Fermat Triples using Modular Arithmetic

by Jim Rock

Abstract. Andrew Wiles proved there are no integers *x*, *y*, and *z* and a prime $p \ge 3$ with $x^p + y^p + z^p = 0$. We use the Barlow relations to generate Fermat Triples where $x^p + y^p + z^p \equiv 0$ for an infinite number of moduli.

If there were positive integers x, y, and z and a prime $p \ge 3$, $x^p + y^p + z^p = 0$ and p does not divide xyz, the following Barlow relations must hold:

 $x + y = t^p y + z = r^p x + z = s^p x = -rr_1 y = -ss_1 z = tt_1$ Solving the equations for x, y, and z gives:

 $x = (-r^p + s^p + t^p)/2$ $y = (r^p - s^p + t^p)/2$ $z = (r^p + s^p - t^p)/2$. Substituting $-rr_1 = x$, $-ss_1 = y$, and s = -r + 2k, gives

 $(-r^{p}+s^{p}+t^{p})/2 = -rr_{1} (s^{p}+t^{p})/r, s = -r + 2kt, (-r + 2kt)^{p} + t^{p})/r, ((2k)^{p}+1)/r.$ $(r^{p}-s^{p}+t^{p})/2 = -ss_{1}, (r^{p}+t^{p})/s r = -s + 2kt, (-s + 2kt)^{p} + t^{p})/s ((2k)^{p}+1)/s.$

We set r=2k+1, $s=-r+2kt = -((2k)^{p}+1)/r$, and solve for *t*.

 $\begin{aligned} -r+2kt &= -((2k)^{p}+1)/r \\ r^{2}-2ktr &= (2k)^{p}+1 \quad \text{Substituting } 2k+1 \text{ for } r \text{ gives:} \\ 4k^{2}+4k+1-4k^{2}t-2kt &= (2k)^{p}+1 \\ 2k+2-2kt-t &= (2k)^{p-1} \\ (2k)^{p-1}-2k-2 &= -2kt-t \\ -((2k)^{p-1}-2k-2)/(2k+1) &= t \quad t \text{ is always an integer for } p \geq 3. \end{aligned}$

Using these formulas for *x*, *y* and *z* (along with the fact that *r*, *s*, and *t* are all congruent to zero modulo *r*), shows that for all primes $p \ge 3$, $x^p + y^p + z^p \equiv 0 \mod (2r)^p$.

The full Barlow relations are listed in Fermat's Last Theorem for Amateurs by Paulo Ribenboim.