pi)))) ((1+1/4*Pi+(3/8)^2*Pi^2)))$

Input:

$$3\sqrt{\frac{\sqrt[8]{\frac{\pi^{3}}{\pi}} - \pi}{\sqrt[8]{\frac{\pi^{3}}{\pi}} - \pi}} \sqrt{\sqrt[8]{\frac{\pi^{3}}{\pi}} - \pi} \left(1 + \frac{1}{4}\pi + \left(\frac{3}{8}\right)^{2}\pi^{2}\right)$$

Exact result:

$$3i\sqrt{\pi} - \sqrt[4]{\pi}\left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right)$$

Decimal approximation:

12.80867136614308207840515745380607394256209413600532681756... i

12.808671366143.... result that is very near to the value of black hole entropy 12.5664

Polar coordinates:

 $r \approx 12.8087$ (radius), $\theta = 90^{\circ}$ (angle)

Alternate forms: $3 i \sqrt{\pi - \sqrt[4]{\pi}} \left(1 + \frac{1}{64} \pi (16 + 9 \pi) \right)$ $\frac{3}{64} i \sqrt{\pi^{3/4} - 1} \sqrt[8]{\pi} (64 + 16 \pi + 9 \pi^2)$ $3 i \sqrt{\pi^{3/4} - 1} \sqrt[8]{\pi} \left(1 + \frac{\pi}{4} + \frac{9 \pi^2}{64} \right)$

$$3 \sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi} \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right) = \frac{3}{64} \left(64 + 16\pi + 9\pi^2\right) \sqrt{z_0}^2$$
$$\sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{\left(-1\right)^{k_1+k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - z_0\right)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1-k_2}}{k_1! k_2!}$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

$$3 \sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}}{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}} \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right) = \frac{3}{64} \left(64 + 16\pi + 9\pi^2\right) \exp\left(i\pi \left\lfloor\frac{\arg(1 - x)}{2\pi}\right\rfloor\right) \exp\left(i\pi \left\lfloor\frac{\arg(-\pi + \sqrt[8]{\pi^2} - x)}{2\pi}\right\rfloor\right) \\ \sqrt{x^2} \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} (1 - x)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - x\right)^{k_2} x^{-k_1 - k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2}}{k_1! k_2!}$$

for $(x \in \mathbb{R} \text{ and } x < 0)$

$$3 \sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}}{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}} \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right) = \frac{3}{64} \left(64 + 16\pi + 9\pi^2\right) \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1-z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right)\right]/(2\pi)\right]} \\ \xrightarrow{1+1/2 \left[\arg(1-z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right)\right]/(2\pi)\right]} \\ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} (1-z_0)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1-k_2}}{k_1! k_2!}$$

3sqrt(((((((Pi^3/Pi)^1/8 - Pi)))/(((Pi^3/Pi)^1/8 - Pi)))) * sqrt((((Pi^3/Pi)^1/8 - Pi))) ((1+1/4*Pi+(3/8)^2*Pi^2)) + 4i

Where 4 is a Lucas number

Input:

$$3\sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi} \left(1 + \frac{1}{4}\pi + \left(\frac{3}{8}\right)^2 \pi^2\right) + 4i$$

i is the imaginary unit

Exact result:

$$4i + 3i\sqrt{\pi - \sqrt[4]{\pi}}\left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right)$$

Decimal approximation:

 $16.80867136614308207840515745380607394256209413600532681756\ldots i$

Polar coordinates:

 $r \approx 16.8087 \text{ (radius)}, \quad \theta = 90^{\circ} \text{ (angle)}$

16.8087 result very near to the mass of the hypothetical light particle, the boson $m_X = 16.84 \text{ MeV}$

Alternate forms: $4 i + 3 i \sqrt{\pi - \sqrt[4]{\pi}} \left(1 + \frac{1}{64} \pi (16 + 9 \pi) \right)$ $4 i + 3 i \sqrt{\pi^{3/4} - 1} \sqrt[8]{\pi} \left(1 + \frac{\pi}{4} + \frac{9 \pi^2}{64} \right)$ $i \left(4 + 3 \sqrt{\pi - \sqrt[4]{\pi}} + \frac{3}{4} \pi \sqrt{\pi - \sqrt[4]{\pi}} + \frac{27}{64} \pi^2 \sqrt{\pi - \sqrt[4]{\pi}} \right)$

Expanded form:

$$4\,i+3\,i\sqrt{\pi-\sqrt[4]{\pi}}\,+\frac{3}{4}\,i\,\pi\,\sqrt{\pi-\sqrt[4]{\pi}}\,+\frac{27}{64}\,i\,\pi^2\,\sqrt{\pi-\sqrt[4]{\pi}}$$

Series representations:

$$3\sqrt{\frac{\sqrt[3]{\frac{\pi^{3}}{\pi}} - \pi}{\sqrt[3]{\frac{\pi^{3}}{\pi}} - \pi}}\sqrt{\sqrt[3]{\frac{\pi^{3}}{\pi}} - \pi}\left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^{2}\pi^{2}\right) + 4i = \frac{1}{64}\left(256i + 192\sqrt{z_{0}}^{2}\right)^{2}}{\sum_{k_{1}=0}^{\infty}\sum_{k_{2}=0}^{\infty}\frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(1 - z_{0}\right)^{k_{1}}\left(-\pi + \sqrt[3]{\pi^{2}} - z_{0}\right)^{k_{2}}z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!} + 48}$$
$$\sum_{k_{1}=0}^{\infty}\sum_{k_{2}=0}^{\infty}\frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(1 - z_{0}\right)^{k_{1}}\left(-\pi + \sqrt[3]{\pi^{2}} - z_{0}\right)^{k_{2}}z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!} + 27$$
$$\sum_{k_{1}=0}^{\infty}\sum_{k_{2}=0}^{\infty}\frac{(-1)^{k_{1}+k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(1 - z_{0}\right)^{k_{1}}\left(-\pi + \sqrt[3]{\pi^{2}} - z_{0}\right)^{k_{2}}z_{0}^{-k_{1}-k_{2}}}{k_{1}!k_{2}!} + 27$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

$$3 \sqrt{\frac{\$}{\frac{\pi^{3}}{\pi}} - \pi} \sqrt{\frac{\$}{\frac{\pi^{3}}{\pi}} - \pi} \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^{2} \pi^{2} \right) + 4i = \frac{1}{64} \left[256i + 192 \exp\left(\pi \mathcal{A}\left\lfloor \frac{\arg(1-x)}{2\pi} \right\rfloor \right) \exp\left(\pi \mathcal{A}\left\lfloor \frac{\arg\left(-\pi + \frac{\$}{\sqrt{\pi^{2}}} - x\right)}{2\pi} \right\rfloor \right) \sqrt{x}^{2} \right] \\ \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} (1-x)^{k_{1}} \left(-\pi + \frac{\$}{\sqrt{\pi^{2}}} - x\right)^{k_{2}} x^{-k_{1}-k_{2}} \left(-\frac{1}{2}\right)_{k_{1}} \left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!} + \frac{48\pi \exp\left(\pi \mathcal{A}\left\lfloor \frac{\arg(1-x)}{2\pi} \right\rfloor \right) \exp\left(\pi \mathcal{A}\left\lfloor \frac{\arg\left(-\pi + \frac{\$}{\sqrt{\pi^{2}}} - x\right)}{2\pi} \right\rfloor \right) \sqrt{x}^{2}} \right] \\ \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} (1-x)^{k_{1}} \left(-\pi + \frac{\$}{\sqrt{\pi^{2}}} - x\right)^{k_{2}} x^{-k_{1}-k_{2}} \left(-\frac{1}{2}\right)_{k_{1}} \left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!} + \frac{27\pi^{2}}{2} \exp\left(\pi \mathcal{A}\left\lfloor \frac{\arg(1-x)}{2\pi} \right\rfloor \right) \exp\left(\pi \mathcal{A}\left\lfloor \frac{\arg\left(-\pi + \frac{\$}{\sqrt{\pi^{2}}} - x\right)^{k_{2}} x^{-k_{1}-k_{2}} \left(-\frac{1}{2}\right)_{k_{1}} \left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!} + \frac{27\pi^{2}}{2} \exp\left(\pi \mathcal{A}\left\lfloor \frac{\arg(1-x)}{2\pi} \right\rfloor \right) \exp\left(\pi \mathcal{A}\left\lfloor \frac{\arg\left(-\pi + \frac{\$}{\sqrt{\pi^{2}}} - x\right)^{k_{2}} x^{-k_{1}-k_{2}} \left(-\frac{1}{2}\right)_{k_{1}} \left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!} \right)$$

for $(x \in \mathbb{R} \text{ and } x < 0)$

$$\begin{split} & 3 \sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}}{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi} - \pi} \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right) + 4i} = \\ & \frac{1}{64} \left[256 \, i + 192 \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1 - z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right)/(2\pi)\right]} \\ & \frac{1 + 1/2 \left[\arg(1 - z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right)/(2\pi)\right]}{z_0} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - z_0\right)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1 - k_2}}{k_1! k_2!} + \\ & 48 \, \pi \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1 - z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right)/(2\pi)\right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - z_0\right)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1 - k_2}}{k_1! k_2!} + \\ & 27 \, \pi^2 \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1 - z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right)/(2\pi)\right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - z_0\right)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1 - k_2}}{k_1! k_2!} + \\ & 27 \, \pi^2 \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1 - z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right)/(2\pi)\right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - z_0\right)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1 - k_2}}{k_1! k_2!} \right) \end{split}$$

 $\begin{aligned} &3 \text{sqrt}((((((Pi^3/Pi)^1/8 - Pi)))/(((Pi^3/Pi)^1/8 - Pi)))) * \text{sqrt}((((Pi^3/Pi)^1/8 - Pi))) \\ &((1+1/4*Pi+(3/8)^2*Pi^2)) - ((21+3)/10^2)i \end{aligned}$

Where 21 and 3 are Fibonacci numbers

Input:

$$3\sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi} \left(1 + \frac{1}{4}\pi + \left(\frac{3}{8}\right)^2 \pi^2\right) - \frac{21+3}{10^2}i$$

Exact result:

$$-\frac{6i}{25} + 3i\sqrt{\pi - \sqrt[4]{\pi}} \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right)$$

Decimal approximation:

 $12.56867136614308207840515745380607394256209413600532681756\ldots i$

Polar coordinates:

 $r \approx 12.5687$ (radius), $\theta = 90^{\circ}$ (angle)

12.5687 result practically equal to the black hole entropy 12.5664

Alternate forms: $-\frac{6i}{25} + 3i\sqrt{\pi^{3/4} - 1} \sqrt[8]{\pi} \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right)$ $\frac{3}{25}i\left(25\sqrt{\pi^{3/4} - 1} \sqrt[8]{\pi} \left(1 + \frac{\pi}{4} + \frac{9\pi^2}{64}\right) - 2\right)$ $i\left(-\frac{6}{25} + 3\sqrt{\pi - \sqrt[4]{\pi}} + \frac{3}{4}\pi\sqrt{\pi - \sqrt[4]{\pi}} + \frac{27}{64}\pi^2\sqrt{\pi - \sqrt[4]{\pi}}\right)$

Expanded form:

$$-\frac{6i}{25} + 3i\sqrt{\pi} - \sqrt[4]{\pi} + \frac{3}{4}i\pi\sqrt{\pi} - \sqrt[4]{\pi} + \frac{27}{64}i\pi^2\sqrt{\pi} - \sqrt[4]{\pi}$$

$$3 \sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}}{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}} \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right) - \frac{i(21+3)}{10^2} = -\frac{1}{1600} 3 \left[128 i - 1600 \sqrt{z_0}^2 - \frac{1}{2} + \frac{1}{$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

$$\begin{split} 3 \sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi} \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right) - \frac{i(21+3)}{10^2} = \\ -\frac{1}{1600} 3 \left[128 i - 1600 \exp\left(\pi \mathcal{A}\left\lfloor\frac{\arg(1-x)}{2\pi}\right\rfloor\right) \exp\left[\pi \mathcal{A}\left\lfloor\frac{\arg\left(-\pi + \sqrt[8]{\pi^2} - x\right)}{2\pi}\right\rfloor\right] \right) \sqrt{x}^2} \\ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} (1-x)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - x\right)^{k_2} x^{-k_1-k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2}}{k_1! k_2!} - \\ 400 \pi \exp\left(\pi \mathcal{A}\left\lfloor\frac{\arg(1-x)}{2\pi}\right\rfloor\right) \exp\left[\pi \mathcal{A}\left\lfloor\frac{\arg\left(-\pi + \sqrt[8]{\pi^2} - x\right)}{2\pi}\right\rfloor\right] \sqrt{x}^2} \\ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} (1-x)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - x\right)^{k_2} x^{-k_1-k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2}}{k_1! k_2!} - \\ 225 \pi^2 \exp\left(\pi \mathcal{A}\left\lfloor\frac{\arg(1-x)}{2\pi}\right\rfloor\right) \exp\left[\pi \mathcal{A}\left\lfloor\frac{\arg\left(-\pi + \sqrt[8]{\pi^2} - x\right)}{2\pi}\right\rfloor\right] \sqrt{x}^2} \\ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} (1-x)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - x\right)^{k_2} x^{-k_1-k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2}}{k_1! k_2!} - \\ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} (1-x)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - x\right)^{k_2} x^{-k_1-k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2}}{k_1! k_2!} - \\ \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \frac{(-1)^{k_1+k_2} (1-x)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - x\right)^{k_2} x^{-k_1-k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2}}{k_1! k_2!} \right) \\ \end{array}$$

for $(x \in \mathbb{R} \text{ and } x < 0)$

$$\begin{split} & 3 \sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}}{\sqrt[8]{\frac{\pi^3}{\pi} - \pi}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi} - \pi} \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right) - \frac{i(21+3)}{10^2}} = \\ & - \frac{1}{1600} 3 \left[128 \, i - 1600 \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1-z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right) \right] 2\pi} \right] \\ & \frac{1 + 1/2 \left[\arg(1-z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right) \right] 2\pi}{z_0} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} (1 - z_0)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1 - k_2}} {k_1! k_2!} - \\ & 400 \, \pi \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1-z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right) \right] (2\pi) \right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} (1 - z_0)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1 - k_2}} {k_1! k_2!} - \\ & 225 \, \pi^2 \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1-z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right) \right] (2\pi) \right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} (1 - z_0)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1 - k_2}} {k_1! k_2!} - \\ & 225 \, \pi^2 \left(\frac{1}{z_0}\right)^{1/2 \left[\arg(1-z_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[8]{\pi^2} - z_0\right) \right] (2\pi) \right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} (1 - z_0)^{k_1} \left(-\pi + \sqrt[8]{\pi^2} - z_0\right)^{k_2} z_0^{-k_1 - k_2}} {k_1! k_2!} \right) \\ \end{array}$$

$$13 \times 3 \left(\sqrt{\frac{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi}} \sqrt{\sqrt[8]{\frac{\pi^3}{\pi}} - \pi} \right) \left(1 + \frac{1}{4} \pi + \left(\frac{3}{8}\right)^2 \pi^2 \right) - \frac{21 + 3}{10^2} i - (47 - 7) i - \frac{1}{\phi} i$$

i is the imaginary unit

Exact result:

$$-\frac{i}{\phi} + -\frac{1006 i}{25} + 39 i \sqrt{\pi - \sqrt[4]{\pi}} \left(1 + \frac{\pi}{4} + \frac{9 \pi^2}{64}\right)$$

Decimal approximation:

125.6546937711101721710624600651133231355869145882634857661... i

Polar coordinates:

 $r \approx 125.655$ (radius), $\theta = 90^{\circ}$ (angle)

125.655 result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternate forms: $-\frac{i}{\phi} + -\frac{1006 i}{25} + 39 i \sqrt{\pi^{3/4} - 1} \sqrt[8]{\pi} \left(1 + \frac{\pi}{4} + \frac{9 \pi^2}{64}\right)$ $-\frac{i \left(\left(1006 - 975 \sqrt{\pi^{3/4} - 1} \sqrt[8]{\pi} \left(1 + \frac{\pi}{4} + \frac{9 \pi^2}{64}\right)\right) \phi + 25\right)}{25 \phi}$ $i \left(-\frac{1006}{25} - \frac{2}{1 + \sqrt{5}} + 39 \sqrt{\pi - \sqrt[4]{\pi}} + \frac{39}{4} \pi \sqrt{\pi - \sqrt[4]{\pi}} + \frac{351}{64} \pi^2 \sqrt{\pi - \sqrt[4]{\pi}}\right)$

Expanded form:

$$-\frac{1006\,i}{25} - \frac{2\,i}{1+\sqrt{5}} + 39\,i\,\sqrt{\pi - \sqrt[4]{\pi}} + \frac{39}{4}\,i\,\pi\,\sqrt{\pi - \sqrt[4]{\pi}} + \frac{351}{64}\,i\,\pi^2\,\sqrt{\pi - \sqrt[4]{\pi}}$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

$$\begin{split} &13 \sqrt{\frac{\sqrt[3]{\frac{\pi^3}{\pi}} - \pi}{\sqrt[3]{\frac{\pi^3}{\pi}} - \pi}} \sqrt{\frac{\sqrt[3]{\frac{\pi^3}{\pi}} - \pi}{\sqrt[3]{\pi}}} \sqrt{\frac[3]{\frac{\pi^3}{\pi}} - \pi}} \sqrt{\frac[3]{\frac{\pi^3}{\pi}} - \pi}{\sqrt[3]{\pi}}} \sqrt{\frac[3]{\frac{\pi^3}{\pi}} - \pi}} \sqrt{\frac$$

for $(x \in \mathbb{R} \text{ and } x < 0)$

$$\begin{split} & 13 \sqrt{\frac{\sqrt[3]{\pi^3}{\pi} - \pi}{\sqrt[3]{\pi^3}{\pi} - \pi} \sqrt[3]{\sqrt[3]{\pi^3}{\pi} - \pi} 3 \left(1 + \frac{\pi}{4} + \left(\frac{3}{8}\right)^2 \pi^2\right) - \frac{i \left(21 + 3\right)}{10^2} - i \left(47 - 7\right) - \frac{i}{\phi} = \\ & - \frac{1}{1600 \phi} \left[1600 i + 64 \, 384 \phi \, i - 62 \, 400 \phi \left(\frac{1}{x_0}\right)^{1/2 \left[\arg(1 - x_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[3]{\pi^2} - x_0\right)/(2\pi)\right]} \right] \\ & \frac{1 + 1/2 \left[\arg(1 - x_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[3]{\pi^2} - x_0\right)/(2\pi)\right]}{x_0} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - x_0)^{k_1} \left(-\pi + \sqrt[3]{\pi^2} - x_0\right)^{k_2} x_0^{-k_1 - k_2}}{k_1! k_2!} - \\ & 15 \, 600 \phi \, \pi \left(\frac{1}{x_0}\right)^{1/2 \left[\arg(1 - x_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[3]{\pi^2} - x_0\right)/(2\pi)\right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - x_0)^{k_1} \left(-\pi + \sqrt[3]{\pi^2} - x_0\right)^{k_2} x_0^{-k_1 - k_2}}{k_1! k_2!} - \\ & 8775 \phi \, \pi^2 \left(\frac{1}{x_0}\right)^{1/2 \left[\arg(1 - x_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[3]{\pi^2} - x_0\right)/(2\pi)\right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - x_0)^{k_1} \left(-\pi + \sqrt[3]{\pi^2} - x_0\right)^{k_2} x_0^{-k_1 - k_2}}{k_1! k_2!} - \\ & 8775 \phi \, \pi^2 \left(\frac{1}{x_0}\right)^{1/2 \left[\arg(1 - x_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[3]{\pi^2} - x_0\right)/(2\pi)\right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - x_0)^{k_1} \left(-\pi + \sqrt[3]{\pi^2} - x_0\right)^{k_2} x_0^{-k_1 - k_2}}{k_1! k_2!} - \\ \\ & 8775 \phi \, \pi^2 \left(\frac{1}{x_0}\right)^{1/2 \left[\arg(1 - x_0)/(2\pi)\right] + 1/2 \left[\arg\left(-\pi + \sqrt[3]{\pi^2} - x_0\right)/(2\pi)\right]} \\ & \sum_{k_1 = 0}^{\infty} \sum_{k_2 = 0}^{\infty} \frac{(-1)^{k_1 + k_2} \left(-\frac{1}{2}\right)_{k_1} \left(-\frac{1}{2}\right)_{k_2} \left(1 - x_0)^{k_1} \left(-\pi + \sqrt[3]{\pi^2} - x_0\right)^{k_2} x_0^{-k_1 - k_2}}{k_1! k_2!} \right) \\ \end{array}$$

Page 272

$$(\sqrt{5} + \sqrt{3})\left\{1 + 2e^{-\frac{\pi}{3}} + 2e^{-\frac{4\pi}{3}} + 2e^{-\frac{9\pi}{3}} + 2e^{-\frac{9\pi}{3}} + \frac{1}{4}e^{-\frac{1}{3}}\right\}$$
$$= (3 + \sqrt{3})\left\{1 + 2e^{-\frac{3\pi}{3}} + 2e^{-\frac{1}{3}\pi\sqrt{5}} + 2e^{-\frac{1}{3}\pi\sqrt{5}} + 2e^{-\frac{27\pi}{3}} + 2e^{-\frac{1}{3}\pi\sqrt{5}} + 2e^{-\frac{1}{3}\pi$$

 $(3+sqrt(3)) (((1+2e^{(-3Pi*sqrt(5))}+2e^{(-12Pi*sqrt(5))}+2e^{(-27Pi*sqrt(5))})$

Input:
$$(3+\sqrt{3})(1+2e^{-3\pi\sqrt{5}}+2e^{-12\pi\sqrt{5}}+2e^{-27\pi\sqrt{5}})$$

Decimal approximation:

4.732050814230262870207675512355022722225091098146403433958...

4.73205081423...

$$\begin{pmatrix} 3+\sqrt{3} \end{pmatrix} \begin{pmatrix} 1+2 e^{-3\pi\sqrt{5}} + 2 e^{-12\pi\sqrt{5}} + 2 e^{-27\pi\sqrt{5}} \end{pmatrix} = e^{-27\pi\sqrt{4} \sum_{k=0}^{\infty} 4^{-k} \binom{1/2}{k}} \\ \begin{pmatrix} 2+2 e^{15\pi\sqrt{4} \sum_{k=0}^{\infty} 4^{-k} \binom{1/2}{k}} + 2 e^{24\pi\sqrt{4} \sum_{k=0}^{\infty} 4^{-k} \binom{1/2}{k}} + e^{27\pi\sqrt{4} \sum_{k=0}^{\infty} 4^{-k} \binom{1/2}{k}} \\ \begin{pmatrix} 3+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k} \binom{1}{2} \\ k \end{pmatrix} \end{pmatrix}$$

$$\begin{split} & \left(3+\sqrt{3}\right)\left(1+2\,e^{-3\,\pi\sqrt{5}}\,+2\,e^{-12\,\pi\sqrt{5}}\,+2\,e^{-27\,\pi\sqrt{5}}\,\right) = \exp\left(-27\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right) \\ & \left(2+2\,\exp\left(15\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right) + 2\,\exp\left(24\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right) + \exp\left(27\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right)\right) \left(3+\sqrt{2}\,\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right) \end{split}$$

$$\begin{pmatrix} 3+\sqrt{3} \end{pmatrix} \left(1+2e^{-3\pi\sqrt{5}}+2e^{-12\pi\sqrt{5}}+2e^{-27\pi\sqrt{5}}\right) = \\ \exp\left(-27\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right) \\ \left(2+2\exp\left(15\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right) + \\ 2\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right) + \\ \exp\left(27\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right) \right) \\ \left(3+\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(3-z_0)^kz_0^{-k}}{k!}\right) \text{ for not } \left(\left(z_0\in\mathbb{R} \text{ and } -\infty < z_0 \le 0\right)\right) \end{cases}$$

 $\begin{array}{l} 4* \ (3+ \operatorname{sqrt}(3)) \ (((1+ 2e^{(-3Pi* \operatorname{sqrt}(5))} + 2e^{(-12Pi* \operatorname{sqrt}(5))} + 2e^{(-27Pi* \operatorname{sqrt}(5))}))) \\ + 1/ golden \ ratio \end{array}$

Input: $4(3+\sqrt{3})(1+2e^{-3\pi\sqrt{5}}+2e^{-12\pi\sqrt{5}}+2e^{-27\pi\sqrt{5}})-\pi+\frac{1}{\phi}$

 ϕ is the golden ratio

Decimal approximation:

16.40464459208115309057264550050622612242350417301627077699...

16.404644592.... result very near to the mass of the hypothetical light particle, the boson $m_x = 16.84$ MeV

Alternate forms:

$$\frac{1}{\phi} + 4\left(3 + \sqrt{3}\right)\left(1 + 2e^{-27\sqrt{5}\pi}\left(1 + e^{15\sqrt{5}\pi} + e^{24\sqrt{5}\pi}\right)\right) - \pi$$

$$\frac{1}{\phi}\left(8\left(3 + \sqrt{3}\right)e^{-27\sqrt{5}\pi}\phi + 8\left(3 + \sqrt{3}\right)e^{-12\sqrt{5}\pi}\phi + 8\left(3 + \sqrt{3}\right)e^{-3\sqrt{5}\pi}\phi - \left(\pi - 4\left(3 + \sqrt{3}\right)\right)\phi + 1\right)$$

$$\begin{aligned} 12 + 4\sqrt{3} &+ \frac{2}{1 + \sqrt{5}} + 24 \, e^{-27\sqrt{5} \, \pi} + 8\sqrt{3} \, e^{-27\sqrt{5} \, \pi} + \\ 24 \, e^{-12\sqrt{5} \, \pi} + 8\sqrt{3} \, e^{-12\sqrt{5} \, \pi} + 24 \, e^{-3\sqrt{5} \, \pi} + 8\sqrt{3} \, e^{-3\sqrt{5} \, \pi} - \pi \end{aligned}$$

$$\begin{split} 4\left(3+\sqrt{3}\right)\left(1+2\,e^{-3\,\pi\,\sqrt{5}}\,+2\,e^{-12\,\pi\,\sqrt{5}}\,+2\,e^{-27\,\pi\,\sqrt{5}}\,\right) -\pi + \frac{1}{\phi} = \\ &-\frac{1}{\phi}\,e^{-27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\left(-e^{27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}-24\,\phi - 24\,e^{15\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\phi - \\ &24\,e^{24\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\phi - 12\,e^{27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\phi + e^{27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\phi \pi - \\ &8\,\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\\k\right) - 8\,e^{15\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\\k\right) - \\ &8\,e^{24\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\\k\right) - \\ &4\,e^{27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\\k\right) \end{split}$$

$$\begin{split} 4\left(3+\sqrt{3}\right)\left(1+2\,e^{-3\,\pi\,\sqrt{5}}\,+2\,e^{-12\,\pi\,\sqrt{5}}\,+2\,e^{-27\,\pi\,\sqrt{5}}\,\right)-\pi+\frac{1}{\phi} &=\\ &-\frac{1}{\phi}\exp\left[-27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\\ &\left(-\exp\left[27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]-24\,\phi-24\exp\left[15\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi-24\,\phi-24\exp\left[27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi-24\,\phi-24\exp\left[27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi-24\,\phi-24\exp\left[27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi+24\exp\left[27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\pi-8\,\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-8\,\exp\left[15\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-8\,\exp\left[24\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-4\,\exp\left[27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-4\,\exp\left[27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}-4\,\exp\left[27\,\pi\,\sqrt{4}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{4}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{2}\right)^k\left(-\frac{1}{2}\right)_k}{k!}\right]\phi\,\sqrt{2}\,\sum_{k=0}^{\infty}\,\frac{\left(-\frac{1}{$$

$$\begin{split} 4\left(3+\sqrt{3}\right)\left(1+2\,e^{-3\pi\sqrt{5}}+2\,e^{-12\pi\sqrt{5}}+2\,e^{-27\pi\sqrt{5}}\right)-\pi+\frac{1}{\phi} = \\ &-\frac{1}{\phi}\exp\left(-27\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right)\\ &\left(-\exp\left(27\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right)-24\phi-24\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right)\phi-24\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right)\phi-24\exp\left(27\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right)\phi+2\exp\left(27\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right)\phi\pi-28\phi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\phi\pi-28\phi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\phi\pi-28\phi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(3-z_0)^kz_0^{-k}}{k!}-28\exp\left(27\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(3-z_0)^kz_0^{-k}}{k!}-28\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}-28\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}-28\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}-28\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}-28\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}-28\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(3-z_0)^kz_0^{-k}}{k!}-28\exp\left(24\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(5-z_0)^kz_0^{-k}}{k!}\right)\phi\sqrt{z_0}\right)\phi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k\left(-\frac{1}{2}\right)_k(3-z_0)^kz_0^{-k}}{k!}\right)\phi\sqrt{z_0}$$

1/(((((3+sqrt(3)) (((1+2e^(-3Pi*sqrt(5))+2e^(-12Pi*sqrt(5))+2e^(-27Pi*sqrt(5))))))^1/256

Input:

$$\frac{1}{256\sqrt{\left(3+\sqrt{3}\right)\left(1+2\ e^{-3\ \pi\ \sqrt{5}}\ +2\ e^{-12\ \pi\ \sqrt{5}}\ +2\ e^{-27\ \pi\ \sqrt{5}}\right)}}$$

Decimal approximation:

0.993946681992047049220880434022780714933846246599579731515...

0.993946681992.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}}}$$

and to the dilaton value **0**. **989117352243** = ϕ

Alternate forms:

$$\frac{1}{\frac{256\sqrt{(3+\sqrt{3})(1+2e^{-27\sqrt{5}\pi}(1+e^{15\sqrt{5}\pi}+e^{24\sqrt{5}\pi}))}}{e^{(27\sqrt{5}\pi)/256}}}$$

$$\frac{e^{(27\sqrt{5}\pi)/256}}{(3+\sqrt{3})(2+2e^{15\sqrt{5}\pi}+2e^{24\sqrt{5}\pi}+e^{27\sqrt{5}\pi})}}$$

$$\begin{split} \frac{1}{256\sqrt{\left(3+\sqrt{3}\right)\left(1+2\ e^{-3\,\pi\sqrt{5}}+2\ e^{-12\,\pi\sqrt{5}}+2\ e^{-27\,\pi\sqrt{5}}\right)}} &= \left(e^{27\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}} \\ \left(e^{-27\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}} \left(2+2\ e^{15\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}+2\ e^{24\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}+\right) \\ &e^{27\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}} \left(3+\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\atop k\right)\right)^{255/256}\right) / \\ &\left(\left(2+2\ e^{15\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}+2\ e^{24\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}+2\ e^{27\,\pi\sqrt{4}\,\sum_{k=0}^{\infty}4^{-k}\binom{1/2}{k}}\right) \\ &\left(3+\sqrt{2}\,\sum_{k=0}^{\infty}2^{-k}\left(\frac{1}{2}\atop k\right)\right)\right) \end{split}$$

$$\frac{1}{25\sqrt[6]{(3+\sqrt{3})(1+2e^{-3\pi\sqrt{5}}+2e^{-12\pi\sqrt{5}}+2e^{-27\pi\sqrt{5}})}} =$$

$$\left(\exp\left(27\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)\left(\exp\left(-27\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(2+2\exp\left(15\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+\right)\right)\left(2+2\exp\left(24\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+\exp\left(27\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)\left(3+\sqrt{2}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+2\exp\left(24\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+\exp\left(27\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+\exp\left(27\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+2\exp\left(24\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+\exp\left(27\pi\sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)\left(3+\sqrt{2}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)$$

1/2 log base 0.993946681992 (((1/((((3+sqrt(3)) (((1+2e^(-3Pi*sqrt(5))+2e^(-12Pi*sqrt(5))+2e^(-27Pi*sqrt(5)))))))))-Pi+1/golden ratio

Input interpretation:

$$\frac{1}{2} \log_{0.993946681992} \left(\frac{1}{\left(3 + \sqrt{3}\right) \left(1 + 2 e^{-3\pi \sqrt{5}} + 2 e^{-12\pi \sqrt{5}} + 2 e^{-27\pi \sqrt{5}}\right)} \right) - \pi + \frac{1}{\phi}$$

 $\log_{b}(x)$ is the base- b logarithm

Result:

125.4764413...

125.4764413.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representation:

$$\begin{split} &\frac{1}{2}\log_{0.9939466819920000} \left(\frac{1}{\left(3 + \sqrt{3}\right) \left(1 + 2e^{-3\pi\sqrt{5}} + 2e^{-12\pi\sqrt{5}} + 2e^{-27\pi\sqrt{5}}\right)} \right) - \pi + \frac{1}{\phi} = \\ & -\pi + \frac{1}{\phi} + \frac{\log \left(\frac{1}{\left(1 + 2e^{-27\pi\sqrt{5}} + 2e^{-12\pi\sqrt{5}} + 2e^{-3\pi\sqrt{5}}\right) \left(3 + \sqrt{3}\right)} \right)}{2\log(0.9939466819920000)} \end{split}$$

$$\frac{1}{2} \log_{0,0039466810020000} \left(\frac{1}{(3 + \sqrt{3}) \left(1 + 2e^{-3\pi\sqrt{5}} + 2e^{-12\pi\sqrt{5}} + 2e^{-27\pi\sqrt{5}} \right)} \right)^{-\pi} + \frac{1}{\phi} = \frac{1}{2} \log_{0,0039466810020000} \left(\frac{1}{(1 + 2e^{-27\pi\sqrt{5}} + 2e^{-12\pi\sqrt{5}} + 2e^{-3\pi\sqrt{5}})(3 + \sqrt{3})} \right)^{k}}{2 \log(0.9939466819920000)} \right)^{-\pi} + \frac{1}{\phi} = \frac{1.0000000000000}{\left(\frac{1}{(3 + \sqrt{3}) \left(1 + 2e^{-3\pi\sqrt{5}} + 2e^{-12\pi\sqrt{5}} + 2e^{-27\pi\sqrt{5}} \right)} \right)} - \pi + \frac{1}{\phi} = \frac{1.0000000000000}{\phi} - 1.000000000000 \pi + \log \left(\frac{1}{\left(1 + 2e^{-27\pi\sqrt{5}} + 2e^{-12\pi\sqrt{5}} + 2e^{-3\pi\sqrt{5}} \right)(3 + \sqrt{3})} \right)}{\left(-82.34932806094 - 0.5000000000000 \sum_{k=0}^{\infty} (-0.0060533180080000)^{k} G(k) \right)} \right)$$

for $\left(G(0) = 0$ and $\frac{(-1)^{k} k}{2(1 + k)(2 + k)} + G(k) = \sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j + k)}{1 + j} \right)$

$$\begin{split} &\frac{1}{2}\log_{0.9939466819920000}\left(\frac{1}{\left(3+\sqrt{3}\right)\left(1+2\ e^{-3\ \pi\ \sqrt{5}}\ +2\ e^{-12\ \pi\ \sqrt{5}}\ +2\ e^{-27\ \pi\ \sqrt{5}}\right)}\right) - \pi + \frac{1}{\phi} = \\ &\frac{1.000000000000}{\phi} - 1.00000000000\ \pi + \\ &\log\left(\frac{1}{\left(1+2\ e^{-27\ \pi\ \sqrt{5}}\ +2\ e^{-12\ \pi\ \sqrt{5}}\ +2\ e^{-3\ \pi\ \sqrt{5}}\right)\left(3+\sqrt{3}\right)}\right) \\ &\int \left(-82.34932806094 - 0.500000000000\ \sum_{k=0}^{\infty}\left(-0.0060533180080000\right)^k\ G(k)\right) \\ &\quad \text{for}\left(G(0) = 0 \text{ and } G(k) = \frac{\left(-1\right)^{1+k}\ k}{2\ (1+k)\ (2+k)} + \sum_{j=1}^{k}\ \frac{\left(-1\right)^{1+j}\ G(-j+k)}{1+j}\right) \end{split}$$

Now, we have:

Page 270

For p = 2, we obtain:

$$(1+2)^{2}(1-2^{2})/(1+2^{2}) = \alpha = -5.4; \quad (1-2)^{2}(1-2^{2})/(1+2^{2})^{3} = \beta = -0.024;$$

$$2^{3}((2+2)/(1+2^{2})) = 1 - \alpha = 6.4; \quad 2(((2+2)/(1+2^{2})))^{3} = 1 - \beta = 1.024;$$

Page 272-273

= 1+

For:

 $\alpha = -5.4$; $\beta = -0.024$;

 $1-\alpha=6.4\ ;\ \ 1-\beta=1.024\ ;$

$(((1.024^{5})/6.4))^{1/8} - (((-0.024^{5})/(-5.4)))^{1/8}$

Input:

$$\sqrt[8]{\frac{1.024^5}{6.4}} - \sqrt[8]{\frac{-0.024^5}{-5.4}}$$

Result:

0.726038...

0.726038...

 $1+(2)^{1/3} * (((-0.024^{5}(1.024)^{5}))/(-5.4(6.4)))^{1/24}$

Input:

$$1 + \sqrt[3]{2} \sqrt[24]{\frac{-0.024^5 \times 1.024^5}{-5.4 \times 6.4}}$$

Result:

1.502257...

1.502257...

$$((((((1.024^5)/6.4))^{1/8} - (((-0.024^5)/(-5.4)))^{1/8})))x = 1 + (2)^{1/3} * (((-0.024^5(1.024)^5))/(-5.4(6.4)))^{1/24}))x = 1 + (2)^{1/3} * (((-0.024^5(1.024)^{5}))/(-5.4(6.4)))^{1/24}))x = 1 + (2)^{1/3} * (((-0.024^{5}(1.024)^{5}))/(-5.4(6.4)))^{1/24}))x = 1 + (2)^{1/3} + ($$

Input:

$\left(\sqrt[8]{\frac{1.024^5}{6.4}} - \sqrt[8]{\frac{-0.024^5}{-5.4}}\right)$	$x = 1 + \sqrt[3]{2} \frac{24}{\sqrt{2}}$	$\frac{-0.024^5 \times 1.024^5}{-5.4 \times 6.4}$
--	---	---

Result:

0.726038 x = 1.50226

Plot:

Alternate form:

0.726038 x - 1.50226 = 0

Alternate form assuming x is real:

0.726038 x + 0 = 1.50226

Solution:

 $x \approx 2.06912$

2.06912

 $+ (\frac{1}{2})^{(1-\alpha)} + (\frac{1}{2})^{(1-\alpha)} + kc$ $+ (\frac{1}{2})^{-\alpha} + (\frac{1}{2})^{-\alpha} + bc$ $+ (\frac{1}{2})^{-(1-\beta)} + (\frac{1}{2})^{-\alpha} + bc$ $+ (\frac{1}{2})^{-(1-\beta)} + (\frac{1}{2})^{-(1-\beta)} + bc$ $1 + (\frac{1}{2})^{-(1-\beta)} + (\frac{1}{2})^{-(1-\beta)} + bc$

For:

 $\alpha = -5.4$; $\beta = -0.024$; $1 - \alpha = 6.4$; $1 - \beta = 1.024$;

(((-5.4^5)/-0.024))^1/8 - (((6.4^5)/(1.024)))^1/8

Input:

8	-5.4 ⁵	8	6.4 ⁵
V	-0.024	Ī	1.024

Result:

1.39211... 1.39211...

 $1+(2)^{1/3} * ((((-5.4^{5}(6.4)^{5})/(-0.024(1.024))))^{1/24})$

Input:

 $1 + \sqrt[3]{2} \ \ _{24}^{24} \sqrt{\frac{-5.4^5 \times 6.4^5}{-0.024 \times 1.024}}$

Result:

4.07568... 4.07568...

 $((((((-5.4^{5})/-0.024))^{1/8} - (((6.4^{5})/(1.024)))^{1/8})))x = 1+(2)^{1/3} * ((((-5.4^{5})/(0.024(1.024))))^{1/24}))x = 1+(2)^{1/3} + (((-5.4^{5})/(0.024(1.024))))^{1/24}))x = 1+(2)^{1/3} + (((-5.4^{5})/(0.024(1.024))))^{1/24})$

Input:

$$\left(\sqrt[8]{\frac{-5.4^5}{-0.024}} - \sqrt[8]{\frac{6.4^5}{1.024}}\right)x = 1 + \sqrt[3]{2} \sqrt[24]{\frac{-5.4^5 \times 6.4^5}{-0.024 \times 1.024}}$$

Result:

1.39211 x = 4.07568

Plot:

Alternate form:

1.39211 x - 4.07568 = 0

Alternate form assuming x is real:

1.39211 x + 0 = 4.07568

Solution:

 $x \approx 2.9277$

2.9277

The difference between the two results is:

Input interpretation:

2.9277 - 2.06912

Result:

0.85858 0.85858

While the sum:

Input interpretation:

2.9277 + 2.06912

Result:

4.99682 $4.99682 \approx 5$

In conclusion, we obtain:

 $(((1/(2.06912) + 1/(2.9277))))^{1/64}$

Input interpretation:

 $64 \sqrt{\frac{1}{2.06912} + \frac{1}{2.9277}}$

Result:

0.9969961...

0.9969961... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{\sqrt{9^{5}\sqrt{5^{3}}} - 1}} \approx 0.9991104684$$

$$\frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}$$

and to the dilaton value **0**. **989117352243** = ϕ

 $2 \log \text{base } 0.9969961 (((1/(2.06912) + 1/(2.9277))))-Pi+1/golden ratio$

Input interpretation: $2 \log_{0.9969961} \left(\frac{1}{2.06912} + \frac{1}{2.9277} \right) - \pi + \frac{1}{\phi}$

 $\log_{b}(x)$ is the base- b logarithm

∉ is the golden ratio

Result:

125.476...

125.476.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representation:

 $2\log_{0.996996}\left(\frac{1}{2.06912} + \frac{1}{2.9277}\right) - \pi + \frac{1}{4} = -\pi + \frac{1}{4} + \frac{2\log\left(\frac{1}{2.06912} + \frac{1}{2.9277}\right)}{\log(0.996996)}$

Series representations:

 $2\log_{0.996996}\left(\frac{1}{2.06912} + \frac{1}{2.9277}\right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi - \frac{2\sum_{k=1}^{\infty} \frac{(-1)^k (-0.175138)^k}{k}}{\log(0.996996)}$ $2 \log_{0.996996} \left(\frac{1}{2.06912} + \frac{1}{2.9277} \right) - \pi + \frac{1}{\phi} =$ $\frac{1}{\phi} - \pi - 664.801 \log(0.824862) - 2 \log(0.824862) \sum_{k=1}^{\infty} (-0.0030039)^k G(k)$ for G(0) = 0 and $G(k) = \frac{(-1)^{1+k} k}{2(1+k)(2+k)} + \sum_{i=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}$

 $1/4 \log \text{ base } 0.9969961 (((1/(2.06912) + 1/(2.9277))))+1/\text{golden ratio}$

Input interpretation: $\frac{1}{4} \log_{0.9969961} \left(\frac{1}{2.06912} + \frac{1}{2.9277} \right) + \frac{1}{\phi}$

 $\log_{b}(x)$ is the base- b logarithm

φ is the golden ratio

Result:

16.6180...

16.6180.... result very near to the mass of the hypothetical light particle, the boson $m_X = 16.84 \text{ MeV}$

Alternative representation:

 $\frac{1}{4}\log_{0.996996}\left(\frac{1}{2.06912} + \frac{1}{2.9277}\right) + \frac{1}{\phi} = \frac{1}{\phi} + \frac{\log\left(\frac{1}{2.06912} + \frac{1}{2.9277}\right)}{4\log(0.996996)}$

Series representations:

$$\frac{1}{4}\log_{0.996996}\left(\frac{1}{2.06912} + \frac{1}{2.9277}\right) + \frac{1}{\phi} = \frac{1}{\phi} - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k (-0.175138)^k}{k}}{4\log(0.996996)}$$

$$\frac{1}{4} \log_{0.9966996} \left(\frac{1}{2.06912} + \frac{1}{2.9277} \right) + \frac{1}{\phi} = \frac{1}{\phi} - 83.1001 \log(0.824862) - \frac{1}{4} \log(0.824862) \sum_{k=0}^{\infty} (-0.0030039)^k G(k)$$
for $\left(G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2 (1+k) (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j} \right)$

And:

(2.9277 / 2.06912)

Input interpretation: 2.9277

2.9277

Result:

1.414949350448499845344880915558304979894834519022579647386...

 $1.41494935.... \approx \sqrt{2} = 1.414213562373...$

Now, we have that (page 274):

 $e^{-3Pi}+e^{-5Pi}+e^{-Pi}sqrt(5)+e^{-Pi}sqrt(7)$

Input: $e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}}$

Exact result: $e^{-5\pi} + e^{-3\pi} + e^{-\sqrt{5}\pi} + e^{-\sqrt{7}\pi}$

Decimal approximation: 0.001215966189501663516799037097937027839462647628489373696... 0.00121596618....

Alternate forms: $e^{-\sqrt{7}\pi} + e^{-5\pi-\sqrt{5}\pi} \left(e^{5\pi} + e^{\sqrt{5}\pi} + e^{2\pi+\sqrt{5}\pi} \right)$ $e^{-5\pi-\sqrt{5}\pi-\sqrt{7}\pi} \left(e^{5\pi+\sqrt{5}\pi} + e^{5\pi+\sqrt{7}\pi} + e^{\sqrt{5}\pi+\sqrt{7}\pi} + e^{2\pi+\sqrt{5}\pi+\sqrt{7}\pi} \right)$

 $((e^{-3Pi})+e^{-5Pi})+e^{-(-Pi*sqrt(5))}+e^{-(-Pi*sqrt(7))})^{-1/1024}$

Input: $\sqrt[1024]{e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}}}$

Exact result: ${}^{1024}\sqrt{e^{-5\pi}+e^{-3\pi}+e^{-\sqrt{5}\pi}+e^{-\sqrt{7}\pi}}$

Decimal approximation:

0.993466537754148956268754683969673794159885725876948637260...

0.9934665377.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}} \approx 0.9991104684$$

and to the dilaton value **0**. **989117352243** = ϕ

Alternate form: $e^{-(5\pi)/1024-(\sqrt{5}\pi)/1024-(\sqrt{7}\pi)/1024}$ $1024\sqrt{e^{5\pi+\sqrt{5}\pi}+e^{5\pi+\sqrt{7}\pi}+e^{\sqrt{5}\pi+\sqrt{7}\pi}+e^{2\pi+\sqrt{5}\pi+\sqrt{7}\pi}}$

All 1024th roots of $e^{(-5\pi)} + e^{(-3\pi)} + e^{(-3\pi)} + e^{(-sqrt(5)\pi)} + e^{(-sqrt(7)\pi)}$: $1024\sqrt{e^{-5\pi} + e^{-3\pi} + e^{-\sqrt{5}\pi} + e^{-\sqrt{7}\pi}} e^{0} \approx 0.993467 \text{ (real, principal root)}$ $1024\sqrt{e^{-5\pi} + e^{-3\pi} + e^{-\sqrt{5}\pi} + e^{-\sqrt{7}\pi}} e^{(i\pi)/512} \approx 0.993448 + 0.006096 i$ $1024\sqrt{e^{-5\pi} + e^{-3\pi} + e^{-\sqrt{5}\pi} + e^{-\sqrt{7}\pi}} e^{(i\pi)/256} \approx 0.993392 + 0.012191 i$ $1024\sqrt{e^{-5\pi} + e^{-3\pi} + e^{-\sqrt{5}\pi} + e^{-\sqrt{7}\pi}} e^{(3i\pi)/512} \approx 0.993298 + 0.018286 i$ $1024\sqrt{e^{-5\pi} + e^{-3\pi} + e^{-\sqrt{5}\pi} + e^{-\sqrt{7}\pi}} e^{(i\pi)/128} \approx 0.993167 + 0.024381 i$ Series representations:

$$\begin{split} ^{1024} \sqrt{e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}}} &= \\ ^{1024} \sqrt{e^{-5\pi} + e^{-3\pi} + e^{-\pi\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \binom{1/2}{k}}_{+ e^{-\pi\sqrt{6}\sum_{k=0}^{\infty} 6^{-k} \binom{1/2}{k}} \\ ^{1024} \sqrt{e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}}} &= \\ ^{1024} \sqrt{e^{-5\pi} + e^{-3\pi} + \exp\left(-\pi\sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right) + \exp\left(-\pi\sqrt{6}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{6}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right) \\ ^{1024} \sqrt{e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}}} &= \\ \sqrt{e^{-5\pi} + e^{-3\pi} + \exp\left(-\pi\sqrt{20}\sum_{k=0}^{\infty} \frac{\left(-1\right)^k \left(-\frac{1}{2}\right)_k \left(5-z_0\right)^k z_0^{-k}}{k!}\right) + \\ &exp\left(-\pi\sqrt{z_0}\sum_{k=0}^{\infty} \frac{\left(-1\right)^k \left(-\frac{1}{2}\right)_k \left(7-z_0\right)^k z_0^{-k}}{k!}\right)\right) \land (1/1024) \end{split}$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \leq 0))$

Integral representation:

 $(1+z)^{a} = \frac{\int_{-i \ \infty+\gamma}^{i \ \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} ds}{(2 \pi i) \Gamma(-a)} \text{ for } (0 < \gamma < -\operatorname{Re}(a) \text{ and } |\operatorname{arg}(z)| < \pi)$

1/8 log base 0.9934665377541 ((e^(-3Pi)+e^(-5Pi)+e^(-Pi*sqrt(5))+e^(-Pi*sqrt(7))))-Pi+1/golden ratio

Input interpretation: $\frac{1}{8} \log_{0.9934665377541} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) - \pi + \frac{1}{\phi}$

 $\log_b(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

125.47644133...

125.47644133.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

=

Alternative representation:

$$\frac{1}{8} \log_{0.99346653775410000} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) - \pi + \frac{1}{\phi} = -\pi + \frac{1}{\phi} + \frac{\log \left(e^{-5\pi} + e^{-3\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right)}{8 \log(0.99346653775410000)}$$

Series representations:

$$\frac{1}{8} \log_{0.99346653775410000} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) - \pi + \frac{1}{\phi}$$
$$\frac{1}{\phi} - \pi - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + e^{-5\pi} + e^{-3\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right)^k}{k}}{8 \log(0.99346653775410000)}$$

$$\frac{1}{8} \log_{0.99346653775410000} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) - \pi + \frac{1}{\phi} = -\frac{1}{8\phi} \left(-8 + 8\phi\pi - \phi \log_{0.99346653775410000} \left(e^{-5\pi} + e^{-3\pi} + e^{-\pi\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \binom{1/2}{k}} + e^{-\pi\sqrt{6}\sum_{k=0}^{\infty} 6^{-k} \binom{1/2}{k}} \right) \right)$$

$$\begin{aligned} \frac{1}{8} \log_{0.99346653775410000} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) &-\pi + \frac{1}{\phi} = \\ &- \frac{1}{8\phi} \left(-8 + 8\phi \pi - \phi \log_{0.99346653775410000} \right) \\ &e^{-5\pi} + e^{-3\pi} + \exp \left(-\pi\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4} \right)^k \left(-\frac{1}{2} \right)_k}{k!} \right) + \exp \left(-\pi\sqrt{6} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{6} \right)^k \left(-\frac{1}{2} \right)_k}{k!} \right) \end{aligned}$$

1/64 log base 0.9934665377541 ((e^(-3Pi)+e^(-5Pi)+e^(-Pi*sqrt(5))+e^(-Pi*sqrt(7))))+1/golden ratio

Input interpretation:

$$\frac{1}{64} \log_{0.9934665377541} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) + \frac{1}{\phi}$$

 $\log_b(x)$ is the base– b logarithm

 ϕ is the golden ratio

Result:

16.618033989....

16.618033989.... result very near to the mass of the hypothetical light particle, the boson $m_X = 16.84$ MeV

Alternative representation:

$$\frac{1}{64} \log_{0.99346653775410000} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) + \frac{1}{\phi} = \frac{1}{\phi} + \frac{\log \left(e^{-5\pi} + e^{-3\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right)}{64 \log(0.99346653775410000)}$$

$$\frac{1}{64} \log_{0.99346653775410000} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) + \frac{1}{\phi} = \frac{1}{\phi} - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + e^{-5\pi} + e^{-3\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right)^k}{64 \log(0.99346653775410000)}}{\frac{1}{64} \log_{0.99346653775410000} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) + \frac{1}{\phi} = \frac{64 + \phi \log_{0.99346653775410000} \left(e^{-5\pi} + e^{-3\pi} + e^{-\pi\sqrt{4}} \sum_{k=0}^{\infty} 4^{-k} \binom{1/2}{k} + e^{-\pi\sqrt{6}} \sum_{k=0}^{\infty} 6^{-k} \binom{1/2}{k} \right)}{64 \phi}$$

$$\frac{1}{64} \log_{0.99346653775410000} \left(e^{-3\pi} + e^{-5\pi} + e^{-\pi\sqrt{5}} + e^{-\pi\sqrt{7}} \right) + \frac{1}{\phi} = \frac{1}{64\phi} \left(64 + \phi \log_{0.99346653775410000} \right) \left(e^{-5\pi} + e^{-3\pi} + \exp\left(-\pi\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4} \right)^k \left(-\frac{1}{2} \right)_k}{k!} \right) + \exp\left(-\pi\sqrt{6} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{6} \right)^k \left(-\frac{1}{2} \right)_k}{k!} \right) \right)$$

 $x((8-3*sqrt(7))/16) = e^{-(-Pi*sqrt(7))}$

Input: $x\left(\frac{1}{16}\left(8-3\sqrt{7}\right)\right) = e^{-\pi\sqrt{7}}$

Exact result:

$$\frac{1}{16} \left(8 - 3\sqrt{7} \right) x = e^{-\sqrt{7} \pi}$$

Plot:

Alternate form:

$$-\frac{1}{16} \left(3\sqrt{7} - 8 \right) x = e^{-\sqrt{7} \pi}$$

Expanded form:

$$\frac{x}{2} - \frac{3\sqrt{7} x}{16} = e^{-\sqrt{7} \pi}$$

Solution:

 $x \approx 0.062623$

0.062623 = F

Indeed:

0.062623((8-3*sqrt(7))/16)

Input:

$$0.062623\left(\frac{1}{16}\left(8-3\sqrt{7}\right)\right)$$

Result:

0.000245584183850401897065746873721611442639957345842697941...

0.00024558418385...

e^(-Pi*sqrt(7))

Input: $e^{-\pi\sqrt{7}}$

Exact result: $e^{-\sqrt{7}\pi}$

Decimal approximation: 0.000245583663139323435662929065429087054468894030388669274...

0.0002455836631...

Property: $e^{-\sqrt{7}\pi}$ is a transcendental number

Series representations:

 $e^{-\pi \sqrt{7}} = e^{-\pi \sqrt{6} \sum_{k=0}^{\infty} 6^{-k} \binom{1/2}{k}}$

$$e^{-\pi\sqrt{7}} = \exp\left(-\pi\sqrt{6}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{6}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right)$$

$$e^{-\pi\sqrt{7}} = \exp\left(-\frac{\pi\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} \, 6^{-s} \, \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \, \sqrt{\pi}}\right)$$

Integral representation:

$$(1+z)^a = \frac{\int_{-i \, \infty+\gamma}^{i \, \infty+\gamma} \frac{\Gamma(s)\,\Gamma(-a-s)}{z^s}\,ds}{(2\,\pi\,i)\,\Gamma(-a)} \quad \text{for } (0 < \gamma < -\operatorname{Re}(a) \text{ and } |\arg(z)| < \pi)$$

Page 275-276

 $e^{-Pi*sqrt6}+e^{-Pi*sqrt15}+e^{-3Pi*sqrt2}+e^{-Pi*sqrt6}$

Input: $e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}}$

Exact result: $e^{-3\sqrt{2}\pi} + 2e^{-\sqrt{6}\pi} + e^{-\sqrt{15}\pi}$

Decimal approximation:

0.000916746572106060171859025819203818748817255351605254768... 0.0009167465721... Alternate forms: $e^{-\sqrt{15}\pi} + e^{-3\sqrt{2}\pi - \sqrt{6}\pi} \left(2e^{3\sqrt{2}\pi} + e^{\sqrt{6}\pi}\right)$ $e^{-3\sqrt{2}\pi - \sqrt{6}\pi - \sqrt{15}\pi} \left(e^{3\sqrt{2}\pi + \sqrt{6}\pi} + 2e^{3\sqrt{2}\pi + \sqrt{15}\pi} + e^{\sqrt{6}\pi + \sqrt{15}\pi}\right)$

 $((e^{-Pi*sqrt6})+e^{-(-Pi*sqrt15)}+e^{-(-3Pi*sqrt2)}+e^{-(-Pi*sqrt6)}))^{1/1024}$

Input: ${}^{1024}\sqrt{e^{-\pi\sqrt{6}}+e^{-\pi\sqrt{15}}+e^{-3\pi\sqrt{2}}+e^{-\pi\sqrt{6}}}$

Exact result: $\sqrt[1024]{e^{-3\sqrt{2}\pi} + 2e^{-\sqrt{6}\pi} + e^{-\sqrt{15}\pi}}$

Decimal approximation:

0.993192534797654418521206351171648861562756587934625721759...

0.99319253479.... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}}} \approx 0.9991104684$$

and to the dilaton value **0**. **989117352243** = ϕ

All 1024th roots of $e^{(-3 \operatorname{sqrt}(2) \pi)} + 2 e^{(-\operatorname{sqrt}(6) \pi)} + e^{(-\operatorname{sqrt}(15) \pi)}$: $1024\sqrt{e^{-3\sqrt{2}\pi} + 2 e^{-\sqrt{6}\pi} + e^{-\sqrt{15}\pi}} e^{0} \approx 0.993193 \text{ (real, principal root)}$ $1024\sqrt{e^{-3\sqrt{2}\pi} + 2 e^{-\sqrt{6}\pi} + e^{-\sqrt{15}\pi}} e^{(i\pi)/512} \approx 0.993174 + 0.006094 i$

$$1024 \sqrt{e^{-3\sqrt{2}\pi} + 2e^{-\sqrt{6}\pi} + e^{-\sqrt{15}\pi}} e^{(i\pi)/256} \approx 0.993118 + 0.012188 i$$

$$1024 \sqrt{e^{-3\sqrt{2}\pi} + 2e^{-\sqrt{6}\pi} + e^{-\sqrt{15}\pi}} e^{(3i\pi)/512} \approx 0.993024 + 0.018281 i$$

$$1024 \sqrt{e^{-3\sqrt{2}\pi} + 2e^{-\sqrt{6}\pi} + e^{-\sqrt{15}\pi}} e^{(i\pi)/128} \approx 0.992893 + 0.024374 i$$

Series representations:

$$\frac{1024}{\sqrt{e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}}}} = \left(\exp\left(-3\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (2-z_0)^k z_0^{-k}}{k!}\right) + 2\exp\left(-\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (6-z_0)^k z_0^{-k}}{k!}\right) + \exp\left(-\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (15-z_0)^k z_0^{-k}}{k!}\right) \right) + \exp\left(-\pi\sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (15-z_0)^k z_0^{-k}}{k!}\right) \right) \wedge (1/1024)$$

for not
$$((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$$

.

$$\begin{split} ^{1024} \sqrt{e^{-\pi \sqrt{6}} + e^{-\pi \sqrt{15}} + e^{-3\pi \sqrt{2}} + e^{-\pi \sqrt{6}}} &= \\ & \left(\exp\left(-3\pi \left(\frac{1}{z_0}\right)^{1/2 \lfloor \arg(2-z_0)/(2\pi) \rfloor} z_0^{1/2+1/2 \lfloor \arg(2-z_0)/(2\pi) \rfloor} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (2-z_0)^k z_0^{-k}}{k!} \right) + \\ & 2 \exp\left(-\pi \left(\frac{1}{z_0}\right)^{1/2 \lfloor \arg(6-z_0)/(2\pi) \rfloor} z_0^{1/2+1/2 \lfloor \arg(6-z_0)/(2\pi) \rfloor} \right) \\ & \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (6-z_0)^k z_0^{-k}}{k!} \right) + \exp\left(-\pi \left(\frac{1}{z_0}\right)^{1/2 \lfloor \arg(15-z_0)/(2\pi) \rfloor} z_0^{1/2+1/2 \lfloor \arg(15-z_0)/(2\pi) \rfloor} \right) \\ & z_0^{1/2+1/2 \lfloor \arg(15-z_0)/(2\pi) \rfloor} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (15-z_0)^k z_0^{-k}}{k!} \right) \right) ^{(1/1024)} \end{split}$$

Integral representation:

 $(1+z)^{a} = \frac{\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \frac{\Gamma(s)\,\Gamma(-a-s)}{z^{s}}\,ds}{(2\,\pi\,i)\,\Gamma(-a)} \quad \text{for } (0 < \gamma < -\operatorname{Re}(a) \text{ and } |\operatorname{arg}(z)| < \pi)$

1/8*log base 0.993192534797 ((((e^(-Pi*sqrt6)+e^(-Pi*sqrt15)+e^(-3Pi*sqrt2)+e^(-Pi*sqrt6)))))-Pi+1/golden ratio

Input interpretation: $\frac{1}{8} \log_{0.993192534797} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) - \pi + \frac{1}{\phi}$

 $\log_b(x)$ is the base- b logarithm

∉ is the golden ratio

Result:

125.4764413...

125.4764413.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representation:

$$\frac{1}{8} \log_{0.9931925347970000} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) - \pi + \frac{1}{\phi} = -\pi + \frac{1}{\phi} + \frac{\log \left(e^{-3\pi\sqrt{2}} + 2e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right)}{8 \log(0.9931925347970000)}$$

Series representations:

$$\begin{aligned} \frac{1}{8} \log_{0.0031025347970000} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) &-\pi + \frac{1}{\phi} = \\ \frac{1}{\phi} - \pi - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right)^k}{8 \log(0.9931925347970000)} \\ \frac{1}{8} \log_{0.0031025347970000} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) &-\pi + \frac{1}{\phi} = \\ \frac{1.000000000000}{\phi} - 1.0000000000 \pi - \\ &18.299694483919 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) &-0.1250000000000 \\ &\log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) \sum_{k=0}^{\infty} (-0.006807465203000)^k G(k) \\ &for \left(G(0) = 0 \text{ and } \frac{(-1)^k k}{2(1+k)(2+k)} + G(k) = \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \\ \frac{1}{8} \log_{0.0031025347970000} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) &-\pi + \frac{1}{\phi} = \\ \frac{1.000000000000}{\phi} - 1.00000000000 \pi - \\ &18.299694483919 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) &-0.12500000000000 \\ &\log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) \sum_{j=0}^{\infty} (-0.0068074652030000)^k G(k) \\ &\log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) \right) \sum_{k=0}^{\infty} (-0.0068074652030000)^k G(k) \\ &\log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) \sum_{k=0}^{\infty} (-0.0068074652030000)^k G(k) \\ &\log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) \right) \sum_{k=0}^{\infty} (-0.0068074652030000)^k G(k) \\ &\int de \left(G(0) = 0 \text{ and } G(k) = \frac{(-1)^{1+k} k}{2(1+k)(2+k)} + \sum_{j=1}^k \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \end{aligned}$$

1/64*log base 0.993192534797 ((((e^(-Pi*sqrt6)+e^(-Pi*sqrt15)+e^(-3Pi*sqrt2)+e^(-Pi*sqrt6)))))+1/golden ratio

Input interpretation: $\frac{1}{64} \log_{0.993192534797} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) + \frac{1}{\phi}$

 $\log_{b}(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

16.61803399...

16.61803399.... result very near to the mass of the hypothetical light particle, the boson $m_X = 16.84$ MeV

Alternative representation:

 $\begin{aligned} &\frac{1}{64}\log_{0.9931925347970000}\left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}}\right) + \frac{1}{\phi} = \\ &\frac{1}{\phi} + \frac{\log\left(e^{-3\pi\sqrt{2}} + 2e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}}\right)}{64\log(0.9931925347970000)} \end{aligned}$

$$\begin{aligned} \frac{1}{64} \log_{0.0031025347970000} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) + \frac{1}{\phi} = \\ \frac{1}{\phi} - \frac{\sum_{k=1}^{\infty} \frac{(-1)^{k} \left(-1 + e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right)^{k}}{64 \log(0.9931925347970000)} \\ \frac{1}{64} \log_{0.0031025347970000} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) + \frac{1}{\phi} = \\ \frac{1.00000000000000}{\phi} - 2.2874618104899 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.01562500000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) \\ \sum_{k=0}^{\infty} (-0.006807465203000)^{k} G(k) \\ for \left(G(0) = 0 \text{ and } \frac{(-1)^{k} k}{2(1+k)(2+k)} + G(k) = \sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j} \right) \\ \frac{1}{64} \log_{0.0031025347970000} \left(e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} + e^{-3\pi\sqrt{2}} + e^{-\pi\sqrt{6}} \right) + \frac{1}{\phi} = \\ \frac{1.0000000000000}{\phi} - 2.2874618104899 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.015625000000000 \log \left(e^{-3\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\ 0.0156250000000000 \log \left(e^{-\pi\sqrt{2}} + 2 e^{-\pi\sqrt{6}} + e^{-\pi\sqrt{15}} \right) - \\$$

 $x((sqrt6-sqrt2-1)/(sqrt2-1))^2 = e^{(-Pi*sqrt6)}$

Input:

$$x\left(\frac{\sqrt{6} - \sqrt{2} - 1}{\sqrt{2} - 1}\right)^2 = e^{-\pi\sqrt{6}}$$

Alternate forms: $(3+2\sqrt{2})(1+\sqrt{2}-\sqrt{6})^2 x = e^{-\sqrt{6}\pi}$ $(35-20\sqrt{3}-2\sqrt{6}(97-56\sqrt{3}))x = e^{-\sqrt{6}\pi}$ $\frac{(-9-2\sqrt{2}+4\sqrt{3}+2\sqrt{6})x}{2\sqrt{2}-3} = e^{-\sqrt{6}\pi}$

Expanded form:

$$-\frac{2\sqrt{6} x}{(\sqrt{2} - 1)^2} - \frac{4\sqrt{3} x}{(\sqrt{2} - 1)^2} + \frac{2\sqrt{2} x}{(\sqrt{2} - 1)^2} + \frac{9x}{(\sqrt{2} - 1)^2} = e^{-\sqrt{6}\pi}$$

Solution:

 $x \approx 0.0627277392084520$

0.0627277392084520 = F

 $0.0627277392084520((sqrt6-sqrt2-1)/(sqrt2-1))^2 = e^{-(-Pi*sqrt6)}$

Input interpretation:

 $0.0627277392084520 \left(\frac{\sqrt{6} - \sqrt{2} - 1}{\sqrt{2} - 1}\right)^2 = e^{-\pi\sqrt{6}}$

True

e^(-Pi*sqrt6)

Input: $e^{-\pi\sqrt{6}}$

Exact result:

e^{-√6}л

Decimal approximation:

0.000454960943585536823013982231914376108393947267506330392...

0.00045496094...

Property:

 $e^{-\sqrt{6}\pi}$ is a transcendental number

$$e^{-\pi\sqrt{6}} = e^{-\pi\sqrt{5}\sum_{k=0}^{\infty} 5^{-k} \binom{1/2}{k}}$$
$$e^{-\pi\sqrt{6}} = \exp\left(-\pi\sqrt{5}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} \left(-\frac{1}{2}\right)_{k}}{k!}\right)$$
$$e^{-\pi\sqrt{6}} = \exp\left(-\frac{\pi\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 5^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2\sqrt{\pi}}\right)$$

Integral representation:

 $(1+z)^{a} = \frac{\int_{-i \ \infty + \gamma}^{i \ \infty + \gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} ds}{(2 \pi i) \Gamma(-a)} \text{ for } (0 < \gamma < -\text{Re}(a) \text{ and } |\arg(z)| < \pi)$

3(0.00024558418385 / 0.00045496094)

Input interpretation: $3 \times \frac{0.00024558418385}{0.00045406004}$ 0.00045496094

Result:

1.619375394182190673335605469779449638028266778242545393017...

1.61937539418.... result that is a very good approximation to the value of the golden ratio 1,618033988749...

Page 279

$$F(\frac{1}{2} - 3\sqrt{5\sqrt{13} - 18}) = e^{-7\pi\sqrt{13}}$$

 $x(1/2-3(5sqrt13-18)^{1/2}) = e^{-(-Pi*sqrt13)}$

Input:

$$x\left(\frac{1}{2} - 3\sqrt{5\sqrt{13}} - 18\right) = e^{-\pi\sqrt{13}}$$

Exact result:

$$\left(\frac{1}{2} - 3\sqrt{5\sqrt{13}} - 18\right)x = e^{-\sqrt{13}\pi}$$

Plot:

Alternate forms:

$$\begin{pmatrix} \frac{1}{2} - \frac{3}{\sqrt{18 + 5\sqrt{13}}} \end{pmatrix} x = e^{-\sqrt{13}\pi} - \frac{1}{2} \left(6\sqrt{5\sqrt{13} - 18} - 1 \right) x = e^{-\sqrt{13}\pi} - \frac{x}{2 \left(-649 - 180\sqrt{13} \right) \left(1 + \sqrt{1 + \frac{1}{-649 - 180\sqrt{13}}} \right)} = e^{-\sqrt{13}\pi}$$

Expanded form:

$$\frac{x}{2} - 3\sqrt{5\sqrt{13}} - 18 \ x = e^{-\sqrt{13} \pi}$$

Alternate form assuming x>0:

$$\frac{1}{2}\left(x-6\sqrt{5\sqrt{13}}-18\ x\right) = e^{-\sqrt{13}\ \pi}$$

Solution: *x* ≈ 0.0625060207996390 0.062506027996390 = F

0.062506027996390(1/2-3(5sqrt13-18)^1/2)

Input interpretation:

$$0.062506027996390\left(\frac{1}{2} - 3\sqrt{5\sqrt{13}} - 18\right)$$

Result:

0.000012041238186004...

0.000012041238186004...

e^(-Pi*sqrt13)

Input: $e^{-\pi\sqrt{13}}$

Exact result:

 $e^{-\sqrt{13}\pi}$

Decimal approximation:

0.000012041236799613530073893771115792272103075615185247065...

0.00001204123679...

Property: $e^{-\sqrt{13} \pi}$ is a transcendental number

Series representations:

$$e^{-\pi\sqrt{13}} = e^{-\pi\sqrt{12}\sum_{k=0}^{\infty} 12^{-k} \binom{1/2}{k}}$$
$$e^{-\pi\sqrt{13}} = \exp\left(-\pi\sqrt{12}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{12}\right)^{k} \left(-\frac{1}{2}\right)_{k}}{k!}\right)$$
$$e^{-\pi\sqrt{13}} = \exp\left(-\frac{\pi\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 12^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2\sqrt{\pi}}\right)$$

Integral representation:

 $(1+z)^{a} = \frac{\int_{-i \ \infty + \gamma}^{i \ \infty + \gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} ds}{(2 \pi i) \Gamma(-a)} \text{ for } (0 < \gamma < -\text{Re}(a) \text{ and } |\arg(z)| < \pi)$

((e^(-Pi*sqrt13)))^1/1024

Input:
$$\sqrt[1024]{e^{-\pi\sqrt{13}}}$$

Exact result: $-(\sqrt{13} \pi)/1024$

Decimal approximation:

0.988999262786647933098562862985062371932293271706796583157...

0.9889992627.... result very near to the dilaton value **0**.989117352243 = ϕ

Property: $e^{-(\sqrt{13} \pi)/1024}$ is a transcendental number

All 1024th roots of $e^{(-\operatorname{sqrt}(13) \pi)}$: $e^{-(\sqrt{13} \pi)/1024} e^{0} \approx 0.988999 \text{ (real, principal root)}$ $e^{-(\sqrt{13} \pi)/1024} e^{(i \pi)/512} \approx 0.988981 + 0.006068 i$ $e^{-(\sqrt{13} \pi)/1024} e^{(i \pi)/256} \approx 0.988925 + 0.012137 i$ $e^{-(\sqrt{13} \pi)/1024} e^{(3 i \pi)/512} \approx 0.988832 + 0.018204 i$ $e^{-(\sqrt{13} \pi)/1024} e^{(i \pi)/128} \approx 0.988701 + 0.024271 i$

$$\sqrt[1024]{e^{-\pi\sqrt{13}}} = \sqrt[1024]{e^{-\pi\sqrt{12}\sum_{k=0}^{\infty}12^{-k}\binom{1/2}{k}}}$$

$$\sqrt[1024]{e^{-\pi\sqrt{13}}} = \sqrt[1024]{\exp\left(-\pi\sqrt{12}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{12}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}$$

$${}^{1024}\sqrt{e^{-\pi\sqrt{13}}} = {}_{1024}\sqrt{\exp\left(-\frac{\pi\sum_{j=0}^{\infty}\operatorname{Res}_{s=-\frac{1}{2}+j}12^{-s}\Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)}{2\sqrt{\pi}}\right)}$$

Integral representation:

 $\left(1+z\right)^a = \frac{\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \frac{\Gamma(s)\,\Gamma(-a-s)}{z^s}\,d\,s}{(2\,\pi\,i)\,\Gamma(-a)} \ \text{ for } (0<\gamma<-\text{Re}(a) \text{ and } |\text{arg}(z)|<\pi)$

1/8*log base 0.988999262786((((e^(-Pi*sqrt13)))))-Pi+1/golden ratio

Input interpretation:

 $\frac{1}{8}\log_{0.9889999262786}\left(e^{-\pi\sqrt{13}}\right) - \pi + \frac{1}{\phi}$

 $\log_b(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

125.4764413...

125.4764413.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representation:

 $\frac{1}{8}\log_{0.9889992627860000}\left(e^{-\pi\sqrt{13}}\right) - \pi + \frac{1}{\phi} = -\pi + \frac{1}{\phi} + \frac{\log\left(e^{-\pi\sqrt{13}}\right)}{8\log(0.9889992627860000)}$

$$\frac{1}{8} \log_{0.9889992627860000} \left(e^{-\pi \sqrt{13}} \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi + \frac{1}{8} \log_{0.9889992627860000} \left(e^{-\pi \sqrt{12} \sum_{k=0}^{\infty} 12^{-k} \binom{1/2}{k}} \right)$$

$$\frac{1}{8}\log_{0.9889992627860000}\left(e^{-\pi\sqrt{13}}\right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + e^{-\pi\sqrt{13}}\right)^k}{k}}{8\log(0.9889992627860000)}$$

$$\frac{1}{8} \log_{0.9889992627860000} \left(e^{-\pi \sqrt{13}} \right) - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi + \frac{1}{8} \log_{0.9889992627860000} \left(\exp \left(-\pi \sqrt{12} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{12} \right)^k \left(-\frac{1}{2} \right)_k}{k!} \right) \right)$$

1/64*log base 0.988999262786((((e^(-Pi*sqrt13)))))+1/golden ratio

Input interpretation: $\frac{1}{64} \log_{0.988999262786} \left(e^{-\pi \sqrt{13}} \right) + \frac{1}{\phi}$

 $\log_b(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

16.61803399...

16.61803399.... result very near to the mass of the hypothetical light particle, the boson $m_X = 16.84 \text{ MeV}$

Alternative representation:

 $\frac{1}{64}\log_{0.9889992627860000}\left(e^{-\pi\sqrt{13}}\right) + \frac{1}{\phi} = \frac{1}{\phi} + \frac{\log\left(e^{-\pi\sqrt{13}}\right)}{64\log(0.9889992627860000)}$

$$\frac{1}{64} \log_{0.9889992627860000} \left(e^{-\pi \sqrt{13}} \right) + \frac{1}{\phi} = \frac{1}{\phi} + \frac{1}{64} \log_{0.9889992627860000} \left(e^{-\pi \sqrt{12} \sum_{k=0}^{\infty} 12^{-k} \binom{1/2}{k}} \right)$$

$$\frac{1}{64} \log_{0.9889992627860000} \left(e^{-\pi \sqrt{13}} \right) + \frac{1}{\phi} = \frac{1}{\phi} - \frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + e^{-\pi \sqrt{13}} \right)^k}{k}}{64 \log(0.9889992627860000)}$$

$$\frac{1}{64} \log_{0.9889992627860000} \left(e^{-\pi \sqrt{13}} \right) + \frac{1}{\phi} = \frac{1}{\phi} + \frac{1}{64} \log_{0.9889992627860000} \left(\exp \left(-\pi \sqrt{12} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{12} \right)^k \left(-\frac{1}{2} \right)_k}{k!} \right) \right)$$

$$1/((e^{-Pi*sqrt13}))-2*4096-(1024+256+64+16+4) =$$

$$= 1/((e^{-Pi*sqrt13})) - 2*4096 - (64*2^{4}+64*2^{2}+64+2^{4}+2^{2})$$

 $\frac{\text{Input:}}{e^{-\pi\sqrt{13}}} - 2 \times 4096 - (64 \times 2^4 + 64 \times 2^2 + 64 + 2^4 + 2^2)$

Exact result:

 $e^{\sqrt{13}\pi} - 9556$

Decimal approximation:

73491.94736966683805132286147974189408742237761988373720327...

73491.94736...

Property:

 $-9556 + e^{\sqrt{13} \pi}$ is a transcendental number

$$\frac{1}{e^{-\pi\sqrt{13}}} - 2 \times 4096 - \left(64 \times 2^4 + 64 \times 2^2 + 64 + 2^4 + 2^2\right) = -9556 + e^{\pi\sqrt{12}\sum_{k=0}^{\infty} 12^{-k} \binom{1/2}{k}}$$

$$\frac{1}{e^{-\pi\sqrt{13}}} - 2 \times 4096 - \left(64 \times 2^4 + 64 \times 2^2 + 64 + 2^4 + 2^2\right) = -9556 + e^{\pi\sqrt{12}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{12}\right)^k \left(-\frac{1}{2}\right)_k}{k!}$$

$$\frac{1}{e^{-\pi\sqrt{13}}} - 2 \times 4096 - (64 \times 2^4 + 64 \times 2^2 + 64 + 2^4 + 2^2) = -9556 + \exp\left(\frac{\pi\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 12^{-s} \Gamma\left(-\frac{1}{2} - s\right) \Gamma(s)}{2\sqrt{\pi}}\right)$$

We have the following mathematical connections:

$$\left(e^{\sqrt{13} \pi} - 9556 \right) = 73491.94736 \Rightarrow$$

$$\Rightarrow -3927 + 2 \left(\int_{13}^{13} \frac{N \exp\left[\int d\hat{\sigma} \left(-\frac{1}{4u^2} P_i D P_i \right) \right] |B_P\rangle_{NS} +}{\int [dX^{\mu}] \exp\left\{ \int d\hat{\sigma} \left(-\frac{1}{4v^2} D X^{\mu} D^2 X^{\mu} \right) \right\} |X^{\mu}, X^i = 0 \rangle_{NS}} \right) =$$

$$= -3927 + 2 \int_{13}^{13} 2.2983717437 \times 10^{59} + 2.0823329825883 \times 10^{59}$$

$$= 73490.8437525.... \Rightarrow$$

$$\Rightarrow \left(A(r) \times \frac{1}{B(r)} \left(-\frac{1}{\phi(r)} \right) \times \frac{1}{e^{\Lambda(r)}} \right) \Rightarrow$$

$$\Rightarrow \left(-0.000029211892 \times \frac{1}{0.0003644621} \left(-\frac{1}{0.0005946833} \right) \times \frac{1}{0.00183393} \right) =$$

$$= 73491.78832548118710549159572042220548025195726563413398700...$$

$$= 73491.7883254... \Rightarrow$$

$$\left(\begin{array}{c} I_{21} \ll \int_{-\infty}^{+\infty} \exp\left(-\left(\frac{t}{H}\right)^{2}\right) \Big| \sum_{\lambda \leqslant P^{1-\varepsilon_{*}}} \frac{a\left(\lambda\right)}{\sqrt{\lambda}} B\left(\lambda\right) \lambda^{-i\left(T+t\right)} \Big|^{2} dt \ll \\ \ll H\left\{ \left(\frac{4}{\varepsilon_{2}\log T}\right)^{2r} \left(\log T\right) \left(\log X\right)^{-2\beta} + \left(\varepsilon_{2}^{-2r} \left(\log T\right)^{-2r} + \varepsilon_{2}^{-r}h_{1}^{r} \left(\log T\right)^{-r}\right) T^{-\varepsilon_{1}} \right\} \right) \right/$$

$$/(26 \times 4)^2 - 24 = \left(\frac{\frac{7.9313976505275 \times 10^8}{(26 \times 4)^2 - 24}}{(26 \times 4)^2 - 24}\right) = 73493.30662...$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Page 280

 $(((1-sqrt(1-(55+12sqrt21)(8-3sqrt7)^2)))/2)$

Input:

$$\frac{1}{2}\left(1-\sqrt{1-(55+12\sqrt{21})(8-3\sqrt{7})^2}\right)$$

Decimal approximation:

0.123516861090620558072168081988551741866442420272673942433... 0.12351686109....

Alternate forms:

$$\frac{1}{2} \left(1 - \sqrt{-6984 + 4032\sqrt{3} + 2640\sqrt{7} - 1524\sqrt{21}} \right)$$
$$\frac{1}{2} - \frac{1}{2} \sqrt{1 + \left(48\sqrt{7} - 127\right)\left(55 + 12\sqrt{21}\right)}$$
$$\frac{1}{2} \left(1 - \sqrt{1 + \left(48\sqrt{7} - 127\right)\left(55 + 12\sqrt{21}\right)} \right)$$

Minimal polynomial: 256 x^8 - 1024 x^7 + 1789 696 x^6 - 5365 504 x^5 + 6590 560 x^4 - 4239 808 x^3 + 1337 584 x^2 - 111760 x + 1

e^-(Pi*sqrt21)

Input:

 $e^{-\left(\pi\sqrt{21}\right)}$

Exact result:

 $e^{-\sqrt{21}\pi}$

Decimal approximation:

• More digits 5.5929647492579811238029275293883981102204059755319116...×10⁻⁷

5.59296474925...*10⁻⁷

Property: $e^{-\sqrt{21}\pi}$ is a transcendental number

$$e^{-\pi\sqrt{21}} = e^{-\pi\sqrt{20}\sum_{k=0}^{\infty}20^{-k}\binom{1/2}{k}}$$
$$e^{-\pi\sqrt{21}} = \exp\left(-\pi\sqrt{20}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{20}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$$
$$e^{-\pi\sqrt{21}} = \exp\left(-\frac{\pi\sum_{j=0}^{\infty}\operatorname{Res}_{s=-\frac{1}{2}+j}20^{-s}\Gamma\left(-\frac{1}{2}-s\right)\Gamma(s)}{2\sqrt{\pi}}\right)$$

Integral representation:

 $(1+z)^a = \frac{\int_{-i\,\infty+\gamma}^{i\,\infty+\gamma} \frac{\Gamma(s)\,\Gamma(-a-s)}{z^s}\,d\,s}{(2\,\pi\,i)\,\Gamma(-a)} \quad \text{for}\;(0<\gamma<-\text{Re}(a)\;\text{and}\;|\text{arg}(z)|<\pi)$

And:

(((1-sqrt(1-(55-12sqrt21)(8-3sqrt7)^2))))/2

Input: $\frac{1}{2} \left(1 - \sqrt{1 - (55 - 12\sqrt{21})(8 - 3\sqrt{7})^2} \right)$

Decimal approximation:

 $8.9487035589299391393843717601643011922133444994905772...\times 10^{-6}$ 8.9487035589...*10⁻⁶

Alternate forms:

$$\frac{1}{2} \left(1 - \sqrt{-6984 - 4032\sqrt{3} + 2640\sqrt{7} + 1524\sqrt{21}} \right)$$
$$\frac{1}{2} - \frac{1}{2} \sqrt{1 + (48\sqrt{7} - 127)(55 - 12\sqrt{21})}$$
$$\frac{1}{2} - \sqrt{3(-582 - 336\sqrt{3} + 220\sqrt{7} + 127\sqrt{21})}$$

Minimal polynomial: $256 x^8 - 1024 x^7 + 1789696 x^6 - 5365504 x^5 +$ $6590560 x^4 - 4239808 x^3 + 1337584 x^2 - 111760 x + 1$

((((((1-sqrt(1-(55+12sqrt21)(8-3sqrt7)^2))))/2))) - ((e^-(Pi*sqrt21)))

Input: $\frac{1}{2} \left(1 - \sqrt{1 - \left(55 + 12\sqrt{21}\right) \left(8 - 3\sqrt{7}\right)^2} \right) - e^{-\left(\pi\sqrt{21}\right)}$

Exact result:

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(8 - 3\sqrt{7}\right)^2 \left(55 + 12\sqrt{21}\right)} \right) - e^{-\sqrt{21}\pi}$$

Decimal approximation:

0.123516301794145632274055701695798803026631398232076389242...

0.123516301794....

Property:

$$\frac{1}{2}\left(1-\sqrt{1-\left(8-3\sqrt{7}\right)^2\left(55+12\sqrt{21}\right)}\right)-e^{-\sqrt{21}\pi} \text{ is a transcendental number}$$

Alternate forms:

$$\frac{1}{2} - \frac{1}{2}\sqrt{1 + (48\sqrt{7} - 127)(55 + 12\sqrt{21})} - e^{-\sqrt{21}\pi}$$

root of $x^8 + 6984x^6 - 450x^4 - 648x^2 + 81$ near $x = -0.376483$ $+ \frac{1}{2} - e^{-\sqrt{21}\pi}$
 $\frac{1}{2} - \sqrt{3(-582 - 127\sqrt{21} + 4\sqrt{7}(55 + 12\sqrt{21}))} - e^{-\sqrt{21}\pi}$

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(55 + 12\sqrt{21}\right) \left(8 - 3\sqrt{7}\right)^2} \right) - e^{-\pi\sqrt{21}} = \frac{1}{2} - e^{-\pi\sqrt{21}} - \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-(8 - 3\sqrt{7})^2 \left(55 + 12\sqrt{21}\right)\right)^k}{k!}$$

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(55 + 12\sqrt{21}\right) \left(8 - 3\sqrt{7}\right)^2} \right) - e^{-\pi\sqrt{21}} = \frac{1}{2} - e^{-\pi\sqrt{21}} + \frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \Gamma\left(-\frac{1}{2} - s\right) \Gamma(s) \left(-\left(8 - 3\sqrt{7}\right)^2 \left(55 + 12\sqrt{21}\right)\right)^{-s}}{4\sqrt{\pi}}$$

$$\begin{aligned} \frac{1}{2} \left(1 - \sqrt{1 - \left(55 + 12\sqrt{21}\right) \left(8 - 3\sqrt{7}\right)^2} \right) - e^{-\pi\sqrt{21}} &= \\ -\frac{1}{2} \exp\left(-\pi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (21 - z_0)^k z_0^{-k}}{k!}\right) \\ &\left(2 - \exp\left(\pi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (21 - z_0)^k z_0^{-k}}{k!}\right) + \\ &\exp\left(\pi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (21 - z_0)^k z_0^{-k}}{k!}\right) \sqrt{z_0} \\ &\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(1 - \left(8 - 3\sqrt{7}\right)^2 (55 + 12\sqrt{21}\right) - z_0\right)^k z_0^{-k}}{k!} \right) \\ & \text{for not} \left((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0) \right) \end{aligned}$$

And:

(((1-sqrt(1-(55-12sqrt21)(8-3sqrt7)^2))))/2 - e^-(Pi*sqrt21)

Input: $\frac{1}{2} \left(1 - \sqrt{1 - \left(55 - 12\sqrt{21} \right) \left(8 - 3\sqrt{7} \right)^2} \right) - e^{-\left(\pi\sqrt{21} \right)}$

Exact result: $\frac{1}{2} \left(1 - \sqrt{1 - \left(8 - 3\sqrt{7} \right)^2 \left(55 - 12\sqrt{21} \right)} \right) - e^{-\sqrt{21} \pi}$

Decimal approximation:

 $8.3894070840041410270040790072254613811913039019373860...\times 10^{-6}$

8.389407084...*10⁻⁶

Property:

$$\frac{1}{2}\left(1-\sqrt{1-\left(8-3\sqrt{7}\right)^2\left(55-12\sqrt{21}\right)}\right)-e^{-\sqrt{21}\pi} \text{ is a transcendental number}$$

Alternate forms:

$$\frac{1}{2} - \frac{1}{2}\sqrt{1 + (48\sqrt{7} - 127)(55 - 12\sqrt{21})} - e^{-\sqrt{21}\pi}$$

root of $x^8 + 6984x^6 - 450x^4 - 648x^2 + 81$ near $x = -0.499991$ + $\frac{1}{2} - e^{-\sqrt{21}\pi}$
 $\frac{1}{2} - \sqrt{3(-582 + 127\sqrt{21} - 4\sqrt{7}(12\sqrt{21} - 55))} - e^{-\sqrt{21}\pi}$

Series representations:

$$\begin{split} &\frac{1}{2} \left(1 - \sqrt{1 - \left(55 - 12\sqrt{21}\right) \left(8 - 3\sqrt{7}\right)^2} \right) - e^{-\pi\sqrt{21}} = \\ &\frac{1}{2} - e^{-\pi\sqrt{21}} - \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left((8 - 3\sqrt{7}\right)^2 (-55 + 12\sqrt{21})\right)^k}{k!} \\ &\frac{1}{2} \left(1 - \sqrt{1 - \left(55 - 12\sqrt{21}\right) \left(8 - 3\sqrt{7}\right)^2} \right) - e^{-\pi\sqrt{21}} = \\ &\frac{1}{2} - e^{-\pi\sqrt{21}} + \frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \Gamma \left(-\frac{1}{2} - s\right) \Gamma(s) \left((8 - 3\sqrt{7})^2 (-55 + 12\sqrt{21})\right)^{-s}}{4\sqrt{\pi}} \\ &\frac{1}{2} \left(1 - \sqrt{1 - \left(55 - 12\sqrt{21}\right) \left(8 - 3\sqrt{7}\right)^2} \right) - e^{-\pi\sqrt{21}} = \\ &- \frac{1}{2} \exp \left(-\pi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (21 - z_0)^k z_0^{-k}}{k!} \right) \\ &\left(2 - \exp \left(\pi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (21 - z_0)^k z_0^{-k}}{k!} \right) + \\ &\exp \left(\pi\sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k (21 - z_0)^k z_0^{-k}}{k!} \right) \sqrt{z_0} \\ &\sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(1 + (8 - 3\sqrt{7})^2 (-55 + 12\sqrt{21}) - z_0\right)^k z_0^{-k}}{k!} \right) \end{split}$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

 $(((((1-sqrt(1-(((((((1/2(4+sqrt7)^{1/2}-(7)^{1/4}))))^{24})))/2)))))$

Input:

$$\frac{1}{2} \left[1 - \sqrt{1 - \left(\frac{1}{2}\sqrt{4 + \sqrt{7}} - \sqrt[4]{7}\right)^{24}} \right]$$

Result:

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{\sqrt{4 + \sqrt{7}}}{2} - \sqrt[4]{7}\right)^{24}} \right)$$

Decimal approximation:

 $\begin{array}{l} 1.2019072669313651881992200962962756428559712573771606...\times10^{-12}\\ 1.2019072669316\ldots \ast10^{-12} \end{array}$

Alternate forms:

$$\frac{1}{33554432} \left(16777216 - \sqrt{\left(-10014980505762681298354176 + 4353760920154693970165760} \sqrt{2} \sqrt[4]{7} - 3785327058140861483188224\sqrt{7} + 1645545612871320408686592\sqrt{2} 7^{3/4}} \right) \right)$$

$$\frac{1}{2} - \frac{1}{2} \sqrt{1 - \left(\frac{\sqrt{4} + \sqrt{7}}{2} - \sqrt[4]{7}\right)^{24}} \frac{1}{2} - \frac{1}{8192} \left(\sqrt{\left(3 \left(-198979785159482187 - 75207691553053488\sqrt{7} + 47452306548387136\sqrt[4]{7}\sqrt{4 + \sqrt{7}} + 17935801262877872 \times 7^{3/4}\sqrt{4 + \sqrt{7}}} \right) \right)}$$

Minimal polynomial:

20 282 409 603 651 670 423 947 251 286 016 x^8 -81 129 638 414 606 681 695 789 005 144 064 x^7 + 721 655 399 723 986 356 237 574 382 852 548 851 662 848 x^6 -2 164 966 198 888 005 334 261 599 762 622 385 036 984 320 x^5 -68 607 004 714 521 648 749 925 799 447 988 643 469 583 187 968 x^4 + 137 217 617 706 041 349 524 163 884 521 119 679 160 388 681 728 x^3 + 11 232 462 484 133 253 461 216 673 137 045 649 832 317 234 794 463 232 x^2 -11 232 531 093 302 934 181 692 581 168 295 742 572 311 247 660 777 472 x + 13 500 460 747 057 082 764 996 435 506 735 298 654 081

$$(((((1-sqrt(1-(((((((1/2(4+sqrt7)^{1/2}-(7)^{1/4}))))^{24}))))) - e^{(-7*Pi)}))) - e^{(-7*Pi)}))) - e^{(-7*Pi)}))$$

Input:

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{1}{2}\sqrt{4 + \sqrt{7}} - \frac{4}{\sqrt{7}}\right)^{24}} \right) - e^{-7\pi}$$

Exact result:

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{\sqrt{4 + \sqrt{7}}}{2} - \sqrt[4]{7}\right)^{24}} \right) - e^{-7\pi}$$

Decimal approximation:

 $-2.802249384816239069209184208048782218741567294082717...\times10^{-10}$

-2.802249384816239....*10⁻¹⁰

Property:

$$\frac{1}{2}\left(1-\sqrt{1-\left(-\sqrt[4]{7}+\frac{\sqrt{4+\sqrt{7}}}{2}\right)^{24}}\right)-e^{-7\pi} \text{ is a transcendental number}$$

Alternate forms:

$$\frac{1}{8192} \left(4096 - \sqrt{\left(3 \left(-198\,979\,785\,159\,482\,187 - 75\,207\,691\,553\,053\,488\,\sqrt{7} + 47\,452\,306\,548\,387\,136\,\sqrt[4]{7}\,\sqrt{4+\sqrt{7}} + 17\,935\,801\,262\,877\,872\times7^{3/4}\,\sqrt{4+\sqrt{7}} \right) \right) \right) - e^{-7\pi}$$

$$\begin{split} &-\frac{1}{8192}\\ e^{-7\pi} \left(8192 - 4096 \ e^{7\pi} + \sqrt{\left(3 \left(-198\,979\,785\,159\,482\,187 - 75\,207\,691\,553\,053\,488\right) \right. \\ & \sqrt{7} + 47\,452\,306\,548\,387\,136\,\sqrt[4]{7}\,\sqrt{4+\sqrt{7}} + \\ & 17\,935\,801\,262\,877\,872\times7^{3/4}\,\sqrt{4+\sqrt{7}} \right) \right) e^{7\pi} \right) \\ & \left(596\,939\,355\,495\,223\,777 + 225\,623\,074\,659\,160\,464\,\sqrt{7} - \\ & 33\,554\,432\,\sqrt{\left(\frac{2\,783\,894\,518\,885\,061\,585\,088\,079\,999\,558\,785}{4\,398\,046\,511\,104} + \\ & \frac{263\,053\,306\,208\,034\,479\,089\,207\,959\,768\,009\,\sqrt{7}}{1\,099\,511\,627\,776} \right) \right) / \left(33\,554\,432\,\sqrt{\left(\frac{2\,783\,894\,518\,885\,061\,585\,088\,079\,999\,558\,785}{4\,398\,046\,511\,104} + \\ & \frac{263\,053\,306\,208\,034\,479\,089\,207\,959\,768\,009\,\sqrt{7}}{1\,099\,511\,627\,776} \right) \right) \\ & \right) \\ \end{pmatrix} \end{split}$$

 $e^{-7\pi}$

Series representations:

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{\sqrt{4 + \sqrt{7}}}{2} - \sqrt[4]{7}\right)^{24}} \right) - e^{-7\pi} = \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(-\left(-\sqrt[4]{7} + \frac{\sqrt{4 + \sqrt{7}}}{2}\right)^{24}\right)^k}{k!} \\ \frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{\sqrt{4 + \sqrt{7}}}{2} - \sqrt[4]{7}\right)^{24}} \right) - e^{-7\pi} = \frac{1}{2} - e^{-7\pi} - \frac{1}{2} \sqrt{z_0} \sum_{k=0}^{\infty} \frac{(-1)^k \left(-\frac{1}{2}\right)_k \left(1 - \left(-\sqrt[4]{7} + \frac{\sqrt{4 + \sqrt{7}}}{2}\right)^{24} - z_0\right)^k z_0^{-k}}{k!}$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(\frac{\sqrt{4 + \sqrt{7}}}{2} - \sqrt[4]{7}\right)^{24}} \right) - e^{-7\pi} = \frac{1}{2} - e^{-7\pi} - \frac{1}{2} \exp\left[i\pi \left[\frac{\arg\left(1 - x - \left(-\sqrt[4]{7} + \frac{\sqrt{4 + \sqrt{7}}}{2}\right)^{24}\right)}{2\pi}\right]\right] \sqrt{x} - \frac{e^{-7\pi}}{2\pi} = \frac{(-1)^k x^{-k} \left(-\frac{1}{2}\right)_k \left(1 - x - \left(-\sqrt[4]{7} + \frac{\sqrt{4 + \sqrt{7}}}{2}\right)^{24}\right)^k}{k!} \right] \sqrt{x}$$

Input:

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(\sqrt{5} - 2\right)^8 \left(2 - \sqrt{3}\right)^8 \left(\frac{1}{2} \sqrt{4 + \sqrt{15}} + \sqrt[4]{15}\right)^{24}} \right)^{24}$$

Exact result:

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(2 - \sqrt{3}\right)^8 \left(\sqrt{5} - 2\right)^8 \left(\sqrt[4]{15} + \frac{\sqrt{4 + \sqrt{15}}}{2}\right)^{24}} \right)^{24}$$

Decimal approximation:

0.5 – 17.224411414206379806353442812586938056556322099994926086... i

Polar coordinates:

 $r\approx 17.2317 \text{ (radius)}, \quad \theta\approx -88.3373^\circ \text{ (angle)} \\ 17.2317$

 $(((((1-sqrt(1-(sqrt5-2)^8(2-sqrt3)^8(((((((1/2(4+sqrt15)^{1/2}+(15)^{1/4}))))^{24})))/2)))) - e^{(-15*Pi)}$

Input:

$$\frac{1}{2} \left(1 - \sqrt{1 - \left(\sqrt{5} - 2\right)^8 \left(2 - \sqrt{3}\right)^8 \left(\frac{1}{2} \sqrt{4 + \sqrt{15}} + \sqrt[4]{15}\right)^{24}} \right) - e^{-15\pi}$$

Exact result:

$$\frac{1}{2}\left(1-\sqrt{1-\left(2-\sqrt{3}\right)^{8}\left(\sqrt{5}-2\right)^{8}\left(\sqrt{4}\sqrt{15}+\frac{\sqrt{4+\sqrt{15}}}{2}\right)^{24}}\right)-e^{-15\pi}$$

Decimal approximation:

0.4999999999999999999999657741145587875913220379955969126057... -17.224411414206379806353442812586938056556322099994926086... i

Property:

$$\frac{1}{2}\left(1-\sqrt{1-\left(2-\sqrt{3}\right)^8\left(-2+\sqrt{5}\right)^8\left(\sqrt[4]{15}+\frac{\sqrt{4+\sqrt{15}}}{2}\right)^{24}}\right)-e^{-15\pi}$$

is a transcendental number

Polar coordinates:

 $r \approx 17.2317$ (radius), $\theta \approx -88.3373^{\circ}$ (angle) 17.2317

From the following three results, we obtain:

 $-2.802249384816239\ldots^{*}10^{-10} \quad 0.123516301794\ldots \quad 17.2317$

 $-2.802249384816239*10^{-10}+\ 0.123516301794+17.2317$

Input interpretation:

 $-2.802249384816239 \times 10^{-10} + 0.123516301794 + 17.2317$

Result:

17.3552163015137750615183761 17.35521630....

 $-2.802249384816239*10^{-10}*0.123516301794*17.2317$

Input interpretation:

 $-2.802249384816239 \times 10^{-10} \times 0.123516301794 \times 17.2317$

Result:

 $-5.9642959826713601073002898138822 \times 10^{-10} \\ -5.964295982...*10^{-10}$

We note that :

-1/ (-2.802249384816239*10^-10 * 0.123516301794 * 17.2317)

Input interpretation:

 $\frac{-1}{-2.802249384816239 \times 10^{-10} \times 0.123516301794 \times 17.2317}$

Result:

1.67664382000054272710640734831611291902903021845297213...×10° 1.67664382....*10⁹

and:

 $e^{-(-2.802249384816239*10^{-10} + 0.123516301794 + 17.2317)}$

Input interpretation:

e-2.802249384816239 × 10⁻¹⁰+0.123516301794+17.2317

Result:

 $3.44568... \times 10^7$ $3.44568... * 10^7$

from which:

Input interpretation:

```
\sqrt{e^{-2.802249384816239 \times 10^{-10} + 0.123516301794 + 17.2317}} - 34
```

Result:

5835.989656686068288572536410469790141366435194000311551104...

5835.989656.... result practically equal to the rest mass of bottom Sigma baryon 5835.1

And:

```
1/(((((e^{-2.802249384816239*10^{-10} + 0.123516301794 + 17.2317))))))^{1/4096}
```

Input interpretation:

Result:

0.99577185...

0.99577185.... result very near to the value of the following Rogers-Ramanujan continued fraction:

and to the dilaton value **0**. 989117352243 = ϕ

2sqrt((((log base 0.99577185 (((1/((((e^(-2.802249384816239*10^-10 +

Input interpretation:

 $\log_{b}(x)$ is the base- b logarithm φ is the golden ratio

Result:

125.476...

125.476.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

 $1/4 \operatorname{sqrt}(((\log base 0.99577185 (((1/((((e^(-2.802249384816239*10^{-10} +$

Input interpretation:

 $\log_b(x)$ is the base- b logarithm ϕ is the golden ratio

Result:

16.6180...

16.6180.... result very near to the mass of the hypothetical light particle, the boson $m_X = 16.84 \text{ MeV}$

From:

Dynamical evolutions of *l*-boson stars in spherical symmetry

Miguel Alcubierre, Juan Barranco, Argelia Bernal, Juan Carlos Degollado, Alberto Diez-Tejedor, Miguel Megevand, Dario Nunez, and Olivier Sarbach arXiv:1906.08959v2 [gr-qc] 9 Oct 2019

From the tables one can see some interesting facts. First, for all types of (small) perturbations with $0 < \varphi_0 < \varphi_0^M$, and all values of ℓ , the configurations are stable as expected. In the region $\varphi_0^M < \varphi_0 < \varphi_0^U$, the configurations are unstable and either collapse to a black hole or migrate to the stable branch. But collapse to a black hole is far more common, and we find that only type I perturbations with $\epsilon < 0$, or type II perturbations with $\epsilon > 0$ can migrate to the stable branch. Moreover, for type II perturbations with $\epsilon > 0$, migration to the stable branch only happens for very small values of ϵ , and increasing slightly the perturbation amplitude again results in collapse to a black hole. The transition between migration and collapse for these type of perturbations seems to be related not so much with the sign of the binding energy U, which in these region is always negative, but rather with the value of $dU/d\epsilon$ (that is, if U is decreasing or increasing with ϵ), but this still needs more studying. Finally, in the region $\varphi_0 > \varphi_0^U$ the configurations are also unstable and either collapse to a black hole of explode to infinity. Again, collapse is far more common and only

type I perturbations with $\epsilon < 0$, or type II perturbations with $\epsilon > 0$ (and very small) explode to infinity.

Interestingly, for type 0 perturbations in the unstable branch $\varphi_0 > \varphi_0^M$, we always find collapse to a black hole except for one particular case with $\ell = 3$ for which the configuration migrates to the stable branch. Of course, these perturbations are only through numerical truncation error which we can not control.

We have the following partial **Tables**, where we show only some values: a) those that are connected to the Rogers-Ramanujan continued fraction 0.9568666373, to the spectral index n_s , to the mesonic Regge slope (see Appendix), to the inflaton value at the end of the inflation 0.9402 and b) those that are connected to the values near to the golden ratio conjugate, near to the golden ratio and to the square of it.

The expression for the total mass of ℓ -boson star is:

$$\begin{split} M &:= \int_0^\infty r^2 \psi^6 B^{3/2} \left[4\pi \rho_E + \frac{1}{4} \left(K_{ij} K^{ij} - K^2 \right) \right] \\ &\times \left[1 + r \left(\frac{\partial_r B}{2B} + 2 \frac{\partial_r \psi}{\psi} \right) \right] dr \;, \end{split}$$

From:

A FRAMEWORK OF ROGERS-RAMANUJAN IDENTITIES AND THEIR ARITHMETIC

PROPERTIES - MICHAEL J. GRIFFIN, KEN ONO, AND S. OLE WARNAAR https://arxiv.org/abs/1401.7718v4

The Rogers–Ramanujan (RR) identities [69]

(1.1)
$$G(q) := \sum_{n=0}^{\infty} \frac{q^{n^2}}{(1-q)\cdots(1-q^n)} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{5n+1})(1-q^{5n+4})}$$

and

(1.2)
$$H(q) := \sum_{n=0}^{\infty} \frac{q^{n^2+n}}{(1-q)\cdots(1-q^n)} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{5n+2})(1-q^{5n+3})}$$

play many roles in mathematics and physics. They are essentially modular functions, and their ratio H(q)/G(q) is the famous Rogers-Ramanujan q-continued fraction

(1.3)
$$\frac{H(q)}{G(q)} = \frac{1}{1 + \frac{q}{1 + \frac{q^2}{1 + \frac{q^3}{1 + \frac{q^3}{1 + \frac{q^3}{1 + \frac{q}{1 + \frac{q}{1$$

The golden ratio ϕ satisfies $H(1)/G(1) = 1/\phi = (-1 + \sqrt{5})/2$. Ramanujan computed further values such as¹

(1.4)
$$e^{-\frac{2\pi}{5}} \cdot \frac{H(e^{-2\pi})}{G(e^{-2\pi})} = \sqrt{\frac{5+\sqrt{5}}{2}} - \frac{\sqrt{5}+1}{2}.$$

The minimal polynomial of this value is

$$x^4 + 2x^3 - 6x^2 - 2x + 1,$$

which shows that it is an algebraic integral unit. All of Ramanujan's evaluations are such units.

We have that, from (1.4):

 $((5+sqrt(5))/2)^{1/2} - (((sqrt(5)-1)/2))$

Input:

$$\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)} - \frac{1}{2}\left(\sqrt{5}-1\right)$$

Result:

$$\frac{1}{2}\left(1-\sqrt{5}\right)+\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)}$$

Decimal approximation:

1.284079043840412296028291832393126169091088088445737582759...

1.28407904384...

Alternate forms:

$$\frac{1}{2}\left(\sqrt{2\left(5+\sqrt{5}\right)}-\sqrt{5}+1\right)$$
$$\frac{1}{2}-\frac{\sqrt{5}}{2}+\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)}$$

Minimal polynomial: $x^4 - 2x^3 - 6x^2 + 12x - 4$

From which, we have that:

 $((5+sqrt(5))/2)^{1/2} - x = 1.284079043840412296$

Input interpretation:

 $\sqrt{\frac{1}{2}(5+\sqrt{5})} - x = 1.284079043840412296$

Result:

 $\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)} - x = 1.284079043840412296$

Alternate forms:

0.618033988749894848 - x = 0

$$\frac{1}{2}\left(\sqrt{2\left(5+\sqrt{5}\right)}-2x\right) = 1.284079043840412296$$

Solution:

 $x \approx 0.618033988749894848$

0.61803398... result very near to the value of the total mass of ℓ -boson star 0.6193 and equal to the conjugate of the value of the golden ratio

$\ell a_0 \omega$	Perturbation	M	N_B	U	$\epsilon/\varphi_R^{\rm max}$	s	r_0	End result	
0 0.4 0.80866	Type III	0.6193	0.6305	-0.0112	+0.01	+1	20.0	black hole	
0 0.4 0.80866 0 0.4 0.80866	Type III	0.6193	0.6166	+0.0027	+0.01	-1	20.0	black hole	

Thence, we have the following mathematical connection, between the total mass of ℓ -boson star and the Rogers-Ramanujan q-continued fraction:

$$e^{-\frac{2\pi}{5}} \cdot \frac{H(e^{-2\pi})}{G(e^{-2\pi})} = \sqrt{\frac{5+\sqrt{5}}{2}} - \frac{\sqrt{5}+1}{2}.$$

$$M = \begin{pmatrix} \int_0^\infty r^2 \psi^6 B^{3/2} \left[4\pi \rho_E + \frac{1}{4} \left(K_{ij} K^{ij} - K^2 \right) \right] \\ \times \left[1 + r \left(\frac{\partial_r B}{2B} + 2 \frac{\partial_r \psi}{\psi} \right) \right] dr , \\ \end{pmatrix} \cong \left(\frac{1}{2} \left(\sqrt{2 \left(5 + \sqrt{5} \right)} - 2 x \right) = 1.284079043840412296 \right) \Rightarrow$$

 $0.6193 \cong 0.61803398....$

And:

$$-Pi+((5+sqrt(5))/2)^{1/2} - (((sqrt(5)-1)/2))$$

Input:

$$-\pi + \sqrt{\frac{1}{2}(5+\sqrt{5})} - \frac{1}{2}(\sqrt{5}-1)$$

Result:

$$\frac{1}{2}\left(1-\sqrt{5}\right)+\sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)}-\pi$$

Decimal approximation:

-1.85751360974938094243435155088637671510608131092936823821...

-1.8575136...

Property:

Property: $\frac{1}{2}(1-\sqrt{5}) + \sqrt{\frac{1}{2}(5+\sqrt{5})} - \pi$ is a transcendental number

Alternate forms:

$$\frac{1}{2} \left(\sqrt{2 \left(5 + \sqrt{5} \right)} - \sqrt{5} - 2 \pi + 1 \right)$$
$$\frac{1}{2} - \frac{\sqrt{5}}{2} + \sqrt{\frac{1}{2} \left(5 + \sqrt{5} \right)} - \pi$$
$$\frac{1}{2} \left(1 - \sqrt{5} + \sqrt{2 \left(5 + \sqrt{5} \right)} \right) - \pi$$

Series representations:

$$-\pi + \sqrt{\frac{1}{2}(5+\sqrt{5})} - \frac{1}{2}(\sqrt{5}-1) = \frac{1}{2}\left(1-2\pi - \sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\right) + \sqrt{2}\sqrt{5+\sqrt{4}\sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2}\atop k\right)}\right)$$

$$-\pi + \sqrt{\frac{1}{2}\left(5 + \sqrt{5}\right)} - \frac{1}{2}\left(\sqrt{5} - 1\right) = \frac{1}{2}\left(1 - 2\pi - \sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} + \sqrt{2}\sqrt{5 + \sqrt{4}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)$$

$$-\pi + \sqrt{\frac{1}{2}\left(5+\sqrt{5}\right)} - \frac{1}{2}\left(\sqrt{5}-1\right) = \frac{1}{2}\left(1-2\pi - \sqrt{z_0}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (5-z_0)^k z_0^{-k}}{k!} + \sqrt{2}\sqrt{5+\sqrt{z_0}}\sum_{k=0}^{\infty}\frac{(-1)^k \left(-\frac{1}{2}\right)_k (5-z_0)^k z_0^{-k}}{k!}\right)$$

for not $((z_0 \in \mathbb{R} \text{ and } -\infty < z_0 \le 0))$

thence:

3 0.02 0.72405 Type I 1.8558 1.8170 +0.0388 +0.01 0 4.0 black hole

$$M = \begin{pmatrix} \int_0^\infty r^2 \psi^6 B^{3/2} \left[4\pi \rho_E + \frac{1}{4} \left(K_{ij} K^{ij} - K^2 \right) \right] \\ \times \left[1 + r \left(\frac{\partial_r B}{2B} + 2 \frac{\partial_r \psi}{\psi} \right) \right] dr , \end{pmatrix} \cong - \left(\frac{1}{2} \left(1 - \sqrt{5} \right) + \sqrt{\frac{1}{2} \left(5 + \sqrt{5} \right)} - \pi \right) \Rightarrow$$

 $1.8558 \approx 1.8575136$

Then:

 $((5+sqrt(5))/2)^{1/2} - (((sqrt(5)-1)/2)) + 7/18$

where 7 and 18 are Lucas numbers

Input: $\sqrt{\frac{1}{2}(5+\sqrt{5})} - \frac{1}{2}(\sqrt{5}-1) + \frac{7}{18}$

Result: $\frac{7}{18} + \frac{1}{2} \left(1 - \sqrt{5} \right) + \sqrt{\frac{1}{2} \left(5 + \sqrt{5} \right)}$

Decimal approximation:

1.672967932729301184917180721282015057979976977334626471648... 1.6729679327....result practically equal to the proton mass

Alternate forms:

$$\frac{1}{18} \left(9 \sqrt{2 \left(5 + \sqrt{5} \right)} - 9 \sqrt{5} + 16 \right)$$
$$\frac{8}{9} - \frac{\sqrt{5}}{2} + \sqrt{\frac{1}{2} \left(5 + \sqrt{5} \right)}$$
$$\frac{1}{18} \left(16 - 9 \sqrt{5} \right) + \sqrt{\frac{1}{2} \left(5 + \sqrt{5} \right)}$$

Minimal polynomial:

 $104\,976\,x^4 - 373\,248\,x^3 - 289\,656\,x^2 + 1\,629\,648\,x - 990\,299$

And:

2 0.005 0.88354 Type I 1.6229 1.6749 -0.0520 -0.01 0 8.0

$$M = \begin{pmatrix} \int_0^\infty r^2 \psi^6 B^{3/2} \left[4\pi \rho_E + \frac{1}{4} \left(K_{ij} K^{ij} - K^2 \right) \right] \\ \times \left[1 + r \left(\frac{\partial_r B}{2B} + 2 \frac{\partial_r \psi}{\psi} \right) \right] dr , \\ \end{pmatrix} \cong \left(\frac{7}{18} + \frac{1}{2} \left(1 - \sqrt{5} \right) + \sqrt{\frac{1}{2} \left(5 + \sqrt{5} \right)} \right) \Rightarrow$$

$$\left(1.6229 \left| 1.6749 \right| - 0.0520 \right) \approx 1.6729679327...$$

From:

Dynamical evolutions of *l*-boson stars in spherical symmetry

Miguel Alcubierre, Juan Barranco, Argelia Bernal, Juan Carlos Degollado, Alberto Diez-Tejedor, Miguel Megevand, Dario Nunez, and Olivier Sarbach

arXiv:1906.08959v2 [gr-qc] 9 Oct 2019

0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.2 0 0.4 0 0.2 0 0.4 0 0.4	2 0.8 2 0.8 2 0.8 2 0.8 2 0.8 2 0.8 2 0.8 4 0.8 5 0 0 0.8 5 0 0 0.8 5	88401 88401 88401 88401 88401 88401 88401 88401 88401 88401 88401 88401 88401 88401 88401 88401 80866 80867 80868 80866 80867 80868 80868 80868 80868<	Type 0 Type I Type I Type II Type II Type III Type 0 Type I Type I Type II Type II Type III Type III Type III Type III Type III	0.6211 0.6207 0.6209 0.6209 0.6238 0.6237 0.6088 0.6096 0.6079 0.6087 0.6088 0.6193 0.6193 0.6193 0.6193 0.6193	0.6372 0.6235 0.6246 0.6225 0.6235 0.6236 0.6305 0.6166 N _B 0.9476	-0.0183 -0.0182 -0.0182 -0.0182 -0.0174 -0.0135 -0.0147 -0.0146 -0.0148 -0.0148 -0.0148 -0.0112 +0.0027 U	$\begin{array}{c} -0.005 \\ +0.005 \\ +0.01 \\ +0.01 \\ - \\ +0.005 \\ -0.005 \\ +0.005 \\ +0.01 \\ +0.01 \\ \hline \epsilon/\varphi_R^{max} \\ \hline \end{array}$	$\begin{array}{c} 0\\ -1\\ -1\\ +1\\ -1\\ 0\\ 0\\ -1\\ -1\\ +1\\ -1 \end{array}$	0.0 0.0 0.0 20.0 20.0	stable stable stable stable stable stable black hole black hole black hole black hole black hole black hole black hole black hole black hole black hole
0 0.2 0 0.2 0 0.2 0 0.2 0 0.4 0 0.4 1 0.	2 0.8 2 0.8 2 0.8 2 0.8 2 0.8 2 0.8 4 0.8 4 0.8 4 0.8 4 0.8 4 0.8 4 0.8 4 0.8 4 0.8 4 0.8 4 0.8 4 0.8 4 0.8	88401 88401 88401 88401 88401 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866 0.74471	Type I Type II Type II Type III Type I Type I Type I Type II Type III Type III Type III Type III	0.6207 0.6209 0.6238 0.6237 0.6088 0.6096 0.6079 0.6087 0.6088 0.6193 0.6193 0.6193 0.6193 0.6193	0.6389 0.6391 0.6391 0.6412 0.6235 0.6246 0.6225 0.6235 0.6235 0.6236 0.6305 0.6166 N _B 0.9476	-0.0182 -0.0182 -0.0182 -0.0174 -0.0135 -0.0147 -0.0150 -0.0148 -0.0148 -0.0148 -0.0112 +0.0027 U +0.0027	$\begin{array}{c} -0.005 \\ +0.005 \\ +0.01 \\ +0.01 \\ - \\ +0.005 \\ -0.005 \\ +0.005 \\ +0.01 \\ +0.01 \\ \hline \epsilon/\varphi_R^{max} \\ \hline \end{array}$	$\begin{array}{c} 0\\ -1\\ -1\\ +1\\ -1\\ 0\\ 0\\ -1\\ -1\\ +1\\ -1 \end{array}$	0.0 0.0 20.0 20.0 - 0.0 0.0 0.0 20.0 20.	stable stable stable stable black hole black hole migration to stable branch migration to stable branch black hole black hole black hole black hole
0 0.2 0 0.2 0 0.2 0 0.4 0 0.4 1 0.	2 0.8 2 0.8 2 0.8 2 0.8 4 0.8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88401 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866 80866<	Type II Type II Type III Type 0 Type I Type I Type II Type II Type III Type III Type III Type III	0.6209 0.6209 0.6238 0.6237 0.6088 0.6096 0.6079 0.6087 0.6088 0.6193 0.6193 0.6193 0.6193	0.6391 0.6391 0.6412 0.6372 0.6235 0.6235 0.6235 0.6235 0.6236 0.6305 0.6166 N _B 0.9476	$\begin{array}{c} -0.0182 \\ -0.0182 \\ -0.0174 \\ -0.0135 \\ -0.0147 \\ -0.0146 \\ -0.0148 \\ -0.0148 \\ -0.0148 \\ -0.0112 \\ +0.0027 \end{array}$	+0.005 -0.005 +0.01 - +0.005 -0.005 +0.005 +0.01 +0.01 ϵ/φ_R^{ma}	$ \begin{array}{c} -1 \\ -1 \\ +1 \\ -1 \\ 0 \\ -1 \\ -1 \\ +1 \\ -1 \end{array} $	0.0 0.0 20.0 20.0 0.0 0.0 0.0 20.0 20.0	stable stable stable stable black hole black hole migration to stable branch migration to stable branch black hole black hole black hole black hole
0 0.2 0 0.2 0 0.2 0 0.4 0 0.4 1 0.	2 0.8 2 0.8 2 0.8 4 0.8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88401 88401 88401 80866 80866 80866 80866 80866 80866 80866 80866 0.74471	Type II Type III Type III Type I Type I Type II Type III Type III Type III Type III Type III	0.6209 0.6238 0.6237 0.6088 0.6096 0.6079 0.6087 0.6088 0.6193 0.6193 0.6193	0.6391 0.6412 0.6372 0.6235 0.6235 0.6235 0.6236 0.6236 0.6305 0.6166 N _B 0.9476	-0.0182 -0.0174 -0.0135 -0.0147 -0.0146 -0.0148 -0.0148 -0.0148 -0.0112 +0.0027 U +0.0198	$\begin{array}{c} -0.005 \\ +0.01 \\ +0.01 \\ - \\ +0.005 \\ -0.005 \\ +0.005 \\ +0.01 \\ +0.01 \\ \hline \epsilon/\varphi_R^{ma} \\ \hline \end{array}$	-1 +1 -1 0 0 -1 +1 -1 +1 -1	0.0 20.0 20.0 0.0 0.0 0.0 20.0 20.0	stable stable stable black hole black hole migration to stable branch migration to stable branch black hole black hole black hole black hole
0 0.2 0 0.4 0 0.4 1 0.	2 0.8 2 0.8 4	88401 88401 80866 80866 80866 80866 80866 80866 80866 80866 0.74471	Type III Type III Type I Type I Type II Type III Type III Type III Perturbatii Type 0	0.6238 0.6237 0.6088 0.6096 0.6079 0.6087 0.6088 0.6193 0.6193 0.6193	0.6412 0.6372 0.6235 0.6246 0.6225 0.6235 0.6236 0.6305 0.6166 N _B 0.9476	-0.0174 -0.0135 -0.0147 -0.0150 -0.0148 -0.0148 -0.0148 +0.0027 U +0.0027	+0.01 +0.01 - +0.005 -0.005 +0.005 +0.01 +0.01 ϵ/φ_R^{ma}	+1 -1 0 -1 -1 +1 -1	20.0 20.0 - 0.0 0.0 0.0 20.0 20.0	stable stable black hole black hole migration to stable branch migration to stable branch black hole black hole black hole black hole black hole
0 0.2 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 1 0.	2 0.8 4 0.8 10 0.	88401 80866 80866 80866 80866 80866 80866 80866 80866 80866 0.74471	Type III Type 0 Type I Type II Type II Type III Type III Perturbati Type 0	0.6237 0.6088 0.6096 0.6079 0.6087 0.6088 0.6193 0.6193 0.6193	0.6372 0.6235 0.6246 0.6225 0.6235 0.6236 0.6305 0.6166 N _B 0.9476	-0.0135 -0.0147 -0.0150 -0.0146 -0.0148 -0.0148 -0.0112 +0.0027 	+0.01 - +0.005 -0.005 +0.005 +0.01 +0.01 ϵ/φ_R^{max}	-1 0 -1 -1 +1 -1	20.0 - 0.0 0.0 0.0 20.0 20.0	stable black hole black hole migration to stable branch migration to stable branch black hole black hole black hole black hole black hole
0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 1 0.	$\begin{array}{c} 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ a_0 \\ a$	80866 80866 80866 80866 80866 80866 80866 80866 80866 20866 20866	Type 0 Type I Type I Type II Type II Type III Type III Perturbati Type 0	0.6088 0.6096 0.6079 0.6087 0.6088 0.6193 0.6193 0.6193	0.6235 0.6246 0.6225 0.6235 0.6236 0.6305 0.6166 <i>N_B</i> 0.9476	-0.0147 -0.0150 -0.0146 -0.0148 -0.0148 -0.0112 +0.0027 U +0.0027	- +0.005 +0.005 +0.005 +0.01 +0.01 ϵ/φ_R^{ma}	$-0 \\ 0 \\ -1 \\ -1 \\ +1 \\ -1$	- 0.0 0.0 0.0 20.0 20.0	black hole black hole migration to stable branch migration to stable branch black hole black hole black hole End result
0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 1 0.	$\begin{array}{c} 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ \hline a_0 \\ .4 & 0 \\ .4 & 0 \\ .4 & 0 \\ 0.4 & 0 \\ \end{array}$	80866 80866 80866 80866 80866 80866 80866 Δ	Type I Type I Type II Type II Type III Type III Perturbati Type 0	0.6096 0.6079 0.6087 0.6088 0.6193 0.6193 0.6193 0.6193	0.6246 0.6225 0.6235 0.6236 0.6305 0.6166 N _B 0.9476	-0.0150 -0.0146 -0.0148 -0.0148 +0.0112 +0.0027 U +0.0027	-0.005 +0.005 +0.01 +0.01 ϵ/φ_R^{max}	$0 \\ 0 \\ -1 \\ -1 \\ +1 \\ -1$	0.0 0.0 20.0 20.0	black hole migration to stable branch migration to stable branch black hole black hole black hole <u>End result</u> black hole
0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4 0 0.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80866 80866 80866 80866 80866 80866 0.74471	Type I Type II Type II Type III Type III Perturbati Type 0	0.6079 0.6087 0.6088 0.6193 0.6193 0.6193 0.6193	0.6225 0.6235 0.6236 0.6305 0.6166 <u>N_B</u> 0.9476	-0.0146 -0.0148 -0.0148 +0.0112 +0.0027 U +0.0198	-0.005 +0.005 +0.01 +0.01 ϵ/φ_R^{max}	$0 \\ -1 \\ -1 \\ +1 \\ -1$	0.0 0.0 20.0 20.0	migration to stable branch migration to stable branch black hole black hole black hole End result black hole
0 0.4 0 0.4 0 0.4 0 0.4 <u>0 0.4</u> <u>1 0.</u>	4 0.8 4 0.8 4 0.8 4 0.8 a ₀ 0.4 0	s0866 s0866 s0866 s0866 s0866 .74471	Type II Type II Type III Type III Perturbati Type 0	0.6087 0.6088 0.6193 0.6193 0.6193 0.6193	0.6235 0.6236 0.6305 0.6166 <u>N_B</u> 0.9476	-0.0148 -0.0148 -0.0112 +0.0027 U +0.0198	+0.005 -0.005 +0.01 +0.01 ϵ/φ_R^{ma} -	$-1 \\ -1 \\ +1 \\ -1$	0.0 0.0 20.0 20.0	migration to stable branch black hole black hole black hole End result black hole
0 0.4 0 0.4 0 0.4 <u>ℓ a</u> 1 0.	$ \begin{array}{c} 4 & 0.8 \\ 4 & 0.8 \\ 4 & 0.8 \\ \hline a_0 \\ 0.4 & 0 \\ 0.4 & 0 \end{array} $	80866 80866 80866 ω 0.74471	Type II Type III Type III Perturbati Type 0	0.6088 0.6193 0.6193 on M 0.9674	0.6236 0.6305 0.6166 N _B 0.9476	-0.0148 -0.0112 +0.0027 U +0.0198	-0.005 +0.01 +0.01 ϵ/φ_R^{ma}	-1 + 1 - 1	0.0 20.0 20.0	black hole black hole black hole End result black hole
0 0.4 0 0.4 <u>ℓ a</u> 1 0.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80866 80866 ω	Type III Type III Perturbati Type 0	0.6193 0.6193 on <u>M</u> 0.9674	0.6305 0.6166 N _B 0.9476	-0.0112 +0.0027	+0.01 +0.01 ϵ/φ_R^{ma}	$^{+1}_{-1}$	20.0 20.0	black hole black hole End result black hole
0 0.4 <i>ℓ a</i> 1 0.	4 0.8 a ₀ .4 0 .4 0	80866 ω	Type III Perturbati Type 0	0.6193 on <u>M</u> 0.9674	0.6166 N _B 0.9476	+0.0027	+0.01 ϵ/φ_R^{ma}	-1	20.0	black hole End result black hole
ℓ a	a ₀ .4 0	ω).74471	Perturbati Type 0	on M 0.9674	N _B	U +0.0198	ϵ/φ_R^{ma}	_		End result black hole
1 0.	.4 0	.74471	Type 0	0.9674	0.9476	+0.0198	-	× 8	r ₀	black hole
1 0.	.4 0	.74471	Type 0	0.9674	0.9476	+0.0198	-	× 8	- r ₀	black hole
	.4 0							i = i	-	
11 0.		0.74471	Type I	0.9743	0.0568	10.0175	10.01			
1 0.	1 L L			0101.10	0.3000	+0.0175	+0.01	0	1.7	black hole
1 0.	.4 0	0.74471	Type I	0.9606	0.9385	+0.0221	-0.01	0	1.7	explosion to infinity
1 0.	.4 0	0.74471	Type II	0.9673	0.9473	+0.0200	+0.01	-1	1.7	explosion to infinity
1 0.	.4 0	0.74471	Type II	0.9677	0.9478	+0.0199	-0.01	$^{-1}$	1.7	black hole
1 0.	.4 0	0.74471	Type III			+0.0212		$^{+1}$	20.0	black hole
1 0.	.4 0	0.74471	Type III	0.9714	0.9450	+0.0264	+0.01	-1	20.0	black hole
l a	a_0	ω	Perturbatio	n M	N_B	U	$\epsilon / \varphi_R^{\max}$	8	r_0	End result
2 0.0	005	0.88354	Type 0	1.626	8 1.679	3 -0.0523	5 -	-	-	stable
2 0.0	005	0.88354	Type I	1.630	7 1.683	7 -0.0530	0 +0.01	0	8.0	stable
2 0.0	005	0.88354	Type I	1.622	9 1.674	9 -0.0520	0 -0.01	0	8.0	stable
2 0.0	005	0.88354	(A) Type I	I 1.626	8 1.679	2 -0.052	4 +0.01	-1	8.0	stable
2 0.0	005	0.88354	Type II	1.626	8 1.679	3 -0.052	5 -0.01			stable
2 0.0	005	0.88354	Type III	1.627	3 1.679	7 -0.052	4 +0.01	+1	30.0	stable
		0.88354				9 -0.0510		-1	30.0	stable
2 0.	.05	0.76114	Type 0	1.603	5 1.638	8 -0.0353	3 -	-	-	black hole
2 0.	.05	0.76114	Type I	1.612	1 1.650	2 -0.038	1 +0.01	0	4.0	black hole
2 0.	.05	0.76114	(B) Type I	1.594	9 1.627	6 -0.0323	7 -0.01	0	4.0	migration to stable branch
2 0.	.05	0.76114	Type II	1.603	5 1.638	8 -0.0353	3 +0.005	-1	4.0	migration to stable branch
2 0.	.05	0.76114	Type II	1.603	5 1.638	7 -0.0353	2 +0.01	-1	4.0	black hole
2 0.	.05	0.76114	Type II	1.603	6 1.638	9 -0.0353	3 -0.01	-1	4.0	black hole
2 0.	.05	0.76114	Type III	1.606	2 1.640	7 -0.034	5 +0.01	+1	30.0	black hole
2 0.	.05	0.76114	Type III	1.606	2 1.637	0 -0.030	8 +0.01	-1	30.0	black hole

l	a_0	ω	Perturbation	M	N_B	U	$\epsilon/\varphi_R^{\max}$	8	r_0	End result
4	0.0005	0.75793	Type 0	2.6419	2.7181	-0.0762	-	-	-	black hole
4	0.0005	0.75793	Type I	2.6539	2.7339	-0.0800	+0.01	0	7.5	black hole
4	0.0005	0.75793	Type I	2.6299	2.7024	-0.0725	-0.01	0	7.5	migration to stable branch
4	0.0005	0.75793	Type II	2.6419	2.7181	-0.0762	+0.005	-1	7.5	migration to stable branch
4	0.0005	0.75793	Type II	2.6419	2.7180	-0.0761	+0.01	$^{-1}$	7.5	black hole
4	0.0005	0.75793	Type II	2.6420	2.7181	-0.0761	-0.01	-1	7.5	black hole
4	0.0005	0.75793	Type III	2.6430	2.7190	-0.0760	+0.01	$^{+1}$	30.0	black hole
4	0.0005	0.75793	Type III	2.6430	2.7173	-0.0743	+0.01	-1	30.0	black hole

We note that:

From:

Astronomy & Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_s = 0.965 \pm 0.004$, consistent with the predictions of slow-roll, single-field, inflation.

We know that α ' is the Regge slope (string tension). With regard the Omega mesons, the values are:

From:

PHYSICAL REVIEW D 99, 024028 (2019)

Topological dyonic dilaton black holes in AdS spaces *S. Hajkhalili and A. Sheykhi*

We have that:

FIG. 1. The behavior of the metric function f(r) versus r.

charge (p = 0), it reduces to the temperature of charged AdS dilaton black hole [6] for $\alpha = 1$. The entropy of the dilaton black hole typically obeys the area law of the entropy which is a quarter of the event horizon area [23]. For our solution the entropy per unit area ω_2 is obtained as

$$S = \frac{r_+^2}{4} \left(1 - \frac{b}{r_+} \right), \tag{29}$$

The above expression is exactly the entropy of charged AdS dilaton black hole [6]. Using Brown and York formalism we calculate the mass of the asymptotically AdS dyonic dilaton black hole [6]. We find the mass per unit area ω_2 of the horizon as

$$M = \frac{q^2 - p^2}{4b\pi}.$$
 (30)

In the absence of magnetic charge (p = 0), it recovers the mass of the AdS dilaton black hole [6], while in the absence of dilaton field (b = 0), it reduces to the mass of topological dyonic AdS black holes. One may use the Gauss's law to calculate the total electric and magnetic charge of the black hole. According to the Gauss theorem, the electric charge of the black hole per unit area ω_2 is

$$Q = \frac{1}{4\pi} \int_{r \to \infty} \sqrt{-g} F_{tr} d^2 x = \frac{q}{4\pi}.$$
 (31)

Similarly, we can obtain the total magnetic charge of the dyonic black hole per unit area ω_2 as

$$P = \frac{p}{4\pi}.$$
 (32)

Also, one can obtain U_Q and U_P which are, respectively, the electric and magnetic potential by using the free energy, which is given as [22]

$$W = \frac{I_{\text{onshell}}}{\beta} \tag{33}$$

where I_{onshell} is the on shell action and β is the inverse of temperature. Multiplying both sides of Eq. (4) by $g^{\mu\nu}$, we arrive at

$$\mathcal{R} = 2\partial^{\mu}\phi\partial_{\mu}\phi + 2V(\Phi). \tag{34}$$

Substituting Eq. (34) in Eq. (2), we find

$$I_{\text{onshell}} = \frac{1}{16\pi} \int d^4x \sqrt{-g} (V(\Phi) - e^{-2\Phi} F^2)$$

= $-\frac{1}{16\pi} \int d^4x \left[\frac{2\sin(\theta)}{r^2(r-b)^2} \left(\frac{-r^2\Lambda}{6} (r^2(b-r)^2(6r^2 + b^2 - 6br)) + r^2(P^2 - Q^2) + Q^2(2br - b^2) \right) \right]$
(35)

We have that:

 $0.6^{2}/4(1-0.2/0.6) = S$

Input:

 $\frac{0.6^2}{4} \left(1 - \frac{0.2}{0.6}\right)$

Result:

0.06

0.5 = x/(4Pi) = q

Input:

 $0.5 = \frac{x}{4\pi}$

Solution:

 $x \approx 6.28319$

 $6.28319 = 2\pi = q$

0.4 = x/(4Pi)

Input: $0.4 = \frac{x}{4\pi}$

Plot:

Alternate form: $0.4 - \frac{x}{4\pi} = 0$

Solution:

 $x \approx 5.02655$

5.02655 = p

From:

$$M = \frac{q^2 - p^2}{4b\pi}.$$

For b = 0.2, q = 0.61 and p = 0.5

((((0.61)^2-(0.5)^2))) / (4*0.2*Pi)

Input: 0.61² – 0.5² $4 \times 0.2 \pi$

Result:

0.0485820...

0.0485820

Alternative representations:

$0.61^2 - 0.5^2$	$-0.5^2 + 0.61^2$
4×0.2 π	144 °
$\frac{0.61^2 - 0.5^2}{4 \times 0.2 \pi} :$	$= -\frac{-0.5^2 + 0.61^2}{0.8 i \log(-1)}$
$0.61^2 - 0.5^2$	$-0.5^2 + 0.61^2$
$4 \times 0.2 \pi$	$-0.8 \cos^{-1}(-1)$

Series representations:

$0.61^2 - 0.5^2$	0.0381562
4×0.2 π	$\sum_{k=0}^{\infty} \frac{(-1)^k}{1+2k}$
$0.61^2 - 0.5^2$	0.0763125
4×0.2 π	$-1 + \sum_{k=1}^{\infty} \frac{2^k}{\binom{2k}{k}}$
$0.61^2 - 0.5^2$	0.152625
4×0.2 π	$= \frac{1}{\sum_{k=0}^{\infty} \frac{2^{-k} \left(-6+50 k\right)}{\binom{3 k}{k}}}$

Integral representations:

$\frac{0.61^2 - 0.5^2}{4 \times 0.2 \pi} :$	$=\frac{0.0763125}{\int_0^\infty \frac{1}{1+t^2}dt}$
$\frac{0.61^2 - 0.5^2}{4 \times 0.2 \pi} =$	$=\frac{0.0381562}{\int_0^1\sqrt{1-t^2}\ dt}$
$\frac{0.61^2 - 0.5^2}{4 \times 0.2 \pi} :$	$= \frac{0.0763125}{\int_0^\infty \frac{\sin(t)}{t} dt}$

Or, with the previous data:

For b = 0.2 $q = 2\pi$ and p = 5.02655, we obtain:

(((2Pi)^2-(5.02655)^2)) / (4*0.2*Pi)

Input interpretation: $(2\pi)^2 - 5.02655^2$

 $4 \times 0.2 \pi$

Result:

5.65486...

5.65486.... = M

Alternative representations:

$$\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = \frac{-5.02655^2 + (360^\circ)^2}{144^\circ}$$
$$\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = -\frac{-5.02655^2 + (-2i\log(-1))^2}{0.8i\log(-1)}$$
$$\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = \frac{-5.02655^2 + (2\cos^{-1}(-1))^2}{0.8\cos^{-1}(-1)}$$

Series representations:

$$\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = \frac{20\left(-0.628319 + \sum_{k=0}^{\infty} \frac{(-1)^k}{1+2k}\right) \left(0.628319 + \sum_{k=0}^{\infty} \frac{(-1)^k}{1+2k}\right)}{\sum_{k=0}^{\infty} \frac{(-1)^k}{1+2k}}$$
$$\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = \frac{10\left(-1.57914 + \sqrt{3}^2 \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{3}\right)^k}{1+2k}\right)^2\right)}{\sqrt{3}\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{3}\right)^k}{1+2k}}$$

$$\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = \frac{10 \left(-2.25664 + \sum_{k=1}^{\infty} \frac{2^k}{\binom{2k}{k}}\right) \left(0.256638 + \sum_{k=1}^{\infty} \frac{2^k}{\binom{2k}{k}}\right)}{-1 + \sum_{k=1}^{\infty} \frac{2^k}{\binom{2k}{k}}}$$

Integral representations:

 $\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = \frac{10\left(-1.25664 + \int_0^\infty \frac{1}{1+t^2} dt\right) \left(1.25664 + \int_0^\infty \frac{1}{1+t^2} dt\right)}{\int_0^\infty \frac{1}{1+t^2} dt}$

$$\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = \frac{10\left(-1.25664 + \int_0^\infty \frac{\sin(t)}{t} dt\right) \left(1.25664 + \int_0^\infty \frac{\sin(t)}{t} dt\right)}{\int_0^\infty \frac{\sin(t)}{t} dt}$$

$$\frac{(2\pi)^2 - 5.02655^2}{4 \times 0.2\pi} = \frac{20\left(-0.628319 + \int_0^1 \sqrt{1 - t^2} dt\right) \left(0.628319 + \int_0^1 \sqrt{1 - t^2} dt\right)}{\int_0^1 \sqrt{1 - t^2} dt}$$

From the previous result: 0.0485820...

0.0485820, inserting this value of mass 0.048582000 in the Hawking radiation calculator, we obtain:

Mass = 0.048582000

Radius = 7.213706e-29

Temperature = 2.526045e+24

From the Ramanujan-Nardelli mock formula, we obtain:

Input interpretation:

$$\sqrt{ \left(\frac{4 \times 1.962364415 \times 10^{19}}{5 \times 0.0864055^2} \times \frac{1}{0.048582000} \right)^{-\frac{2.526045 \times 10^{24} \times 4 \pi (7.213706 \times 10^{-29})^3 - (7.213706 \times 10^{-29})^2}{6.67 \times 10^{-11}} }$$

Result:

1.618249204105811708562737345616323567639330926742470400721... 1.6182492...

And:

Input interpretation:

Result:

0.617951794731495177543773746966283208021036225409526143541... 0.61795179...

Now, we have:

It is important to note that the dialton field does not affect the electric potential, while it changes the magnetic potential. In the absence of the dilaton field (b = 0), magnetic potential is the same as that in [19,22]. In the thermodynamics consideration, the satisfaction of the first law of thermodynamics implies the correctness of conserved and thermodynamic quantities. In order to check this, we obtain the mass *M* per unit area ω_2 as a function of extensive quantities *S*, *Q* and *P*. We find

$$M(S, Q, P) = \frac{4\pi}{b}(Q^2 - P^2).$$
 (38)

For Q = 0.6 P = 1 and b = 0.2, we obtain:

(4pi/0.2) (0.6²-1)

Input: $\frac{4\pi}{0.2} (0.6^2 - 1)$

Result:

-40.2124...

-40.2124.... = M

Alternative representations:

$$\frac{(0.6^2 - 1)(4\pi)}{0.2} = \frac{720 \circ (-1 + 0.6^2)}{0.2}$$
$$\frac{(0.6^2 - 1)(4\pi)}{0.2} = -\frac{4i\log(-1)(-1 + 0.6^2)}{0.2}$$
$$\frac{(0.6^2 - 1)(4\pi)}{0.2} = \frac{4\cos^{-1}(-1)(-1 + 0.6^2)}{0.2}$$

Series representations:

$$\frac{\left(0.6^2 - 1\right)(4\pi)}{0.2} = -12.8 \sum_{k=0}^{\infty} \frac{2^{-k} \left(-6 + 50 k\right)}{\binom{3k}{k}}$$

Integral representations:

$$\frac{\left(0.6^2 - 1\right)(4\pi)}{0.2} = -25.6 \int_0^\infty \frac{1}{1+t^2} dt$$

$$\frac{\left(0.6^2 - 1\right)(4\pi)}{0.2} = -51.2 \int_0^1 \sqrt{1 - t^2} dt$$
$$\frac{\left(0.6^2 - 1\right)(4\pi)}{0.2} = -25.6 \int_0^\infty \frac{\sin(t)}{t} dt$$

From the ratio of two masses, we obtain:

-((4pi/0.2) (0.6^2-1))/0.048582000

Input interpretation: $\frac{\left(4 \times \frac{\pi}{0.2}\right)\left(0.6^2 - 1\right)}{2}$ 0.048582000

Result:

827.722...

827.722...

Alternative representations:

More

$$-\frac{(4\pi)(0.6^2-1)}{0.048582\times0.2} = -\frac{720\circ(-1+0.6^2)}{0.048582\times0.2}$$
$$-\frac{(4\pi)(0.6^2-1)}{0.048582\times0.2} = \frac{4i\log(-1)(-1+0.6^2)}{0.048582\times0.2}$$
$$-\frac{(4\pi)(0.6^2-1)}{0.048582\times0.2} = -\frac{4\cos^{-1}(-1)(-1+0.6^2)}{0.048582\times0.2}$$

Series representations:

$$-\frac{(4\pi)(0.6^2-1)}{0.048582\times0.2} = 1053.89\sum_{k=0}^{\infty}\frac{(-1)^k}{1+2k}$$

$$-\frac{(4\pi)(0.6^2-1)}{0.048582\times0.2} = -526.944 + 526.944 \sum_{k=1}^{\infty} \frac{2^k}{\binom{2k}{k}}$$

$$-\frac{(4\pi)(0.6^2-1)}{0.048582\times0.2} = 263.472\sum_{k=0}^{\infty}\frac{2^{-k}(-6+50k)}{\binom{3k}{k}}$$

 $\binom{n}{m}$ is the binomial coefficient

Integral representations:

•

More $-\frac{(4\pi)(0.6^2 - 1)}{0.048582 \times 0.2} = 526.944 \int_0^\infty \frac{1}{1 + t^2} dt$ $-\frac{(4\pi)(0.6^2 - 1)}{0.048582 \times 0.2} = 1053.89 \int_0^1 \sqrt{1 - t^2} dt$ $-\frac{(4\pi)(0.6^2 - 1)}{0.048582 \times 0.2} = 526.944 \int_0^\infty \frac{\sin(t)}{t} dt$

From the ratio between the charge and the two masses ratio, we obtain:

Input interpretation:

$$\overline{0.6\left(-\frac{1}{\left(\left(4\times\frac{\pi}{0.2}\right)\left(0.6^2-1\right)\right)\times\frac{1}{0.048582000}}\right)}$$

Result:

1379.54...

1379.54... result very near to the rest mass of Sigma baryon 1382.8

Alternative representations:

• More

1	1
0.6	0.6
$(4 \pi)(0.6^2 - 1)$	720°(-1+0.6 ²)
0.2×0.048582	0.048582×0.2

$$\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2 \times 0.048582}}} = \frac{1}{\frac{0.6}{\frac{4i\log(-1)(-1+0.6^2)}{0.048582 \times 0.2}}}$$
$$\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2 \times 0.048582}}} = \frac{1}{-\frac{0.6}{\frac{4\cos^{-1}(-1)(-1+0.6^2)}{0.048582 \times 0.2}}}$$

Series representations: • More

$$\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2\times0.048582}}} = 1756.48 \sum_{k=0}^{\infty} \frac{(-1)^k}{1+2k}$$
$$\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2\times0.048582}}} = -878.24 + 878.24 \sum_{k=1}^{\infty} \frac{2^k}{\binom{2k}{k}}$$
$$\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2\times0.048582}}} = 439.12 \sum_{k=0}^{\infty} \frac{2^{-k} (-6+50k)}{\binom{3k}{k}}$$

 $\binom{n}{m}$ is the binomial coefficient

Integral representations: More

•

$$\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2\times0.048582}}} = 878.24 \int_0^\infty \frac{1}{1+t^2} dt$$
$$\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2\times0.048582}}} = 1756.48 \int_0^1 \sqrt{1-t^2} dt$$
$$\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2\times0.048582}}} = 878.24 \int_0^\infty \frac{\sin(t)}{t} dt$$

From the ratio between the charge 0.6 and the mass 0.048582000, we obtain:

((((0.6/((((((((0.61)^2-(0.5)^2))) *1/(4*0.2*Pi)))))

Input:

 $\frac{0.6}{(0.61^2 - 0.5^2) \times \frac{1}{4 \times 0.2\pi}}$

Result:

12.3502...

12.3502....

This result is very near to the values of black hole entropies 12.1904 - 12.5664

Alternative representations:

0.6		0.6
0.612-0.52	=	-0.5 ² +0.61 ²
4×0.2π		144 °
0.6		0.6
$0.61^2 - 0.5^2$	-	$-0.5^2+0.61^2$
$4 \times 0.2 \pi$		$0.8 i \log(-1)$
0.6		0.6
$0.61^2 - 0.5^2$	=	$-0.5^{2}+0.61^{2}$
$4 \times 0.2 \pi$		$0.8 \cos^{-1}(-1)$

Series representations:

$$\frac{\frac{0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} = 15.7248 \sum_{k=0}^{\infty} \frac{(-1)^k}{1 + 2k}$$
$$\frac{\frac{0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} = -7.86241 + 7.86241 \sum_{k=1}^{\infty} \frac{2^k}{\binom{2k}{k}}$$

$$\frac{0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} = 3.9312 \sum_{k=0}^{\infty} \frac{2^{-k} (-6 + 50 k)}{\binom{3 k}{k}}$$

Integral representations:

$$\frac{0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} = 7.86241 \int_0^\infty \frac{1}{1+t^2} dt$$
$$\frac{0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} = 15.7248 \int_0^1 \sqrt{1-t^2} dt$$
$$\frac{0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} = 7.86241 \int_0^\infty \frac{\sin(t)}{t} dt$$

And:

Input:

$$\frac{0.6}{\left(0.61^2 - 0.5^2\right) \times \frac{1}{4 \times 0.2\pi}} \pi^2 + \frac{1}{2} \left(\sqrt{5} + 5\right)$$

Result:

125.510...

125.510... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Series representations:

$$\frac{\pi^2 \ 0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} + \frac{1}{2} \left(\sqrt{5} + 5 \right) = \frac{5}{2} + 3.9312 \ \pi^3 + \frac{1}{2} \ \sqrt{4} \ \sum_{k=0}^{\infty} 4^{-k} \left(\frac{1}{2} \atop k \right)$$

$$\frac{\pi^2 \ 0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} + \frac{1}{2} \left(\sqrt{5} + 5\right) = \frac{5}{2} + 3.9312 \ \pi^3 + \frac{1}{2} \ \sqrt{4} \ \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!}$$

$$\frac{\pi^2 \ 0.6}{\frac{0.61^2 - 0.5^2}{4 \times 0.2\pi}} + \frac{1}{2} \left(\sqrt{5} + 5 \right) = \frac{5}{2} + 3.9312 \ \pi^3 + \frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} \ 4^{-s} \ \Gamma\left(-\frac{1}{2} - s\right) \Gamma(s)}{4 \sqrt{\pi}}$$

And:

Input:

$$\frac{1}{\frac{1}{4096\sqrt{\frac{0.6}{(0.61^2-0.5^2)\times\frac{1}{4\times0.2\pi}}\pi^2+\frac{1}{2}\left(\sqrt{5}+5\right)}}}$$

Result:

0.998820914...

0.998820914... result very near to the value of the following Rogers-Ramanujan continued fraction:

$$\frac{e^{-\frac{\pi}{\sqrt{5}}}}{\sqrt{5}} = 1 - \frac{e^{-\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-2\pi\sqrt{5}}}{1 + \frac{e^{-3\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \frac{e^{-4\pi\sqrt{5}}}{1 + \dots}}}} \approx 0.9991104684$$

and to the dilaton value **0**. **989117352243** = ϕ

Series representations:

$$\frac{1}{4096\sqrt{\frac{\pi^2 0.6}{0.61^2 - 0.5^2} + \frac{1}{2}(\sqrt{5} + 5)}} = \frac{1}{4096\sqrt{\frac{5}{2} + 3.9312\pi^3 + \frac{1}{2}\sqrt{4}\sum_{k=0}^{\infty} 4^{-k}\left(\frac{1}{2}\atop k\right)}}$$

$$\frac{1}{4096\sqrt{\frac{\pi^2 0.6}{0.61^2 - 0.5^2} + \frac{1}{2}(\sqrt{5} + 5)}} = \frac{1}{4096\sqrt{3.9312\pi^3 + \frac{1}{2}\left(5 + \sqrt{4}\sum_{k=0}^{\infty}\frac{\left(-\frac{1}{4}\right)^k \left(-\frac{1}{2}\right)_k}{k!}\right)}}$$

$$\frac{1}{\frac{4096}{\sqrt{\frac{\pi^2 0.6}{0.61^2 - 0.5^2} + \frac{1}{2} \left(\sqrt{5} + 5\right)}}} = \frac{1}{\frac{4096}{\sqrt{\frac{5}{2} + 3.9312 \pi^3 + \frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 4^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{4 \sqrt{\pi}}}}$$

And also:

Input interpretation:

$$2\sqrt{\log_{0.998820914} \left(\frac{1}{\frac{0.6}{(0.61^2 - 0.5^2) \times \frac{1}{4 \times 0.2\pi}} \pi^2 + \frac{1}{2} \left(\sqrt{5} + 5\right)}\right) - \pi + \frac{1}{\phi}}$$

 $\log_b(x)$ is the base- b logarithm

 ϕ is the golden ratio

Result:

125.4764408908421047891164700624825712042669834839705258087...

125.47644089... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Series representations:

$$2 \sqrt{\log_{0.998821} \left(\frac{1}{\frac{\pi^2 0.6}{0.61^2 - 0.5^2} + \frac{1}{2} \left(\sqrt{5} + 5\right)} \right) - \pi + \frac{1}{\phi}} = \frac{1}{\phi} = \frac{1}{\phi} - \pi + 2 \sqrt{-\frac{\sum_{k=1}^{\infty} \frac{(-1)^k \left(-1 + \frac{2}{5 + 7.86241 \pi^3 + \sqrt{5}}\right)^k}{k}}{\log(0.998821)}}}$$

$$2 \sqrt{\log_{0.998821} \left(\frac{1}{\frac{\pi^2 0.6}{0.61^2 - 0.5^2} + \frac{1}{2} \left(\sqrt{5} + 5\right)} \right)} - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi + 2 \sqrt{-1 + \log_{0.998821} \left(\frac{2}{5 + 7.86241 \pi^3 + \sqrt{5}} \right)}}{\sum_{k=0}^{\infty} \left(\frac{1}{2} \right) \left(-1 + \log_{0.998821} \left(\frac{2}{5 + 7.86241 \pi^3 + \sqrt{5}} \right) \right)^{-k}}$$

$$2 \sqrt{\log_{0.998821} \left(\frac{1}{\frac{\pi^2 0.6}{0.61^2 - 0.5^2} + \frac{1}{2} \left(\sqrt{5} + 5\right)} \right)} - \pi + \frac{1}{\phi} = \frac{1}{\phi} - \pi + 2 \sqrt{-\log \left(\frac{2}{5 + 7.86241 \pi^3 + \sqrt{5}} \right)} \left(847.615 + \sum_{k=0}^{\infty} (-0.00117909)^k G(k) \right)}$$
for $\left(G(0) = 0$ and $G(k) = \frac{(-1)^{1+k} k}{2 (1+k) (2+k)} + \sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j} \right)$

For Q = 0.6 and M = -40.2124, we obtain:

Input:

$$2\left(\frac{1}{0.6\left(-\frac{1}{(4\times\frac{\pi}{0.2})(0.6^2-1)}\right)} - \pi\right) - \phi^2$$

 ϕ is the golden ratio

Result:

125.1400672572350301826095774190008125062979130614485405241...

125.140067257... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for T = 0

Alternative representations:

Series representations:

Integral representations:

$$2\left[\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2}}} -\pi\right] -\phi^2 = -\phi^2 + 81.3333 \int_0^\infty \frac{1}{1+t^2} dt$$

$$2\left(\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2}}} -\pi\right) -\phi^2 = -\phi^2 + 162.667 \int_0^1 \sqrt{1-t^2} dt$$
$$2\left(\frac{1}{-\frac{0.6}{\frac{(4\pi)(0.6^2-1)}{0.2}}} -\pi\right) -\phi^2 = -\phi^2 + 81.3333 \int_0^\infty \frac{\sin(t)}{t} dt$$

Acknowledgments

I would like to thank Prof. **George E. Andrews** Evan Pugh Professor of Mathematics at <u>Pennsylvania State University</u> for his great availability and kindness towards me

References

Manuscript Book Of Srinivasa Ramanujan Volume 1

Andrews, G.E.: Some formulae for the Fibonacci sequence with generalizations. Fibonacci Q. 7, 113–130 (1969) zbMATH Google Scholar

Andrews, G.E.: A polynomial identity which implies the Rogers–Ramanujan identities. Scr. Math. 28, 297–305 (1970) Google Scholar

The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks (Memoirs of the American Mathematical Society), *by Bruce C. Berndt, L. Jacobsen, R. L. Lamphere, George E. Andrews (Editor)*, Srinivasa Ramanujan Aiyangar (Editor) (American Mathematical Society, 1993, ISBN 0-8218-2538-0)