Fermat Triples using Modular Arithmetic by Jim Rock

> Abstract. Andrew Wiles proved there are no integers x, y, and z and a prime $p \geq 3$ with $x^{p}+y^{p}+z^{p}=0$. We use the Barlow relations to generate Fermat Triples where $x^{p}+y^{p}+z^{p} \equiv 0$ for an infinite number of moduli. $$
* * *
$$ If there were positive integers x, y, and z and a prime $p \geq 3, x^{p}+y^{p}+z^{p}=0$ and p does not divide $x y z$, the following Barlow relations must hold: $\begin{aligned} & x+y=t^{p} y+z=r^{p} \quad x+z=s^{p} \quad x=-r r_{1} \quad y=-s s_{1} \quad z=t t_{l} \text { Solving the equations for } x, y \text {, and } z \text { gives: } \\ & x=\left(-r^{p}+s^{p}+t^{p}\right) / 2 y=\left(r^{p}-s^{p}+t^{p}\right) / 2 z=\left(r^{p}+s^{p}-t^{p}\right) / 2 \text {. Substituting }-r r_{1}=x,-s s_{l}=y \text {, and } s=-r+2 k \text {, gives } \\ & \left.\left(-r^{p}+s^{p}+t^{p}\right) / 2=-r r_{1}\left(s^{p}+t^{p}\right) / r, \quad s=-r+2 k t,(-r+2 k t)^{p}+t^{p}\right) / r,\left((2 k)^{p}+l\right) / r . \\ & \left.\left(r^{p}-s^{p}+t^{p}\right) / 2=-s s_{l},\left(r^{p}+t^{p}\right) / s \quad r=-s+2 k t,(-s+2 k t)^{p}+t^{p}\right) / s \quad\left((2 k)^{p}+l\right) / s .\end{aligned}$

We set $r=2 k+1, s=-r+2 k t=-\left((2 k)^{p}+1\right) / r$, and solve for t.
$-r+2 k t=-\left((2 k)^{p}+1\right) / r$
$r^{2}-2 k t r=(2 k)^{p}+1 \quad$ Substituting $2 k+1$ for r gives:
$4 k^{2}+4 k+1-4 k^{2} t-2 k t=(2 k)^{p}+1$
$2 k+2-2 k t-t=(2 k)^{p-1}$
$(2 k)^{p-1}-2 k-2=-2 k t-t$
$-\left((2 k)^{p-1}-2 k-2\right) /(2 k+1)=t \quad t$ is always an integer for $p \geq 3$.
Using these formulas for x, y and z (along with the fact that r, s, and t are all congruent to zero modulo r), shows that for all primes $p \geq 3, x^{p}+y^{p}+z^{p} \equiv 0 \bmod (2 r)^{p}$.

The full Barlow relations are listed in Fermat's Last Theorem for Amateurs by Paulo Ribenboim.

