# Further Ramanujan's equations applied to various sectors of Particle Physics and Cosmology: some possible new mathematical connections. V 

Michele Nardelli ${ }^{1}$, Antonio Nardelli


#### Abstract

In this research thesis, we have analyzed further Ramanujan formulas and described new possible mathematical connections with some sectors of Particle Physics and Cosmology


[^0]
https://www.famousscientists.org/srinivasa-ramanujan/


It was his insight into algebraical formulae, transformations of infinite series, and so forth that was most amazing. On this side most certainly I have never met his equal, and I can compare him only with Euler or Jacobi."
G. H. HARDY, 1877 - 1947 (Mathematician)

From:

## Manuscript Book Of Srinivasa Ramanujan Volume 1

Page 281

$\left(\left((3 \mathrm{sqrt} 3+1)^{\wedge} 1 / 3+(3 \mathrm{sqrt} 3-1)^{\wedge} 1 / 3\right)\right)^{\wedge} 2 *(13)^{\wedge} 1 / 6 * 1 /\left(3 *(2)^{\wedge} 1 / 3\right)$

## Input:

$(\sqrt[3]{3 \sqrt{3}+1}+\sqrt[3]{3 \sqrt{3}-1})^{2} \sqrt[6]{13} \times \frac{1}{3 \sqrt[3]{2}}$

## Result:

$\frac{\sqrt[6]{13}(\sqrt[3]{3 \sqrt{3}-1}+\sqrt[3]{1+3 \sqrt{3}})^{2}}{3 \sqrt[3]{2}}$

## Decimal approximation:

4.827716585669311505850859903413752753840343568084383506637...
4.8277165856693...

## Alternate forms:

$\frac{1}{6}(\sqrt[3]{3 \sqrt{3}-1}+\sqrt[3]{1+3 \sqrt{3}})^{2} \sqrt[6]{13} 2^{2 / 3}$

```
root of }\mp@subsup{x}{}{6}-26\mp@subsup{x}{}{4}+65\mp@subsup{x}{}{2}-52\mathrm{ near }x=4.8277
```

$\frac{1}{\sqrt{\frac{3}{26+\sqrt[3]{13(821-72 \sqrt{3})}+\sqrt[3]{13(821+72 \sqrt{3})}}}}$

## Minimal polynomial:

$x^{6}-26 x^{4}+65 x^{2}-52$

$$
\mathrm{e}^{\wedge}(-13 \mathrm{Pi})
$$

## Input:

$e^{-13 \pi}$

## Decimal approximation:

$1.8327676056715775684639617650534828603659265496720660 \ldots \times 10^{-18}$
$1.832767605671 \ldots * 10^{-18}$

## Property:

$e^{-13 \pi}$ is a transcendental number

Alternative representations:
$e^{-13 \pi}=e^{-2340^{\circ}}$
$e^{-13 \pi}=e^{13 i \log (-1)}$
$e^{-13 \pi}=\exp ^{-13 \pi}(z)$ for $z=1$

Series representations:
$e^{-13 \pi}=e^{-52 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}$
$e^{-13 \pi}=\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-13 \pi}$
$e^{-13 \pi}=\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{-13 \pi}$

## Integral representations:

$e^{-13 \pi}=e^{-52} \int_{0}^{1} \sqrt{1-t^{2}} d t$
$e^{-13 \pi}=e^{-26} \int_{0}^{1} 1 / \sqrt{1-t^{2}} d t$
$e^{-13 \pi}=e^{-26} \int_{0}^{\infty \infty} 1 /\left(1+t^{2}\right) d t$

$$
\mathrm{e}^{\wedge}(-13 \mathrm{Pi}) \mathrm{x}=\left(\left((3 \mathrm{sqr} 3+1)^{\wedge} 1 / 3+(3 \mathrm{sqrt} 3-1)^{\wedge} 1 / 3\right)\right)^{\wedge} 2 *(13)^{\wedge} 1 / 6 * 1 /\left(3 *(2)^{\wedge} 1 / 3\right)
$$

## Input:

$e^{-13 \pi} x=(\sqrt[3]{3 \sqrt{3}+1}+\sqrt[3]{3 \sqrt{3}-1})^{2} \sqrt[6]{13} \times \frac{1}{3 \sqrt[3]{2}}$

## Exact result:

$e^{-13 \pi} x=\frac{\sqrt[6]{13}(\sqrt[3]{3 \sqrt{3}-1}+\sqrt[3]{1+3 \sqrt{3}})^{2}}{3 \sqrt[3]{2}}$
Plot:


## Alternate forms:

$e^{-13 \pi} x=$ root of $x^{6}-26 x^{4}+65 x^{2}-52$ near $x=4.82772$
$e^{-13 \pi} x=\frac{1}{\sqrt{\frac{26+3}{13(821-72 \sqrt{3})}+\sqrt[3]{13(821+72 \sqrt{3})}}}$

$$
\begin{aligned}
& e^{-13 \pi} x= \\
& \frac{\sqrt[6]{13}(3 \sqrt{3}-1)^{2 / 3}}{3 \sqrt[3]{2}}+\frac{\sqrt[6]{13}(1+3 \sqrt{3})^{2 / 3}}{3 \sqrt[3]{2}}+\frac{1}{3} \times 2^{2 / 3} \sqrt[6]{13} \sqrt[3]{(3 \sqrt{3}-1)(1+3 \sqrt{3})}
\end{aligned}
$$

## Solution:

$x \approx 2634112786983868826$
$1 / 613^{\wedge}(1 / 6)\left(413^{\wedge}(1 / 3)+(-2+6 \operatorname{sqrt}(3))^{\wedge}(2 / 3)+(2+6 \operatorname{sqrt}(3))^{\wedge}(2 / 3)\right) \mathrm{e}^{\wedge}(13 \pi)$

## Input:

$\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}$

## Decimal approximation:

$2.6341127869838688278803376180123395006376168896977924 \ldots \times 10^{18}$
$2.634112786983 \ldots * 10^{18}$

## Property:

$\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}$ is a transcendental number

## Alternate forms:

$$
e^{13 \pi} \text { root of } x^{6}-26 x^{4}+65 x^{2}-52 \text { near } x=4.82772
$$


$\frac{2}{3} \sqrt{13} e^{13 \pi}+\frac{1}{6} \sqrt[6]{13}(6 \sqrt{3}-2)^{2 / 3} e^{13 \pi}+\frac{1}{6} \sqrt[6]{13}(2+6 \sqrt{3})^{2 / 3} e^{13 \pi}$

## Series representations:

$$
\begin{aligned}
& \frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}=\frac{1}{6} \sqrt[6]{13} e^{13 \pi} \\
& \left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2 / 3}+2^{2 / 3}\left(1+3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2 / 3}\right) \\
& \frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}=\frac{1}{6} \sqrt[6]{13} e^{13 \pi} \\
& \left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2 / 3}+2^{2 / 3}\left(1+3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2 / 3}\right) \\
& \frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}= \\
& \frac{1}{6} \sqrt[6]{13} e^{13 \pi}\left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2 / 3}+\right. \\
& \left.2^{2 / 3}\left(1+3 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)^{2 / 3}\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$3 \ln \left[1 / 613^{\wedge}(1 / 6)\left(413^{\wedge}(1 / 3)+(-2+6 \operatorname{sqrt}(3))^{\wedge}(2 / 3)+(2+6 \operatorname{sqrt}(3))^{\wedge}(2 / 3)\right) \mathrm{e}^{\wedge}(13\right.$ $\pi)$ ]-golden ratio

## Input:

$3 \log \left(\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}\right)-\phi$
$\log (x)$ is the natural logarithm

## Decimal approximation:

125.6272002991209830597038872640022801147662729880795730739.
125.62720029912 ... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Alternate forms:

$-\frac{1}{2}-\frac{\sqrt{5}}{2}+3 \log \left(\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}\right)$
$\frac{1}{2}\left(-1-\sqrt{5}+6 \log \left(\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}\right)\right)$
$\frac{1}{2}(-1-\sqrt{5})+3 \log \left(\frac{e^{13 \pi}}{\sqrt{\frac{3}{26+\sqrt[3]{13(821-72 \sqrt{3})}+\sqrt[3]{13(821+72 \sqrt{3})}}}}\right)$

## Alternative representations:

$$
\begin{aligned}
& 3 \log \left(\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}\right)-\phi= \\
& -\phi+3 \log _{e}\left(\frac{1}{6} \sqrt[6]{13} e^{13 \pi}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right)\right) \\
& 3 \log \left(\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}\right)-\phi= \\
& -\phi+3 \log (a) \log _{a}\left(\frac{1}{6} \sqrt[6]{13} e^{13 \pi}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 3 \log \left(\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}\right)-\phi= \\
& -\phi-3 \operatorname{Li}_{1}\left(1-\frac{1}{6} \sqrt[6]{13} e^{13 \pi}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right)\right)
\end{aligned}
$$

$\left(\left(\left(\left(1 / 613^{\wedge}(1 / 6)\left(413^{\wedge}(1 / 3)+(-2+6 \operatorname{sqrt}(3))^{\wedge}(2 / 3)+(2+6 \operatorname{sqrt}(3))^{\wedge}(2 / 3)\right) \mathrm{e}^{\wedge}(13\right.\right.\right.\right.$
$\pi)))))^{\wedge} 1 / 88$

## Input:

$\sqrt[88]{\frac{1}{6}} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}$

## Exact result:

$\frac{\sqrt[528]{13} \sqrt[88]{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}} e^{(13 \pi) / 88}}{\sqrt[88]{6}}$

## Decimal approximation:

1.619292821206264086408656253528087560236095639242293147294...
$1.61929821206 \ldots$ result that is a good approximation to the value of the golden ratio 1,618033988749...

## Property:

$\frac{\sqrt[528]{13} \sqrt[88]{4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}} e^{(13 \pi) / 88}}{\sqrt[88]{6}}$ is a transcendental number

## Alternate form:

$\frac{\sqrt[528]{13} \sqrt[88]{4 \sqrt[3]{13}+(2(3 \sqrt{3}-1))^{2 / 3}+(2(1+3 \sqrt{3}))^{2 / 3}} e^{(13 \pi) / 88}}{\sqrt[88]{6}}$

All 88th roots of $1 / 613 \wedge(1 / 6)\left(413 \wedge(1 / 3)+(6 \operatorname{sqrt}(3)-2)^{\wedge}(2 / 3)+(2+6\right.$ $\left.\operatorname{sqrt}(3))^{\wedge}(2 / 3)\right) \mathrm{e}^{\wedge}(13 \pi)$ :

$\sqrt[88]{\frac{6}{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}}$

$\sqrt[88]{\frac{6}{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}}$

$\sqrt[88]{\frac{6}{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}}$


## Series representations:

$$
\begin{gathered}
\sqrt[88]{\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}}= \\
\frac{1}{88} \sqrt[5]{6} \\
528 \\
13 \\
e^{13 \pi}\left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2 / 3}+\right. \\
\left.\left.2^{2 / 3}\left(1+3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\right)\right)(1 / 88)
\end{gathered}
$$

$$
\begin{aligned}
& \sqrt[88]{\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}}= \\
& \frac{1}{\sqrt[88]{6}} \sqrt[528]{13}\left(e ^ { 1 3 \pi } \left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2 / 3}+\right.\right. \\
& \left.\left.2^{2 / 3}\left(1+3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2 / 3}\right)\right) \wedge(1 / 88) \\
& \sqrt[88]{\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}}= \\
& \frac{1}{\sqrt[88]{6}} \sqrt[528]{13}\left(e ^ { 1 3 \pi } \left(4 \sqrt[3]{13}+\left(\frac{-2 \sqrt{\pi}+3 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)^{2 / 3}+\right.\right. \\
& \left.\left.\left(\frac{2 \sqrt{\pi}+3 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)^{2 / 3}\right)\right) \wedge(1 / 88)
\end{aligned}
$$

## Integral representation:

$(1+z)^{a}=\frac{\int_{-i \infty \infty+\gamma}^{i \infty} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$
$\left(\left(\left(1 /\left(\left(\left(\left(1 / 613^{\wedge}(1 / 6)\right)\left(413^{\wedge}(1 / 3)+(-2+6 \operatorname{sqrt}(3))^{\wedge}(2 / 3)+(2+6 \operatorname{sqrt}(3))^{\wedge}(2 / 3)\right) \mathrm{e}^{\wedge}(13\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\pi)))))^{\wedge} 1 / 88\right)\right)\right)^{\wedge} 1 / 32$

## Input:



## Exact result:

$\frac{\sqrt[2816]{\frac{6}{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}} e^{-(13 \pi) / 2816}}{16896 \sqrt{13}}$

## Decimal approximation:

0.985050694517374407899501325597376070207916059031421967889...
$0.98505069451737 \ldots$ result very near to the value of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.99911046841 . . .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

## Property:

$$
\frac{\sqrt[2816]{\frac{6}{4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}} e^{-(13 \pi) / 2816}}{16896} \sqrt{13} \text { is a transcendental number }
$$

## Alternate forms:


$\frac{\sqrt[2816]{\frac{6}{4 \sqrt[3]{13}+(2(3 \sqrt{3}-1))^{2 / 3}+(2(1+3 \sqrt{3}))^{2 / 3}}} e^{-(13 \pi) / 2816}}{16896 \sqrt{13}}$

All 32nd roots of $\left(\left(6 /\left(413{ }^{\wedge}(1 / 3)+(6 \operatorname{sqrt}(3)-2)^{\wedge}(2 / 3)+(2+6\right.\right.\right.$ $\left.\left.\left.\operatorname{sqrt}(3))^{\wedge}(2 / 3)\right)\right)^{\wedge}(1 / 88) \mathbf{e}^{\wedge}(-(13 \pi) / 88)\right) / 13 \wedge(1 / 528):$
$\frac{\sqrt[2816]{6} e^{-(13 \pi) / 2816} e^{0}}{\sqrt[16896]{13} \sqrt[2816]{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}}$

| $\frac{\sqrt[2816]{6} e^{-(13 \pi) / 2816} e^{(i \pi) / 16}}{\sqrt[16896]{13} \sqrt[2816]{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}} \sqrt{\sqrt[2816]{6} e^{-(13 \pi) / 2816} e^{(i \pi) / 8}} \approx 0.966123+0.192174 i$ |
| :---: |
| $\sqrt[889]{13} \sqrt[2816]{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}$ | $0.91007+0.37696 i$

$\frac{\sqrt[2816]{6} e^{-(13 \pi) / 2816} e^{(3 i \pi) / 16}}{\sqrt{4}} \approx 0.81904+0.54726 i$
$\sqrt[16896]{13} \sqrt[2816]{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}$
$\frac{\sqrt[2816]{6} e^{-(13 \pi) / 2816} e^{(i \pi) / 4}}{\sqrt{2}} \approx 0.69654+0.69654 i$
$\sqrt[16896]{13} \sqrt[2816]{4 \sqrt[3]{13}+(6 \sqrt{3}-2)^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}}$

## Series representations:

$\sqrt[32]{\frac{1}{\sqrt[88]{\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}}}}=$
$\binom{\sqrt[2816]{6} e^{-13 \pi}\left(e^{13 \pi}\left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2 / 3}\right.\right.}{\left.\left.\left.2^{2 / 3}\left(1+3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2 / 3}\right)\right)^{2815 / 2816}\right)} /(16896 \sqrt{13}$
$\left.\left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2 / 3}+2^{2 / 3}\left(1+3 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2 / 3}\right)\right)$

$$
\begin{aligned}
& \sqrt[32]{\sqrt[88]{\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}}} \\
& \left(\sqrt [ 2 8 1 6 ] { 6 } e ^ { - 1 3 \pi } \left(e ^ { 1 3 \pi } \left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2 / 3}+\right.\right.\right. \\
& \left.\left.\left.2^{2 / 3}\left(1+3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2 / 3}\right)\right)^{2815 / 2816}\right) / \\
& \left(\sqrt [ 1 6 8 9 6 ] { 1 3 } \left(4 \sqrt[3]{13}+2^{2 / 3}\left(-1+3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2 / 3}+\right.\right. \\
& \left.\left.2^{2 / 3}\left(1+3 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2 / 3}\right)\right) \\
& \sqrt[32]{\frac{1}{\sqrt[88]{\frac{1}{6} \sqrt[6]{13}\left(4 \sqrt[3]{13}+(-2+6 \sqrt{3})^{2 / 3}+(2+6 \sqrt{3})^{2 / 3}\right) e^{13 \pi}}}}= \\
& \left(\sqrt [ 2 8 1 6 ] { 6 } e ^ { - 1 3 \pi } \left(e ^ { 1 3 \pi } \left(4 \sqrt[3]{13}+\left(\frac{-2 \sqrt{\pi}+3 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)^{2 / 3}+\right.\right.\right. \\
& \left.\left.\left.\left(\frac{2 \sqrt{\pi}+3 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)^{2 / 3}\right)\right)^{2815 / 2816}\right) / \\
& \left(\sqrt [ 1 6 8 9 6 ] { 1 3 } \left(4 \sqrt[3]{13}+\left(\frac{-2 \sqrt{\pi}+3 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)^{2 / 3}+\right.\right. \\
& \left.\left.\left(\frac{2 \sqrt{\pi}+3 \sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}\right)^{2 / 3}\right)\right)
\end{aligned}
$$

## Integral representation:

$(1+z)^{a}=\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$

From:

## Manuscript Book Of Srinivasa Ramanujan Volume II

Page 63

$1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4$
Input:
$\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}$

## Exact result:

$\frac{38389024801}{497871360000}$

## Decimal approximation:

0.077106312765209069266406487009013733989438556979859215039 .
$0.0771063127652 \ldots$
$\left(\mathrm{Pi}^{\wedge} 4\right) / 1263$

## Input:

$\pi^{4}$
$\overline{1263}$

Decimal approximation:
$0.077125171048299633599715227782030966943568951443139684632 \ldots$
$0.077125171 \ldots$

## Property:

$\frac{\pi^{4}}{1263}$ is a transcendental number

Alternative representations:
$\frac{\pi^{4}}{1263}=\frac{\left(180^{\circ}\right)^{4}}{1263}$
$\frac{\pi^{4}}{1263}=\frac{(-i \log (-1))^{4}}{1263}$
$\frac{\pi^{4}}{1263}=\frac{\cos ^{-1}(-1)^{4}}{1263}$

## Series representations:

$\frac{\pi^{4}}{1263}=\frac{30}{421} \sum_{k=1}^{\infty} \frac{1}{k^{4}}$
$\frac{\pi^{4}}{1263}=\frac{32}{421} \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{4}}$
$\frac{\pi^{4}}{1263}=\frac{256\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}}{1263}$

## Integral representations:

$\frac{\pi^{4}}{1263}=\frac{256\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{4}}{1263}$
$\frac{\pi^{4}}{1263}=\frac{16\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{4}}{1263}$
$\frac{\pi^{4}}{1263}=\frac{16\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{4}}{1263}$
$1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4=\left(\mathrm{Pi}^{\wedge} 4\right) / \mathrm{x}$
Input:
$\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}=\frac{\pi^{4}}{x}$

## Exact result:

$\frac{38389024801}{497871360000}=\frac{\pi^{4}}{x}$
Plot:


Alternate form assuming $x$ is real:
$\frac{497871360000 \pi^{4}}{x}=38389024801$
Alternate form assuming $x$ is positive:
$38389024801 x=497871360000 \pi^{4}$ (for $x \neq 0$ )

## Solution:

$x \approx 1263.30889833386$
1263.30889833386
$\left(\mathrm{Pi}^{\wedge} 4\right) /\left(1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4\right)$
Input:
$\frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}$

## Result:

$\frac{497871360000 \pi^{4}}{38389024801}$

## Decimal approximation:

1263.308898333861577329969799525829595372460284872981338792...
1263.3088983386...

## Property:

$\frac{497871360000 \pi^{4}}{38389024801}$ is a transcendental number

## Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{\left(180^{\circ}\right)^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{(-i \log (-1))^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{\cos ^{-1}(-1)^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{44808422400000 \sum_{k=1}^{\infty} \frac{1}{k^{4}}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{47795650560000 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{4}}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{127455068160000\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}}{38389024801}
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{7965941760000\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{4}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{7965941760000\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{4}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}=\frac{127455068160000\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{4}}{38389024801}
\end{aligned}
$$

$\left(\mathrm{Pi}^{\wedge} 4\right) /\left(1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4\right)-29-2$

## Input:

$$
\frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2
$$

## Result:

$\frac{497871360000 \pi^{4}}{38389024801}-31$

## Decimal approximation:

1232.308898333861577329969799525829595372460284872981338792...
1232.30889833386.... result practically equal to the rest mass of Delta baryon 1232

## Property:

$-31+\frac{497871360000 \pi^{4}}{38389024801}$ is a transcendental number

## Alternate form:

$\frac{497871360000 \pi^{4}-1190059768831}{38389024801}$

## Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{\left(180^{\circ}\right)^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{(-i \log (-1))^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{\cos ^{-1}(-1)^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{44808422400000 \sum_{k=1}^{\infty} \frac{1}{k^{4}}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{47795650560000 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{4}}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{127455068160000\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}}{38389024801}
\end{aligned}
$$

## Integral representations:

$$
\frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{7965941760000\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{4}}{38389024801}
$$

$$
\frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{7965941760000\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{4}}{38389024801}
$$

$$
\frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-29-2=-31+\frac{127455068160000\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{4}}{38389024801}
$$

$\left(\mathrm{Pi}^{\wedge} 4\right) /\left(1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4\right)+29^{\wedge} 2-322$

## Input:

$$
\frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322
$$

## Result:

$519+\frac{497871360000 \pi^{4}}{38389024801}$

## Decimal approximation:

1782.308898333861577329969799525829595372460284872981338792...
$1782.30889833386 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.

## Property:

$519+\frac{497871360000 \pi^{4}}{38389024801}$ is a transcendental number

## Alternate form:

$3\left(6641301290573+165957120000 \pi^{4}\right)$

## Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=-322+29^{2}+\frac{\left(180^{\circ}\right)^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=-322+29^{2}+\frac{(-i \log (-1))^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=-322+29^{2}+\frac{\cos ^{-1}(-1)^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=519+\frac{44808422400000 \sum_{k=1}^{\infty} \frac{1}{k^{4}}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=519+\frac{47795650560000 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{4}}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=519+\frac{127455068160000\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}}{38389024801}
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=519+\frac{7965941760000\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{4}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=519+\frac{7965941760000\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{4}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+29^{2}-322=519+\frac{127455068160000\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{4}}{38389024801}
\end{aligned}
$$

$\left(\mathrm{Pi}^{\wedge} 4\right) /\left(1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4\right) / 11+11$

## Input:

$$
\frac{1}{11} \times \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}+11
$$

## Result:

$11+\frac{497871360000 \pi^{4}}{422279272811}$

## Decimal approximation:

125.8462634848965070299972545023481450338600258975437580720 .
125.84626348489... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Property:

$11+\frac{497871360000 \pi^{4}}{422279272811}$ is a transcendental number

## Alternate form:

$497871360000 \pi^{4}+4645072000921$

```
422279272811
```


## Alternative representations:

$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{\left(180^{\circ}\right)^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}$
$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{(-i \log (-1))^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}$
$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{\cos ^{-1}(-1)^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}$

## Series representations:

$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{44808422400000 \sum_{k=1}^{\infty} \frac{1}{k^{4}}}{422279272811}$
$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{47795650560000 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{4}}}{422279272811}$
$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{127455068160000\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}}{422279272811}$

## Integral representations:

$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{7965941760000\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{4}}{422279272811}$
$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{7965941760000\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{4}}{422279272811}$
$\frac{\pi^{4}}{11\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}+11=11+\frac{127455068160000\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{4}}{422279272811}$
$\left(\mathrm{Pi}^{\wedge} 4\right) /\left(1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4\right)-199-47+2$

## Input:

$$
\frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2
$$

## Result:

$$
\frac{497871360000 \pi^{4}}{38389024801}-244
$$

## Decimal approximation:

1019.308898333861577329969799525829595372460284872981338792...
$1019.30889833386 \ldots$ result practically equal to the rest mass of Phi meson 1019.445

## Property:

$-244+\frac{497871360000 \pi^{4}}{38389024801}$ is a transcendental number

## Alternate form:

$\frac{4\left(124467840000 \pi^{4}-2341730512861\right)}{38389024801}$

## Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2=-244+\frac{\left(180^{\circ}\right)^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2=-244+\frac{(-i \log (-1))^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2=-244+\frac{\cos ^{-1}(-1)^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2=-244+\frac{44808422400000 \sum_{k=1}^{\infty} \frac{1}{k^{4}}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2=-244+\frac{47795650560000 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{4}}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2=-244+\frac{127455068160000\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}}{38389024801}
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2=-244+\frac{7965941760000\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{4}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2=-244+\frac{7965941760000\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{4}}{38389024801} \\
& \frac{\pi^{4}}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}-199-47+2= \\
& -244+\frac{127455068160000\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{4}}{38389024801}
\end{aligned}
$$

$\left(\mathrm{Pi}^{\wedge} 4\right)^{*} 1 /\left(1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4\right)^{*} 1 / 3^{\wedge} 2-7+$ golden ratio

## Input:

$\pi^{4} \times \frac{1}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}} \times \frac{1}{3^{2}}-7+\phi$

## Result:

$\phi-7+\frac{55319040000 \pi^{4}}{38389024801}$

## Decimal approximation:

$134.9856893591789589959790090039022598257714519434703560612 \ldots$
$134.9856893591 \ldots$ result practically equal to the rest mass of Pion meson 134.9766

## Property:

$-7+\phi+\frac{55319040000 \pi^{4}}{38389024801}$ is a transcendental number

## Alternate forms:

$\frac{-499057322413+38389024801 \sqrt{5}+110638080000 \pi^{4}}{76778049602}$
$38389024801 \phi-268723173607+55319040000 \pi^{4}$
38389024801
$\frac{38389024801 \phi+7\left(7902720000 \pi^{4}-38389024801\right)}{38389024801}$

## Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7-2 \cos \left(216^{\circ}\right)+\frac{\pi^{4}}{9\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)} \\
& \frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7+2 \cos \left(\frac{\pi}{5}\right)+\frac{\pi^{4}}{9\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}
\end{aligned}
$$

$$
\frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7-2 \cos \left(216^{\circ}\right)+\frac{\left(180^{\circ}\right)^{4}}{9\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}
$$

## Series representations:

$$
\begin{aligned}
& \frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7+\phi+\frac{4978713600000 \sum_{k=1}^{\infty} \frac{1}{k^{4}}}{38389024801} \\
& \frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7+\phi+\frac{5310627840000 \sum_{k=0}^{\infty} \frac{1}{(1+2 k)^{4}}}{38389024801} \\
& \frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7+\phi+\frac{14161674240000\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}}{38389024801}
\end{aligned}
$$

## Integral representations:

$$
\frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7+\phi+\frac{885104640000\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{4}}{38389024801}
$$

$$
\frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7+\phi+\frac{885104640000\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{4}}{38389024801}
$$

$$
\frac{\pi^{4}}{3^{2}\left(\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}\right)}-7+\phi=-7+\phi+\frac{14161674240000\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{4}}{38389024801}
$$

$\left.\left(\left(\left(\left(\left(\left(\left(\left(\left(1 /\left(\left(\left(\left(\operatorname{Pi}^{\wedge} 4\right) /\left(1 / 2^{\wedge} 4+1 / 3^{\wedge} 4+1 / 5^{\wedge} 4+1 / 7^{\wedge} 4+1 / 8^{\wedge} 4\right)\right)\right)\right)\right)^{\wedge} 1 / 15\right)\right)\right)^{\wedge} 1 / 64\right)\right)\right)\right)\right)\right)-$ $\mathrm{pi} / 10^{\wedge} 3$

## Input:

$\sqrt[64]{\frac{1}{\sqrt[15]{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}-\frac{\pi}{10^{3}}$

## Exact result:

$\frac{\sqrt[960]{38389024801}}{\sqrt[80]{2} \sqrt[240]{105 \pi}}-\frac{\pi}{1000}$

## Decimal approximation:

$0.98944695686995996664428443465641768099347273584635667877 \ldots$
$0.98944695686 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

## Alternate forms:

$\frac{100 \times 2^{79 / 80} \times 105^{239 / 240} \sqrt[960]{38389024801}-21 \pi^{241 / 240}}{21000 \sqrt[240]{\pi}}$
$-\frac{\sqrt[80]{2} \sqrt[240]{105} \pi^{241 / 240}-1000 \sqrt[960]{38389024801}}{1000 \sqrt[80]{2} \sqrt[240]{105 \pi}}$

## Alternative representations:

$\sqrt[64]{\frac{1}{\sqrt[15]{\frac{1}{2^{4}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}-\frac{\pi}{10^{3}}=-\frac{180^{\circ}}{10^{3}}+\sqrt{\frac{1}{\sqrt[64]{\sqrt[15]{\frac{1}{2^{4}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}}$
$\sqrt[6]{\frac{1}{\sqrt[15]{\frac{1}{2^{4}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}-\frac{\pi}{10^{3}}=-\frac{\cos ^{-1}(-1)}{10^{3}}+\sqrt{\frac{1}{\sqrt[64]{\sqrt[15]{\frac{\cos ^{-1}(-1)^{4}}{2^{4}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}}$
$\sqrt[64]{\frac{1}{\sqrt[5]{\frac{1}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}-\frac{\pi}{10^{3}}=\frac{i \log (-1)}{10^{3}}+\sqrt[{64 \sqrt{\sqrt[15]{\frac{1}{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}]{ }$

## Series representations:

$\sqrt[64]{\frac{1}{\sqrt[15]{\frac{1}{2^{4}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}-\frac{\pi}{10^{3}}=$
$25 \times 2^{47 / 48} \times 105^{239 / 240} \sqrt[960]{38389024801}-21\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{241 / 240}$

$$
5250 \sqrt[240]{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}
$$

$\sqrt{\frac{1}{\sqrt{\frac{\pi^{4}}{1+1}}}}-\frac{\pi}{10^{3}}=\left(100 \times 2^{79 / 80} \times 105^{239 / 240} \sqrt[960]{38389024801}-\right.$
$\sqrt[64]{\sqrt[15]{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{\pi^{4}}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}$

$$
\begin{gathered}
\left.21\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{241 / 240}\right) / \\
\left(21000240 \sqrt{\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}\right)
\end{gathered}
$$

$\sqrt{\frac{1}{\sqrt{4}}}-\frac{\pi}{10^{3}}=\left(100 \times 2^{79 / 80} \times 105^{239 / 240} \sqrt[960]{38389024801}-\right.$
$\sqrt[64]{\sqrt[15]{\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{\pi^{4}}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}$

$$
\begin{gathered}
\left.21\left(\sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)\right)^{241 / 240}\right) / \\
\left(21000 \sqrt[240]{\sum_{k=0}^{\infty} 16^{-k}\left(\frac{1}{-5-8 k}-\frac{1}{2+4 k}+\frac{4}{1+8 k}-\frac{1}{6+8 k}\right)}\right)
\end{gathered}
$$

## Integral representations:


$\sqrt[64]{\frac{1}{\sqrt[15]{\frac{1}{2^{4}+\frac{1}{3^{4}}+\frac{\pi^{4}}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}-\frac{\pi}{10^{3}}=$
$25 \times 2^{47 / 48} \times 105^{239 / 240} \sqrt[960]{38389024801}-21\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{241 / 240}$

$$
5250 \sqrt[240]{\int_{0}^{1} \sqrt{1-t^{2}} d t}
$$

$\sqrt[{\sqrt[64]{\frac{1}{\sqrt[15]{\frac{1}{2^{4}+\frac{1}{3^{4}}+\frac{1}{5^{4}}+\frac{1}{7^{4}}+\frac{1}{8^{4}}}}}}-\frac{\pi}{10^{3}}}=]{10500 \sqrt[240]{\int_{0}^{\infty} \frac{\sin (t)}{t} d t}}-21\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{241 / 240}$

Page 65


## Input:

$\log (0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}$

## Result:

-0.312447...
$-0.312447 \ldots$

## Alternative representations:

$\log (0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}=\log _{e}(0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}$
$\log (0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}=\log (a) \log _{a}(0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}$
$\log (0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}=-\operatorname{Li}_{1}(0.648)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}$

## Series representations:

$\log (0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}=0.731677-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.648)^{k}}{k}$
$\log (0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}=$
$0.731677+2 i \pi\left\lfloor\frac{\arg (0.352-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.352-x)^{k} x^{-k}}{k}$ for $x<0$
$\log (0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}=0.731677+\left\lfloor\frac{\arg \left(0.352-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+$ $\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.352-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.352-z_{0}\right)^{k} z_{0}^{-k}}{k}$

## Integral representation:

$\log (0.352)+\frac{1}{2^{1.352}}+\frac{1}{3^{1.352}}+\frac{1}{5^{1.352}}=0.731677+\int_{1}^{0.352} \frac{1}{t} d t$

From this expression, we obtain also, for $\mathrm{n}=0.0833=1 / 12$ :
$-\left(\left(\left(1+34 / 10^{\wedge} 3+\ln 0.0833+1 /(2)^{\wedge} 1.0833+1 /(3)^{\wedge} 1.0833+1 /(5)^{\wedge} 1.0833\right)\right)\right)$

## Input interpretation:

$-\left(1+\frac{34}{10^{3}}+\log (0.0833)+\frac{1}{2^{1.0833}}+\frac{1}{3^{1.0833}}+\frac{1}{5^{1.0833}}\right)$

## Result:

0.500270...
$0.500270 \ldots \cong 0.5=1 / 2$

Mathematical connection with Trans-Planckian Censorship and the Swampland (see "Ramanujan mathematics applied to the physics and cosmology")
$((($ gamma $(((5 / 2)))))) *\left(\left(\left((2.3 \mathrm{e}-18)^{\wedge} 3\right)\right)\right) * 1 /\left(\left(2 \operatorname{Pi}^{\wedge}(4-1 / 2)\right)\right) * 1 /\left(\left(\left(\left(\mathrm{i} /\left(\left(\left(\left(\left(\left(\operatorname{Pi}^{\wedge}(4-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.1 / 2))^{*} 1 /((\operatorname{gamma}(5 / 2))) *(1 /(2.3 \mathrm{e}-18))^{\wedge} 3\right)\right)\right)\right)\right)\right)\right)\right)\right)$

Input interpretation:
$\Gamma\left(\frac{5}{2}\right)\left(2.3 \times 10^{-18}\right)^{3} \times \frac{1}{2 \pi^{4-1 / 2}} \times \frac{1}{\frac{i}{\pi^{4-1 / 2} \times \frac{1}{\Gamma\left(\frac{5}{2}\right)}\left(\frac{1}{2.3 \times 10^{-18}}\right)^{3}}}$

## Result:

-0.5i

## Polar coordinates:

$r=0.5$ (radius), $\theta=-90^{\circ}$ (angle)
$0.5=1 / 2$

## Alternative representations:

$$
\begin{array}{r}
-\left(1+\frac{34}{10^{3}}+\log (0.0833)+\frac{1}{2^{1.0833}}+\frac{1}{3^{1.0833}}+\frac{1}{5^{1.0833}}\right)= \\
-1-\log _{e}(0.0833)-\frac{1}{2^{1.0833}}-\frac{1}{3^{1.0833}}-\frac{1}{5^{1.0833}}-\frac{34}{10^{3}}
\end{array}
$$

$$
\begin{aligned}
& -\left(1+\frac{34}{10^{3}}+\log (0.0833)+\frac{1}{2^{1.0833}}+\frac{1}{3^{1.0833}}+\frac{1}{5^{1.0833}}\right)= \\
& \quad-1-\log (a) \log _{a}(0.0833)-\frac{1}{2^{1.0833}}-\frac{1}{3^{1.0833}}-\frac{1}{5^{1.0833}}-\frac{34}{10^{3}}
\end{aligned}
$$

$$
\begin{gathered}
-\left(1+\frac{34}{10^{3}}+\log (0.0833)+\frac{1}{2^{1.0833}}+\frac{1}{3^{1.0833}}+\frac{1}{5^{1.0833}}\right)= \\
-1+\operatorname{Li}_{1}(0.9167)-\frac{1}{2^{1.0833}}-\frac{1}{3^{1.0833}}-\frac{1}{5^{1.0833}}-\frac{34}{10^{3}}
\end{gathered}
$$

## Series representations:

$$
\begin{aligned}
& -\left(1+\frac{34}{10^{3}}+\log (0.0833)+\frac{1}{2^{1.0833}}+\frac{1}{3^{1.0833}}+\frac{1}{5^{1.0833}}\right)= \\
& -1.98504+\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.9167)^{k}}{k} \\
& -\left(1+\frac{34}{10^{3}}+\log (0.0833)+\frac{1}{2^{1.0833}}+\frac{1}{3^{1.0833}}+\frac{1}{5^{1.0833}}\right)= \\
& \quad-1.98504-2 i \pi\left|\frac{\arg (0.0833-x)}{2 \pi}\right|-\log (x)+\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.0833-x)^{k} x^{-k}}{k} \text { for } x<0 \\
& -\left(1+\frac{34}{10^{3}}+\log (0.0833)+\frac{1}{2^{1.0833}}+\frac{1}{3^{1.0833}}+\frac{1}{5^{1.0833}}\right)= \\
& -1.98504-\left\lfloor\frac{\arg \left(0.0833-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)-\log \left(z_{0}\right)- \\
& -\arg \left(0.0833-z_{0}\right) \\
& 2 \pi
\end{aligned} \log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.0833-z_{0}\right)^{k} z_{0}^{-k}}{k} .
$$

## Integral representation:

$-\left(1+\frac{34}{10^{3}}+\log (0.0833)+\frac{1}{2^{1.0833}}+\frac{1}{3^{1.0833}}+\frac{1}{5^{1.0833}}\right)=-1.98504-\int_{1}^{0.0833} \frac{1}{t} d t$

Page 70

$2 / 3(1 \mathrm{sqrt} 1+2 \mathrm{sqrt} 2+3 \mathrm{sqrt} 3+\mathrm{x} * \mathrm{sqrtx})-\mathrm{x} /(4 \mathrm{Pi})(1 /(1 \mathrm{sqrt} 1)+1 /(2 \mathrm{sqrt} 2)+1 /(3 \mathrm{sqrt} 3))$

## Input:

$\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+x \sqrt{x})-\frac{x}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)$

## Exact result:

$\frac{2}{3}\left(x^{3 / 2}+3 \sqrt{3}+2 \sqrt{2}+1\right)-\frac{\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right) x}{4 \pi}$

## Plots:



Alternate forms:
$\frac{2}{3}\left(x^{3 / 2}+3 \sqrt{3}+2 \sqrt{2}+1\right)-\frac{(36+9 \sqrt{2}+4 \sqrt{3}) x}{144 \pi}$
$\frac{96 \pi x^{3 / 2}-4 \sqrt{3} x-9 \sqrt{2} x-36 x+288 \sqrt{3} \pi+192 \sqrt{2} \pi+96 \pi}{144 \pi}$

$$
\frac{2}{3}\left(x^{3 / 2}+\sqrt{35+12 \sqrt{6}}+1\right)+\frac{\left(-6-\sqrt{\frac{1}{6}(35+12 \sqrt{6})}\right) x}{24 \pi}
$$

## Expanded form:

$$
\frac{2 x^{3 / 2}}{3}-\frac{x}{12 \sqrt{3} \pi}-\frac{x}{8 \sqrt{2} \pi}-\frac{x}{4 \pi}+2 \sqrt{3}+\frac{4 \sqrt{2}}{3}+\frac{2}{3}
$$

## Roots:

```
\(x=-\frac{-251-108 \sqrt{2}-48 \sqrt{3}-12 \sqrt{6}}{4608 \pi^{2}}-\)
    \((1+i \sqrt{3}) /\left(9216 \pi^{2}(2 /(82948102+56107080 \sqrt{2}+33582240 \sqrt{3}+\right.\)
            \(22348296 \sqrt{6}-27980660736 \pi^{3}-18166726656 \sqrt{2} \pi^{3}-\)
            \(18933350400 \sqrt{3} \pi^{3}-11530321920 \sqrt{6} \pi^{3}+\)
            \(3522410053632 \pi^{6}+391378894848 \sqrt{2} \pi^{6}+\)
            \(587068342272 \sqrt{3} \pi^{6}+1174136684544 \sqrt{6} \pi^{6}+\)
            \(\sqrt{ }\left(4\left(147456(108+81 \sqrt{2}+112 \sqrt{3}+35 \sqrt{6}) \pi^{3}-\right.\right.\)
                                    \(\left.(-251-108 \sqrt{2}-48 \sqrt{3}-12 \sqrt{6})^{2}\right)^{3}+\)
                        \((82948102+56107080 \sqrt{2}+33582240 \sqrt{3}+\)
                \(22348296 \sqrt{6}-27980660736 \pi^{3}-\)
                \(18166726656 \sqrt{2} \pi^{3}-18933350400 \sqrt{3} \pi^{3}-\)
                \(11530321920 \sqrt{6} \pi^{3}+3522410053632 \pi^{6}+\)
                \(391378894848 \sqrt{2} \pi^{6}+587068342272 \sqrt{3}\)
                    \(\left.\left.\left.\left.\left.\pi^{6}+1174136684544 \sqrt{6} \pi^{6}\right)^{2}\right)\right)\right)^{\wedge}(1 / 3)\right)+\)
\(\left((1-i \sqrt{3})\left(147456(108+81 \sqrt{2}+112 \sqrt{3}+35 \sqrt{6}) \pi^{3}-\right.\right.\)
    \(\left.\left.(-251-108 \sqrt{2}-48 \sqrt{3}-12 \sqrt{6})^{2}\right)\right) /\)
    \(\left(4608 \times 2^{2 / 3} \pi^{2}(82948102+56107080 \sqrt{2}+33582240 \sqrt{3}+\right.\)
        \(22348296 \sqrt{6}-27980660736 \pi^{3}-\)
            \(18166726656 \sqrt{2} \pi^{3}-18933350400 \sqrt{3} \pi^{3}-\)
            \(11530321920 \sqrt{6} \pi^{3}+3522410053632 \pi^{6}+\)
            \(391378894848 \sqrt{2} \pi^{6}+587068342272 \sqrt{3} \pi^{6}+\)
            \(1174136684544 \sqrt{6} \pi^{6}+\)
            \(\sqrt{ }\left(4\left(147456(108+81 \sqrt{2}+112 \sqrt{3}+35 \sqrt{6}) \pi^{3}-\right.\right.\)
            \(\left.(-251-108 \sqrt{2}-48 \sqrt{3}-12 \sqrt{6})^{2}\right)^{3}+\)
            \((82948102+56107080 \sqrt{2}+33582240 \sqrt{3}+22348296\)
                    \(\sqrt{6}-27980660736 \pi^{3}-18166726656 \sqrt{2}\)
                \(\pi^{3}-18933350400 \sqrt{3} \pi^{3}-11530321920 \sqrt{6}\)
                \(\pi^{3}+3522410053632 \pi^{6}+391378894848 \sqrt{2}\)
                \(\pi^{6}+587068342272 \sqrt{3} \pi^{6}+1174136684544\)
                    \(\left.\left.\left.\left.\sqrt{6} \pi^{6}\right)^{2}\right)\right)^{\wedge}(1 / 3)\right) \approx-2.02771-3.97539 i\)
```

$$
\begin{aligned}
& x=-\frac{-251-108 \sqrt{2}-48 \sqrt{3}-12 \sqrt{6}}{4608 \pi^{2}}- \\
& (1-i \sqrt{3}) /\left(9216 \pi^{2}(2 /(82948102+56107080 \sqrt{2}+33582240 \sqrt{3}+\right. \\
& 22348296 \sqrt{6}-27980660736 \pi^{3}-18166726656 \sqrt{2} \pi^{3}- \\
& 18933350400 \sqrt{3} \pi^{3}-11530321920 \sqrt{6} \pi^{3}+ \\
& 3522410053632 \pi^{6}+391378894848 \sqrt{2} \pi^{6}+ \\
& 587068342272 \sqrt{3} \pi^{6}+1174136684544 \sqrt{6} \pi^{6}+ \\
& \sqrt{ }\left(4 \left(147456(108+81 \sqrt{2}+112 \sqrt{3}+35 \sqrt{6}) \pi^{3}-\right.\right. \\
& \left.(-251-108 \sqrt{2}-48 \sqrt{3}-12 \sqrt{6})^{2}\right)^{3}+ \\
& (82948102+56107080 \sqrt{2}+33582240 \sqrt{3}+ \\
& 22348296 \sqrt{6}-27980660736 \pi^{3}- \\
& 18166726656 \sqrt{2} \pi^{3}-18933350400 \sqrt{3} \pi^{3}- \\
& 11530321920 \sqrt{6} \pi^{3}+3522410053632 \pi^{6}+ \\
& 391378894848 \sqrt{2} \pi^{6}+587068342272 \sqrt{3} \\
& \left.\left.\left.\left.\left.\pi^{6}+1174136684544 \sqrt{6} \pi^{6}\right)^{2}\right)\right)\right) \wedge(1 / 3)\right)+ \\
& \left(( 1 + i \sqrt { 3 } ) \left(147456(108+81 \sqrt{2}+112 \sqrt{3}+35 \sqrt{6}) \pi^{3}-\right.\right. \\
& \left.\left.(-251-108 \sqrt{2}-48 \sqrt{3}-12 \sqrt{6})^{2}\right)\right) / \\
& \left(4608 \times 2^{2 / 3} \pi^{2}(82948102+56107080 \sqrt{2}+33582240 \sqrt{3}+\right. \\
& 22348296 \sqrt{6}-27980660736 \pi^{3}- \\
& 18166726656 \sqrt{2} \pi^{3}-18933350400 \sqrt{3} \pi^{3}- \\
& 11530321920 \sqrt{6} \pi^{3}+3522410053632 \pi^{6}+ \\
& 391378894848 \sqrt{2} \pi^{6}+587068342272 \sqrt{3} \pi^{6}+ \\
& 1174136684544 \sqrt{6} \pi^{6}+ \\
& \sqrt{ }\left(4 \left(147456(108+81 \sqrt{2}+112 \sqrt{3}+35 \sqrt{6}) \pi^{3}-\right.\right. \\
& \left.(-251-108 \sqrt{2}-48 \sqrt{3}-12 \sqrt{6})^{2}\right)^{3}+ \\
& (82948102+56107080 \sqrt{2}+33582240 \sqrt{3}+22348296 \\
& \sqrt{6}-27980660736 \pi^{3}-18166726656 \sqrt{2} \\
& \pi^{3}-18933350400 \sqrt{3} \pi^{3}-11530321920 \sqrt{6} \\
& \pi^{3}+3522410053632 \pi^{6}+391378894848 \sqrt{2} \\
& \pi^{6}+587068342272 \sqrt{3} \pi^{6}+1174136684544 \\
& \left.\left.\left.\left.\sqrt{6} \pi^{6}\right)^{2}\right)\right) \wedge(1 / 3)\right) \approx-2.02771+3.97539 i
\end{aligned}
$$

## Properties as a real function:

## Domain

$\{x \in \mathbb{R}: x \geq 0\}$ (all non-negative real numbers)

## Range

$\langle y \in \mathbb{R}: y \geq 6.01577\}$

## Derivative:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+x \sqrt{x})-\frac{x\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)= \\
& \sqrt{x}-\frac{36+9 \sqrt{2}+4 \sqrt{3}}{144 \pi}
\end{aligned}
$$

## Indefinite integral:

$$
\begin{aligned}
& \int\left(-\frac{\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right) x}{4 \pi}+\frac{2}{3}\left(1+2 \sqrt{2}+3 \sqrt{3}+x^{3 / 2}\right)\right) d x= \\
& \frac{4 x^{5 / 2}}{15}-\frac{(36+9 \sqrt{2}+4 \sqrt{3}) x^{2}}{288 \pi}+\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}) x+\text { constant }
\end{aligned}
$$

## Global minimum:

$$
\begin{aligned}
& \min \left\{\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+x \sqrt{x})-\frac{x\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right\} \approx 6.0158 \\
& \quad \text { at } x \approx 0.015136
\end{aligned}
$$

For $x=29+4=33$, where 29 and 4 are Lucas numbers, we obtain:

## Input:

$\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+(29+4) \sqrt{29+4})-\frac{29+4}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)-3$

## Result:

$-3+\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}$

## Decimal approximation:

125.3368720059485804490364993979487103187686272298831841702...
$125.336872 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Property:

$-3+\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}$
is a transcendental number

## Alternate forms:

$$
\frac{-396-99 \sqrt{2}-44 \sqrt{3}-112 \pi+64 \sqrt{2} \pi+96 \sqrt{3} \pi+1056 \sqrt{33} \pi}{48 \pi}
$$

$$
\frac{1}{3}(-7+4 \sqrt{2}+6 \sqrt{3}+66 \sqrt{33})-\frac{11(36+9 \sqrt{2}+4 \sqrt{3})}{48 \pi}
$$

$$
-\frac{7}{3}+\frac{4 \sqrt{2}}{3}+2 \sqrt{3}+22 \sqrt{33}-\frac{33}{4 \pi}-\frac{33}{8 \sqrt{2} \pi}-\frac{11}{4 \sqrt{3} \pi}
$$

$2 / 3(1$ sqrt1 +2 sqrt $2+3 \mathrm{sqrt} 3+(29+4) * \operatorname{sqrt}(29+4))-$ $(29+4) /(4 \mathrm{Pi})(1 /(1$ sqrt1 $)+1 /(2$ sqrt 2$)+1 /(3 \mathrm{sqrt} 3))+11$

Where 11 is a Lucas number

## Input:

$\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+(29+4) \sqrt{29+4})-\frac{29+4}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)+11$

## Result:

$11+\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}$

## Decimal approximation:

139.3368720059485804490364993979487103187686272298831841702...
$139.336872 \ldots$ result practically equal to the rest mass of Pion meson 139.57

## Property:

$$
11+\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}
$$ is a transcendental number

## Alternate forms:

$\frac{-396-99 \sqrt{2}-44 \sqrt{3}+560 \pi+64 \sqrt{2} \pi+96 \sqrt{3} \pi+1056 \sqrt{33} \pi}{48 \pi}$
$\frac{1}{3}(35+4 \sqrt{2}+6 \sqrt{3}+66 \sqrt{33})-\frac{11(36+9 \sqrt{2}+4 \sqrt{3})}{48 \pi}$

$$
\frac{35}{3}+\frac{4 \sqrt{2}}{3}+2 \sqrt{3}+22 \sqrt{33}-\frac{33}{4 \pi}-\frac{33}{8 \sqrt{2} \pi}-\frac{11}{4 \sqrt{3} \pi}
$$

[2/3(1sqrt1+2sqrt2+3sqrt3+(29+4)*sqrt(29+4))$(29+4) /(4 \mathrm{Pi})(1 /(1 \mathrm{sqrt1})+1 /(2 \mathrm{sqrt2})+1 /(3 \mathrm{sqrt} 3))]^{*} 18+123+18$

Where 18, and 123 are Lucas numbers

## Input:

$$
\begin{aligned}
& \left(\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+(29+4) \sqrt{29+4})-\frac{29+4}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)\right) \times \\
& \quad 18+123+18
\end{aligned}
$$

## Result:

$141+18\left(\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)$

## Decimal approximation:

2451.063696107074448082656989163076785737835290137897315063...
2451.063696... result very near to the rest mass of charmed Sigma baryon 2452.9

## Property:

$141+18\left(\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)$ is a transcendental number

## Alternate forms:

$\frac{3(-396-99 \sqrt{2}-44 \sqrt{3}+408 \pi+64 \sqrt{2} \pi+96 \sqrt{3} \pi+1056 \sqrt{33} \pi)}{8 \pi}$
$3(51+8 \sqrt{2}+12 \sqrt{3}+132 \sqrt{33})-\frac{33(36+9 \sqrt{2}+4 \sqrt{3})}{8 \pi}$
$153+24 \sqrt{2}+36 \sqrt{3}+396 \sqrt{33}-\frac{297}{2 \pi}-\frac{297}{4 \sqrt{2} \pi}-\frac{33 \sqrt{3}}{2 \pi}$
$[2 / 3(1 \mathrm{sqrt} 1+2 \mathrm{sqrt} 2+3 \mathrm{sqrt} 3+(29+4) * \operatorname{sqrt}(29+4))-$
$(29+4) /(4 \mathrm{Pi})(1 /(1 \mathrm{sqrt} 1)+1 /(2 \mathrm{sqrt} 2)+1 /(3 \mathrm{sqrt} 3))]^{*} 18-521-7$
Where 521 and 7 are Lucas numbers

## Input:

$$
\begin{aligned}
& \left(\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+(29+4) \sqrt{29+4})-\frac{29+4}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)\right) \times \\
& \quad 18-521-7
\end{aligned}
$$

## Result:

$$
18\left(\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)-528
$$

## Decimal approximation:

1782.063696107074448082656989163076785737835290137897315063...
$1782.063696 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.

## Property:

$-528+18\left(\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)$
is a transcendental number

## Alternate forms:

$$
\frac{3(-396-99 \sqrt{2}-44 \sqrt{3}-1376 \pi+64 \sqrt{2} \pi+96 \sqrt{3} \pi+1056 \sqrt{33} \pi)}{8 \pi}
$$

$$
\begin{aligned}
& 12(-43+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33(36+9 \sqrt{2}+4 \sqrt{3})}{8 \pi} \\
& -516+24 \sqrt{2}+36 \sqrt{3}+396 \sqrt{33}-\frac{297}{2 \pi}-\frac{297}{4 \sqrt{2} \pi}-\frac{33 \sqrt{3}}{2 \pi}
\end{aligned}
$$

$[2 / 3(1 \mathrm{sqrt} 1+2 \mathrm{sqrt} 2+3 \mathrm{sqrt} 3+(29+4) * \operatorname{sqrt}(29+4))-$ $(29+4) /(4 \mathrm{Pi})(1 /(1 \mathrm{sqrt} 1)+1 /(2 \mathrm{sqrt} 2)+1 /(3 \mathrm{sqrt} 3))]^{*} 18-(521+47+11+2)$

Where 521, 47, 11 and 2 are Lucas numbers

## Input:

$$
\begin{aligned}
& \left(\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+(29+4) \sqrt{29+4})-\frac{29+4}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)\right) \times \\
& \quad 18-(521+47+11+2)
\end{aligned}
$$

## Result:

$$
18\left(\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)-581
$$

## Decimal approximation:

1729.063696107074448082656989163076785737835290137897315063...
1729.063696...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the $j$-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

## Property:

$-581+18\left(\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)$ is a transcendental number

## Alternate forms:

$\frac{-1188-297 \sqrt{2}-132 \sqrt{3}-4552 \pi+192 \sqrt{2} \pi+288 \sqrt{3} \pi+3168 \sqrt{33} \pi}{8 \pi}$
$-569+24 \sqrt{2}+36 \sqrt{3}+396 \sqrt{33}-\frac{33(36+9 \sqrt{2}+4 \sqrt{3})}{8 \pi}$
$-569+24 \sqrt{2}+36 \sqrt{3}+396 \sqrt{33}-\frac{297}{2 \pi}-\frac{297}{4 \sqrt{2} \pi}-\frac{33 \sqrt{3}}{2 \pi}$

Or:

## Input:

$$
\begin{aligned}
& \left(\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+(29+4) \sqrt{29+4})-\frac{29+4}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)\right) \\
& \quad(21-3)-\left((21+3)^{2}+5\right)
\end{aligned}
$$

Where 3, 5 and 21 are Fibonacci numbers

## Result:

$18\left(\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+33 \sqrt{33})-\frac{33\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)-581$

## Decimal approximation:

1729.063696107074448082656989163076785737835290137897315063...
1729.063696... as above

1/[2/3(1sqrt1+2sqrt2+3sqrt3+5*sqrt5)-
$5 /(4 \mathrm{Pi})(1 /(1 \mathrm{sqrt} 1)+1 /(2 \mathrm{sqrt} 2)+1 /(3 \mathrm{sqrt} 3))]^{\wedge} 1 / 512$

## Input:

$\sqrt[512]{\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}$

## Exact result:

## 1

$\sqrt[512]{\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}}$

## Decimal approximation:

$0.995024687328205147621459128813662019348119101347050667697 \ldots$
$0.995024687328 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}} \approx 0.9991104684 .1 \text {, }}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

## Property:

1
is a transcendental number
$\sqrt[512]{\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5\left(1+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}}$

## Alternate forms:

$\sqrt[512]{\frac{2}{3}(1+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5(36+9 \sqrt{2}+4 \sqrt{3})}{144 \pi}}$
$\sqrt[128]{2} \sqrt[256]{3} \sqrt[512]{\frac{\pi}{-180-45 \sqrt{2}-20 \sqrt{3}+96 \pi+192 \sqrt{2} \pi+288 \sqrt{3} \pi+480 \sqrt{5} \pi}}$
1
$\sqrt[512]{\frac{1}{6}\left(4+\sqrt{2\left(1280+240 \sqrt{15}+3 \sqrt{\frac{311296}{9}+20480 \sqrt{\frac{5}{3}}}\right)}\right)+\frac{5\left(-6-\sqrt{\frac{1}{6}(35+12 \sqrt{6})}\right)}{24 \pi}}$
$1 / 32 * \log$ base $0.9950246873282((1 /[2 / 3(1 \mathrm{sqrt} 1+2 \mathrm{sqrt} 2+3 \mathrm{sqrt} 3+5 * \mathrm{sqrt} 5)-$
$5 /(4 \mathrm{Pi})(1 /(1 \mathrm{sqrt} 1)+1 /(2 \mathrm{sqrt} 2)+1 /(3 \mathrm{sqrt} 3))]))+1 /$ golden ratio

## Input interpretation:

$\frac{1}{32} \log _{0.9950246873282}\left(\frac{1}{\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5}{4 \pi}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}\right)+\frac{1}{\phi}$
$\log _{b}(x)$ is the base- $b$ logarithm
$\phi$ is the golden ratio

## Result:

16.618033989...
$16.618033989 \ldots$ result very near to the mass of the hypothetical light particle, the boson $\mathrm{m}_{\mathrm{X}}=16.84 \mathrm{MeV}$

## Alternative representation:

$$
\begin{aligned}
& \frac{1}{32} \log _{0.99502468732820000}\left(\frac{1}{\left.\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)}+\right. \\
& \log \left(\frac{1}{\frac{5\left(\frac{1}{\sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{4 \sqrt{3}}\right)}{4 \pi}+\frac{2}{3}(\sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})}\right) \\
& \frac{1}{\phi}=\frac{1}{\phi}+\frac{1 \log (0.99502468732820000)}{\left(\frac{1}{\phi}\right.}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{1}{32} \log _{0.99502468732820000}\left(\frac{1}{\left.\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)}\right)+ \\
& \left.\frac{1}{\phi}=\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{1}{k}\left(-1+\frac{5\left(\frac{1}{\sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}+\frac{2}{3}(\sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})\right)}{-\frac{k}{-\frac{1}{k}}}\right)^{32 \log (0.99502468732820000)}
\end{aligned}
$$

$$
\frac{1}{32} \log _{0.99502468732820000}\left(\frac{1}{\left.\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)}+\right.
$$

$$
\frac{1}{\phi}=\frac{1.00000000000000}{\phi}+
$$

$$
\log \left(\frac{1}{-\frac{5\left(\frac{1}{\sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}+\frac{2}{3}(\sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})}\right)
$$

$$
(-6.2653872823284-
$$

$$
\left.0.031250000000000 \sum_{k=0}^{\infty}(-0.00497531267180000)^{k} G(k)\right)
$$

$$
\text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

$$
\begin{aligned}
& \frac{1}{32} \log _{0.90502468732820000}\left(\frac{1}{\left.\frac{2}{3}(1 \sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})-\frac{5\left(\frac{1}{1 \sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}\right)}\right. \\
& \frac{1}{\phi}=\frac{1.00000000000000}{\phi}+ \\
& \quad \log \left(\frac{1}{\left(-\frac{5\left(\frac{1}{\sqrt{1}}+\frac{1}{2 \sqrt{2}}+\frac{1}{3 \sqrt{3}}\right)}{4 \pi}+\frac{2}{3}(\sqrt{1}+2 \sqrt{2}+3 \sqrt{3}+5 \sqrt{5})\right.}\right) \\
& (-6.2653872823284- \\
& \left.0.031250000000000 \sum_{k=0}^{\infty}(-0.00497531267180000)^{k} G(k)\right) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Page 76


For $\mathrm{x}=2$, we obtain:
$1 /(2 * 2 \wedge 2)-\left(\mathrm{Pi}^{*} \cot 2 \mathrm{Pi}\right) /(2 * 2)$

## Input:

$\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}$

## Exact result:

$\frac{1}{8}-\frac{1}{4} \pi^{2} \cot (2)$

## Decimal approximation:

1.254224753176517190121047578760951314036645305350098136828...
1.2542247531765....

Alternate forms:
$\frac{1}{8}\left(1-2 \pi^{2} \cot (2)\right)$
$\frac{1}{8}-\frac{\pi^{2} \cos (2)}{4 \sin (2)}$
$\frac{1}{8}+\frac{\pi^{2} \sin (4)}{4(\cos (4)-1)}$

Alternative representations:
$\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}=\frac{1}{8}-\frac{\pi^{2}}{4 \tan (2)}$
$\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}=\frac{1}{4} i \pi^{2} \operatorname{coth}(-2 i)+\frac{1}{8}$
$\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}=-\frac{1}{4} i\left(\pi^{2} \operatorname{coth}(2 i)\right)+\frac{1}{8}$

## Series representations:

$\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}=\frac{1}{8}-\frac{1}{2} \pi^{2} \sum_{k=-\infty}^{\infty} \frac{1}{4-k^{2} \pi^{2}}$
$\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}=\frac{1}{8}+\frac{1}{4} i \pi^{2} \sum_{k=-\infty}^{\infty} e^{4 i k} \operatorname{sgn}(k)$
$\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}=\frac{1}{8}-\frac{\pi^{2}}{8}-\pi^{2} \sum_{k=1}^{\infty} \frac{1}{4-k^{2} \pi^{2}}$

## Integral representation:

$\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}=\frac{1}{8}+\frac{\pi^{2}}{4} \int_{\frac{\pi}{2}}^{2} \csc ^{2}(t) d t$
$0.5\left(\left(\left(1 /(2 * 2 \wedge 2)-\left(\mathrm{Pi}^{*} \cot 2 \mathrm{Pi}\right) /(2 * 2)\right)\right)\right)$

## Input:

$0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)$

## Result:

0.627112376588258595060523789380475657018322652675049068414...
$0.62711237658 \ldots$

## Alternative representations:

$0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)=0.5\left(\frac{1}{8}-\frac{\pi^{2}}{4 \tan (2)}\right)$
$0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)=0.5\left(\frac{1}{4} i \pi^{2} \operatorname{coth}(-2 i)+\frac{1}{8}\right)$
$0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)=0.5\left(-\frac{1}{4} i\left(\pi^{2} \operatorname{coth}(2 i)\right)+\frac{1}{8}\right)$

## Series representations:

$0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)=0.0625-0.25 \pi^{2} \sum_{k=-\infty}^{\infty} \frac{1}{4-k^{2} \pi^{2}}$
$0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)=0.0625+0.125 i \pi^{2} \sum_{k=-\infty}^{\infty} e^{4 i k} \operatorname{sgn}(k)$
$0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)=0.0625+0.125 i \pi^{2}+0.25 i \pi^{2} \sum_{k=1}^{\infty} q^{2 k}$ for $q=e^{2 i}$

## Integral representation:

$0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)=0.0625+0.125 \pi^{2} \int_{\frac{\pi}{2}}^{2} \csc ^{2}(t) d t$
$\left(\left(\left(\left(\left(0.5\left(\left(\left(1 /\left(2 * 2^{\wedge} 2\right)-(\mathrm{Pi} * \cot 2 \mathrm{Pi}) /(2 * 2)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 64$

## Input:

$\sqrt[64]{0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)}$

## Result:

0.99273543 ..
0.99273543... result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$
$2 * \log$ base $\left.0.99273543\left(\left(\left(\left(0.5\left(\left(\left(1 /\left(2^{*} 2^{\wedge} 2\right)-\left(\mathrm{Pi}^{*} \cot 2 \mathrm{Pi}\right) /\left(2^{*} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

## Input interpretation:

$2 \log _{0.09273543}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)-\pi+\frac{1}{\phi}$

## Result:

125.476...
125.476... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Alternative representations:

$$
\begin{gathered}
2 \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)-\pi+\frac{1}{\phi}= \\
-\pi+2 \log _{0.992735}\left(0.5\left(\frac{1}{8}-\frac{\pi^{2}}{4 \tan (2)}\right)\right)+\frac{1}{\phi}
\end{gathered}
$$

$$
\begin{aligned}
& 2 \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)-\pi+\frac{1}{\phi}= \\
& \quad-\pi+2 \log _{0.992735}\left(0.5\left(\frac{1}{4} i \pi^{2} \operatorname{coth}(-2 i)+\frac{1}{8}\right)\right)+\frac{1}{\phi}
\end{aligned}
$$

$2 \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+2 \log _{0.992735}\left(0.5\left(-\frac{1}{4} i\left(\pi^{2} \operatorname{coth}(2 i)\right)+\frac{1}{8}\right)\right)+\frac{1}{\phi}
$$

## Series representations:

$$
\begin{aligned}
& 2 \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)-\pi+\frac{1}{\phi}= \\
& \quad \frac{1}{\phi}-\pi+2 \log _{0.992735}\left(0.0625-0.25 \pi^{2} \sum_{k=-\infty}^{\infty} \frac{1}{4-k^{2} \pi^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi+2 \log _{0.992735}\left(0.0625+0.125 i \pi^{2} \sum_{k=-\infty}^{\infty} e^{4 i k} \operatorname{sgn}(k)\right)
\end{aligned}
$$

$2 \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+2 \log _{0.992735}\left(0.0625+0.125 i \pi^{2}+0.25 i \pi^{2} \sum_{k=1}^{\infty} q^{2 k}\right) \text { for } q=e^{2 i}
$$

## Integral representation:

$$
\begin{aligned}
& 2 \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)-\pi+\frac{1}{\phi}= \\
& \quad \frac{1}{\phi}-\pi+2 \log _{0.992735}\left(0.0625+0.125 \pi^{2} \int_{\frac{\pi}{2}}^{2} \csc ^{2}(t) d t\right)
\end{aligned}
$$

$1 / 4 \log$ base $0.99273543\left(\left(\left(\left(\left(0.5\left(\left(\left(1 /\left(2^{*} 2^{\wedge} 2\right)-\left(\mathrm{Pi}^{*} \cot 2 \mathrm{Pi}\right) /\left(2^{*} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)+1 /$ golden ratio

## Input interpretation:

$\frac{1}{4} \log _{0.99273543}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)+\frac{1}{\phi}$

## Result:

16.6180...
$16.6180 \ldots$ result very near to the mass of the hypothetical light particle, the boson $\mathrm{m}_{\mathrm{X}}$ $=16.84 \mathrm{MeV}$

## Alternative representations:

$\frac{1}{4} \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)+\frac{1}{\phi}=\frac{1}{4} \log _{0.992735}\left(0.5\left(\frac{1}{8}-\frac{\pi^{2}}{4 \tan (2)}\right)\right)+\frac{1}{\phi}$
$\frac{1}{4} \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)+\frac{1}{\phi}=$
$\frac{1}{4} \log _{0.992735}\left(0.5\left(\frac{1}{4} i \pi^{2} \operatorname{coth}(-2 i)+\frac{1}{8}\right)\right)+\frac{1}{\phi}$
$\frac{1}{4} \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)+\frac{1}{\phi}=$
$\frac{1}{4} \log _{0.992735}\left(0.5\left(-\frac{1}{4} i\left(\pi^{2} \operatorname{coth}(2 i)\right)+\frac{1}{8}\right)\right)+\frac{1}{\phi}$

## Series representations:

$$
\begin{aligned}
& \frac{1}{4} \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)+\frac{1}{\phi}= \\
& \frac{1}{\phi}+\frac{1}{4} \log _{0.992735}\left(0.0625-0.25 \pi^{2} \sum_{k=-\infty}^{\infty} \frac{1}{4-k^{2} \pi^{2}}\right)
\end{aligned}
$$

$\frac{1}{4} \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}+\frac{1}{4} \log _{0.992735}\left(0.0625+0.125 i \pi^{2} \sum_{k=-\infty}^{\infty} e^{4 i k} \operatorname{sgn}(k)\right)
$$

$$
\begin{aligned}
& \frac{1}{4} \log _{0.092735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)+\frac{1}{\phi}= \\
& \frac{1}{\phi}+\frac{1}{4} \log _{0.992735}\left(0.0625+0.125 i \pi^{2}+0.25 i \pi^{2} \sum_{k=1}^{\infty} q^{2 k}\right) \text { for } q=e^{2 i}
\end{aligned}
$$

## Integral representation:

$\frac{1}{4} \log _{0.992735}\left(0.5\left(\frac{1}{2 \times 2^{2}}-\frac{\pi \cot (2) \pi}{2 \times 2}\right)\right)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}+\frac{1}{4} \log _{0.092735}\left(0.0625+0.125 \pi^{2} \int_{\frac{\pi}{2}}^{2} \csc ^{2}(t) d t\right)
$$

Page 77

$3 *\left(\left(\left(1 /(1+10 / 9)+1 /\left(1+(10 / 9)^{\wedge} 2\right)+1 /\left(1+(10 / 9)^{\wedge} 3\right)+1 /\left(1+(10 / 9)^{\wedge} 4\right)+1 /\left(1+(10 / 9)^{\wedge} 5\right)\right)\right)\right)$

## Input:

$3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)$

## Exact result:

$\frac{274660021421055}{43384786764319}$

## Decimal approximation:

6.330791088431577974847329057763804618029615684913650820416...
6.33079108843...
$((5 /((21-2)))) * 3 *\left(\left(\left(1 /(1+10 / 9)+1 /\left(1+(10 / 9)^{\wedge} 2\right)+1 /\left(1+(10 / 9)^{\wedge} 3\right)+\right.\right.\right.$ $\left.\left.\left.1 /\left(1+(10 / 9)^{\wedge} 4\right)+1 /\left(1+(10 / 9)^{\wedge} 5\right)\right)\right)\right)+7 / 10^{\wedge} 3$

Where 7 is a Lucas number

## Input:

$\frac{5}{21-2} \times 3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)+\frac{7}{10^{3}}$

## Exact result:

1379070283744929427
824310948522061000

## Decimal approximation:

1.672997654850415256538770804674685425797267285503592321162...
1.672997654... result very near to the proton mass

1/ [3(((1/(1+10/9)+1/(1+(10/9) ^2) $+1 /\left(1+(10 / 9)^{\wedge} 3\right)+$ $\left.\left.\left.1 /\left(1+(10 / 9)^{\wedge} 4\right)+1 /\left(1+(10 / 9)^{\wedge} 5\right)\right)\right)\right)^{\wedge} 1 / 256$

## Input:

1
$\sqrt[256]{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}$

## Result:

$\frac{\sqrt[256]{\frac{43384786764319}{10172593385965}}}{3^{3 / 256}}$

## Decimal approximation:

0.992817228101858669753657924300494131952884012295137331033...
$0.992817228101 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.99911046841 . . .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

## Alternate form:

$\frac{\sqrt[256]{43384786764319} 3^{253 / 256} \times 10172593385965^{255 / 256}}{30517780157895}$
$1 / 2 * \log$ base $0.9928172281\left(\left(\left(1 /\left[3\left(\left(\left(1 /(1+10 / 9)+1 /\left(1+(10 / 9)^{\wedge} 2\right)+1 /\left(1+(10 / 9)^{\wedge} 3\right)+\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.1 /\left(1+(10 / 9)^{\wedge} 4\right)+1 /\left(1+(10 / 9)^{\wedge} 5\right)\right)\right)\right)\right]\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

## Input interpretation:

$\frac{1}{2} \log _{0.9928172281}\left(\frac{1}{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}\right)-\pi+\frac{1}{\phi}$

## Result:

125.4764413019181575498316994162801404138567605155344181607...
125.4764413... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Alternative representation:

$$
\begin{aligned}
& \frac{1}{2} \log _{0.992817}\left(\frac{1}{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}\right)-\pi+\frac{1}{\phi}= \\
& \quad \log \left(\frac{1}{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}\right)
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{1}{2} \log _{0.992817}\left(\frac{1}{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\frac{231275234656736}{27460021421055}\right)^{k}}{k}}{2 \log (0.992817)} \\
& \frac{1}{2} \log _{0.992817}\left(\frac{1}{\left.3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)\right)}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-69.361 \log \left(\frac{43384786764319}{274660021421055}\right)- \\
& \frac{1}{2} \log \left(\frac{43384786764319}{274660021421055}\right) \sum_{k=0}^{\infty}(-0.00718277)^{k} G(k) \\
& \quad(-1)^{1+k} k \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(1+k)(2+k)}{2\left(\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)}\right.
\end{aligned}
$$

$1 / 16^{*} \log$ base $0.9928172281\left(\left(\left(1 /\left[3\left(\left(\left(1 /(1+10 / 9)+1 /\left(1+(10 / 9)^{\wedge} 2\right)+1 /\left(1+(10 / 9)^{\wedge} 3\right)+\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.1 /\left(1+(10 / 9)^{\wedge} 4\right)+1 /\left(1+(10 / 9)^{\wedge} 5\right)\right)\right)\right)\right]\right)\right)\right)+1 /$ golden ratio

## Input interpretation:

$\frac{1}{16} \log _{0.9928172281}\left(\frac{1}{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}\right)+\frac{1}{\phi}$
$\log _{b}(x)$ is the base $-b$ logarithm

## Result:

16.618034...
$16.618034 \ldots$ result very near to the mass of the hypothetical light particle, the boson $\mathrm{m}_{\mathrm{X}}=16.84 \mathrm{MeV}$

## Alternative representation:

$$
\begin{aligned}
& \frac{1}{16} \log _{0.992817\left(\frac{1}{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}\right)} \quad\left(\frac{1}{\frac{1}{\phi}+\frac{1}{\phi}=} \begin{array}{l}
\quad\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)
\end{array}\right)
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{1}{16} \log _{0.992817}\left(\frac{1}{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}\right)+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\frac{231275234656736}{274660021421055}\right)^{k}}{k}}{16 \log (0.992817)} \\
& \frac{1}{16} \log _{0.992817}\left(\frac{1}{3\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\frac{1}{1+\left(\frac{10}{9}\right)^{4}}+\frac{1}{1+\left(\frac{10}{9}\right)^{5}}\right)}\right)+\frac{1}{\phi}= \\
& \frac{1}{\phi}-8.67013 \log \left(\frac{43384786764319}{274660021421055}\right)- \\
& 0.0625 \log \left(\frac{43384786764319}{274660021421055}\right) \sum_{k=0}^{\infty}(-0.00718277)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Or, precisely:

$$
1 /(1+10 / 9)+1 /\left(1+(10 / 9)^{\wedge} 2\right)+1 /\left(1+(10 / 9)^{\wedge} 3\right)+\ldots
$$

## Input interpretation:

$\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\cdots$

## Infinite sum:

$$
\sum_{n=1}^{\infty} \frac{1}{\left(\frac{10}{9}\right)^{n}+1}=\frac{i \operatorname{Im}\left(\psi_{\frac{0}{(0)}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{0}{\circ}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}
$$

## Decimal approximation:

$6.331008692864745537718386879838180649341260412564743295777 \ldots$
$6.33100869286 \ldots=2 \pi r$, with $r=1.0076113282271 \ldots$
Note that from 1/r, we obtain:
$1 / 1.0076113282271832$

## Input interpretation:

$\frac{1}{1.0076113282271832}$

## Result:

$0.992446166479117733848602881177141829359184370297518673158 \ldots$
$0.992446166 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$
this result could mean that the dilaton, obtained by inverting the formula of a circumference of radius $1.0076113282271 \ldots$, is a string having the perimeter of an ellipse

## Possible closed forms:

$\frac{35120413 \pi}{111173820} \approx 0.9924461664791177555958365080$
$\frac{1}{8} \pi \tan ^{2}\left(\frac{335710}{332617}\right) \approx 0.992446166479117919504391902$
$\frac{1}{52}\left(10 e^{\pi}+10 \pi+235 \log (\pi)-150 \log (2 \pi)-162 \tan ^{-1}(\pi)\right) \approx$
0.99244616647911823295276205

## Convergence tests:

By the ratio test, the series converges.

## Partial sum formula:

$$
\sum_{n=1}^{m} \frac{1}{1+\left(\frac{10}{9}\right)^{n}}=\frac{\psi_{\frac{9}{(0)}}^{10}\left(-\frac{i \pi-\log \left(\frac{10}{9}\right)}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{(0)}\left(-\frac{i \pi-(m+1) \log \left(\frac{10}{9}\right)}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}
$$

## Partial sums:



Alternate forms:
$-\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}$
$-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}$

$$
\frac{-\log (10)+\psi_{\frac{0}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)}{\log (10)-2 \log (3)}
$$

## Series representations:

$$
\begin{aligned}
& \frac{i \operatorname{Im}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}= \\
& -\left(\left(2 \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor-\operatorname{Im}\left(\psi^{(0)} \frac{\circ}{10}\left(1-\frac{i \pi}{2 i \pi\left|\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right|+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)\right)-\right.\right. \\
& i \log (x)+i \operatorname{Re}\left(\psi^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right) / \\
& \left.\left(2 \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right\rfloor-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)\right) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i \operatorname{Im}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}= \\
& -\left(\int 2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)-\operatorname{Im}\left(\psi_{\frac{9}{10}}^{(0)}(1-\right.\right. \\
& \left.2 i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right]\left.\right|^{-i \log \left(z_{0}\right)+} \\
& i \operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}}\right)\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left(2 \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{i \operatorname{Im}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}-\frac{\log (10)}{\log \left(\frac{10}{9}\right)}+\frac{\operatorname{Re}\left(\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log \left(\frac{10}{9}\right)}= \\
& \left(i \operatorname{Im}\left(\psi^{(0)}\left(1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi} \left\lvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)\right)-\right. \\
& \left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)-\log \left(z_{0}\right)-\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+ \\
& \operatorname{Re}\left(\psi^{(0)}\left(1-\frac{i \pi}{\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)\right)+ \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left(\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right)\right.
\end{aligned}
$$

Page 78

$\left(\left(\left(\left(1 /\left((10 / 9)^{\wedge} 1-1\right)+1 /\left((10 / 9)^{\wedge} 2-1\right)+1 /\left((10 / 9)^{\wedge} 3-1\right)+\ldots\right)\right)\right)\right)$

## Input interpretation:

$\frac{1}{\left(\frac{10}{9}\right)^{1}-1}+\frac{1}{\left(\frac{10}{9}\right)^{2}-1}+\frac{1}{\left(\frac{10}{9}\right)^{3}-1}+\cdots$

## Infinite sum:

$\sum_{n=1}^{\infty} \frac{1}{\left(\frac{10}{9}\right)^{n}-1}=\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}$
$\log (x)$ is the natural logarithm

## Decimal approximation:

$27.08648503406816780327872576570091022140786017495536508019 \ldots$
$27.08648503 \ldots$ note that the square of result is:
$733.6776712804141009 \approx 729=9^{3}\left(\right.$ Ramanujan cube $\left.9^{3}-1\right)$

## Convergence tests:

By the ratio test, the series converges.

## Partial sum formula:

$$
\sum_{n=1}^{m} \frac{1}{-1+\left(\frac{10}{9}\right)^{n}}=\frac{\psi_{\frac{9}{10}}^{(0)}(m+1)}{\log \left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}
$$

## Partial sums:



## Alternate forms:

$$
-\frac{\psi_{\frac{\circ}{10}}^{(0)}(1)-\log (10)}{\log (10)-2 \log (3)}
$$

$$
\frac{\log (10)}{\log \left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{10}(1)}{\log \left(\frac{10}{9}\right)}
$$

$$
-\frac{\psi_{\frac{9}{10}}^{(0)}(1)}{\log (2)-2 \log (3)+\log (5)}+\frac{\log (2)}{\log (2)-2 \log (3)+\log (5)}+\frac{\log (5)}{\log (2)-2 \log (3)+\log (5)}
$$

## Series representations:

$$
\begin{aligned}
& \frac{\log (10)-\psi_{\frac{\mathrm{g}}{(0)}(1)}^{10}}{\log \left(\frac{10}{9}\right)}=\frac{2 \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor-i \log (x)+i \psi_{\frac{0}{(0)}}^{10}(1)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}}{2 \pi\left\lfloor\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right\rfloor-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}} \text { for } x<0 \\
& \frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}=\frac{2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,-i \log \left(z_{0}\right)+i \psi_{\frac{9}{10}}^{(0)}(1)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}{2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.} \\
& \frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}= \\
& \underline{\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\psi_{\frac{9}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{k}}{k}} \\
& \left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

And:
$\left(\left(\left(\left(1 /\left((10 / 9)^{\wedge} 1-1\right)+1 /\left((10 / 9)^{\wedge} 2-1\right)+1 /\left((10 / 9)^{\wedge} 3-1\right)+. . .\right)\right)\right)\right)^{\wedge} 2+10^{\wedge} 3$

## Input interpretation:

$$
\left(\frac{1}{\left(\frac{10}{9}\right)^{1}-1}+\frac{1}{\left(\frac{10}{9}\right)^{2}-1}+\frac{1}{\left(\frac{10}{9}\right)^{3}-1}+\cdots\right)^{2}+10^{3}
$$

## Result:

$\frac{\left(\log (10)-\psi_{\frac{1}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}+1000$
$\log (x)$ is the natural logarithm

## Alternate forms:

$$
\begin{aligned}
& \frac{\psi_{\frac{9}{10}}^{(0)}(1)^{2}-2 \psi_{\frac{9}{10}}^{(0)}(1) \log (10)+1000 \log ^{2}\left(\frac{10}{9}\right)+\log ^{2}(10)}{\log ^{2}\left(\frac{10}{9}\right)} \\
& -\frac{2 \psi_{\frac{\circ}{10}}^{(0)}(1) \log (10)}{\log ^{2}\left(\frac{10}{9}\right)}+\frac{\psi_{\frac{\circ}{10}}^{(0)}(1)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}+1000+\frac{\log ^{2}(10)}{\log ^{2}\left(\frac{10}{9}\right)} \\
& \frac{1}{(\log (10)-2 \log (3))^{2}} \\
& \left(\psi_{\frac{\circ}{10}(1)^{2}-2 \psi_{\frac{\circ}{10}}^{10}}^{10}(1) \log (10)+1001 \log ^{2}(2)+4000 \log ^{2}(3)+1001 \log ^{2}(5)-\right. \\
& 2 \log (2)(2000 \log (3)-1001 \log (5))-4000 \log (3) \log (5))
\end{aligned}
$$

Thence:
$1000+(\log (10)-\operatorname{QPolyGamma}(0,1,9 / 10))^{\wedge} 2 /\left(\log ^{\wedge} 2(10 / 9)\right)-5$

## Input:

$1000+\frac{\left(\log (10)-\psi_{\frac{\alpha}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}-5$

## Exact result:

$\frac{\left(\log (10)-\psi_{\frac{0}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}+995$

## Decimal approximation:

1728.677671500798833522624370015899637519935597740039029216...
1728.677671...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the $j$-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-

Zagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

## Alternate forms:

$$
\begin{aligned}
& \frac{\psi_{\frac{9}{10}}^{(0)}(1)^{2}-2 \psi_{\frac{9}{10}}^{(0)}(1) \log (10)+995 \log ^{2}\left(\frac{10}{9}\right)+\log ^{2}(10)}{\log ^{2}\left(\frac{10}{9}\right)} \\
& -\frac{2 \psi_{\frac{\circ}{10}}^{(0)}(1) \log (10)}{\log ^{2}\left(\frac{10}{9}\right)}+\frac{\psi_{\frac{\rho}{10}}^{(0)}(1)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}+995+\frac{\log ^{2}(10)}{\log ^{2}\left(\frac{10}{9}\right)} \\
& \frac{1}{(\log (10)-2 \log (3))^{2}} \\
& \left(\psi_{\frac{9}{10}}^{(0)}(1)^{2}-2 \psi_{\frac{\rho}{10}}^{(0)}(1) \log (10)+4\left(249 \log ^{2}(2)+995 \log ^{2}(3)+249 \log ^{2}(5)-\right.\right. \\
& 995 \log (3) \log (5)+\log (2)(498 \log (5)-995 \log (3))))
\end{aligned}
$$

## Alternative representations:

$1000+\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}-5=995+\frac{\left(\log _{e}(10)-\psi_{\frac{\circ}{10}}^{(0)}(1)\right)^{2}}{\log _{e}^{2}\left(\frac{10}{9}\right)}$
$1000+\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}-5=995+\frac{\left(\log (a) \log _{a}(10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)^{2}}{\left(\log (a) \log _{a}\left(\frac{10}{9}\right)\right)^{2}}$
$1000+\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}-5=995+\frac{\left(-\operatorname{Li}_{1}(-9)-\psi_{\frac{9}{10}}^{(0)}(1)\right)^{2}}{\left(-\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)\right)^{2}}$

## Series representations:

$$
\begin{aligned}
& 1000+\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}-5= \\
& 995+\frac{\left(2 i \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor+\log (x)-\psi_{\frac{9}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)^{2}}{\left(2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)^{2}} \text { for } x<0 \\
& 1000+\frac{\left(\log (10)-\psi_{\frac{0}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}-5= \\
& 995+\frac{\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\psi_{\frac{9}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0} k^{k} z_{0}^{-k}\right.}{k}\right)^{2}}{\left\langle 2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right)^{2}\right.} \\
& 1000+\frac{\left(\log (10)-\psi_{\frac{10}{(0)}}^{10}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}-5= \\
& 995+\frac{\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\psi_{0}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{k}}{k}\right)^{2}}{\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}}
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& 1000+\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)^{2}}{\log ^{2}\left(\frac{10}{9}\right)}-5= \\
& \frac{995\left(\int_{1}^{\frac{10}{9}} \frac{1}{t} d t\right)^{2}+\left(\int_{1}^{10} \frac{1}{t} d t\right)^{2}-2 \psi_{\frac{9}{10}}^{(0)}(1) \int_{1}^{10} \frac{1}{t} d t+\psi_{\frac{9}{10}}^{(0)}(1)^{2}}{\left(\int_{1}^{\frac{10}{9}} \frac{1}{t} d t\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \left.1000+\frac{\left(\log (10)-\psi^{(0)} 10\right.}{10}(1)\right)^{2} \\
& \left(\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\log ^{2}\left(\frac{10}{9}\right)}{9^{-s} \Gamma(-s)^{2} \Gamma(1+s)}\right.\right. \\
& \Gamma(1-s) \\
& \\
& \\
& \quad 4 s)^{2}+995\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{2}- \\
& \left.\quad 4 i \pi \psi_{\frac{9}{(0)}}^{10}(1) \int_{-i \infty+\gamma}^{i \infty \infty+\gamma} \frac{9^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s-4 \pi^{2} \psi_{\frac{\circ}{10}}^{(0)}(1)^{2}\right) / \\
& \left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{5} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{2} \text { for }-1<\gamma<0
\end{aligned}
$$

Multiplying the two results, we obtain:
$(\log (10)-\mathrm{QPolyGamma}(0,1,9 / 10)) / \log (10 / 9) *-(\log (10)-\mathrm{QPolyGamma}(0,1-(\mathrm{i}$ $\pi) / \log (10 / 9), 9 / 10)) / \log (10 / 9)$

## Input:

$\frac{\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}\left(-\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}\right)$

## Exact result:

$\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log ^{2}\left(\frac{10}{9}\right)}$

## Decimal approximation:

171.4847722098364035487584754523969975126548558627298626191...
171.4847722098...

## Alternate forms:

$-\frac{\log (10)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log ^{2}\left(\frac{10}{9}\right)}+\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log ^{2}\left(\frac{10}{9}\right)}$

$$
-\frac{\left(\psi_{\frac{\circ}{10}}^{(0)}(1)-\log (10)\right)\left(-\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)\right)}{(\log (10)-2 \log (3))^{2}}
$$

$$
\frac{\psi_{\frac{9}{10}}^{(0)}(1) \log (10)}{\log ^{2}\left(\frac{10}{9}\right)}+\frac{\log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log ^{2}\left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{(0)}(1) \psi_{\frac{9}{10}(10)}^{\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}}{\log ^{2}\left(\frac{10}{9}\right)}-\frac{\log ^{2}(10)}{\log ^{2}\left(\frac{10}{9}\right)}
$$

## Alternative representations:

$$
\left.\left.\left.\begin{array}{l}
-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}= \\
-\frac{\left(\frac{1}{\log _{e}\left(\frac{10}{9}\right)}\right)^{2}\left(\log _{e}(10)-\psi_{\frac{\rho}{10}}^{(0)}(1)\right)\left(-\log _{e}(10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right)}{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)} \\
-\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)
\end{array}\right)\left(\frac{1}{\log (a) \log _{a}\left(\frac{10}{9}\right)}\right)^{2}\right)\left(1-\frac{i \pi}{\log (a) \log _{a}\left(\frac{10}{9}\right)}\right)\right)
$$

$$
-\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}=
$$

$$
\left(-\frac{1}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)^{2}\left(-\mathrm{Li}_{1}(-9)-\psi_{\frac{9}{10}}^{(0)}(1)\right)\left(\operatorname{Li}_{1}(-9)+\psi_{\frac{9}{10}}^{(0)}\left(1--\frac{i \pi}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)
$$

## Series representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}= \\
& -\left(\left(2 \pi\left[\frac{\arg (10-x)}{2 \pi}\right]-i \log (x)+i \psi_{\frac{g}{10}}^{(0)}(1)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)\right. \\
& \left(2 \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor-i \log (x)+\right. \\
& i \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left|\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right|+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right) \mid / \\
& \left.\left(2 \pi\left|\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right|-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)^{2}\right) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}= \\
& -\left(\left(2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)-i \log \left(z_{0}\right)+i \psi_{\frac{9}{10}}^{(0)}(1)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right. \\
& 2 \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|-i \log \left(z_{0}\right)+ \\
& i \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left\lfloor\frac{\pi-\operatorname{agg}\left(\frac{1}{z_{0}}\right)-\operatorname{agg}\left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{0}-z_{0}\right)^{k} z_{0}^{k}}{k}}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left.\left(2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}= \\
& -\int\left(\left(\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right) \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\right.\right. \\
& \left.\psi_{\frac{9}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \\
& \left\{\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\psi_{\frac{\circ}{10}}^{(0)}(1-\right. \\
& \left.\frac{i \pi}{\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / /\left(\left[\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right) \log \left(\frac{1}{z_{0}}\right)+\right. \\
& \left.\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)^{2}\right)
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}= \\
& -\frac{\left(\int_{1}^{10} \frac{1}{t} d t-\psi_{\frac{9}{10}}^{(0)}(1)\right)\left(\int_{1}^{10} \frac{1}{t} d t-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\left.\int_{1}^{\frac{10}{9} \frac{1}{t}} d t\right)}\right)\right.}{\left(\int_{1}^{\frac{10}{9}} \frac{1}{t} d t\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}= \\
& -\left(\left(\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s-2 i \pi \psi_{\frac{9}{10}}^{(0)}(1)\right)\right.\right. \\
& \quad\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s-2 i \pi \psi_{\frac{9}{10}(0)}^{(0)}\left(1+\frac{2 \pi^{2}}{\int_{-i \infty+\gamma}^{i \infty \infty+\gamma} \frac{\frac{o}{}^{5} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}\right)\right) / \\
& \left.\quad\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{2}\right) \text { for }-1<\gamma<0
\end{aligned}
$$

And:
( $\log (10)-\mathrm{QPolyGamma}(0,1,9 / 10)) / \log (10 / 9) *-(\log (10)-\mathrm{QPolyGamma}(0,1-(\mathrm{i}$ $\pi) / \log (10 / 9), 9 / 10)) / \log (10 / 9)-29-7$

Where 29 and 7 are Lucas number

## Input:

$\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}\left(-\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}\right)-29-7$

## Exact result:

$-36+\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log ^{2}\left(\frac{10}{9}\right)}$

## Decimal approximation:

135.4847722098364035487584754523969975126548558627298626191...
135.4847722098 ... result very near to the rest mass of Pion meson 134.9766

## Alternate forms:

$$
\begin{aligned}
& -\frac{-\psi_{\frac{9}{10}}^{(0)}(1) \log (10)+36 \log ^{2}\left(\frac{10}{9}\right)+\log ^{2}(10)}{\log ^{2}\left(\frac{10}{9}\right)}+\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log ^{2}\left(\frac{10}{9}\right)} \\
& -\frac{1}{\log ^{2}\left(\frac{10}{9}\right)}\left(-\psi_{\frac{9}{10}}^{(0)}(1) \log (10)-\log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+\right. \\
& \left.\psi_{\frac{9}{10}}^{(0)}(1) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+36 \log ^{2}\left(\frac{10}{9}\right)+\log ^{2}(10)\right) \\
& -\frac{1}{(\log (10)-2 \log (3))^{2}} \\
& \left(-\psi_{\frac{9}{10}}^{(0)}(1) \log (10)+\left(\psi_{\frac{9}{10}}^{(0)}(1)-\log (10)\right) \psi_{\frac{9}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)+37 \log ^{2}(2)+\right. \\
& \left.144 \log ^{2}(3)+37 \log ^{2}(5)-2 \log (2)(72 \log (3)-37 \log (5))-144 \log (3) \log (5)\right)
\end{aligned}
$$

## Expanded form:

$\frac{\psi_{\frac{9}{10}}^{(0)}(1) \log (10)}{\log ^{2}\left(\frac{10}{9}\right)}+\frac{\log (10) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log ^{2}\left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{(0)}(1) \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log ^{2}\left(\frac{10}{9}\right)}-36-\frac{\log ^{2}(10)}{\log ^{2}\left(\frac{10}{9}\right)}$

## Alternative representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}-29-7= \\
& -36+\left(\frac{1}{\log _{e}\left(\frac{10}{9}\right)}\right)^{2}\left(\log _{e}(10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)\left(-\log _{e}(10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right) \\
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}-29-7= \\
& -36+\left(\frac{1}{\log (a) \log _{a}\left(\frac{10}{9}\right)}\right)^{2}\left(\log (a) \log _{a}(10)-\psi_{\frac{9}{10}}^{(0)}(1)\right) \\
& \left(-\log (a) \log _{a}(10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log (a) \log _{a}\left(\frac{10}{9}\right)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}-29-7= \\
& -36+\left(-\frac{1}{\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)}\right)^{2}\left(-\operatorname{Li}_{1(-9)-\psi_{\frac{\circ}{10}}^{(0)}(1)}^{10}\right)\left(\operatorname{Li}_{1}(-9)+\psi_{\frac{\circ}{10}}^{(0)}\left(1--\frac{i \pi}{\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}-29-7= \\
& -36+\left(\left(2 i \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor+\log (x)-\psi_{\frac{9}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)\right. \\
& \left(-2 i \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor-\log (x)+\right. \\
& \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{0}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)+ \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right) \mid / \\
& \left(2 i \pi\left\lfloor\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)^{2} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}-29-7= \\
& -36+\left(\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\psi_{\frac{\circ}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right. \\
& \left\{-\log \left(z_{0}\right)-\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)+\psi_{\frac{9}{10}}^{(0)}( \right. \\
& \left.1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{2}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}}\right)+ \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right) / \\
& \left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}{\log \left(\frac{10}{9}\right) \log \left(\frac{10}{9}\right)}-29-7= \\
& -36+\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)+\log \left(z_{0}\right)-\psi_{\frac{9}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \\
& \left(-2 i \pi\left[\left.\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,-\log \left(z_{0}\right)+\right.\right. \\
& \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)+ \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \\
& \left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right)^{2}\right.
\end{aligned}
$$

Dividing the two results, we obtain:

$$
\begin{aligned}
& \left(\left(\left(\left(1 /\left((10 / 9)^{\wedge} 1-1\right)+1 /\left((10 / 9)^{\wedge} 2-1\right)+1 /\left((10 / 9)^{\wedge} 3-1\right)+\ldots\right)\right)\right)\right) / \\
& \left(\left(\left(1 /(1+10 / 9)+1 /\left(1+(10 / 9)^{\wedge} 2\right)+1 /\left(1+(10 / 9)^{\wedge} 3\right)+\ldots\right)\right)\right)
\end{aligned}
$$

## Input interpretation:

$$
\frac{\frac{1}{\left(\frac{10}{9}\right)^{1}-1}+\frac{1}{\left(\frac{10}{9}\right)^{2}-1}+\frac{1}{\left(\frac{10}{9}\right)^{3}-1}+\cdots}{\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\cdots}
$$

## Result:

$\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}$

# $\log (x)$ is the natural logarithm 

 $\psi_{q}(z)$ gives the $q$-digamma function
## Alternate forms:

$\frac{\psi_{\frac{9}{10}}^{(0)}(1)-\log (10)}{\log (10)-\psi^{(0)} \frac{9}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}$

$\frac{\psi_{\frac{9}{10}}^{(0)}(1)}{\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}-\frac{\log (10)}{\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}$
$(\log (10)-\mathrm{QPolyGamma}(0,1,9 / 10)) /(-\log (10)+\mathrm{QPolyGamma}(0,1-(\mathrm{i} \pi) / \log (10 / 9)$, 9/10))

## Input:

$\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)$
$\frac{10}{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}$

## Decimal approximation:

$4.278383800767091807827635053107807949599048192974066311525 \ldots$
4.2783838007...

## Alternate forms:

$$
\psi_{\frac{9}{10}}^{(0)}(1)-\log (10)
$$

$$
\log (10)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)
$$

$$
\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{}
$$

$$
-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)
$$



## Alternative representations:

$$
\begin{aligned}
& \frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}=\frac{\log _{e}(10)-\psi_{\frac{9}{0}}^{(0)}(1)}{-\log _{e}(10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)} \\
& \frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{-\log (10)+\psi_{\frac{9}{(0)}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}=\frac{\log (a) \log _{a}(10)-\psi_{\frac{9}{(0)}}^{10}(1)}{-\log (a) \log _{a}(10)+\psi_{\frac{(0)}{10}}^{10}\left(1-\frac{i \pi}{\log (a) \log \left(\frac{10}{9}\right)}\right)} \\
& \frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}=\frac{-\operatorname{Li}_{1}(-9)-\psi_{\frac{9}{(0)}}^{10}(1)}{\operatorname{Li}_{1}(-9)+\psi^{(0)} \frac{9}{10}\left(1--\frac{i \pi}{L i_{1}\left(1-\frac{10}{9}\right)}\right)}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \log (10)-\psi_{\underline{\circ}}^{(0)}(1) \\
& \frac{10}{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}= \\
& -\left(2 \pi\left[\frac{\arg (10-x)}{2 \pi}\right]-i \log (x)+i \psi_{\frac{\mathrm{o}}{(0)}}^{10}(1)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right) / \\
& \left\{2 \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor-i \log (x)+\right. \\
& i \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)}{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}= \\
& -\left(\left[2 \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|-i \log \left(z_{0}\right)+i \psi_{\frac{9}{10}}^{(0)}(1)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) /\right. \\
& 2 \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|-i \log \left(z_{0}\right)+ \\
& i \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{2 \pi}{\left.2 \pi \left\lvert\, \frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right.\right)+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}= \\
& -\left\{\left(\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\right.\right. \\
& \left.\psi_{\frac{\circ}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{k}}{k}\right) / \\
& \left\{\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\right. \\
& \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\operatorname{ag}\left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)
\end{aligned}
$$

## Integral representations:

$\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}=-\frac{\int_{1}^{10} \frac{1}{t} d t-\psi_{\frac{9}{10}}^{(0)}(1)}{\int_{1}^{10} \frac{1}{t} d t-\psi_{\frac{9}{0}}^{10}\left(1-\frac{i \pi}{\frac{10}{9} \frac{1}{t} d t}\right)}$


And:

7* $((((-\log (10)+\mathrm{QPolyGamma}(0,1-(\mathrm{i} \pi) / \log (10 / 9), 9 / 10)) /(\log (10)-$ QPolyGamma(0, 1, 9/10)))))-18/10^3

Where 7 and 18 are Lucas numbers

## Input:

$7 \times \frac{-\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}-\frac{18}{10^{3}}$

## Exact result:

$$
-\frac{9}{500}+\frac{7\left(-\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{\circ}{10}}^{10}(1)}
$$

## Decimal approximation:

1.618131849308361877648675866122824745830417908174497998899...
$1.618131849 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

## Alternate forms:

$-\frac{-9 \psi_{\frac{9}{10}}^{(0)}(1)-3500 \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+3509 \log (10)}{500\left(\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)\right)}$
$-\frac{7 \log (10)}{\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)}+\frac{7 \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)}-\frac{9}{500}$
$-\frac{9 \psi_{\frac{9}{10}}^{(0)}(1)+3500 \psi_{\frac{9}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)-3509 \log (10)}{500\left(\psi^{(0)}(1)-\log (10)\right)}$

## Alternative representations:

$$
\begin{aligned}
& \frac{7\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)}-\frac{18}{10^{3}}=-\frac{18}{10^{3}}+\frac{7\left(-\log _{e}(10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right)}{\log _{e}(10)-\psi_{\frac{\circ}{10}}^{(0)}(1)} \\
& \frac{7\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}-\frac{18}{10^{3}}= \\
& -\frac{18}{10^{3}}+\frac{7\left(-\log (a) \log _{a}(10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log (a) \log a\left(\frac{10}{9}\right)}\right)\right)}{\log (a) \log _{a}(10)-\psi_{\frac{9}{10}}^{(0)}(1)} \\
& \frac{7\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{\rho}{10}}^{(0)}(1)}-\frac{18}{10^{3}}=-\frac{18}{10^{3}}+\frac{7\left(\operatorname{Li}_{1}(-9)+\psi_{\frac{9}{10}}^{(0)}\left(1--\frac{i \pi}{\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)}{-\operatorname{Li}_{1}(-9)-\psi_{\frac{\circ}{10}}^{(0)}(1)}
\end{aligned}
$$

## Series representations:

$\frac{7\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}-\frac{18}{10^{3}}=$
$-\left(\int 7018 \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right]-3509 i \log (x)+9 i \psi_{\frac{9}{10}}^{(0)}(1)+\right.$

$$
\begin{aligned}
& 3500 i \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)+ \\
& \left.3509 i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right) /
\end{aligned}
$$

$$
\left.\left(500\left(2 \pi\left\lfloor\frac{\arg (10-x)}{2 \pi}\right\rfloor-i \log (x)+i \psi_{\frac{9}{10}}^{(0)}(1)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}(10-x)^{k} x^{-k}}{k}\right)\right)\right)
$$

for $x<0$

$$
\begin{aligned}
& \frac{7\left(-\log (10)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}-\frac{18}{10^{3}}= \\
& -\left(\left\{7018 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-3509 i \log \left(z_{0}\right)+9 i \psi_{\frac{9}{10}}^{(0)}(1)+\right.\right. \\
& \left.3500 i \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right.}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)+ \\
& \left.3509 i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / 500\left(2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)-\right. \\
& \left.\left.i \log \left(z_{0}\right)+i \psi_{\frac{0}{10}}^{(0)}(1)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7\left(-\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)}-\frac{18}{10^{3}}= \\
& -\left(\left\{3509\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+3509 \log \left(z_{0}\right)+3509\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\right.\right. \\
& 9 \psi_{\frac{9}{10}}^{(0)}(1)-3500 \psi_{\frac{9}{10}}^{(0)}( \\
& \left.1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{0}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{0}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \left.3509 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) /\left[5 0 0 \left(\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\right.\right. \\
& \left.\left.\left.\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(10-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\psi_{\frac{\circ}{10}}^{(0)}(1)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(10-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)\right)
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& \frac{7\left(-\log (10)+\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{\circ}{10}}^{(0)}(1)}-\frac{18}{10^{3}}= \\
& -\frac{\left.3509 \int_{1}^{10} \frac{1}{t} d t-9 \psi_{\frac{9}{10}}^{(0)}(1)-3500 \frac{\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\frac{10}{9}}\right)}{500\left(\int_{1}^{10} \frac{1}{t} d t-\psi_{\frac{9}{10}}^{(0)}(1)\right.}\right)}{}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7\left(-\log (10)+\psi^{(0)} \frac{\rho}{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)}{\log (10)-\psi_{\frac{\rho}{10}}^{(0)}(1)}-\frac{18}{10^{3}}= \\
& -\left(\left(3509 i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+18 \pi \psi_{\frac{\rho}{10}}^{(0)}(1)+\right.\right. \\
& \left.7000 \pi \psi_{\frac{\rho}{10}}^{(0)}\left(1+\frac{2 \pi^{2}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\rho^{5} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}\right)\right) / \\
& \left.\left(500\left(i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+2 \pi \psi_{\frac{\rho}{10}}^{(0)}(1)\right)\right)\right) \text { for }-1<\gamma<0
\end{aligned}
$$

Subtracting the two results, we obtain:

$$
\begin{aligned}
& \left(\left(\left(\left(1 /\left((10 / 9)^{\wedge} 1-1\right)+1 /\left((10 / 9)^{\wedge} 2-1\right)+1 /\left((10 / 9)^{\wedge} 3-1\right)+\ldots\right)\right)\right)-\right. \\
& \left(\left(\left(1 /(1+10 / 9)+1 /\left(1+(10 / 9)^{\wedge} 2\right)+1 /\left(1+(10 / 9)^{\wedge} 3\right)+\ldots\right)\right)\right)
\end{aligned}
$$

## Input interpretation:

$$
\left(\frac{1}{\left(\frac{10}{9}\right)^{1}-1}+\frac{1}{\left(\frac{10}{9}\right)^{2}-1}+\frac{1}{\left(\frac{10}{9}\right)^{3}-1}+\cdots\right)-\left(\frac{1}{1+\frac{10}{9}}+\frac{1}{1+\left(\frac{10}{9}\right)^{2}}+\frac{1}{1+\left(\frac{10}{9}\right)^{3}}+\cdots\right)
$$

## Result:

$\frac{\log (10)-\psi_{\frac{9}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}-\frac{-\log (10)+\psi_{\frac{9}{(0)}}^{10}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}$
$\log (x)$ is the natural logarithm

## Alternate forms:

$-\frac{\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)-\log (100)}{\log \left(\frac{10}{9}\right)}$
$\frac{-\psi_{\frac{0}{10}}^{(0)}(1)-\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+2 \log (10)}{\log \left(\frac{10}{9}\right)}$
$-\frac{\psi_{\frac{\circ}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}+\frac{2 \log (10)}{\log \left(\frac{10}{9}\right)}$
$-(-\log (100)+\mathrm{QPolyGamma}(0,1,9 / 10)+\mathrm{QPolyGamma}(0,1-(\mathrm{i} \pi) / \log (10 / 9)$, $9 / 10)) / \log (10 / 9)$

## Input:

$-\frac{-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{0}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}$

## Exact result:

$-\psi_{\frac{9}{10}}^{(0)}(1)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+\log (100)$

$$
\log \left(\frac{10}{9}\right)
$$

## Decimal approximation:

$20.75547634120342226556033888586272957206659976239062178441 \ldots$
20.75547634...

## Alternate forms:

$$
\frac{\log (100)-\psi_{\frac{9}{(0)}}^{10}(1)}{\log \left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}
$$

$$
-\frac{\psi_{\frac{\circ}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}-\frac{\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}+\frac{\log (100)}{\log \left(\frac{10}{9}\right)}
$$

```
\(\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)-2 \log (10)\)
\(\log (10)-2 \log (3)\)
```


## Alternative representations:

$$
\begin{aligned}
& -\frac{-\log (100)+\psi_{\frac{\rho}{10}}^{(0)}(1)+\psi_{\frac{\rho}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}=\frac{\log _{e}(100)-\psi_{\frac{\rho}{10}}^{(0)}(1)-\psi_{\frac{\rho}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log _{e}\left(\frac{10}{9}\right)} \\
& -\frac{-\log (100)+\psi_{\frac{9}{(0)}}^{10}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}= \\
& \frac{\log (a) \log _{a}(100)-\psi_{\frac{9}{10}}^{(0)}(1)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log (a) \log a\left(\frac{10}{9}\right)}\right)}{\log (a) \log _{a}\left(\frac{10}{9}\right)} \\
& -\frac{-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}=-\frac{-\mathrm{Li}_{1}(-99)-\psi_{\frac{9}{(0)}}^{10}(1)-\psi_{\frac{9}{10}}^{(0)}\left(1--\frac{i \pi}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}\right)}{\mathrm{Li}_{1}\left(1-\frac{10}{9}\right)}
\end{aligned}
$$

## Series representations:

$$
\begin{gathered}
-\frac{-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}=\left(2 \pi\left[\frac{\arg (100-x)}{2 \pi}\right]-i \log (x)+\right. \\
i \psi_{\frac{9}{10}}^{(0)}(1)+i \psi_{\frac{\rho}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right.\right)+}\right. \\
\left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}(100-x)^{k} x^{-k}}{k}\right) / \\
\left.\left(2 \pi \left\lvert\, \frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right.\right)-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right) \text { for } x<0
\end{gathered}
$$

$$
\begin{aligned}
& -\frac{-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}= \\
& 2 \pi\left[\left.\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,-i \log \left(z_{0}\right)+i \psi_{\frac{9}{10}}^{(0)}(1)+\right. \\
& i \psi_{\frac{\circ}{\circ}(0)}^{10}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{0}-z_{0}\right)^{k} z_{0}^{k}}{k}\right.\right.}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(100-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left(2 \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \\
& -\frac{-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}= \\
& \left\{\left\lfloor\frac{\arg \left(100-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(100-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\psi_{\frac{\circ}{10}}^{(0)}(1)-\right. \\
& \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(z_{0}\right)+\left[\frac{\arg \left(\frac{10}{0}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(100-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left(\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}\right)
\end{aligned}
$$

## Integral representations:

$$
-1<\gamma<0
$$

And:
$6(((--\log (100)+\operatorname{QPolyGamma}(0,1,9 / 10)+\mathrm{QPolyGamma}(0,1-(\mathrm{i} \pi) / \log (10 / 9)$, $9 / 10)) / \log (10 / 9))))+1 /$ golden ratio

## Input:

$6\left(-\frac{-\log (100)+\psi_{\frac{\circ}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}\right)+\frac{1}{\phi}$

## Exact result:

$\frac{1}{\phi}+\frac{6\left(-\psi_{\frac{9}{10}}^{(0)}(1)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+\log (100)\right.}{\log \left(\frac{10}{9}\right)}$

## Decimal approximation:

125.1508920359704284415666201495420155501199077541494935686.
125.150892035... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

$$
\begin{aligned}
& -\frac{-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}=\frac{\int_{1}^{100} \frac{1}{t} d t-\psi_{\frac{o}{(0)}}^{10}(1)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\int_{1}^{\frac{10}{9}} \frac{1}{t} d t}\right)}{\int_{1}^{\frac{10}{9}} \frac{1}{t} d t} \\
& -\frac{-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}= \\
& \frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\rho 9^{-s} \Gamma\left((-s)^{2} \Gamma(1+s)\right.}{\Gamma(1-s)} d s-2 i \pi \psi_{\frac{o}{10}}^{(0)}(1)-2 i \pi \psi^{(0)} \frac{o}{10}\left(1+\frac{2 \pi^{2}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}\right)}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\rho^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }
\end{aligned}
$$

## Alternate forms:

$$
\begin{aligned}
& \frac{1}{2}(\sqrt{5}-1)+\frac{6\left(-\psi_{\frac{9}{10}}^{(0)}(1)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)+\log (100)\right)}{\log \left(\frac{10}{9}\right)} \\
& \frac{1}{\phi}-\frac{6\left(\psi_{\frac{\rho}{10}}^{10}(1)+\psi_{\frac{o}{10}}^{(0)}\left(\frac{-i \pi-2 \log (3)+\log (10)}{-2 \log (3)+\log (10)}\right)-2 \log (10)\right)}{\log (10)-2 \log (3)} \\
& -\frac{6 \psi_{\frac{o}{10}}^{(0)}(1)}{\log \left(\frac{10}{9}\right)}-\frac{6 \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)}{\log \left(\frac{10}{9}\right)}+\frac{2}{1+\sqrt{5}}+\frac{6 \log (100)}{\log \left(\frac{10}{9}\right)}
\end{aligned}
$$

## Alternative representations:

$$
\begin{aligned}
& \frac{6\left(-\left(-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{1}{\phi}= \\
& \frac{1}{\phi}+\frac{6\left(\log _{e}(100)-\psi_{\frac{9}{10}}^{(0)}(1)-\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log _{e}\left(\frac{10}{9}\right)}\right)\right)}{\log _{e}\left(\frac{10}{9}\right)} \\
& \frac{6\left(-\left(-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{1}{\phi}= \\
& \frac{1}{\phi}+\frac{6\left(\log (a) \log _{a}(100)-\psi_{\frac{9}{(0)}}^{10}(1)-\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log (a) \log a\left(\frac{10}{9}\right)}\right)\right)}{\log (a) \log _{a}\left(\frac{10}{9}\right)} \\
& \frac{6\left(-\left(-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{1}{\phi}= \\
& \frac{1}{\phi}+-\frac{6\left(-\operatorname{Li}_{1}(-99)-\psi_{\frac{\circ}{(0)}}^{10}(1)-\psi_{\frac{9}{10}}^{(0)}\left(1--\frac{i \pi}{\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)}\right)\right)}{\operatorname{Li}_{1}\left(1-\frac{10}{9}\right)}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{6\left(-\left(-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{1}{\phi}= \\
& 2\left(2 \pi\left\lfloor\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right\rfloor+6 \pi\left\lfloor\frac{\arg (100-x)}{2 \pi}\right\rfloor+6 \sqrt{5} \pi\left\lfloor\frac{\arg (100-x)}{2 \pi}\right\rfloor-\right. \\
& 4 i \log (x)-3 i \sqrt{5} \log (x)+3 i \psi_{\frac{9}{10}}^{(0)}(1)+3 i \sqrt{5} \underset{\frac{9}{10}}{(0)}(1)+ \\
& 3 i \psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left\lfloor\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}}\right)+ \\
& 3 i \sqrt{5} \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right.\right.}\right)+ \\
& i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}+3 i \sum_{k=1}^{\infty} \frac{(-1)^{k}(100-x)^{k} x^{-k}}{k}+ \\
& \left.3 i \sqrt{5} \sum_{k=1}^{\infty} \frac{(-1)^{k}(100-x)^{k} x^{-k}}{k}\right) / \\
& \left((1+\sqrt{5})\left(2 \pi\left[\frac{\arg \left(\frac{10}{9}-x\right)}{2 \pi}\right]-i \log (x)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-x\right)^{k} x^{-k}}{k}\right)\right) \text { for } x<
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6\left(-\left(-\log (100)+\psi_{\frac{9}{(0)}}^{10}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{1}{\phi}= \\
& 2\left[8 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+6 \sqrt{5} \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-\right. \\
& 4 i \log \left(z_{0}\right)-3 i \sqrt{5} \log \left(z_{0}\right)+3 i \psi_{\frac{9}{10}}^{(0)}(1)+3 i \sqrt{5} \underset{\frac{9}{10}}{\psi_{0}^{(0)}}(1)+ \\
& 3 i \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)+ \\
& 3 i \sqrt{5} \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{2 i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.}\right)+ \\
& i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}+3 i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(100-z_{0}\right)^{k} z_{0}^{-k}}{k}+ \\
& \left.3 i \sqrt{5} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(100-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& \left((1+\sqrt{5})\left(2 \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-i \log \left(z_{0}\right)+i \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6\left(-\left(-\log (100)+\psi_{\frac{9}{10}}^{(0)}(1)+\psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{1}{\phi}= \\
& 2\left(\left\{\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right) \log \left(\frac{1}{z_{0}}\right)+3\left\lfloor\frac{\arg \left(100-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\right. \\
& 3 \sqrt{5}\left\lfloor\frac{\arg \left(100-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+4 \log \left(z_{0}\right)+3 \sqrt{5} \log \left(z_{0}\right)+ \\
& \left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+3\left\lfloor\frac{\arg \left(100-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+ \\
& 3 \sqrt{5}\left\lfloor\frac{\arg \left(100-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-3 \psi_{\frac{9}{10}}^{(0)}(1)-3 \sqrt{5} \psi_{\frac{9}{10}}^{(0)}(1)-3 \psi_{\frac{\circ}{10}}^{(0)}( \\
& \left.1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}}\right)- \\
& 3 \sqrt{5} \psi_{\frac{9}{10}}^{(0)}( \\
& \left.1-\frac{i \pi}{\log \left(z_{0}\right)+\left\lfloor\frac{\operatorname{ag}\left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{0}-z_{0}\right)^{k} z_{0}^{-k}}{k}}\right)- \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{k}}{k}-3 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(100-z_{0}\right)^{k} z_{0}^{k}}{k}- \\
& \left.3 \sqrt{5} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(100-z_{0}\right)^{k} z_{0}^{-k}}{k}\right) / \\
& ((1+\sqrt{5}))\left(\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right) \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{10}{9}-z_{0}\right)}{2 \pi}\right] \log \left(z_{0}\right)- \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{10}{9}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right)
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& \frac{6\left(-\left(-\log (100)+\psi_{\frac{\circ}{10}}^{(0)}(1)+\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{1}{\phi}= \\
& \frac{1}{1+\sqrt{5} \int_{1}^{\frac{10}{9}} \frac{1}{t} d t} 2\left(\int_{1}^{\frac{10}{9}} \frac{1}{t} d t+3 \int_{1}^{100} \frac{1}{t} d t+3 \sqrt{5} \int_{1}^{100} \frac{1}{t} d t-3 \psi_{\frac{9}{10}}^{(0)}(1)-\right. \\
& \left.3 \sqrt{5} \psi_{\frac{9}{10}}^{(0)}(1)-3 \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\int_{1}^{\frac{10}{9}} \frac{1}{t} d t}\right)-3 \sqrt{5} \psi_{\frac{9}{10}}^{(0)}\left(1-\frac{i \pi}{\int_{1}^{\frac{10}{9}} \frac{1}{t} d t}\right)\right) \\
& \frac{6\left(-\left(-\log (100)+\psi_{\frac{0}{10}}^{(0)}(1)+\psi_{\frac{\circ}{10}}^{(0)}\left(1-\frac{i \pi}{\log \left(\frac{10}{9}\right)}\right)\right)\right)}{\log \left(\frac{10}{9}\right)}+\frac{1}{\phi}= \\
& \left(2 \left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+3 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{99^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+\right.\right. \\
& 3 \sqrt{5} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{99^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s-6 i \pi \psi_{\frac{\circ}{10}}^{(0)}(1)- \\
& 6 i \sqrt{5} \pi \psi_{\frac{\circ}{10}}^{(0)}(1)-6 i \pi \psi_{\frac{\circ}{10}}^{(0)}\left(1+\frac{2 \pi^{2}}{\int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{\frac{\rho}{5}^{(0)}(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}\right)- \\
& \left.6 i \sqrt{5} \pi \psi_{\frac{\circ}{10}}^{(0)}\left(1+\frac{2 \pi^{2}}{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\rho^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}\right)\right) / \\
& \left(1+\sqrt{5} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{9^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right) \text { for }-1<\gamma<0
\end{aligned}
$$

## Page 81



Pi * ( $1 /($ sqrt2 $)-1 /($ sqrt2 + sqrt4 $)+1 /(s q r t 4+$ sqrt6) $)-1 /($ sqrt6+sqrt8) $)$

## Input:

$\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)$

## Result:

$\left(\frac{1}{\sqrt{2}}-\frac{1}{2+\sqrt{2}}+\frac{1}{2+\sqrt{6}}-\frac{1}{2 \sqrt{2}+\sqrt{6}}\right) \pi$

## Decimal approximation:

1.412113673791598096338931391467032700409225206634342296658...
1.41211367379....

## Property:

$\left(\frac{1}{\sqrt{2}}-\frac{1}{2+\sqrt{2}}+\frac{1}{2+\sqrt{6}}-\frac{1}{2 \sqrt{2}+\sqrt{6}}\right) \pi$ is a transcendental number

## Alternate forms:

$\pi(\sqrt{6}-2)$
$\frac{2 \pi}{2+\sqrt{6}}$
$\frac{2 \sqrt{2}(1+\sqrt{2}) \pi}{(2+\sqrt{2})(2+\sqrt{6})}$

## Series representations:

$$
\begin{aligned}
& \pi\left(\frac{1}{\sqrt{2}}\right.\left.-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)= \\
&-\frac{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\left(2-z_{0}\right)^{k}+\left(4-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!}}{}+\frac{\pi}{\pi} \sqrt{z_{0} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\left(4-z_{0}\right)^{k}+\left(6-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!}}- \\
& \quad \sqrt{\pi} \\
& \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\left(6-z_{0}\right)^{k}+\left(8-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!} \\
& \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{aligned}
$$

$$
\text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
$$

$$
\begin{aligned}
& \pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)= \\
& \exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}-
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left((4-x)^{k} \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right]\right)+(6-x)^{k} \exp \left(i \pi\left[\frac{\arg (6-x)}{2 \pi}\right]\right)\right)\left(-\frac{1}{2}\right)_{k} \sqrt{x}}{\pi} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left((6-x)^{k} \exp \left(i \pi\left[\frac{\arg (6-x)}{2 \pi}\right]\right)+(8-x)^{k} \exp \left(i \pi\left[\frac{\arg (8-x)}{2 \pi}\right]\right)\right)\left(-\frac{1}{2}\right)_{k} \sqrt{x}}{k!}
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)= \\
& \frac{\pi\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}- \\
& \pi /\left(\sum _ { k = 0 } ^ { \infty } \frac { 1 } { k ! } ( - 1 ) ^ { k } ( - \frac { 1 } { 2 } ) _ { k } z _ { 0 } ^ { 1 / 2 - k } \left(\left(2-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}+\right.\right. \\
& \left.\left.\quad\left(4-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor}\right)\right)+ \\
& \pi /\left(\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{z_{0}^{1 / 2-k}\left(\left(4-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor}+\right.}\right. \\
& \left.\left.\left(6-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor}\right)\right)- \\
& \pi /\left(\sum _ { k = 0 } ^ { \infty } \frac { 1 } { k ! } ( - 1 ) ^ { k } ( - \frac { 1 } { 2 } ) _ { k } z _ { 0 } ^ { 1 / 2 - k } \left(\left(6-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(6-z_{0}\right) /(2 \pi)\right\rfloor}+\right.\right. \\
& \left.\left.\left(8-z_{0}\right)^{k}\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left\lfloor\arg \left(8-z_{0}\right) /(2 \pi)\right\rfloor}\right)\right)
\end{aligned}
$$

$1 /(1 \mathrm{sqrt1})+1 /(3 \mathrm{sqrt} 3)+1 /(5 \mathrm{sqrt5})+1 /(7 \mathrm{sqrt7})+\ldots$
$1 /(1$ sqrt1) $+1 /(3 \mathrm{sqrt} 3)+1 /(5 \mathrm{sqrt5})+1 /(7 \mathrm{sqrt7})+1 /(11 \mathrm{sqrt11})+1 /(13 \mathrm{sqrt13})+1 /(17 \mathrm{sqrt17})$
$+1 /(19 \mathrm{sqrt19)}$

## Input:

$$
\frac{1}{1 \sqrt{1}}+\frac{1}{3 \sqrt{3}}+\frac{1}{5 \sqrt{5}}+\frac{1}{7 \sqrt{7}}+\frac{1}{11 \sqrt{11}}+\frac{1}{13 \sqrt{13}}+\frac{1}{17 \sqrt{17}}+\frac{1}{19 \sqrt{19}}
$$

## Result:

$$
1+\frac{1}{3 \sqrt{3}}+\frac{1}{5 \sqrt{5}}+\frac{1}{7 \sqrt{7}}+\frac{1}{11 \sqrt{11}}+\frac{1}{13 \sqrt{13}}+\frac{1}{17 \sqrt{17}}+\frac{1}{19 \sqrt{19}}
$$

## Decimal approximation:

1.410973792493254865502532064755699580693444979832500007456 .
1.41097379249...

## Alternate forms:

$$
\begin{aligned}
& \frac{1}{3} \sqrt{3} \frac{1}{3}+\frac{1}{5} \sqrt{5} \frac{1}{5}+\frac{1}{7} \sqrt{7} \frac{1}{7}+\frac{1}{11} \sqrt{11} \frac{1}{11}+ \\
& \frac{1}{13} \sqrt{13} \frac{1}{13}+\frac{1}{17} \sqrt{17} \frac{1}{17}+\frac{1}{19} \sqrt{19} \frac{1}{19}+1 \\
& \frac{1}{23520996524025} \\
& (23520996524025+2613444058225 \sqrt{3}+940839860961 \sqrt{5}+ \\
& 480020337225 \sqrt{7}+194388401025 \sqrt{11}+ \\
& 139177494225 \sqrt{13}+81387531225 \sqrt{17}+65155115025 \sqrt{19}) \\
& \frac{1}{19 \sqrt{19}}+\frac{1}{65155115025} \\
& (65155115025+7239457225 \sqrt{3}+2606204601 \sqrt{5}+1329696225 \sqrt{7}+ \\
& 538472025 \sqrt{11}+385533225 \sqrt{13}+225450225 \sqrt{17})
\end{aligned}
$$

From the previous expression, we obtain:
$1 /((((\operatorname{Pi} *(1 /(\operatorname{sqrt} 2)-1 /(\operatorname{sqrt} 2+\operatorname{sqrt} 4)+1 /(\operatorname{sqrt} 4+\text { sqrt6)})-1 /(\operatorname{sqrt6}+\text { sqrt } 8))))))^{\wedge} 1 / 64$

## Input:

1
$\sqrt[64]{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}$

## Exact result:

1
$\sqrt{\sqrt[64]{\left(\frac{1}{\sqrt{2}}-\frac{1}{2+\sqrt{2}}+\frac{1}{2+\sqrt{6}}-\frac{1}{2 \sqrt{2}+\sqrt{6}}\right) \pi}}$

## Decimal approximation:

$0.994622516313439470387198076716845725808014510743913823288 \ldots$
$0.99462251631343947 \ldots$. result very near to the value of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

## Property:

1
is a transcendental number
$\sqrt[64]{\left(\frac{1}{\sqrt{2}}-\frac{1}{2+\sqrt{2}}+\frac{1}{2+\sqrt{6}}-\frac{1}{2 \sqrt{2}+\sqrt{6}}\right) \pi}$

## Alternate forms:

$\frac{1}{\sqrt[64]{(\sqrt{6}-2) \pi}}$
$\sqrt[64]{\frac{2+\sqrt{6}}{2 \pi}}$
$\frac{\sqrt[64]{\frac{7+5 \sqrt{2}+4 \sqrt{3}+3 \sqrt{6}}{(2+\sqrt{3}) \pi}}}{\sqrt[128]{2} \sqrt[64]{1+\sqrt{2}}}$
$2 \log$ base 0.994622516313439 (((1/((((Pi * $1 /(\mathrm{sqrt} 2)-$
$1 /($ sqrt2 + sqrt4) $+1 /(\operatorname{sqrt} 4+$ sqrt6) $-1 /(\operatorname{sqrt6}+\operatorname{sqrt8})))))))))-\mathrm{Pi}+1 /$ golden ratio

## Input interpretation:

$2 \log _{0.994622516313439}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)-\pi+\frac{1}{\phi}$
$\log _{b}(x)$ is the base- $b$ logarithm

## Result:

125.4764413351...
125.4764413351... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Alternative representation:

$2 \log _{0.9946225163134390000}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{2 \log \left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)}{\log (0.9946225163134390000)}
$$

## Series representations:

$$
\begin{aligned}
& 2 \log _{0.9946225163134390000}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)^{k}}{\log (0.9946225163134390000)}}{}
\end{aligned}
$$

$2 \log _{0.9946225163134390000}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1.0000000000000000}{\phi}-1.0000000000000000 \pi+
$$

$$
\log \left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)(-370.92116546968772-
$$

$$
\left.2.0000000000000000 \sum_{k=0}^{\infty}(-0.0053774836865610000)^{k} G(k)\right)
$$

$$
\text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

$2 \log _{0.9946225163134390000}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1.0000000000000000}{\phi}-1.0000000000000000 \pi+
$$

$$
\log \left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)(-370.92116546968772-
$$

$$
\left.2.0000000000000000 \sum_{k=0}^{\infty}(-0.0053774836865610000)^{k} G(k)\right)
$$

$$
\text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

$1 / 4 \log$ base 0.994622516313439 (((1/((()Pi *( 1/(sqrt2)$1 /($ sqrt2 + sqrt4) $+1 /($ sqrt4+sqrt6) $-1 /($ sqrt6+sqrt8) )) )) )) )) $)+1 /$ golden ratio

## Input interpretation:

$\frac{1}{4} \log _{0.994622516313439}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)+\frac{1}{\phi}$
$\log _{b}(x)$ is the base- $b$ logarithm

## Result:

## $16.61803398875 \ldots$

16.61803398... result very near to the mass of the hypothetical light particle, the boson $\mathrm{m}_{\mathrm{X}}=16.84 \mathrm{MeV}$

## Alternative representation:

$\frac{1}{4} \log _{0.9946225163134390000}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}+\frac{\log \left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)}{4 \log (0.9946225163134390000)}
$$

## Series representations:

$$
\begin{aligned}
& \frac{1}{4} \log _{0.9946225163134390000}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\frac{\left.\sum_{k=1}^{\infty} \frac{1}{\phi}-1\right)^{k}\left(-1+\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)^{k}}{4 \log (0.9946225163134390000)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} \log _{0.9946225163134390000}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)+\frac{1}{\phi}= \\
& 1.0000000000000000 \\
& \log \left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)(-46.36514568371096- \\
& \left.0.25000000000000000 \sum_{k=0}^{\infty}(-0.0053774836865610000)^{k} G(k)\right) \\
& \text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right) \\
& \frac{1}{4} \log _{0.9946225163134390000}\left(\frac{1}{\pi\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}-\frac{1}{\sqrt{6}+\sqrt{8}}\right)}\right)+\frac{1}{\phi}= \\
& \frac{1}{4 \phi}\left(4+\phi \log _{0.9946225163134390000}\left(1 / / \pi\left(-\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)\right)_{k}\left(\left(2-z_{0}\right)^{k}+\left(4-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!}}+\right.\right.\right. \\
& \frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)\right)_{k}\left(\left(4-z_{0}\right)^{k}+\left(6-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!}}- \\
& \frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\left(6-z_{0}\right)^{k}+\left(8-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!}}+ \\
& \left.\left.\left.\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)\right)\right) \mid \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

Page 82

$3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *((((1 /(1 \mathrm{sqrt} 1)+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt} 3)+1 /(16 \mathrm{sqrt} 4))))$
Input:
$\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)$

## Result:

$$
\frac{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)}{2}
$$

## Decimal approximation:

0.024168459675030997066368197518608237526403609954799171534...
0.024168459675...

## Property:

$\frac{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)}{16 \pi^{2}}$ is a transcendental number

## Alternate forms:

$$
\begin{aligned}
& \frac{891+108 \sqrt{2}+32 \sqrt{3}}{4608 \pi^{2}} \\
& \frac{\frac{99}{512}+\frac{3}{64 \sqrt{2}}+\frac{1}{48 \sqrt{3}}}{\pi^{2}} \\
& \frac{297+4 \sqrt{\frac{2}{3}(275+72 \sqrt{6})}}{1536 \pi^{2}}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)^{3}}{16 \pi^{2}}= \\
& 3 \\
& 16 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}+ \\
& 64 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 1 \\
& 48 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 3 \\
& 256 \pi^{2} \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right) 3}{16 \pi^{2}}=\frac{3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{16 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(1-z_{0}\right)^{k} z_{0}^{-k}}}{k!}}+ \\
& \underline{3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right]} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right]\right)}+} \\
& 64 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right]} z_{0}^{\left.1 / 2\left(-1-\arg \left(3-z_{0}\right) /(2 \pi)\right]\right)}} \\
& 48 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& 3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2\left(-1-\arg \left(4-z_{0}\right) /(2 \pi)\right]\right)} \\
& 256 \pi^{2} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{k}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right) 3}{16 \pi^{2}}= \\
& \left(9 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}(-1)^{k_{1}+k_{2}+k_{3}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\right. \\
& \left(-\frac{1}{2}\right)_{k_{3}}\left(1-z_{0}\right)^{k_{1}}\left(2-z_{0}\right)^{k_{2}}\left(3-z_{0}\right)^{k_{3}} z_{0}^{-k_{1}-k_{2}-k_{3}}+ \\
& 16 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}(-1)^{k_{1}+k_{2}+k_{3}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-\frac{1}{2}\right)_{k_{3}} \\
& \left(1-z_{0}\right)^{k_{1}}\left(2-z_{0}\right)^{k_{2}}\left(4-z_{0}\right)^{k_{3}} z_{0}^{-k_{1}-k_{2}-k_{3}}+ \\
& 36 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}(-1)^{k_{1}+k_{2}+k_{3}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-\frac{1}{2}\right)_{k_{3}} \\
& \left(1-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}}\left(4-z_{0}\right)^{k_{3}} z_{0}^{-k_{1}-k_{2}-k_{3}}+ \\
& 144 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}(-1)^{k_{1}+k_{2}+k_{3}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-\frac{1}{2}\right)_{k_{3}} \\
& \left.\left(2-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}}\left(4-z_{0}\right)^{k_{3}} z_{0}^{-k_{1}-k_{2}-k_{3}}\right) / \\
& \left(768 \pi^{2} \sqrt{z_{0}}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right. \\
& \left.\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$1 /\left(\left(\left(\left(3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *((((1 /(1 \mathrm{sqrt} 1)+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt} 3)+1 /(16 \mathrm{sqrt} 4)))))\right)\right)\right)\right) * 18+29$
Input:
$\frac{1}{\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)} \times 18+29$

## Result:

$29+\frac{96 \pi^{2}}{\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}}$

## Decimal approximation:

773.7723289786739064366728621016961412986627748069702160994...
$773.772328978 \ldots$ result very near to the rest mass of Charged rho meson 775.4

## Property:

$29+\frac{96 \pi^{2}}{\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}}$ is a transcendental number

## Alternate forms:

$\frac{1}{65415603433}\left(6302136462336 \pi^{2}-770010624000 \sqrt{2} \pi^{2}-\right.$
$\left.240098770944 \sqrt{3} \pi^{2}+56757583872 \sqrt{6} \pi^{2}+1897052499557\right)$
$29+\frac{82944 \pi^{2}}{891+108 \sqrt{2}+32 \sqrt{3}}$
$29+\frac{1}{65415603433} 27648$

$$
\begin{aligned}
& (227941857-27850500 \sqrt{2}-32 \sqrt{3(81877519849-34819011216 \sqrt{2})}) \\
& \pi^{2}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& \frac{18}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}+29=} \\
& 29+\left(96 \pi^{2}\right) /\left(\frac{1}{\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{1 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{k!}\right. \\
& \quad \frac{1}{9 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\frac{16 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{k!}
\end{aligned}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

$$
\begin{aligned}
& \frac{18}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}}+29= \\
& 29+\left(96 \pi^{2}\right) /\left(\frac{1}{\exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(1-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+\right. \\
& \frac{1}{4 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+ \\
& 1 \\
& 9 \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& \left.\frac{1}{16 \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right) \text { for }(x \in \mathbb{R} \text { and } x<0) \\
& \frac{18}{\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}}+29= \\
& 29+\left(96 \pi^{2}\right) /\left(\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor\right)}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right. \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}}+ \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& 9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor\right)}} \\
& 16 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}
\end{aligned}
$$

## Input:

$\sqrt[512]{\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}$

## Exact result:

$\frac{\sqrt[512]{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)}}{\sqrt[128]{256} \pi}$

## Decimal approximation:

$0.992755457382685870907518778213089423576732875586435399889 \ldots$
$0.99275545738 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

## Property:

$\frac{\sqrt[512]{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)}}{\sqrt[128]{2} \sqrt[256]{\pi}}$ is a transcendental number

## Alternate forms:

$$
\begin{aligned}
& \frac{\sqrt[512]{891+108 \sqrt{2}+32 \sqrt{3}}}{2^{9 / 512} \sqrt[256]{3 \pi}} \\
& \frac{\sqrt[512]{72 \sqrt{3}+\sqrt{2}(32+297 \sqrt{3})}}{2^{19 / 1024} \times 3^{3 / 1024} \sqrt[256]{\pi}}
\end{aligned}
$$

All 512th roots of $(\mathbf{3}(33 / 32+1 /(4 \operatorname{sqrt}(2))+1 /(9 \operatorname{sqrt}(3)))) /\left(16 \pi^{\wedge} 2\right):$
$\frac{\sqrt[512]{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)} e^{0}}{\sqrt[128]{2} \sqrt[256]{\pi}} \approx 0.992755$ (real, principal root)
$\frac{\sqrt[512]{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)} e^{(i \pi) / 256}}{\sqrt[128]{2} \sqrt[256]{\pi}} \approx 0.992681+0.012183 i$
$\frac{\sqrt[512]{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)} e^{(i \pi) / 128}}{\sqrt[128]{2} \sqrt[256]{\pi}} \approx 0.992456+0.024363 i$
$\frac{\sqrt[512]{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)} e^{(3 i \pi) / 256}}{\sqrt[128]{2} \sqrt[256]{\pi}} \approx 0.992083+0.036541 i$
$\frac{\sqrt[512]{3\left(\frac{33}{32}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}\right)} e^{(i \pi \pi) 64}}{\sqrt[128]{2} \sqrt[256]{\pi}} \approx 0.991560+0.048712 i$

## Series representations:

$$
\begin{aligned}
\sqrt[512]{ } \begin{aligned}
\frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right) 3}{16 \pi^{2}} & = \\
& \frac{1}{\sqrt[128]{2}} \sqrt[512]{3}\left(\frac { 1 } { \pi ^ { 2 } } \left(\frac{1}{\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+\right.\right. \\
& \frac{4}{4 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+ \\
& \frac{9 \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}{k!} \\
& \left.\frac{\left.16 \exp \left(i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}{}\right)
\end{aligned} \text {, }
\end{aligned}
$$

$$
(1 / 512) \text { for }(x \in \mathbb{R} \text { and } x<0)
$$

$$
\begin{align*}
& \sqrt[512]{\frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right) 3}{16 \pi^{2}}}= \\
& \frac{1}{\sqrt[128]{2}} \sqrt[512]{3}\left(\frac { 1 } { \pi ^ { 2 } } \left(\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor}}{\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+\right.\right. \\
& \frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}}{4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}}{9 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(3-z_{0}\right)^{k} z_{0}^{-k}}}{k!}}+ \\
& \left.\left.\frac{\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(4-z_{0}\right) /(2 \pi)\right\rfloor}}{16 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}}\right)\right) \tag{1/512}
\end{align*}
$$

$$
\begin{aligned}
& \sqrt[512]{\frac{\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)^{3}}{16 \pi^{2}}}= \\
& \frac{1}{\sqrt[64]{2} \sqrt[512]{3}}\left(\int \left(9 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}(-1)^{k_{1}+k_{2}+k_{3}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}\left(-\frac{1}{2}\right)_{k_{3}}\right.\right. \\
& 16 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}(-1)^{k_{1}+k_{2}+k_{3}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}} \\
& \left(-\frac{1}{2}\right)_{k_{3}}\left(1-z_{0}\right)^{k_{1}}\left(2-z_{0}\right)^{k_{2}}\left(4-z_{0}\right)^{k_{3}} z_{0}^{-k_{1}-k_{2}-k_{3}}+ \\
& 36 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}(-1)^{k_{1}+k_{2}+k_{3}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}} \\
& \left(-\frac{1}{2}\right)_{k_{3}}\left(1-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}}\left(4-z_{0}\right)^{k_{3}} z_{0}^{-k_{1}-k_{2}-k_{3}}+ \\
& 144 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{1}{k_{1}!k_{2}!k_{3}!}(-1)^{k_{1}+k_{2}+k_{3}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}} \\
& \left.\left(-\frac{1}{2}\right)_{k_{3}}\left(2-z_{0}\right)^{k_{1}}\left(3-z_{0}\right)^{k_{2}}\left(4-z_{0}\right)^{k_{3}} z_{0}^{-k_{1}-k_{2}-k_{3}}\right) / \\
& \left(\pi^{2} \sqrt{z_{0}}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)\right. \\
& \left.\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) \text { 人 } \\
& (1 / 512)) \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

## Integral representation:

$(1+z)^{a}=\frac{\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$
$1 / 4 \log$ base 0.9927554573826
$\left(\left(\left(\left(3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *((((1 /(1\right.\right.\right.\right.$ sqrt 1$)+1 /(4$ sqrt 2$\left.\left.\left.\left.)+1 /(9 \mathrm{sqrt} 3)+1 /(16 \mathrm{sqrt} 4)))))\right)\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

## Input interpretation:

$\frac{1}{4} \log _{0.9927554573826}\left(\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)\right)-\pi+\frac{1}{\phi}$
$\log _{b}(x)$ is the base- $b$ logarithm
$\phi$ is the golden ratio

## Result:

125.47644133...
125.47644133... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Alternative representation:

$$
\frac{1}{4} \log _{0.99275545738260000}\left(\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)-\pi+\frac{1}{\phi}=
$$

$$
-\pi+\frac{1}{\phi}+\frac{\log \left(\frac{3\left(\frac{1}{\sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)}{4 \log (0.99275545738260000)}
$$

## Series representations:

$$
\begin{aligned}
& \frac{1}{4} \log _{0.00275545738260000}\left(\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\frac{144}{\sqrt{1}}+\frac{36}{\sqrt{2}}+\frac{16}{\sqrt{3}}+\frac{9}{\sqrt{4}}}{768 \pi^{2}}\right)^{k}}{4 \log (0.99275545738260000)}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4} \log _{0.99275545738260000}\left(\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{3\left(\frac{1}{\sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)^{k}}{4 \log (0.99275545738260000)}}{k}
\end{aligned}
$$

$$
\frac{1}{4} \log _{0.99275545738260000}\left(\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)-\pi+\frac{1}{\phi}=
$$

$$
\frac{1.00000000000000}{\phi}-1.00000000000000 \pi+
$$

$$
\log \left(\frac{3\left(\frac{1}{\sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)(-34.3837348095031-
$$

$$
\left.0.250000000000000 \sum_{k=0}^{\infty}(-0.00724454261740000)^{k} G(k)\right)
$$

$$
\text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

$1 / 32 \log$ base 0.9927554573826
$\left(\left(\left(\left(3 /\left(16 \mathrm{Pi}^{\wedge} 2\right) *((((1 /(1 \mathrm{sqrt} 1)+1 /(4 \mathrm{sqrt} 2)+1 /(9 \mathrm{sqrt} 3)+1 /(16 \mathrm{sqrt} 4)))))\right)\right)\right)\right)+1 /$ golden ratio

## Input interpretation:

$\frac{1}{32} \log _{0.9927554573826}\left(\frac{3}{16 \pi^{2}}\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)\right)+\frac{1}{\phi}$

## Result:

16.618033989...
16.618033989 .
. result very near to the mass of the hypothetical light particle, the boson $\mathrm{m}_{\mathrm{X}}=16.84 \mathrm{MeV}$

## Alternative representation:

$\frac{1}{32} \log _{0.99275545738260000}\left(\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}+\frac{\log \left(\frac{3\left(\frac{1}{\sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)}{32 \log (0.99275545738260000)}
$$

## Series representations:

$$
\frac{1}{32} \log _{0.99275545738260000}\left(\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)+\frac{1}{\phi}=
$$

$$
\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{3\left(\frac{1}{\sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right.}{16 \pi^{2}}\right)}{32 \log (0.99275545738260000)}}{k}
$$

$$
\frac{1}{32} \log _{0.99275545738260000}\left(\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)+\frac{1}{\phi}=
$$

$$
\frac{1.00000000000000}{\phi}+\log \left(\frac{3\left(\frac{1}{\sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)(-4.2979668511879-
$$

$$
\left.0.0312500000000000 \sum_{k=0}^{\infty}(-0.00724454261740000)^{k} G(k)\right)
$$

$$
\text { for }\left(G(0)=0 \text { and } \frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

$$
\begin{aligned}
& \frac{1}{32} \log _{0.99275545738260000}\left(\frac{3\left(\frac{1}{1 \sqrt{1}}+\frac{1}{4 \sqrt{2}}+\frac{1}{9 \sqrt{3}}+\frac{1}{16 \sqrt{4}}\right)}{16 \pi^{2}}\right)+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{\frac{144}{\sqrt{1}}+\frac{36}{\sqrt{2}}+\frac{16}{\sqrt{3}}+\frac{9}{\sqrt{4}}}{768 \pi^{2}}\right)^{k}}{32 \log (0.99275545738260000)}}{k}
\end{aligned}
$$

Page 97

$1 / 2-1 /\left(4^{*} 2^{\wedge} 4\right)+1 /\left(7^{*} 2^{\wedge} 7\right)$

## Input:

$\frac{1}{2}-\frac{1}{4 \times 2^{4}}+\frac{1}{7 \times 2^{7}}$

## Exact result:

435
896

## Decimal approximation:

$0.485491071428571428571428571428571428571428571428571428571 \ldots$
0.4854910714....

Pi/(6sqrt3) $+1 / 6 \ln 3$
Input:
$\frac{\pi}{6 \sqrt{3}}+\frac{1}{6} \log (3)$

## Exact result:

$\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}$

## Decimal approximation:

$0.485401942150387923664887249094113572821926134319248337884 \ldots$
$0.48540194215 \ldots$.

## Alternate forms:

$\frac{1}{18}(\sqrt{3} \pi+\log (27))$
$\frac{1}{18}(\sqrt{3} \pi+3 \log (3))$
$\frac{\pi+\sqrt{3} \log (3)}{6 \sqrt{3}}$

## Alternative representations:

$\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}=\frac{\log _{e}(3)}{6}+\frac{\pi}{6 \sqrt{3}}$
$\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}=\frac{1}{6} \log (a) \log _{a}(3)+\frac{\pi}{6 \sqrt{3}}$
$\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}=\frac{2}{6} \operatorname{coth}^{-1}(2)+\frac{\pi}{6 \sqrt{3}}$

## Series representations:

$\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}=\frac{\pi}{6 \sqrt{3}}+\frac{\log (8)}{18}-\frac{1}{6} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}}{k}$
$\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}=\frac{\pi}{6 \sqrt{3}}+\frac{1}{3} i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor+\frac{\log (x)}{6}-\frac{1}{6} \sum_{k=1}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}}{k}$
for $x<0$

$$
\begin{aligned}
& \frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}=\frac{\pi}{6 \sqrt{3}}+\frac{1}{6}\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+ \\
& \frac{\log \left(z_{0}\right)}{6}+\frac{1}{6}\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\frac{1}{6} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& \frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}=\frac{\pi}{6 \sqrt{3}}+\frac{1}{6} \int_{1}^{3} \frac{1}{t} d t \\
& \frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}=\frac{\pi}{6 \sqrt{3}}-\frac{i}{12 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

$11 / 10^{\wedge} 3-6 /(((5 \ln (((\operatorname{Pi} /(6 s q r t 3)+1 / 6 \ln 3))))))$
Where 11 is a Lucas number

## Input:

$\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{1}{6} \log (3)\right)}$

## Exact result:

$\frac{11}{1000}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}$

## Decimal approximation:

1.671260862433822004010256676269847702707273749287869588882...
$1.67126086243 \ldots$ result practically equal to the value of the formula:
$m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-24} \mathrm{gm}$
that is the holographic proton mass (N. Haramein)

## Alternate forms:

$\frac{11}{1000}-\frac{6}{5 \log \left(\frac{1}{18}(\sqrt{3} \pi+\log (27))\right)}$
$\frac{11}{1000}-\frac{6}{5\left(\log \left(\frac{1}{2}(\sqrt{3} \pi+3 \log (3))\right)-2 \log (3)\right)}$
$11 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)-1200$
$1000 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)$

## Alternative representations:

$\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}=-\frac{6}{5 \log _{e}\left(\frac{\log (3)}{6}+\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}$
$\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}=-\frac{6}{5 \log (a) \log a\left(\frac{\log (3)}{6}+\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}$
$\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}=\frac{-6}{-5 \operatorname{Li}_{1}\left(1-\frac{\log (3)}{6}-\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}$

## Series representations:

$$
\begin{aligned}
& \frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}=\frac{11}{1000}+\frac{6}{5 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k}\left(-18+\sqrt{3} \pi+\log (27)^{k}\right.}{k}} \\
& \frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}= \\
& \frac{11}{1000}+\frac{6 i}{10 \pi\left[\frac{\arg (\sqrt{3} \pi-18 x+\log (27))}{2 \pi}\right]-5 i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k} x^{-k}(\sqrt{3} \pi-18 x+\log (27))^{k}}{k}\right)}
\end{aligned}
$$

for $x<0$

$$
\begin{aligned}
& \frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}= \\
& \frac{11}{1000}-6 /\left(5 \left(\log \left(z_{0}\right)+\left[\frac{\arg \left(\sqrt{3} \pi+\log (27)-18 z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k}\left(\sqrt{3} \pi+\log (27)-18 z_{0}\right)^{k} z_{0}^{k}}{k}\right)\right)
\end{aligned}
$$

## Integral representation:

$\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}=\frac{11}{1000}-\frac{6}{5 \int_{1}^{\frac{1}{18}(\sqrt{3} \pi+\log (27)} \frac{1}{t} d t}$

And:
$10^{\wedge} 3^{*}\left(\left(\left(11 / 10^{\wedge} 3-6 /(((5 \ln (((\operatorname{Pi} /(6 \operatorname{sqrt} 3)+1 / 6 \ln 3))))))\right)\right)\right)+$ sqrt2

## Input:

$$
10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{1}{6} \log (3)\right)}\right)+\sqrt{2}
$$

## Exact result:

$\sqrt{2}+1000\left(\frac{11}{1000}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)$

## Decimal approximation:

1672.675075996195099059058364994057400785843421163246536955...
1672.675075996... result practically equal to the rest mass of Omega baryon 1672.45

Alternate forms:
$11+\sqrt{2}-\frac{1200}{\log \left(\frac{1}{18}(\sqrt{3} \pi+\log (27))\right)}$
$11+\sqrt{2}-\frac{1200}{\log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}$
$11+\sqrt{2}-\frac{1200}{\log \left(\frac{1}{2}(\sqrt{3} \pi+3 \log (3))\right)-2 \log (3)}$

## Alternative representations:

$10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}=10^{3}\left(-\frac{6}{5 \log _{e}\left(\frac{\log (3)}{6}+\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}$
$10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}=$
$10^{3}\left(-\frac{6}{5 \log (a) \log _{a}\left(\frac{\log (3)}{6}+\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}$
$10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}=10^{3}\left(\frac{-6}{-5 \operatorname{Li}_{1}\left(1-\frac{\log (3)}{6}-\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}$

## Series representations:

$$
\begin{aligned}
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}=11+\sqrt{2}+\frac{1200}{\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k}\left(-18+\sqrt{3} \pi+\log (27)^{k}\right.}{k}} \\
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}=11+\sqrt{2}+ \\
& \frac{1200 i}{2 \pi\left[\frac{\arg (\sqrt{3} \pi-18 x+\log (27))}{2 \pi}\right)-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k} x^{-k}(\sqrt{3} \pi-18 x+\log (27))^{k}}{k}\right)} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}= \\
& 11+\sqrt{2}-1200 /\left(\log \left(z_{0}\right)+\left|\frac{\arg \left(\sqrt{3} \pi+\log (27)-18 z_{0}\right)}{2 \pi}\right|\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right. \\
& \left.\quad \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k}\left(\sqrt{3} \pi+\log (27)-18 z_{0}\right)^{k} z_{0}^{*}}{k}\right)
\end{aligned}
$$

## Integral representation:

$10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}=11+\sqrt{2}-\frac{1200}{\int_{1}^{\frac{1}{18}(\sqrt{3} \pi+\log (27))} \frac{1}{t} d t}$
$10^{\wedge} 3^{*}\left(\left(\left(11 / 10^{\wedge} 3-6 /(((5 \ln (((\mathrm{Pi} /(6 \mathrm{sqrt} 3)+1 / 6 \ln 3))))))\right)\right)\right)+\mathrm{sqrt} 2+(47+7+2)$
Where 2, 7 and 47 are Lucas numbers

## Input:

$10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{1}{6} \log (3)\right)}\right)+\sqrt{2}+(47+7+2)$

## Exact result:

$56+\sqrt{2}+1000\left(\frac{11}{1000}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)$

## Decimal approximation:

1728.675075996195099059058364994057400785843421163246536955...
1728.6750759....

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-

Zagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

## Alternate forms:

$67+\sqrt{2}-\frac{1200}{\log \left(\frac{1}{18}(\sqrt{3} \pi+\log (27))\right)}$
$67+\sqrt{2}-\frac{1200}{\log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}$
$67+\sqrt{2}-\frac{1200}{\log \left(\frac{1}{2}(\sqrt{3} \pi+3 \log (3))\right)-2 \log (3)}$

## Alternative representations:

$$
\begin{aligned}
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+(47+7+2)= \\
& 56+10^{3}\left(-\frac{6}{5 \log _{e}\left(\frac{\log (3)}{6}+\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}
\end{aligned}
$$

$$
10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+(47+7+2)=
$$

$$
56+10^{3}\left(-\frac{6}{5 \log (a) \log _{a}\left(\frac{\log (3)}{6}+\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}
$$

$$
10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+(47+7+2)=
$$

$$
56+10^{3}\left(\frac{-6}{-5 \mathrm{Li}_{1}\left(1-\frac{\log (3)}{6}-\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}
$$

## Series representations:

$$
\begin{aligned}
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+(47+7+2)= \\
& 67+\sqrt{2}+\frac{1200}{\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k}\left(-18+\sqrt{3} \pi+\log (27)^{k}\right.}{k}} \\
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+(47+7+2)=67+\sqrt{2}+ \\
& \quad \frac{1200 i}{2 \pi\left[\frac{\arg (\sqrt{3} \pi-18 x+\log (27)}{2 \pi}\right)-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k} x^{-k}(\sqrt{3} \pi-18 x+\log (27))^{k}}{k}\right)} \\
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+(47+7+2)= \\
& 67+\sqrt{2}-1200 /\left(\log \left(z_{0}\right)+\left\lvert\, \frac{\arg \left(\sqrt{3} \pi+\log (27)-18 z_{0}\right)}{2 \pi}\right.\right)\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)- \\
& \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k}\left(\sqrt{3} \pi+\log (27)-18 z_{0}\right)^{k} z_{0}^{-k}}{k}\right)
\end{aligned}
$$

## Integral representation:

$10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+(47+7+2)=67+\sqrt{2}-\frac{1200}{\int_{1}^{\frac{1}{18}(\sqrt{3} \pi+\log (27))} \frac{1}{t} d t}$
$10^{\wedge} 3^{*}\left(\left(\left(11 / 10^{\wedge} 3-6 /(((5 \ln (((\mathrm{Pi} /(6 \mathrm{sqrt} 3)+1 / 6 \ln 3))))))\right)\right)\right)+\mathrm{sqrt} 2+123-11$
Where 2, 11 and 123 are Lucas numbers

## Input:

$10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{1}{6} \log (3)\right)}\right)+\sqrt{2}+123-11$

## Exact result:

$$
112+\sqrt{2}+1000\left(\frac{11}{1000}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)
$$

## Decimal approximation:

1784.675075996195099059058364994057400785843421163246536955...
$1784.675075996 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.

## Alternate forms:

$$
\begin{aligned}
& 123+\sqrt{2}-\frac{1200}{\log \left(\frac{1}{18}(\sqrt{3} \pi+\log (27))\right)} \\
& 123+\sqrt{2}-\frac{1200}{\log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)} \\
& 123+\sqrt{2}-\frac{1200}{\log \left(\frac{1}{2}(\sqrt{3} \pi+3 \log (3))\right)-2 \log (3)}
\end{aligned}
$$

## Alternative representations:

$$
\begin{gathered}
10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+123-11= \\
112+10^{3}\left(-\frac{6}{5 \log _{e}\left(\frac{\log (3)}{6}+\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}
\end{gathered}
$$

$$
10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+123-11=
$$

$$
112+10^{3}\left(-\frac{6}{5 \log (a) \log _{a}\left(\frac{\log (3)}{6}+\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}
$$

$$
\begin{aligned}
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+123-11= \\
& 112+10^{3}\left(\frac{-6}{-5 \operatorname{Li}_{1}\left(1-\frac{\log (3)}{6}-\frac{\pi}{6 \sqrt{3}}\right)}+\frac{11}{10^{3}}\right)+\sqrt{2}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+123-11= \\
& 123+\sqrt{2}+\frac{1200}{\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k}(-18+\sqrt{3} \pi+\log (27))^{k}}{k}} \\
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+123-11=123+\sqrt{2}+ \\
& \quad \frac{1200 i}{\left.2 \pi \left\lvert\, \frac{\arg (\sqrt{3} \pi-18 x+\log (27))}{2 \pi}\right.\right)-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k} x^{-k}\left(\sqrt{3} \pi-18 x+\log (27)^{k}\right.}{k}\right)} \text { for } \\
& 10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+123-11= \\
& 123+\sqrt{2}-1200 /\left(\log \left(z_{0}\right)+\left[\left.\frac{\arg \left(\sqrt{3} \pi+\log (27)-18 z_{0}\right)}{2 \pi} \right\rvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{18}\right)^{k}\left(\sqrt{3} \pi+\log (27)-18 z_{0}\right)^{k} z_{0}^{-k}}{k}\right)
\end{aligned}
$$

## Integral representation:

$10^{3}\left(\frac{11}{10^{3}}-\frac{6}{5 \log \left(\frac{\pi}{6 \sqrt{3}}+\frac{\log (3)}{6}\right)}\right)+\sqrt{2}+123-11=123+\sqrt{2}-\frac{1200}{\int_{1}^{\frac{1}{18}(\sqrt{3} \pi+\log (27))} \frac{1}{t} d t}$

Now, we have that:
$(2-\mathrm{sqrt} 3) / 1-\left((2-\mathrm{sqrt} 3)^{\wedge} 3\right) / 5+\left((2-\mathrm{sqrt} 3)^{\wedge} 5\right) / 9$

## Input:

$\frac{2-\sqrt{3}}{1}-\frac{1}{5}(2-\sqrt{3})^{3}+\frac{1}{9}(2-\sqrt{3})^{5}$

## Result:

$2-\sqrt{3}-\frac{1}{5}(2-\sqrt{3})^{3}+\frac{1}{9}(2-\sqrt{3})^{5}$

## Decimal approximation:

0.264255083816048548473083196930930879324910724690811115704...
0.264255083...

Alternate forms:
$\frac{1}{45}(1666-955 \sqrt{3})$
$\frac{1666}{45}-\frac{191}{3 \sqrt{3}}$
$\frac{1666}{45}-\frac{209}{3 \sqrt{3}}+2 \sqrt{3}$
Minimal polynomial:
$2025 x^{2}-149940 x+39481$
$\mathrm{Pi} / 16($ sqrt3-1)-(sqrt3-1)/4 $\ln (\mathrm{sqrt} 3-1)$

## Input:

$\frac{\pi}{16}(\sqrt{3}-1)-\left(\frac{1}{4}(\sqrt{3}-1)\right) \log (\sqrt{3}-1)$

## Exact result:

$\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)$

## Decimal approximation:

0.200820482280181765362520097697021888150957177245458456769...
0.2008204822...

## Alternate forms:

$\frac{1}{16}(\sqrt{3}-1)(\pi-4 \log (\sqrt{3}-1))$
$-\frac{\pi}{16}+\frac{\sqrt{3} \pi}{16}+\frac{1}{4} \log (\sqrt{3}-1)-\frac{1}{4} \sqrt{3} \log (\sqrt{3}-1)$

## Alternative representations:

$$
\begin{aligned}
& \frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)= \\
& \quad-\frac{1}{4} \log _{e}(-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3}) \\
& \frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)= \\
& \quad-\frac{1}{4} \log (a) \log _{a}(-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})
\end{aligned}
$$

$$
\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)=
$$

$$
\frac{1}{4} \mathrm{Li}_{1}(2-\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})
$$

## Series representations:

$$
\begin{aligned}
& \frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)=\frac{1}{16}(-1+\sqrt{3})\left(\pi+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-2+\sqrt{3})^{k}}{k}\right) \\
& \frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)=\frac{1}{16}(-1+\sqrt{3}) \\
& \quad\left(\pi-8 i \pi\left[\frac{\arg (-1+\sqrt{3}-x)}{2 \pi} \left\lvert\,-4 \log (x)+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+\sqrt{3}-x)^{k} x^{-k}}{k}\right.\right) \text { for } x<0\right. \\
& \frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)=\frac{1}{16}(-1+\sqrt{3}) \pi-\frac{1}{4}(-1+\sqrt{3}) \\
& \quad\left(2 i \pi\left[\frac{\arg (-1+\sqrt{3}-x)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+\sqrt{3}-x)^{k} x^{-k}}{k}\right.\right) \text { for } x<0\right.
\end{aligned}
$$

## Integral representation:

$$
\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)=\frac{1}{16}(-1+\sqrt{3})\left(\pi-4 \int_{1}^{-1+\sqrt{3}} \frac{1}{t} d t\right)
$$

$\operatorname{colog}(((\mathrm{Pi} / 16(\operatorname{sqrt} 3-1)-(\mathrm{sqrt} 3-1) / 4 \ln (\mathrm{sqrt} 3-1)))$

## Input:

$$
-\log \left(\frac{\pi}{16}(\sqrt{3}-1)-\left(\frac{1}{4}(\sqrt{3}-1)\right) \log (\sqrt{3}-1)\right)
$$

## Exact result:

$$
-\log \left(\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)
$$

## Decimal approximation:

1.605343892979195304559844988372774680397405899482994315954...
$1.6053438929 \ldots$ result very near to the elementary charge

## Alternate forms:

$$
-\log \left(\frac{1}{16}(\sqrt{3}-1)(\pi-4 \log (\sqrt{3}-1))\right)
$$

$$
\log (16)-\log ((\sqrt{3}-1)(\pi-4 \log (\sqrt{3}-1)))
$$

$$
4 \log (2)-\log ((\sqrt{3}-1)(\pi-4 \log (\sqrt{3}-1)))
$$

## Alternative representations:

$$
\begin{aligned}
& -\log \left(\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)\right)= \\
& -\log _{e}\left(-\frac{1}{4} \log (-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})\right) \\
& -\log \left(\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)\right)= \\
& -\log (a) \log _{a}\left(-\frac{1}{4} \log (-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\log \left(\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)\right)= \\
& \quad \operatorname{Li}_{1}\left(1+\frac{1}{4} \log (-1+\sqrt{3})(-1+\sqrt{3})-\frac{1}{16} \pi(-1+\sqrt{3})\right)
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& -\log \left(\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)\right)= \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{16}(-1+\sqrt{3}) \pi-\frac{1}{4}(-1+\sqrt{3}) \log (-1+\sqrt{3})\right)^{k}}{k} \\
& -\log \left(\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)\right)= \\
& -2 i \pi\left[\left.\frac{\arg \left(\frac{1}{16}(-1+\sqrt{3}) \pi-x-\frac{1}{4}(-1+\sqrt{3}) \log (-1+\sqrt{3})\right)}{2 \pi} \right\rvert\,-\log (x)+\right. \\
& \quad \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}\left(\frac{1}{16}(-1+\sqrt{3}) \pi-x-\frac{1}{4}(-1+\sqrt{3}) \log (-1+\sqrt{3})\right)^{k}}{k} \operatorname{for} x<0 \\
& -\log \left(\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)\right)=-2 i \pi\left[\left.\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,-\right. \\
& \quad \log \left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{1}{16}(-1+\sqrt{3}) \pi-\frac{1}{4}(-1+\sqrt{3}) \log (-1+\sqrt{3})-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

## Integral representation:

$$
-\log \left(\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)\right)=-\int_{1}^{\frac{1}{16}(-1+\sqrt{3})(\pi-4 \log (-1+\sqrt{3}))} \frac{1}{t} d t
$$

## Input:

$\sqrt[256]{\frac{\pi}{16}(\sqrt{3}-1)-\left(\frac{1}{4}(\sqrt{3}-1)\right) \log (\sqrt{3}-1)}$

## Exact result:

$$
\sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)}
$$

## Decimal approximation:

$0.993748746317238434063829737183982105349884886475838695558 \ldots$
$0.9937487463172 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

## Alternate forms:

$\frac{\sqrt[256]{(\sqrt{3}-1)(\pi-4 \log (\sqrt{3}-1))}}{\sqrt[64]{2}}$
$\sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi+\frac{1}{4}(1-\sqrt{3}) \log (\sqrt{3}-1)}$

All 256th roots of $1 / 16(\operatorname{sqrt}(3)-1) \pi-1 / 4(\operatorname{sqrt}(3)-1) \log (\operatorname{sqrt}(3)-1)$ :
$e \sqrt{0} \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi+\frac{1}{4}(1-\sqrt{3}) \log (\sqrt{3}-1)} \approx 0.993749$ (real, principal root)
$e^{(i \pi) / 128} \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi+\frac{1}{4}(1-\sqrt{3}) \log (\sqrt{3}-1)} \approx 0.993449+0.024388 i$
$e^{(i \pi) / 64} \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi+\frac{1}{4}(1-\sqrt{3}) \log (\sqrt{3}-1)} \approx 0.992552+0.048761 i$
$e^{(3 i \pi / 128} \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi+\frac{1}{4}(1-\sqrt{3}) \log (\sqrt{3}-1)} \approx 0.991056+0.07310 i$
$e^{(i \pi) / 32} \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi+\frac{1}{4}(1-\sqrt{3}) \log (\sqrt{3}-1)} \approx 0.988964+0.09740 i$

## Alternative representations:

$$
\begin{aligned}
& \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)}= \\
& \sqrt[256]{-\frac{1}{4} \log _{e}(-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})} \\
& \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)}= \\
& \sqrt[256]{-\frac{1}{4} \log (a) \log _{a}(-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})}
\end{aligned}
$$

$$
\sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)}=
$$

$$
\sqrt[256]{\frac{1}{4} \mathrm{Li}_{1}(2-\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})}
$$

## Series representations:

$$
\begin{aligned}
& \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)}= \\
& \sqrt[256]{-1+\sqrt{3}} \sqrt[256]{\pi+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-2+\sqrt{3})^{k}}{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)}= \\
& \left(\frac{1}{16}(-1+\sqrt{3}) \pi-\frac{1}{4}(-1+\sqrt{3})\left(2 i \pi\left|\frac{\arg (-1+\sqrt{3}-x)}{2 \pi}\right|+\log (x)-\right.\right. \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+\sqrt{3}-x)^{k} x^{-k}}{k}\right)\right) \wedge(1 / 256) \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)}=\frac{1}{\sqrt[64]{2}} \\
& \sqrt[256]{-1+\sqrt{3}}\left(\pi-4\left(\log \left(z_{0}\right)+\left|\frac{\arg \left(-1+\sqrt{3}-z_{0}\right)}{2 \pi}\right|\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\sqrt{3}-z_{0}\right)^{k} z_{0}^{k}}{k}\right)\right) \wedge(1 / 256)
\end{aligned}
$$

## Integral representation:

$\sqrt[256]{\frac{1}{16}(\sqrt{3}-1) \pi-\frac{1}{4} \log (\sqrt{3}-1)(\sqrt{3}-1)}=\frac{\sqrt[256]{-1+\sqrt{3}} \sqrt[256]{\pi-4 \int_{1}^{-1+\sqrt{3}} \frac{1}{t} d t}}{\sqrt[64]{2}}$
$1 / 2 * \log$ base $0.9937487463172((\mathrm{Pi} / 16(\operatorname{sqrt} 3-1)-(s q r t 3-1) / 4 \ln (\mathrm{sqrt} 3-1)))-$ $\mathrm{Pi}+1 /$ golden ratio

## Input interpretation:

$\frac{1}{2} \log _{0.9937487463172}\left(\frac{\pi}{16}(\sqrt{3}-1)-\left(\frac{1}{4}(\sqrt{3}-1)\right) \log (\sqrt{3}-1)\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- $b$ logarithm

## Result:

125.47644133...
125.47644133... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Alternative representations:

$$
\begin{aligned}
& \frac{1}{2} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)-\pi+\frac{1}{\phi}= \\
& -\pi+\frac{1}{2} \log _{0.99374874631720000}\left(-\frac{1}{4} \log _{e}(-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})\right)+\frac{1}{\phi}
\end{aligned}
$$

$\frac{1}{2} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)-\pi+\frac{1}{\phi}=$ $-\pi+\frac{1}{\phi}+\frac{\log \left(-\frac{1}{4} \log (-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})\right)}{2 \log (0.99374874631720000)}$
$\frac{1}{2} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)-\pi+\frac{1}{\phi}=$ $-\pi+\frac{1}{2} \log _{0.99374874631720000}($

$$
\left.-\frac{1}{4} \log (a) \log _{a}(-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})\right)+\frac{1}{\phi}
$$

## Series representations:

$\frac{1}{2} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{16} \pi(-1+\sqrt{3})-\frac{1}{4} \log (-1+\sqrt{3})(-1+\sqrt{3})\right)^{k}}{k}}{2 \log (0.99374874631720000)}
$$

$\frac{1}{2} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)-\pi+\frac{1}{\phi}=$ $-\frac{1}{2 \phi}\left(-2+2 \phi \pi-\phi \log _{0.99374874631720000}(\right.$
$\frac{1}{16}\left(-1+\exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$ $\left.\left.\left(\pi+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-2+\sqrt{3})^{k}}{k}\right)\right)\right)$ for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{array}{r}
\frac{1}{2} \log _{0.90374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)-\pi+\frac{1}{\phi}= \\
-\frac{1}{2 \phi}\left(-2+2 \phi \pi-\phi \log _{0.99374874631720000}\left(\frac { 1 } { 1 6 } \pi \left(-1+\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(3-z_{0}\right) /(2 \pi)\right]}\right.\right.\right. \\
\left.z_{0}^{\left.1 / 2\left(1+\operatorname{lag}\left(3-z_{0}\right) /(2 \pi)\right]\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)+ \\
\frac{1}{4}\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}(-2+\sqrt{3})^{k}}{k}\right)\left(-1+\left(\frac{1}{\left.\left.z_{0}\right)^{\left.1 / 2 \arg \left(3-z_{0}\right) /(2 \pi)\right]}\right)}\right.\right. \\
\left.\left.z_{0}^{\left.1 / 2\left(1+\arg \left(3-z_{0}\right) /(2 \pi)\right]\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
\end{array}
$$

## Integral representation:

$\frac{1}{2} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)-\pi+\frac{1}{\phi}=$ $\frac{1}{\phi}-\pi+\frac{1}{2} \log _{0.09374874631720000}\left(\frac{1}{16}\left(\pi-4 \int_{1}^{-1+\sqrt{3}} \frac{1}{t} d t\right)(-1+\sqrt{3})\right)$
$1 / 16$ * $\log$ base $0.9937487463172((\mathrm{Pi} / 16(\mathrm{sqrt} 3-1)-(\mathrm{sqrt} 3-1) / 4 \ln (\mathrm{sqrt} 3-1)))+1 /$ golden ratio

## Input interpretation:

$\frac{1}{16} \log _{0.9937487463172}\left(\frac{\pi}{16}(\sqrt{3}-1)-\left(\frac{1}{4}(\sqrt{3}-1)\right) \log (\sqrt{3}-1)\right)+\frac{1}{\phi}$

## Result:

16.618033989...
$16.618033989 \ldots$ result very near to the mass of the hypothetical light particle, the boson $\mathrm{m}_{\mathrm{X}}=16.84 \mathrm{MeV}$

## Alternative representations:

$$
\begin{aligned}
& \frac{1}{16} \log _{0.90374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)+\frac{1}{\phi}= \\
& \quad \frac{1}{16} \log _{0.99374874631720000}\left(-\frac{1}{4} \log _{e}(-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})\right)+\frac{1}{\phi}
\end{aligned}
$$

$\frac{1}{16} \log _{0.09374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}+\frac{\log \left(-\frac{1}{4} \log (-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})\right)}{16 \log (0.99374874631720000)}
$$

$\frac{1}{16} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)+\frac{1}{\phi}=$
$\frac{1}{16} \log _{0.99374874631720000}\left(-\frac{1}{4} \log (a) \log _{a}(-1+\sqrt{3})(-1+\sqrt{3})+\frac{1}{16} \pi(-1+\sqrt{3})\right)+$ $\frac{1}{\phi}$

## Series representations:

$$
\begin{aligned}
& \frac{1}{16} \log _{0.09374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{16} \pi(-1+\sqrt{3})-\frac{1}{4} \log (-1+\sqrt{3})(-1+\sqrt{3})\right)^{k}}{k}}{16 \log (0.99374874631720000)}
\end{aligned}
$$

$$
\frac{1}{16} \log _{0.09374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)+\frac{1}{\phi}=
$$

$$
\frac{1}{16 \phi}\left(16+\phi \log _{0.99374874631720000}\right)
$$

$$
\frac{1}{16}\left(-1+\exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
$$

$$
\left.\left.\left(\pi+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-2+\sqrt{3})^{k}}{k}\right)\right)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
$$

$\frac{1}{16} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)+\frac{1}{\phi}=$

$$
\frac{1}{16 \phi}\left(16+\phi \log _{0.99374874631720000}\left(\frac { 1 } { 1 6 } \pi \left(-1+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right.\right.
$$

$$
\left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+
$$

$$
\frac{1}{4}\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}(-2+\sqrt{3})^{k}}{k}\right)\left(-1+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}\right.
$$

$$
\left.\left.\left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)\right)
$$

## Integral representation:

$\frac{1}{16} \log _{0.99374874631720000}\left(\frac{1}{16} \pi(\sqrt{3}-1)-\frac{1}{4}(\sqrt{3}-1) \log (\sqrt{3}-1)\right)+\frac{1}{\phi}=$ $\frac{1}{\phi}+\frac{1}{16} \log _{0.99374874631720000}\left(\frac{1}{16}\left(\pi-4 \int_{1}^{-1+\sqrt{3}} \frac{1}{t} d t\right)(-1+\sqrt{3})\right)$

Now, we have:
$\left(\right.$ sqrt3-1)/1 $-\left((\text { sqrt3-1 })^{\wedge} 4\right) / 4+\left((s q r t 3-1)^{\wedge} 7\right) / 7$

## Input:

$$
\frac{\sqrt{3}-1}{1}-\frac{1}{4}(\sqrt{3}-1)^{4}+\frac{1}{7}(\sqrt{3}-1)^{7}
$$

## Result:

$-1+\sqrt{3}-\frac{1}{4}(\sqrt{3}-1)^{4}+\frac{1}{7}(\sqrt{3}-1)^{7}$

## Decimal approximation:

$0.676349021071779650066145995233095600034043876166881140608 \ldots$
0.67634902107...

Alternate forms:
$\frac{3}{7}(121 \sqrt{3}-208)$
$\frac{363 \sqrt{3}}{7}-\frac{624}{7}$
$\frac{1}{7}(363 \sqrt{3}-624)$

## Minimal polynomial:

$49 x^{2}+8736 x-5931$
$\mathrm{Pi} /(4 \mathrm{sqrt} 3)+1 / 3 \ln (((1+\mathrm{sqrt} 3) / \mathrm{sqrt} 2))$

## Input:

$\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)$
$\log (x)$ is the natural logarithm

## Decimal approximation:

$0.672942823879357247419360622295200340408846890601104557187 \ldots$
$0.672942823879 \ldots$

## Alternate forms:

$\frac{\pi}{4 \sqrt{3}}+\frac{1}{6} \log (2+\sqrt{3})$
$\frac{1}{12}(\sqrt{3} \pi+\log (7+4 \sqrt{3}))$
$\frac{1}{12}(\sqrt{3} \pi-\log (4)+4 \log (1+\sqrt{3}))$

## Alternative representations:

$\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)=\frac{1}{3} \log _{e}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}$
$\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)=\frac{1}{3} \log (a) \log _{a}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}$

$$
\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)=-\frac{1}{3} \operatorname{Li}_{1}\left(1-\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}
$$

## Series representations:

$\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)=\frac{\pi}{4 \sqrt{3}}-\frac{1}{3} \sum_{k=1}^{\infty} \frac{\left(1-\sqrt{\frac{3}{2}}-\frac{1}{\sqrt{2}}\right)^{k}}{k}$
$\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)=\frac{\pi}{4 \sqrt{3}}+\frac{2}{3} i \pi\left\{\left.\frac{\arg \left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)}{2 \pi} \right\rvert\,+\right.$
$\frac{\log (x)}{3}-\frac{1}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)^{k} x^{-k}}{k}$ for $x<0$
$\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)=\frac{\pi}{4 \sqrt{3}}+\frac{2}{3} i \pi\left\{\left.\frac{\arg \left(\frac{1+\sqrt{3}}{\sqrt{2}}-x\right)}{2 \pi} \right\rvert\,+\right.$

$$
\frac{\log (x)}{3}-\frac{1}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
$$

## Integral representations:

$$
\begin{aligned}
& \frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)=\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \int_{1}^{\frac{1+\sqrt{3}}{\sqrt{2}}} \frac{1}{t} d t \\
& \frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)=\frac{\pi}{4 \sqrt{3}}-\frac{i}{6 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(-1+\frac{1+\sqrt{3}}{\sqrt{2}}\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \\
& \quad \text { for }-1<\gamma<0
\end{aligned}
$$

$1 / 10^{\wedge} 27^{*}(((1+\mathrm{Pi} /(4 \mathrm{sqrt} 3)+1 / 3 \ln (((1+\mathrm{sqrt} 3) / \mathrm{sqrt} 2)))))$

## Input:

$\frac{1}{10^{27}}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)$
$\log (x)$ is the natural logarithm

## Exact result:

$$
1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)
$$

$\overline{1000000000000000000000000000}$

## Decimal approximation:

$1.6729428238793572474193606222952003404088468906011045 \ldots \times 10^{-27}$
$1.672942823 \ldots * 10^{-27}$ result practically equal to the proton mass

## Alternate forms:

$12+\sqrt{3} \pi+\log (7+4 \sqrt{3})$
$\overline{12000000000000000000000000000}$
$1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{6} \log (2+\sqrt{3})$
$\overline{1000000000000000000000000000}$

$$
12+\sqrt{3} \pi+4 \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)
$$

12000000000000000000000000000

## Alternative representations:

$$
\begin{aligned}
& \frac{1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}{10^{27}}=\frac{1+\frac{1}{3} \log _{e}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}}{10^{27}} \\
& \frac{1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}{10^{27}}=\frac{1+\frac{1}{3} \log (a) \log _{a}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}}{10^{27}} \\
& \frac{1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}{10^{27}}=\frac{1-\frac{1}{3} \mathrm{Li}_{1}\left(1-\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}}{10^{27}}
\end{aligned}
$$

## Integral representations:

$$
\begin{gathered}
\frac{1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}{10^{27}}=\frac{\pi}{1000000000000000000000000000}+ \\
\frac{1}{4000000000000000000000000000 \sqrt{3}}+ \\
\frac{1}{3000000000000000000000000000} \int_{1}^{\frac{1+\sqrt{3}}{\sqrt{2}}} \frac{1}{t} d t \\
\frac{1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}{10^{27}}=\frac{1}{\frac{1000000000000000000000000000}{4000000000000000000000000000 \sqrt{3}}-}+ \\
\frac{i}{6000000000000000000000000000 \pi} \\
\int_{-i \infty 0+\gamma}^{i \infty+\gamma} \frac{\left(\frac{2}{-2+\sqrt{2}+\sqrt{6}}\right)^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{gathered}
$$

$$
10^{\wedge} 3^{*}(((1+\mathrm{Pi} /(4 \mathrm{sqrt} 3)+1 / 3 \ln (((1+\mathrm{sqrt} 3) / \mathrm{sqrt} 2)))))
$$

## Input:

$$
10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)
$$

## Exact result:

$1000\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)$

## Decimal approximation:

1672.942823879357247419360622295200340408846890601104557187...
$1672.942823879 \ldots$ result practically equal to the rest mass of Omega baryon
1672.45

## Alternate forms:

$$
\begin{aligned}
& \frac{250}{3}(12+\sqrt{3} \pi+\log (7+4 \sqrt{3})) \\
& 1000\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{6} \log (2+\sqrt{3})\right)
\end{aligned}
$$

$1000+\frac{250 \pi}{\sqrt{3}}-\frac{500 \log (2)}{3}+\frac{1000}{3} \log (1+\sqrt{3})$

## Alternative representations:

$10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)=10^{3}\left(1+\frac{1}{3} \log _{e}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)$
$10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)=10^{3}\left(1+\frac{1}{3} \log (a) \log _{a}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)$
$10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)=10^{3}\left(1-\frac{1}{3} \mathrm{Li}_{1}\left(1-\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)$

## Series representations:

$10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)=1000+\frac{250 \pi}{\sqrt{3}}-\frac{1000}{3} \sum_{k=1}^{\infty} \frac{\left(1-\sqrt{\frac{3}{2}}-\frac{1}{\sqrt{2}}\right)^{k}}{k}$

$$
\begin{aligned}
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)=1000+\frac{250 \pi}{\sqrt{3}}+\frac{2000}{3} i \pi\left|\frac{\arg \left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)}{2 \pi}\right|+ \\
& \frac{1000 \log (x)}{3}-\frac{1000}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$$
10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)=1000+\frac{250 \pi}{\sqrt{3}}+\frac{2000}{3} i \pi\left\lfloor\frac{\arg \left(\frac{1+\sqrt{3}}{\sqrt{2}}-x\right)}{2 \pi}\right]+
$$

$$
\frac{1000 \log (x)}{3}-\frac{1000}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
$$

## Integral representations:

$10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)=1000+\frac{250 \pi}{\sqrt{3}}+\frac{1000}{3} \int_{1}^{\frac{1+\sqrt{3}}{\sqrt{2}}} \frac{1}{t} d t$
$10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)=$

$$
1000+\frac{250 \pi}{\sqrt{3}}-\frac{500 i}{3 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(\frac{2}{-2+\sqrt{2}+\sqrt{6}}\right)^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
$$

$10^{\wedge} 3^{*}(((1+\mathrm{Pi} /(4 \mathrm{sqrt} 3)+1 / 3 \ln (((1+\mathrm{sqrt} 3) / \mathrm{sqrt} 2)))))+(47+7+2)$

## Input:

$10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)$

## Exact result:

$56+1000\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)$

## Decimal approximation:

1728.942823879357247419360622295200340408846890601104557187...
1728.9428238...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the $j$-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

## Alternate forms:

$1056+\frac{250 \pi}{\sqrt{3}}+\frac{500}{3} \log (2+\sqrt{3})$
$1056+\frac{250 \pi}{\sqrt{3}}-\frac{500 \log (2)}{3}+\frac{1000}{3} \log (1+\sqrt{3})$
$1056+\frac{250 \pi}{\sqrt{3}}+\frac{1000}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)$

## Alternative representations:

$$
\begin{aligned}
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)= \\
& 56+10^{3}\left(1+\frac{1}{3} \log _{e}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right) \\
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)= \\
& 56+10^{3}\left(1+\frac{1}{3} \log (a) \log _{a}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right) \\
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)= \\
& 56+10^{3}\left(1-\frac{1}{3} \operatorname{Li}_{1}\left(1-\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)= \\
& 1056+\frac{250 \pi}{\sqrt{3}}-\frac{1000}{3} \sum_{k=1}^{\infty} \frac{\left(1-\sqrt{\frac{3}{2}}-\frac{1}{\sqrt{2}}\right)^{k}}{k} \\
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)= \\
& \left.1056+\frac{250 \pi}{\sqrt{3}}+\frac{2000}{3} i \pi \left\lvert\, \frac{\arg \left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)}{2 \pi}\right.\right)^{2 \pi}+ \\
& \frac{1000 \log (x)}{3}-\frac{1000}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)= \\
& 1056+\frac{250 \pi}{\sqrt{3}}+\frac{2000}{3} i \pi\left|\frac{\arg \left(\frac{1+\sqrt{3}}{\sqrt{2}}-x\right)}{2 \pi}\right|+\frac{1000 \log (x)}{3}- \\
& \frac{1000}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

## Integral representations:

$$
\begin{aligned}
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)=1056+\frac{250 \pi}{\sqrt{3}}+\frac{1000}{3} \int_{1}^{\frac{1+\sqrt{3}}{\sqrt{2}}} \frac{1}{t} d t \\
& 10^{3}\left(1+\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+(47+7+2)= \\
& 1056+\frac{250 \pi}{\sqrt{3}}-\frac{500 i}{3 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(\frac{2}{-2+\sqrt{2}+\sqrt{6}}\right)^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

$(((\mathrm{Pi} /(4 \mathrm{sqrt} 3)+1 / 3 \ln (((1+\mathrm{sqrt} 3) / \mathrm{sqrt} 2)))))^{\wedge} 1 / 64$

## Input:

$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}$
$\log (x)$ is the natural logarithm

## Decimal approximation:

0.993830129336892848481245596425518566332174439394912164630...
$0.9938301293 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{54} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}$

## Alternate forms:

$\frac{\sqrt[64]{\frac{1}{3}\left(\sqrt{3} \pi+\cosh ^{-1}(7)\right)}}{\sqrt[32]{2}}$
$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{6} \log (2+\sqrt{3})}$
$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3}\left(\log (1+\sqrt{3})-\frac{\log (2)}{2}\right)}$
$\cosh ^{-1}(x)$ is the inverse hyperbolic cosine function

All 64th roots of $\pi /(4 \operatorname{sqrt}(3))+1 / 3 \log ((1+\operatorname{sqrt}(3)) / \operatorname{sqrt}(2)):$
$e^{0} \sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)} \approx 0.993830$ (real, principal root)
$e^{(i \pi) / 32} \sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)} \approx 0.989045+0.09741 i$
$e^{(i \pi) / 16} \sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)} \approx 0.97473+0.19389 i$
$e^{(3 i \pi) / 32} \sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)} \approx 0.95104+0.28849 i$
$e^{(i \pi) / 8} \sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)} \approx 0.91818+0.38032 i$

## Alternative representations:

$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}=\sqrt[64]{\frac{1}{3} \log _{e}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}}$
$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}=\sqrt[64]{\frac{1}{3} \log (a) \log _{a}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}}$
$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}=\sqrt[64]{-\frac{1}{3} \operatorname{Li}_{1}\left(1-\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}}$

## Series representations:

$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}=\sqrt[64]{\frac{\pi}{4 \sqrt{3}}-\frac{1}{3} \sum_{k=1}^{\infty} \frac{\left(1-\frac{1+\sqrt{3}}{\sqrt{2}}\right)^{k}}{k}}$
$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}=$
$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3}\left(2 i \pi\left[\frac{\arg \left(\frac{1+\sqrt{3}}{\sqrt{2}}-x\right)}{2 \pi}\right)+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-x\right)^{k} x^{-k}}{k}\right)}$

$$
\begin{gathered}
\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}=\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3}\left(2 i \pi \left\lvert\, \frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right.\right)+\right. \\
\left.\left.\left.\left.\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\sqrt{\frac{3}{2}}+\frac{1}{\sqrt{2}}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right) \wedge_{(1 / 64)}\right)\right)
\end{gathered}
$$

## Integral representations:

$\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)}=\sqrt[64]{\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \int_{1}^{\frac{1+\sqrt{3}}{\sqrt{2}}} \frac{1}{t} d t}$

$2 \log$ base $0.9938301293368(((($ Pi $/(4 \mathrm{sqrt} 3)+1 / 3 \ln (((1+\mathrm{sqrt3}) / \mathrm{sqrt2})))))))-$ $\mathrm{Pi}+1 /$ golden ratio

## Input interpretation:

$2 \log _{0.0938301203368}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}$

## Result:

125.47644133...
125.47644133... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Alternative representations:

$$
\begin{aligned}
& 2 \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}= \\
& -\pi+2 \log _{0.99383012933680000}\left(\frac{1}{3} \log _{e}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)+\frac{1}{\phi}
\end{aligned}
$$

$2 \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{2 \log \left(\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)}{\log (0.99383012933680000)}
$$

$$
\begin{aligned}
& 2 \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}= \\
& \quad-\pi+2 \log _{0.99383012933680000}\left(\frac{1}{3} \log (a) \log _{a}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)+\frac{1}{\phi}
\end{aligned}
$$

## Series representations:

$$
\begin{aligned}
& 2 \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)^{k}}{k}}{\log (0.99383012933680000)} \\
& 2 \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=-\frac{1}{\phi}(-1+\phi \pi- \\
& 2 \phi \log _{0.90383012933680000}\left(\frac{\pi}{4 \exp \left(i \pi\left\lfloor\left\lfloor\frac{\operatorname{agg}(3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right.}-\right. \\
& \left.\left.\frac{1}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1+\sqrt{3}}{\sqrt{2}}\right)^{k}}{k}\right)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$2 \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\begin{gathered}
-\frac{1}{\phi}\left(-1+\phi \pi-2 \phi \log _{0.99383012933680000}\left(-\frac{1}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1+\sqrt{3}}{\sqrt{2}}\right)^{k}}{k}+\right.\right. \\
\left.\frac{\pi\left(\frac{1}{z_{0}}\right)^{\left.-1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right]} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right]\right)}}{\left.4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(3-z_{0}\right)^{k} z_{0}^{k}}}{k!}\right)}\right)
\end{gathered}
$$

## Integral representations:

$2 \log _{0.09383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+2 \log _{0.90383012933680000}\left(\frac{1}{3} \int_{1}^{\frac{1+\sqrt{3}}{\sqrt{2}}} \frac{1}{t} d t+\frac{\pi}{4 \sqrt{3}}\right)
$$

$2 \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\begin{aligned}
& \frac{1}{\phi}-\pi+2 \log _{0.90383012933680000}( \\
& \left.\frac{1}{6 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{1+\sqrt{3}}{\sqrt{2}}\right)^{-s}}{\Gamma(1-s)} d s+\frac{\pi}{4 \sqrt{3}}\right) \text { for }-1<\gamma<0
\end{aligned}
$$

Note that, this result, the dilaton mass calculated as a type of Higgs boson, is ALWAYS linked to the golden ratio. Indeed, we have that:
$2 \log$ base $0.9938301293368(((((\operatorname{Pi} /(4$ sqrt 3$)+1 / 3 \ln (((1+$ sqrt 3$) /$ sqrt 2$)))))))-\mathrm{Pi}+1 / \mathrm{x}=$ 125.47644133

Input interpretation:
$2 \log _{0.0938301293368}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)-\pi+\frac{1}{x}=125.47644133$

## Result:

$\frac{1}{x}+124.85840734=125.47644133$
Plot:


Alternate form assuming x is real:
$\frac{1.6180340}{x}=1.0000000$

## Alternate form:

$\frac{124.8584073(1.0000000000 x+0.008009072206)}{x}=125.47644133$
Alternate form assuming $\mathbf{x}$ is positive:
$1.0000000 x=1.6180340$ (for $x \neq 0$ )
Solution:
$x \approx 1.6180340$
$1.6180340=$ golden ratio
$1 / 4 \log$ base $0.9938301293368(((((\mathrm{Pi} /(4 \mathrm{sqrt} 3)+1 / 3 \ln$ $(((1+$ sqrt3 $) /$ sqrt2 $)))))))+1 /$ golden ratio

## Input interpretation:

$\frac{1}{4} \log _{0.9938301293368}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}$
$\phi$ is the golden ratio

## Result:

16.618033989...
$16.61803398 \ldots$ result very near to the mass of the hypothetical light particle, the boson $\mathrm{m}_{\mathrm{X}}=16.84 \mathrm{MeV}$

## Alternative representations:

$$
\begin{aligned}
& \frac{1}{4} \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}= \\
& \frac{1}{4} \log _{0.99383012933680000}\left(\frac{1}{3} \log _{e}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)+\frac{1}{\phi}
\end{aligned}
$$

$\frac{1}{4} \log _{0.99383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}+\frac{\log \left(\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)}{4 \log (0.99383012933680000)}
$$

$\frac{1}{4} \log _{0.90383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}=$

$$
\frac{1}{4} \log _{0.99383012933680000}\left(\frac{1}{3} \log (a) \log _{a}\left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)+\frac{1}{\phi}
$$

## Series representations:

$\frac{1}{4} \log _{0.90383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)+\frac{\pi}{4 \sqrt{3}}\right)^{k}}{k}}{4 \log (0.99383012933680000)}
$$

$\frac{1}{4} \log _{0.99383012033680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}=$

$$
\begin{gathered}
\frac{1}{4 \phi}\left(4+\phi \log _{0.99383012933680000}\left(\frac{\pi}{4 \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)\right)_{k}}{k!}}-\right.\right. \\
\left.\left.\frac{1}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1+\sqrt{3}}{\sqrt{2}}\right)^{k}}{k}\right)\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{gathered}
$$

$\frac{1}{4} \log _{0.90383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}=$

$$
\begin{gathered}
\frac{1}{4 \phi}\left(4+\phi \log _{0.90383012933680000}\left(-\frac{1}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1+\sqrt{3}}{\sqrt{2}}\right)^{k}}{k}+\right.\right. \\
\left.\left.\frac{\pi\left(\frac{1}{z_{0}}\right)^{\left.-1 / 2 \operatorname{lag}\left(3-z_{0}\right) /(2 \pi)\right]} z_{0}^{\left.1 / 2\left(-1-\operatorname{lag}\left(3-z_{0}\right) /(2 \pi)\right)\right]}}{4 \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)\right)_{k}^{\left(3-z_{0}\right)^{k} z_{0}^{-k}}}{k!}}\right)\right)
\end{gathered}
$$

## Integral representations:

$\frac{1}{4} \log _{0.90383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}=$
$\frac{1}{\phi}+\frac{1}{4} \log _{0.99383012933680000}\left(\frac{1}{3} \int_{1}^{\frac{1+\sqrt{3}}{\sqrt{2}}} \frac{1}{t} d t+\frac{\pi}{4 \sqrt{3}}\right)$
$\frac{1}{4} \log _{0.90383012933680000}\left(\frac{\pi}{4 \sqrt{3}}+\frac{1}{3} \log \left(\frac{1+\sqrt{3}}{\sqrt{2}}\right)\right)+\frac{1}{\phi}=$
$\frac{1}{\phi}+\frac{1}{4} \log _{0.90383012933680000}\left(\frac{1}{6 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{1+\sqrt{3}}{\sqrt{2}}\right)^{-s}}{\Gamma(1-s)} d s+\frac{\pi}{4 \sqrt{3}}\right)$
for $-1<\gamma<0$

## Ramanujan mathematics applied to the physics and cosmology

From:

Trans-Planckian Censorship and the Swampland<br>Alek Bedroya and Cumrun Vafa<br>Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA arXiv:1909.11063v2 [hep-th] 15 Oct 2019

points as well, as long as it is sufficiently unstable quantum mechanically. We find that in a meta-stable dS point is compatible with TCC as long es its lifctime $T$ is bounded by

$$
\begin{equation*}
T \leq \frac{1}{H} \log \frac{M_{p}}{H} \tag{1.1}
\end{equation*}
$$

where $H$ is the Hubble parameter and is related to the cosmological constant by $\frac{(d-1)(d-2)}{2} H^{2}=$ $V=\Lambda$ in $d$ spacetime dimensions. Also, for unstable critical points, we find a condition similar to the refined dS conjecture which puts a bound on $\left|V^{\prime \prime}\right| / V|6|$. Moreover, we find that for any expansionary period of the universe for matter with equation of state $w \geq-1$, measurement of $H$ will give an upper bound to the age of the observed universe. The upper bound is the same as the (1.1) with $H$ being the measured value of the Hubble parameter at time $T$ after the expansion started.
where we used the Friedmann equation $(d-1)(d-2) H_{i}^{2} / 2=V_{\max }$. According to (B.4), the above expression is less than $\Delta \phi$. Therefore, for these initial conditions, $\phi \in\left[\phi_{0}, \phi_{0}+\Delta \phi\right]$ for every $t \leq c \sqrt{2 /\left|V^{\prime \prime}\right|_{\max }}$. If we set $t=c \sqrt{2 /\left|V^{\prime \prime}\right|_{\max }}$, from (2.4) we find

Now we use the inequality (B.1) that we just proved to obtain a result for quadratic potentials. Suppose the quadratic potential $V(\phi)$ has local maximum $V\left(\phi_{0}\right)=V_{0}$ and second derivative $-\left|V^{\prime \prime}\right|$ over a field range $\left[\phi_{0}, \phi_{0}+\sqrt{\left.\frac{2(1-c) V_{0}}{\left|V^{\prime \prime}\right|}\right]}\right.$ for some $0 \leq c \leq 1$. This field range corresponds to the potential range $\left[V_{\min }, V_{0}\right]$ where $V_{\min }=c V_{0}$. Let $k$ be positive number smaller than 1 . We can weaken the (B.1) by multiplying the right hand side of the second inequality by $k$ as

$$
\begin{equation*}
\Delta \phi<\frac{B_{1}(d) B_{2}(d)^{\frac{3}{4}} V_{\max }^{\frac{d-1}{4}} V_{\min }^{\frac{3}{4}} \ln \left(\frac{B_{3}(d)}{\sqrt{V_{\min }}}\right)^{\frac{1}{2}}}{V_{\min } B_{2}(d)-\left|V^{\prime \prime}\right|_{\max } \ln \left(\frac{B_{3}(d)}{\sqrt{V_{\min }}}\right)^{2}}, \text { or } \quad \frac{\left|V^{\prime \prime}\right|_{\max }}{V_{\min }} \geq k B_{2}(d) \ln \left(\frac{B_{3}(d)}{\sqrt{V_{\min }}}\right)^{-2} . \tag{B.18}
\end{equation*}
$$

If

$$
\begin{aligned}
& H_{0}=71 \frac{\mathrm{~km} / \mathrm{s}}{\mathrm{mpc}}=2.3 \times 10^{-18} \mathrm{~s}^{-1} \\
& t_{H}=\frac{1}{2.3 \times 10^{-18} \mathrm{~s}^{-1}}=13.8 \times 10^{9} \text { years }
\end{aligned}
$$

We have that, for $d=4$ :
$\mathrm{V}_{\max }=\left(\left(\left((4-1)(4-2)(2.3 \mathrm{e}-18)^{\wedge} 2\right)\right)\right) / 2$

## Input interpretation:

$\frac{1}{2}\left((4-1)(4-2)\left(2.3 \times 10^{-18}\right)^{2}\right)$

## Result:

$1.587 \times 10^{-35}$
$1.587 * 10^{-35}=\mathrm{V}_{\max }=\mathrm{V}_{0}$
For
$0 \leq c \leq 1 . \quad \mathrm{c}=1 / 8=0.125$, we obtain:
$\mathrm{V}_{\min }=\mathrm{c}^{*} \mathrm{~V}_{0}=\mathrm{c} * \mathrm{~V}_{\max }=1 / 8 *\left(\left(\left(\left(\left(\left((4-1)(4-2)(2.3 \mathrm{e}-18)^{\wedge} 2\right)\right)\right) / 2\right)\right)\right)$

## Input interpretation:

$\frac{1}{8}\left(\frac{1}{2}\left((4-1)(4-2)\left(2.3 \times 10^{-18}\right)^{2}\right)\right)$

## Result:

$1.98375 \times 10^{-36}$
$1.98375 * 10^{-36}=\mathrm{V}_{\text {min }}$

Suppose we have a quadratic potential given by

$$
V(\phi)=\begin{array}{cc}
V^{\prime \prime}\left(\phi_{0}\right)  \tag{4.2}\\
2
\end{array}\left(\begin{array}{ll}
\phi & \left.\phi_{0}\right)^{2} \mid V\left(\phi_{0}\right),
\end{array}\right.
$$

where $V^{\prime \prime}\left(\phi_{0}\right)<0 . \ln |7|$, for the case of $d=4$, it was shown that a gaussian probability distribution centered at $\phi=\phi_{0}$ solves the Fokker-Planck equation describing the evelution of quantum fluctuations. That result could be easily generalized to the following solution for any dimension $d>2$.

$$
\begin{equation*}
\operatorname{Pr}\left[\phi=\phi_{c} ; t\right] \propto \exp \left[-\frac{\phi_{c}^{2}}{2 \pi(t)^{2}}\right], \tag{4,3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma(t)=\frac{\sqrt{d \quad 1} H^{2}\left(c^{\frac{2\left|V^{\prime \prime}\left(\varphi_{0}\right)\right| t}{(d-1) \mid}} 1\right)^{1 / 2}}{2 \pi \sqrt{2\left|V^{\prime \prime}\left(\phi_{0}\right)\right|}} . \tag{4.4}
\end{equation*}
$$

Now we use the inequality (B.1) that we just proved to obtain a result for quadratic potentials. Suppose the quadratic potential $V(\phi)$ has local maximum $V\left(\phi_{0}\right)=V_{0}$ and second derivative $-\left|V^{\prime \prime}\right|$ over a field range $\left[\phi_{0}, \phi_{0}+\sqrt{\left.\frac{2(1-c) V_{0}}{\left|V^{\prime \prime}\right|}\right]}\right.$ for some $0 \leq c \leq 1$. This field range corresponds to the potential range $\left[V_{\min }, V_{0}\right]$ where $V_{\min }=c V_{0}$. Let $k$ be positive number smaller than 1 . We can weaken the (B.1) by multiplying the right hand side of the second inequality by $k$ as
where $V_{\max }=V\left(\phi_{0}\right)$ and $V_{\min }=V\left(\phi_{0}+\Delta \phi\right)$ are respectively the maximum and the minimum of $V$ over $\phi \in\left[\phi_{0}, \Delta \phi\right]$, and $B_{1}(d), B_{2}(d)$, and $B_{3}(d)$ are $O(1)$ numbers given byä

Now, from:

$$
\begin{aligned}
& B_{1}(d)=\frac{\Gamma\left(\frac{d+1}{2}\right)^{\frac{1}{2}} 2^{1+\frac{d}{4}}}{\pi^{\frac{d-1}{4}}((d-1)(d-2))^{\frac{d-1}{4}}} \\
& B_{2}(d)=\frac{4}{(d-1)(d-2)} \\
& B_{3}(d)=\sqrt{\frac{(d-1)(d-2)}{2}}
\end{aligned}
$$

## We obtain:

$\left(\left(\left(\left(\right.\right.\right.\right.$ gamma $\left.\left.\left.\left.\left(\left((5 / 2)^{\wedge} 1 / 2\right)\right) 2^{\wedge} 2\right)\right)\right)\right) /\left(\left(\operatorname{Pi}^{\wedge}(3 / 4)((4-1)(4-2))^{\wedge}(3 / 4)\right)\right)$

## Input:

$$
\frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) \times 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}
$$

## Exact result:

$\frac{2 \sqrt[4]{2} \Gamma\left(\sqrt{\frac{5}{2}}\right)}{(3 \pi)^{3 / 4}}$

## Decimal approximation:

$0.394203368273179051333918767928334148165287494722133931228 \ldots$
$0.394203368273 \ldots=B_{l}(d)$

## Alternate form:

$\frac{2\left(\frac{2}{3 \pi}\right)^{3 / 4} \sqrt{\frac{5}{2}}!}{\sqrt{5}}$

## Alternative representations:

$\frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}=\frac{\left.4 e^{-\log (\sqrt{5 / 2}}\right)+\log (1+\sqrt{5 / 2})}{6^{3 / 4} \pi^{3 / 4}}$
$\frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}=\frac{4 G\left(1+\sqrt{\frac{5}{2}}\right)}{G\left(\sqrt{\frac{5}{2}}\right)\left(6^{3 / 4} \pi^{3 / 4}\right)}$
$\frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}=\frac{4\left(-1+\sqrt{\frac{5}{2}}\right)!}{6^{3 / 4} \pi^{3 / 4}}$

## Series representations:

$\frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}=\frac{2 \sqrt[4]{2} \sum_{k=0}^{\infty} \frac{\left(\sqrt{\frac{5}{2}}-z_{0}\right)^{k} \Gamma^{(k)}\left(z_{0}\right)}{k!}}{(3 \pi)^{3 / 4}}$ for $\left(z_{0} \notin \mathbb{Z}\right.$ or $\left.z_{0}>0\right)$

$$
\begin{aligned}
& \frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}=\frac{2 \sqrt[4]{2}}{(3 \pi)^{3 / 4} \sum_{k=1}^{\infty}\left(\frac{5}{2}\right)^{k / 2} c_{k}} \\
& \text { for }\left(c_{1}=1 \text { and } c_{2}=1 \text { and } c_{k}=\frac{\gamma c_{-1+k}+\sum_{j=1}^{-2+k}(-1)^{1+j+k} c_{j} \zeta(-j+k)}{-1+k}\right) \\
& \frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}= \\
& \frac{3^{3 / 4} \sum_{k=0}^{\infty}\left(\sqrt{\frac{5}{2}}-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{2 \sqrt[4]{2 \pi}}{\Gamma\left(\sqrt{\frac{5}{2} \pi^{-j+k} \sin \left(\frac{1}{2} \pi\left(-j+k+2 z_{0}\right)\right) \Gamma^{(j)}\left(1-z_{0}\right)}\right.} \frac{j!(-j+k)!}{2}}{2^{2}} \\
& \frac{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}{}= \\
& \frac{3^{3 / 4} \sum_{k=0}^{\infty}\left(\sqrt{\frac{5}{2}}-z_{0}\right)^{k} \sum_{j=0}^{k} \frac{\left(-1 j^{j} \pi^{-j+k} \sin \left(\frac{1}{2}(-j+k) \pi+\pi z_{0}\right) \Gamma^{(j)}\left(1-z_{0}\right)\right.}{j!(-j+k)!}}{2}
\end{aligned}
$$

## Integral representations:

$\frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}=\frac{2 \sqrt[4]{2}}{(3 \pi)^{3 / 4}} \int_{0}^{1} \log ^{-1+\sqrt{5 / 2}}\left(\frac{1}{t}\right) d t$

$$
\frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}=\frac{2 \sqrt[4]{2}}{(3 \pi)^{3 / 4}} \int_{0}^{\infty} e^{-t} t^{-1+\sqrt{5 / 2}} d t
$$

$$
\frac{\Gamma\left(\sqrt{\frac{5}{2}}\right) 2^{2}}{\pi^{3 / 4}((4-1)(4-2))^{3 / 4}}=\frac{2 \sqrt[4]{2} \exp \left(\int_{0}^{1} \frac{-1-\sqrt{\frac{5}{2}}(-1+x)+x \sqrt{5 / 2}}{(-1+x) \log (x)} d x\right)}{(3 \pi)^{3 / 4}}
$$

$$
B_{2}(d)=\frac{4}{(d-1)(d-2)},
$$

4/(4-1)(4-2)

## Input:

$\frac{4}{(4-1)(4-2)}$

## Exact result:

$\frac{2}{3}$

## Decimal approximation:

0.66666666666666666666666666666666666666666666666666666666 .

## Repeating decimal:

$0 . \overline{6}$ (period 1)
$0.666666 \ldots=B_{2}(d)$

$$
B_{3}(d)=\sqrt{\frac{(d-1)(d-2)}{2}} .
$$

$(((((4-1)(4-2)) / 2)))^{\wedge} 1 / 2$

## Input:

$\sqrt{\frac{1}{2}((4-1)(4-2))}$

## Result:

## Decimal approximation:

1.732050807568877293527446341505872366942805253810380628055 .
$1.7320508075688 \ldots . .=B_{3}(d)$
All 2nd roots of 3:

$$
\begin{aligned}
& \sqrt{3} e^{0} \approx 1.73205 \text { (real. principal root) } \\
& \sqrt{3} e^{i \pi} \approx-1.7321 \text { (real root) }
\end{aligned}
$$

Now, we have that:

$$
D\left(V_{0}, d\right)=\frac{c^{\frac{1}{2}} B_{2}(d)^{\frac{1}{2}} B_{1}(d)^{2} V_{0}^{\frac{d-2}{2}}}{4(1-c)} \ln \left(\frac{B_{3}(d)}{\sqrt{c V_{0}}}\right)^{-1}
$$

For $\mathrm{c}=1 / 8 ; 1.587 * 10^{-35}=\mathrm{V}_{\max }=\mathrm{V}_{0} ; 0.394203368273 \ldots . .=B_{l}(d)$;
$0.666666 \ldots=B_{2}(d) ; 1.7320508075688 \ldots . .=B_{3}(d)$, we obtain:
$\operatorname{sqrt}(0.125) * \operatorname{sqrt}(0.666666) *(0.394203368273) \wedge 2 *(1.587 \mathrm{e}-35) * 1 /(4(1-0.125)) *$ $\ln \left(\left((1.7320508075688) /\left(\operatorname{sqrt}\left(0.125^{*} 0.394203368273\right)\right)\right)^{\wedge}-1\right.$

## Input interpretation:

$$
\begin{aligned}
& \sqrt{0.125} \sqrt{0.666666} \times 0.394203368273^{2} \times \\
& 1.587 \times 10^{-35} \times \frac{1}{4(1-0.125)} \log \left(\frac{1}{\frac{1.7320508075688}{\sqrt{0.125 \times 0.394203368273}}}\right)
\end{aligned}
$$

## Result:

$-4.17887 \ldots \times 10^{-37}$
$-4.17887 \ldots * 10^{-37}$

Now, we have that:

$$
[\bar{\phi}, \bar{\phi}]=\frac{i}{\frac{\pi^{d-1 / 2}}{\Gamma((d+1) / 2)}\left(\frac{1}{H}\right)^{d-1}},
$$

$\mathrm{i} /\left(\left(\left(\left(\left(\left(\operatorname{Pi}^{\wedge}(4-1 / 2)\right) /((\operatorname{gamma}(5 / 2))) *(1 /(2.3 \mathrm{e}-18))\right)^{\wedge} 3\right)\right)\right)\right)$

## Input interpretation:

$$
\frac{i}{\frac{\pi^{4-1 / 2}}{\Gamma\left(\frac{5}{2}\right)}\left(\frac{1}{2.3 \times 10^{-18}}\right)^{3}}
$$

## Result:

$2.94303 \ldots \times 10^{-55}{ }_{i}$

## Polar coordinates:

$r=2.94303 \times 10^{-55}$ (radius), $\theta=90^{\circ}$ (angle)
2.94303...* $10^{-55}$

And:

$$
\delta \phi_{i} \delta \dot{\phi}_{i} \geq \frac{\Gamma((d+1) / 2) H^{d-1}}{2 \pi^{d-1 / 2}}
$$

$(((\operatorname{gamma}(((5 / 2)))))) *\left(\left(\left((2.3 \mathrm{e}-18)^{\wedge} 3\right)\right)\right) * 1 /\left(\left(2 \mathrm{Pi}^{\wedge}(4-1 / 2)\right)\right)$

## Input interpretation:

$\Gamma\left(\frac{5}{2}\right)\left(2.3 \times 10^{-18}\right)^{3} \times \frac{1}{2 \pi^{4-1 / 2}}$

## Result:

$1.47152 \ldots \times 10^{-55}$
$1.47152 \ldots * 10^{-55}$
We note that:
$\left[1 /\left(\left(\left(\left(\left(\left(\operatorname{Pi}^{\wedge}(4-1 / 2)\right) /((\operatorname{gamma}(5 / 2))) *(1 /(2.3 \mathrm{e}-18)) \wedge 3\right)\right)\right)\right)\right)\right] * 1 /[(((\operatorname{gamma}(((5 / 2))))))$ * $\left.\left(\left(\left((2.3 \mathrm{e}-18)^{\wedge} 3\right)\right)\right) * 1 /\left(\left(2 \mathrm{Pi}^{\wedge}(4-1 / 2)\right)\right)\right]$

## Input interpretation:

$\frac{1}{\frac{\pi^{4-1 / 2}}{\Gamma\left(\frac{5}{2}\right)}\left(\frac{1}{2.3 \times 10^{-18}}\right)^{3}} \times \frac{1}{\Gamma\left(\frac{5}{2}\right)\left(2.3 \times 10^{-18}\right)^{3} \times \frac{1}{2 \pi^{4-1 / 2}}}$

## Result:

2
2 result equal to the graviton spin
Or:
$((($ gamma $(((5 / 2)))))) *\left(\left(\left((2.3 \mathrm{e}-18)^{\wedge} 3\right)\right)\right) * 1 /\left(\left(2 \mathrm{Pi}^{\wedge}(4-1 / 2)\right)\right) * 1 /\left(\left(\left(\left(\mathrm{i} /\left(\left(\left(\left(\left(\left(\mathrm{Pi}^{\wedge}(4-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.1 / 2))^{*} 1 /((\operatorname{gamma}(5 / 2))) *(1 /(2.3 \mathrm{e}-18))^{\wedge} 3\right)\right)\right)\right)\right)\right)\right)\right)\right)$

## Input interpretation:

$$
\Gamma\left(\frac{5}{2}\right)\left(2.3 \times 10^{-18}\right)^{3} \times \frac{1}{2 \pi^{4-1 / 2}} \times \frac{1}{\frac{i}{\pi^{4-1 / 2} \times \frac{1}{\Gamma\left(\frac{5}{2}\right)}\left(\frac{1}{2.3 \times 10^{-18}}\right)^{3}}}
$$

## Result:

-0.5i

## Polar coordinates:

```
\(r=0.5\) (radius), \(\theta=-90^{\circ}\) (angle)
```

$0.5=1 / 2$ result equal to the electron spin

From:

## EVALUATIONS OF RAMANUJAN-WEBER CLASS INVARIANT $\mathbf{g}_{\mathbf{n}}$

S.Bhargava 1, K. R. Vasuki and B. R. Srivatsa Kumar 2000 Mathematics subject classification: 11F20, 11Y99

Then

> (i) $\lambda_{n} \lambda_{1 / n}=1$,
> (ii) $\lambda_{1}=1$,
and

$$
\begin{equation*}
\text { (iii) } \quad \lambda_{n}=g_{2 n} . \tag{2.19}
\end{equation*}
$$

Theorem 3.3. We have
(i) $g_{28}=2^{1 / 8}(3+\sqrt{7})^{1 / 4}=g_{1 / 7}^{-1}$,
and
(ii) $\quad g_{7}=2^{-3 / 8}(3+\sqrt{7})^{1 / 4}=g_{4 / 7}^{-1}$.
$2^{\wedge}(1 / 8)(3+\text { sqrt7) })^{\wedge} 1 / 4$

## Input:

$\sqrt[8]{2} \sqrt[4]{3+\sqrt{7}}$

## Decimal approximation:

$1.680966991582255116285078686572690826334508255159186986821 \ldots$
1.6809669915...

## Alternate form:

$\sqrt[4]{2} \sqrt[8]{8+3 \sqrt{7}}$

## Minimal polynomial:

$x^{16}-64 x^{8}+16$

$$
\begin{align*}
& \text { (iv) } \quad 32\left[\left(\lambda_{n} \lambda_{121 n}\right)^{10}+\frac{1}{\left(\lambda_{n} \lambda_{121 n}\right)^{10}}\right]+352\left[\left(\lambda_{n} \lambda_{121 n}\right)^{8}+\frac{1}{\left(\lambda_{n} \lambda_{121 n}\right)^{8}}\right] \\
& +1672\left[\left(\lambda_{n} \lambda_{121 n}\right)^{6}+\frac{1}{\left(\lambda_{n} \lambda_{121 n}\right)^{6}}\right]+4576\left[\left(\lambda_{n} \lambda_{121 n}\right)^{4}+\frac{1}{\left(\lambda_{n} \lambda_{121 n}\right)^{4}}\right] \\
& +8096\left[\left(\lambda_{n} \lambda_{121 n}\right)^{2}+\frac{1}{\left(\lambda_{n} \lambda_{121 n}\right)^{2}}\right]+9744=\left(\frac{\lambda_{121 n}}{\lambda_{n}}\right)^{12}+\left(\frac{\lambda_{n}}{\lambda_{121 n}}\right)^{12}, \tag{2.23}
\end{align*}
$$

$32^{*}\left(\left(1.68096699^{\wedge} 10+1 /\left(1.68096699^{\wedge} 10\right)\right)\right)+352\left(\left(\left(1.68096699^{\wedge} 8+1 /\left(1.68096699^{\wedge} 8\right)\right)\right.\right.$ $)+1672\left(\left(1.68096699^{\wedge} 6+1 /(1.68096699)^{\wedge} 6\right)\right)+4576\left(\left(\left(1.68096699^{\wedge} 4+1 /(1.68096699)^{\wedge}\right.\right.\right.$ $\left.\left.4)))+8096\left(1.68096699^{\wedge} 2+1 /(1.68096699)^{\wedge} 2\right)\right)\right)+9744$

## Input interpretation:

$$
\begin{aligned}
& 32\left(1.68096699^{10}+\frac{1}{1.68096699^{10}}\right)+ \\
& 352\left(\left(1.68096699^{8}+\frac{1}{1.68096699^{8}}\right)+1672\left(1.68096699^{6}+\frac{1}{1.68096699^{6}}\right)+\right. \\
& \quad 4576\left(1.68096699^{4}+\frac{1}{1.68096699^{4}}\right)+ \\
& \left.\quad 8096\left(1.68096699^{2}+\frac{1}{1.68096699^{2}}\right)\right)+9744
\end{aligned}
$$

## Result:

$3.54656055435111249952510626904885558099066308363952005 \ldots \times 10^{7}$
$3.5465605543511124 \ldots{ }^{*} 10^{7}$
$(1 / 1.68096699)^{\wedge} 12+(1.68096699)^{\wedge} 12$
Input interpretation:
$\left(\frac{1}{1.68096699}\right)^{12}+1.68096699^{12}$

## Result:

508.9931024493161196452074821479830564697428180678055597357...
508.9931024...
$3.54656055435111249952510626904885558099066308363952005 \times 10^{\wedge} 7 /$
508.9931024493161196452074821479830564697428180678055597357

## Input interpretation:

$3.54656055435111249952510626904885558099066308363952005 \times 10^{7}$
508.9931024493161196452074821479830564697428180678055597357

## Result:

69677.96886214715420907906626923031642213207440652315556235
69677.9688621...
$(69677.9688621471542) * 1 / 128-48$

## Input interpretation:

$69677.9688621471542 \times \frac{1}{128}-48$

## Result:

496.3591317355246421875
$496.3591317 \ldots$ result concerning the dimension of the gauge group of type I string theory that is 496 .
$(69677.9688621471542)+64 \wedge 2-322+29+11$
Input interpretation:

## $69677.9688621471542+64^{2}-322+29+11$

## Result:

73491.9688621471542
73491.968862...

Thence, we have the following mathematical connections:
$\left(69677.9688621471542+64^{2}-322+29+11\right)=73491.968 \ldots \Rightarrow$

$$
\begin{gathered}
\Rightarrow-3927+2\left(\begin{array}{c}
13\left(\begin{array}{c}
N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+ \\
\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}
\end{array}\right.
\end{array}\right)= \\
-3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
=73490.8437525 \ldots \Rightarrow \\
\Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow
\end{gathered}
$$

$$
\begin{aligned}
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots
\end{aligned}
$$

$$
=73491.7883254 \ldots \Rightarrow
$$

$\binom{{I_{21}}_{<}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon},} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \ll}{<H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} /$

$$
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $\mathrm{u} \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p -brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

From:

## STRING THEORY VOLUME II - Superstring Theory and Beyond JOSEPH POLCHINSKI <br> Institute for Theoretical Physics - University of California at Santa Barbara CAMBRIDGE UNIVERSITY PRESS <br> Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press - © Cambridge University Press 2001, 2005-1998

11.2 The $S O(32)$ and $E_{8} \times E_{8}$ heterotic strings

Table 11.2. Low-lying heterotic string states.

| $m^{2}$ | NS | R | NS | $\tilde{\mathrm{R}}$ |
| :---: | :---: | :---: | :---: | :---: |
| $-4 / \alpha^{\prime}$ | $(\mathbf{1 , 1}, \mathbf{1}$ | - | - | - |

$$
\begin{array}{ccccc}
0 & \left(\mathbf{8}_{v}, \mathbf{1}\right)+(1,496) & -\quad \mathbf{8}_{v} & 8 \\
\hline \hline
\end{array}
$$

is the type I supergravity multiplet. The product

$$
\begin{equation*}
(1,496) \times\left(8_{v}+8\right)-\left(8_{v}, 496\right)+(8,496) \tag{11.2.18}
\end{equation*}
$$

is an $N=1$ gauge multiplet in the adjoint of $S O(32)$. The latter is therefore a gauge symmetry in spacetime.

$$
496 * 16=8 * 496+8 * 496=7936 ; 7936 / 16=496
$$

The chiral fields of $N=1$ supergravity with gauge group $g$ are the gravitino 56 , a neutral fermion $\mathbf{8}^{\prime}$, and an 8 gaugino in the adjoint
representation, for total anomaly

$$
\begin{align*}
\hat{I}_{1}= & \hat{I}_{56}\left(R_{2}\right)-\hat{I}_{\mathrm{s}}\left(R_{2}\right)+\hat{I}_{\mathrm{s}}\left(F_{2}, R_{2}\right) \\
= & \frac{1}{1440}\left\{-\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{6}\right)+\frac{1}{48} \operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right) \operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{4}\right)-\frac{\left[\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right)\right]^{3}}{14400}\right\} \\
& \quad+(n-496)\left\{\frac{\operatorname{tr}\left(R_{2}^{6}\right)}{725760}+\frac{\operatorname{tr}\left(R_{2}^{4}\right) \operatorname{tr}\left(R_{2}^{2}\right)}{552960}+\frac{\left[\operatorname{tr}\left(R_{2}^{2}\right)\right]^{3}}{1327104}\right\}+\frac{Y_{4} X_{8}}{768} . \tag{12.2.27}
\end{align*}
$$

Here

$$
\begin{align*}
& Y_{4}=\operatorname{tr}\left(R_{2}^{2}\right)-\frac{1}{30} \operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right),  \tag{12.2.28a}\\
& X_{8}=\operatorname{tr}\left(R_{2}^{4}\right)+\frac{\left[\operatorname{tr}\left(R_{2}^{2}\right)\right]^{2}}{4}-\frac{\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right) \operatorname{tr}\left(R_{2}^{2}\right)}{30}+\frac{\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{4}\right)}{3}-\frac{\left[\operatorname{Tr}_{\mathrm{a}}\left(F_{2}^{2}\right)\right]^{2}}{900} . \tag{12.2.28b}
\end{align*}
$$

$1 / 1440(-1+1 / 48-1 / 14400)+(((1-1 / 30) *(1+1 / 4-1 / 30+1 / 3-1 / 900) * 1 / 768))$

## Input:

$\frac{1}{1440}\left(-1+\frac{1}{48}-\frac{1}{14400}\right)+\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right) \times \frac{1}{768}$

## Exact result:

$\frac{13}{10240}$
Decimal form:
0.00126953125
0.00126953125

$$
1 /(((1 / 1440(-1+1 / 48-1 / 14400)+(((1-1 / 30) *(1+1 / 4-1 / 30+1 / 3-1 / 900) * 1 / 768)))))
$$

## Input:

$\frac{1}{\frac{1}{1440}\left(-1+\frac{1}{48}-\frac{1}{14400}\right)+\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right) \times \frac{1}{768}}$

## Exact result:

$\frac{10240}{13}$

## Decimal approximation:

787.6923076923076923076923076923076923076923076923076923076...
$787.692307 \ldots$ result in the range of the rest mass of Omega meson 782.65
$1 /(2 \mathrm{Pi})^{*} 1 /(((1 / 1440(-1+1 / 48-1 / 14400)+(((1-1 / 30) *(1+1 / 4-1 / 30+1 / 3-1 / 900) * 1 / 768)))))$
Input:
$\frac{1}{2 \pi} \times \frac{1}{\frac{1}{1440}\left(-1+\frac{1}{48}-\frac{1}{14400}\right)+\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right) \times \frac{1}{768}}$

## Result:

$\frac{5120}{13 \pi}$

## Decimal approximation:

125.3651244046929414056438259180420820948359055678672334750...
125.3651244... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Property:

$\frac{5120}{13 \pi}$ is a transcendental number

## Alternative representations:

$\left.\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)} \frac{1}{\left(360^{\circ}\right)\left(\frac{1}{768}\left(1-\frac{1}{30}\right)\left(\frac{4}{3}+\frac{1}{4}-\frac{1}{30}-\frac{1}{900}\right)+\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}\right.}\right)=$
$\frac{\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)}}{-\frac{1}{(2 i \log (-1))\left(\frac{1}{768}\left(1-\frac{1}{30}\right)\left(\frac{4}{3}+\frac{1}{4}-\frac{1}{30}-\frac{1}{900}\right)+\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}\right)}}=$

$$
\frac{\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)}}{\frac{1}{\left(2 \cos ^{-1}(-1)\right)\left(\frac{1}{768}\left(1-\frac{1}{30}\right)\left(\frac{4}{3}+\frac{1}{4}-\frac{1}{30}-\frac{1}{900}\right)+\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}\right)}}=
$$

## Series representations:

$$
\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)}=\frac{1280}{13 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}
$$

$$
\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)}=
$$

$$
\frac{1280}{13 \sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}}
$$

$\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)}$
$\frac{5120}{13 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)}$

## Integral representations:

$\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)}=\frac{1280}{13 \int_{0}^{1} \sqrt{1-t^{2}} d t}$

$$
\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)}=\frac{2560}{13 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t}
$$

$$
\frac{1}{\left(\frac{-1+\frac{1}{48}-\frac{1}{14400}}{1440}+\frac{1}{768}\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right)\right)(2 \pi)}=\frac{2560}{13 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}
$$

$$
\left(\left(\left(1 / 1440(-1+1 / 48-1 / 14400)+\left(\left((1-1 / 30) *(1+1 / 4-1 / 30+1 / 3-1 / 900)^{*} 1 / 768\right)\right)\right)\right)\right)^{\wedge} 1 / 4096
$$

Input:

$$
\sqrt[4096]{\frac{1}{1440}\left(-1+\frac{1}{48}-\frac{1}{14400}\right)+\left(1-\frac{1}{30}\right)\left(1+\frac{1}{4}-\frac{1}{30}+\frac{1}{3}-\frac{1}{900}\right) \times \frac{1}{768}}
$$

## Result:

$$
\frac{\sqrt[4096]{\frac{13}{5}}}{2^{11 / 4096}}
$$

## Decimal approximation:

$0.998373124715361463734496936500441896498740668311999305568 \ldots$
$0.9983731247 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

## Alternate form:

```
\frac{1}{10}\sqrt{4096}{13}\mp@subsup{2}{}{4085/4096}\times\mp@subsup{5}{}{4095/4096}
```


## All 4096th roots of 13/10240:

$$
\begin{aligned}
& \frac{\sqrt[4096]{\frac{13}{5}} e^{0}}{2^{11 / 4096}} \approx 0.9983731 \text { (real, principal root) } \\
& \frac{\sqrt[4096]{\frac{13}{5}} e^{(i \pi) / 2048}}{2^{11 / 4096}} \approx 0.9983720+0.0015315 i
\end{aligned}
$$

```
\sqrt{4096}{\frac{13}{5}}\mp@subsup{e}{}{(i\pi)/1024}
4096
```



```
\sqrt{4096}{\frac{13}{5}}\mp@subsup{e}{}{(i\pi)/512}
```

From:

ANOMALY CANCELLATIONS IN SUPERSYMMETRIC D = 10 GAUGE THEORY AND SUPERSTRING THEORY<br>Michael B. GREEN<br>Queen Mary College, University of London, London E1 4NS, UK<br>and California Institute of Technology, Pasadena, CA 91125, USA<br>and<br>John H. SCHWARZ<br>California Institute of Technology, Pasadena, CA 91125, USA<br>Received 10 September 1984

Now:

$$
\begin{align*}
- & {\left[\frac{1}{32}+(n-496) / 13824\right]\left(\operatorname{tr} R^{2}\right)^{3} } \\
& -\left[\frac{1}{8}+(n-496) / 5760\right] \operatorname{tr} R^{2} \operatorname{tr} R^{4} \\
& -[(n-496) / 7560] \operatorname{tr} R^{6} . \tag{20}
\end{align*}
$$

In this expression we have included the contributions of one left-handed spin $3 / 2$ gravitino and one righthanded spin $1 / 2$ field from the supergravity sector and $n$ left-handed spin $1 / 2$ fields from the matter sector, which only depends on the dimension of the gauge group.

The last term in eq. (20) corresponds to an anomaly of the form $\int \omega_{10 L}^{1}$, which cannot be cancelled by adding local terms to the action. Therefore 496 left-handed spin $1 / 2$ fields are needed in the matter sector in
order that it vanish. Remarkably, since the dimension of the adjoint representation of $\mathrm{SO}(32)$ or $\mathrm{E}_{8} \times \mathrm{E}_{8}$ is 496 , the cancellation occurs for either of these gauge groups. The anomalies associated with the first two terms of eq, (20) can be cancelled (putting $n$ $=496)$ by adding to the effective action for $\mathrm{SO}(32)$ or $\mathrm{E}_{8} \times \mathrm{E}_{8}$
$S_{2}=-c \int\left[\frac{1}{32} B\left(\operatorname{tr} R^{2}\right)^{2}+\frac{1}{8} B \operatorname{tr} R^{4}+\frac{1}{12} \omega_{3 \mathrm{~L}}^{0} \omega_{7 \mathrm{~L}}^{0}\right]$.

For $\mathrm{n}=496$, from (20), we obtain:

$$
\begin{aligned}
- & {\left[\frac{1}{32}+(n-496) / 13824\right]\left(\operatorname{tr} R^{2}\right)^{3} } \\
& -\left[\frac{1}{8}+(n-496) / 5760\right] \operatorname{tr} R^{2} \operatorname{tr} R^{4} \\
& -[(n-496) / 7560] \operatorname{tr} R^{6} .
\end{aligned}
$$

$-(1 / 32+0)^{*}\left(\text { trace } \mathrm{R}^{\wedge} 2\right)^{\wedge} 3-(1 / 8+0)^{*}$ trace $\mathrm{R}^{\wedge} 2$ trace $\mathrm{R}^{\wedge} 4-0^{*}$ trace $\mathrm{R}^{\wedge} 6$

## Input:

$$
-\left(\frac{1}{32}+0\right)\left(\operatorname{Tr}[R]^{2}\right)^{3}-\left(\left(\frac{1}{8}+0\right) \operatorname{Tr}\left[\operatorname{Tr}\left[R^{2} \|\right]\right)^{4}-0 \operatorname{Tr}[R]^{6}\right.
$$

## Result:

$-\frac{1}{8} R^{4} \operatorname{Tr}\left[\operatorname{Tr}\left[R^{2}\right]\right]-\frac{1}{32} \operatorname{Tr}[R]^{6}$

Without tr, we obtain:
$-(1 / 32+0)^{*}\left(\mathrm{R}^{\wedge} 2\right)^{\wedge} 3-(1 / 8+0)^{*} \mathrm{R}^{\wedge} 2 \mathrm{R}^{\wedge} 4-0^{*} \mathrm{R}^{\wedge} 6$
Input:

$$
-\left(\frac{1}{32}+0\right)\left(R^{2}\right)^{3}-\left(\left(\frac{1}{8}+0\right) R^{2}\right) R^{4}-0 R^{6}
$$

Result:
$-\frac{5 R^{6}}{32}$

Plot:


## Geometric figure:

line
Root:
$R=0$
Polynomial discriminant:
$\Delta=0$
Property as a function:

## Parity

even
Derivative:
$\frac{d}{d R}\left(-\left(\frac{1}{32}+0\right)\left(R^{2}\right)^{3}-\left(\left(\frac{1}{8}+0\right) R^{2}\right) R^{4}-0 R^{6}\right)=-\frac{15 R^{5}}{16}$

Indefinite integral:
$\int-\frac{5 R^{6}}{32} d R=-\frac{5 R^{7}}{224}+$ constant

## Global maximum:

$\max \left\{-\left(\frac{1}{32}+0\right)\left(R^{2}\right)^{3}-\left(\left(\frac{1}{8}+0\right) R^{2}\right) R^{4}-0 R^{6}\right\}=0$ at $R=0$

For $\mathrm{R}=2$, we obtain:
$-\left(52^{\wedge} 6\right) / 32$

## Input:

$-\frac{1}{32}\left(5 \times 2^{6}\right)$

Result:
-10
-10

For $\mathrm{R}=-8$, we obtain:
Input:
$-\frac{1}{32}\left(5 \times(-1) \times 8^{6}\right)$

## Result:

40960
$40960=64^{2} * 10=4096 * 10$
$2 \operatorname{sqrt}\left(\left(1 / 10^{*}-\left(5 *_{-} 8^{\wedge} 6\right) / 32\right)\right)-\mathrm{Pi}+1 /$ golden ratio
Input:
$2 \sqrt{\frac{1}{10}\left(-\frac{1}{32}\left(5 \times(-1) \times 8^{6}\right)\right)}-\pi+\frac{1}{\phi}$

## Result:

$\frac{1}{\phi}+128-\pi$

## Decimal approximation:

125.4764413351601016097419434510861352335231397804306570411...
125.476441335... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$

## Property:

$128+\frac{1}{\phi}-\pi$ is a transcendental number
Alternate forms:
$\frac{1}{2}(255+\sqrt{5}-2 \pi)$
$-\frac{-128 \phi+\pi \phi-1}{\phi}$
$\frac{(128-\pi) \phi+1}{\phi}$

## Series representations:

$2 \sqrt{-\frac{5(-1) 8^{6}}{32 \times 10}}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}$
$2 \sqrt{-\frac{5(-1) 8^{6}}{32 \times 10}}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}+\sum_{k=0}^{\infty} \frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}$
$2 \sqrt{-\frac{5(-1) 8^{6}}{32 \times 10}}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)$

## Integral representations:

$2 \sqrt{-\frac{5(-1) 8^{6}}{32 \times 10}}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-4 \int_{0}^{1} \sqrt{1-t^{2}} d t$
$2 \sqrt{-\frac{5(-1) 8^{6}}{32 \times 10}}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-2 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t$
$2 \sqrt{-\frac{5(-1) 8^{6}}{32 \times 10}}-\pi+\frac{1}{\phi}=128+\frac{1}{\phi}-2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t$

And also, we obtain:
$\left(\left(\left(\left(-1 /\left(\left(\left(-\left(5^{*} 2^{\wedge} 6\right) / 32\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 4096$

## Input:

$$
\sqrt[4096]{\frac{-1}{-\frac{1}{32}\left(5 \times 2^{6}\right)}}
$$

Result:
$\frac{1}{\sqrt[409]{10}}$
Decimal approximation:
$0.999438003415553196029626790600195415941545113970308718879 \ldots$
$0.999438003 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

## Alternate form:

$\frac{10^{4095 / 4096}}{10}$

## All 4096th roots of $\mathbf{1 / 1 0}$ :

$\frac{e^{0}}{\sqrt[4096]{10}} \approx 0.99943800$ (real, principal root)
$\frac{e^{(i \pi) / 2048}}{\sqrt[4096]{10}} \approx 0.99943683+0.0015331 i$
$\frac{e^{(i \pi) / 1024}}{\sqrt[4096]{10}} \approx 0.99943330+0.0030662 i$
$e^{(3 i \pi) / 2048}$
$\frac{e^{(3096}}{\sqrt[40]{10}} \approx 0.99942742+0.0045993 i$
$\frac{e^{(i \pi) / 512}}{\sqrt[4096]{10}} \approx 0.99941919+0.006132 i$

## Acknowledgments

I would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

## References

## Manuscript Book Of Srinivasa Ramanujan Volume 2

Andrews, G.E.: Some formulae for the Fibonacci sequence with generalizations. Fibonacci Q. 7, 113-130 (1969) zbMATH Google Scholar

Andrews, G.E.: A polynomial identity which implies the Rogers-Ramanujan identities. Scr. Math. 28, 297-305 (1970) Google Scholar

The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks (Memoirs of the American Mathematical Society), by Bruce C. Berndt, L. Jacobsen, R. L. Lamphere, George E. Andrews (Editor), Srinivasa Ramanujan Aiyangar (Editor) (American Mathematical Society, 1993, ISBN 0-8218-2538-0)


[^0]:    ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

