On the Ramanujan's equations applied to various sectors of Particle Physics and Cosmology: new possible mathematical connections. VI

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further Ramanujan formulas and described new possible mathematical connections with some sectors of Particle Physics and Cosmology

[^0]

An equation means nothing to me unless it expresses a thought of God...

From:

MANUSCRIPT BOOK 2 OF SRINIVASA RAMANUJAN

Page 98
$A_{1}=\frac{1}{5} \log 2+\frac{1}{4} \ln 5+\frac{3}{2} \sqrt{5} \log 12 \sqrt{2}=A_{12}=\frac{1}{2} \ln 2+463$ $-\frac{1}{18} \log (\sqrt{2}-1) ; A_{16}=\frac{5}{8} \lg ^{2}+\frac{4}{2} \log _{2}(1+\sqrt{2})$ $+\frac{\sqrt{2}+\sqrt{2}}{16} \log \frac{2+\sqrt{2+\sqrt{2}}}{2 \sqrt{2}+\sqrt{2}}+\frac{\sqrt{2} \sqrt{2}}{16} \log \frac{2}{2}+\sqrt{2 \sqrt{2}} 2 . \sqrt{2}-\sqrt{2}$.

$$
A_{20}=\frac{1}{1} \log 5+\frac{3}{10} \log 2+\frac{3}{405} 5 \log \frac{10+1}{2}
$$

$\left.5 / 8 \ln 2+1 /(4 \mathrm{sqrt} 2) \ln (1+\mathrm{sqrt} 2)+1 / 16\left(\left((2+\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right)\right) \ln \left(\left(\left(\left(2+(2+\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) /((2-\right.\right.$ $\left.\left.\left.\left.(2+\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right)\right)\right)+1 / 16\left(\left((2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) * \ln \left(\left(\left(\left(2+(2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) /((2-(2-\right.\right.$ sqrt2)^1/2))))
$\left.5 / 8 \ln 2+1 /(4 \mathrm{sqrt} 2) \ln (1+\mathrm{sqrt} 2)+1 / 16\left(\left((2+\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right)\right) \ln \left(\left(\left(\left(2+(2+\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) /((2-\right.\right.$ $(2+$ sqrt2)^1/2))))

Input:

$\frac{5}{8} \log (2)+\frac{1}{4 \sqrt{2}} \log (1+\sqrt{2})+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)$

Exact result:

$\frac{5 \log (2)}{8}+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)$

Decimal approximation:

$0.962014464057704157221458732927823178593013107964709101166 \ldots$
$0.9620144640577 \ldots$ result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.

We know that α ' is the Regge slope (string tension). With regard the Omega mesons, the values are:

$$
\begin{array}{r|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
\omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
$$

Alternate forms:

$$
\begin{aligned}
& \frac{1}{16}\left(\log (1024)+2 \sqrt{2} \sinh ^{-1}(1)+2 \sqrt{2+\sqrt{2}} \operatorname{coth}^{-1}(\sqrt{4-2 \sqrt{2}})\right) \\
& \frac{1}{16}\left(10 \log (2)+2 \sqrt{2} \log (1+\sqrt{2})+\sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)\right) \\
& \frac{1}{16 \sqrt{2}}(\sqrt{2(2+\sqrt{2}}) \log \left(-\frac{1}{\sqrt{\text { root of } x^{4}-4 x^{2}+2 \text { near } x=1.84776}-2}\right)+ \\
& \quad \sqrt{2}(\sqrt{2+\sqrt{2}} \log (\sqrt[\text { root of } x^{4}-4 x^{2}+2 \text { near } x=1.84776]{ }+2)+10 \log (2))+ \\
& 4 \log (1+\sqrt{2}))
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)= \\
& \frac{5}{8} \log (a) \log _{a}(2)+\frac{\log (a) \log _{a}(1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \log (a) \log _{a}\left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right) \sqrt{2+\sqrt{2}} \\
& \frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)= \\
& \frac{5 \log _{e}(2)}{8}+\frac{\log _{e}(1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \log _{e}\left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right) \sqrt{2+\sqrt{2}}
\end{aligned}
$$

$$
\frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)=
$$

$$
-\frac{5 \mathrm{Li}_{1}(-1)}{8}-\frac{\mathrm{Li}_{1}(-\sqrt{2})}{4 \sqrt{2}}-\frac{1}{16} \mathrm{Li}_{1}\left(1-\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right) \sqrt{2+\sqrt{2}}
$$

Series representations:

$\frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)=$
$\frac{5 \log (2)}{8}+\frac{\log (2)}{8 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{-k / 2}}{k}}{4 \sqrt{2}}$

$$
\begin{aligned}
& \frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)= \\
& \frac{\log (2)}{8 \sqrt{2}}+\frac{\log (1024)}{16}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k} 2^{-k / 2}}{k}}{4 \sqrt{2}} \\
& \frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)= \\
& \frac{\log (1024)}{16}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)+ \\
& \frac{\operatorname{Res}_{s=0} \frac{2^{-s / 2} \Gamma((-s) \Gamma(1+s)}{s}}{4 \sqrt{2}}+\frac{\sum_{j=1}^{\infty} \operatorname{Res}_{s=j} \frac{2^{-s / 2} \Gamma(-s) \Gamma(1+s)}{s}}{4 \sqrt{2}}
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
\frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)= \\
-\frac{i}{8 \sqrt{2} \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-s / 2} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s+\frac{5 \log (2)}{8}+ \\
\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right) \text { for }-1<\gamma<0
\end{gathered}
$$

$$
\frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)=
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{5 i \Gamma(-s)^{2} \Gamma(1+s)}{16 \pi \Gamma(1-s)}-\frac{i 2^{-7 / 2-s / 2} \Gamma(-s)^{2} \Gamma(1+s)}{\pi \Gamma(1-s)}-\right.
$$

$$
\left.\frac{i \sqrt{2+\sqrt{2}}\left(-1+\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{32 \pi \Gamma(1-s)}\right) d s \text { for }-1<\gamma<0
$$

$\frac{1}{8} \log (2) 5+\frac{\log (1+\sqrt{2})}{4 \sqrt{2}}+\frac{1}{16} \sqrt{2+\sqrt{2}} \log \left(\frac{2+\sqrt{2+\sqrt{2}}}{2-\sqrt{2+\sqrt{2}}}\right)=$
$0.9620144640577+1 / 16\left(\left((2-\text { sqrt } 2)^{\wedge} 1 / 2\right)\right) * \ln \left(\left(\left(\left(2+(2-\text { sqrt } 2)^{\wedge} 1 / 2\right)\right) /((2-(2-\right.\right.$ sqrt2)^1/2))))

Input interpretation:

$0.9620144640577+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)$
$\log (x)$ is the natural logarithm

Result:

1.000588927172...
1.000588927172...

Alternative representations:

$$
\begin{aligned}
& 0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)= \\
& 0.96201446405770000+\frac{1}{16} \log _{e}\left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}
\end{aligned}
$$

$$
0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=
$$

$$
0.96201446405770000+\frac{1}{16} \log (a) \log _{a}\left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}
$$

$$
0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=
$$

$$
0.96201446405770000-\frac{1}{16} \mathrm{Li}_{1}\left(1-\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}
$$

Series representations:

$0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=$

for $(x \in \mathbb{R}$ and $x<0)$

$0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=$ $0.06250000000000000(15.392231424923200+1.0000000000000000$
$\log \left(\frac{2+\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{\left.2-\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)}\right.$
$\left.\sqrt{2-\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)$
for $(x \in \mathbb{R}$ and $x<0)$
$0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=0.06250000000000000$

$$
15.392231424923200+1.0000000000000000 \log \left(-1+\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)
$$

$$
\sqrt{2-\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}-
$$

1.0000000000000000

$$
\begin{aligned}
& \sqrt{2-\exp \left(i \pi\left|\frac{\arg (2-x)}{2 \pi}\right|\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{\sqrt{2-\sqrt{2}}}{-2+\sqrt{2-\sqrt{2}}}\right)^{-k}}{k}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Integral representations:

$0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=$ $0.9620144640577000+0.062500000000000000 \sqrt{2-\sqrt{2}} \int_{1}^{\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}} \frac{1}{t} d t}$
$0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=$

$$
0.96201446405770000+\frac{\sqrt{2-\sqrt{2}}}{32 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)^{-s}}{\Gamma(1-s)} d s
$$

for $-1<\gamma<0$
$1.000588927172-1 / 16\left(\left((2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) * \ln \left(\left(\left(\left(2+(2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) /((2-(2-\right.\right.$ sqrt2)^1/2))))

Input interpretation:

$1.000588927172-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)$

Result:

$0.9620144640577 \ldots$
$0.9620144640577 \ldots$ result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

From:

Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019
Planck 2018 results. VI. Cosmological parameters
The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.

We know that α^{\prime} is the Regge slope (string tension). With regard the Omega mesons, the values are:

$$
\begin{array}{r|c|c}
\omega|6| & m_{u / d}=0-60 & 0.910-0.918 \\
& \omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18
\end{array}
$$

$$
\omega / \omega_{3}|5+3| m_{u / d}=240-345 \mid 0.937-1.000
$$

Alternative representations:

$$
\begin{aligned}
& 1.0005889271720000-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)= \\
& 1.0005889271720000-\frac{1}{16} \log _{e}\left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}} \\
& 1.0005889271720000-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)= \\
& 1.0005889271720000-\frac{1}{16} \log (a) \log _{a}\left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}
\end{aligned}
$$

$$
1.0005889271720000-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=
$$

$$
1.0005889271720000+\frac{1}{16} \mathrm{Li}_{1}\left(1-\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}
$$

Series representations:

$1.0005889271720000-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=$ $-0.06250000000000000(-16.00942283475200+1.000000000000000$

$$
\log \left(\frac{2+\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{2-\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}\right)
$$

$$
\sqrt{2-\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$1.0005889271720000-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=$ $-0.06250000000000000(-16.009422834752000+1.0000000000000000$

$$
\log \left(\frac{2+\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{2-\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(2-x x^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\right.}{k!}}}\right)
$$

$$
\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
$$

for $(x \in \mathbb{R}$ and $x<0)$
$1.0005889271720000-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=-0.06250000000000000$

$$
\left(-16.009422834752000+1.0000000000000000 \log \left(-1+\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right.
$$

$$
\sqrt{2-\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}-
$$

1.0000000000000000

$$
\begin{aligned}
& \sqrt{2-\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{\sqrt{2-\sqrt{2}}}{-2+\sqrt{2-\sqrt{2}}}\right)^{-k}}{k}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Integral representations:

$1.0005889271720000-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=$ $1.0005889271720000-0.06250000000000000 \sqrt{2-\sqrt{2}} \int_{1}^{\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}} \frac{1}{t} d t}$ $1.0005889271720000-\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=1.0005889271720000-$

$$
\frac{\sqrt{2-\sqrt{2}}}{32 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)^{-s}}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
$$

$1 /\left(\left(\left(0.9620144640577+1 / 16\left(\left((2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) * \ln \left(\left(\left(\left(2+(2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) /((2-(2-\right.\right.\right.\right.\right.$ sqrt2)^1/2)))))))^^16

Input interpretation:

$\frac{1}{\left(0.9620144640577+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right)^{16}}$
$\log (x)$ is the natural logarithm

Result:

0.990624168625...
$0.990624168625 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternative representations:

$$
\frac{1}{\left(0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right)^{16}}=
$$

$$
\frac{1}{\left(0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right)^{16}}=
$$

$\left(0.96201446405770000+\frac{1}{16} \log (a) \log _{a}\left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}\right)^{16}$

$$
\begin{aligned}
& \left(\begin{array}{l}
\left.0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right)^{16} \\
\left(0.96201446405770000-\frac{1}{16} \mathrm{Li}_{1}\left(1-\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}\right)^{16}
\end{array}\right.
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{\left(0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right)^{16}}= \\
& 1.8446744073710 \times 10^{19} /(15.39223142492320+1.000000000000000 \\
& \log \left(\frac{2+\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{2-\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}\right)^{16} \\
& \left.\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)^{16}
\end{aligned}
$$

$\overline{\left(0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right)^{16}}=$
$1.8446744073710 \times 10^{19} / 15.39223142492320+1.000000000000000$

$$
\log \left(\frac{2+\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{2-\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}\right)
$$

$$
\left.\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)^{1}
$$

for $(x \in \mathbb{R}$ and $x<0)$
$\left(0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right)^{16}=$
$1.8446744073710 \times 10^{19} /$
$\left(15.3922314249232+1.00000000000000 \log \left(-1+\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)\right.$

$$
\sqrt{2-\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}-
$$

1.00000000000000

$$
\begin{aligned}
& \sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{\sqrt{2-\sqrt{2}}}{-2+\sqrt{2-\sqrt{2}}}\right)^{-k}}{k}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

8 * $1 /\left(\left(\left(\log\right.\right.\right.$ base $0.990624168625\left(\left(1 /\left(\left(\left(0.9620144640577+1 / 16\left(\left((2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right)\right.\right.\right.\right.\right.$ * $\left.\left.\left.\left.\left.\left.\left.\left.\ln \left(\left(\left(\left(2+(2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right) /\left(\left(2-(2-\mathrm{sqrt} 2)^{\wedge} 1 / 2\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\log (x)$ is the natural logarithm $\log _{b}(x)$ is the base- b logarithm ϕ is the golden ratio

Result:

125.4764413...
$125.4764413 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$\frac{8}{\log _{0.9906241686250000}\left(\frac{1}{0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)}\right)}-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{8}{\log \left(\frac{1}{0.96201446405770000+\frac{1}{16} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}}\right)}
$$

$\log (0.9906241686250000)$

Series representations:

Integral representations:

$\left.0.96201446405770000+\frac{\sqrt{2-\sqrt{2}}}{32 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)^{-s}}{\Gamma(1-s)} d s\right)$
for $-1<\gamma<0$
$1 / 8 \ln 5+3 / 10 \ln 2+3 /(4 \mathrm{sqrt5}) \ln ((\mathrm{sqrt5}+1) / 2)$

Input:

$\frac{1}{8} \log (5)+\frac{3}{10} \log (2)+\frac{3}{4 \sqrt{5}} \log \left(\frac{1}{2}(\sqrt{5}+1)\right)$

Exact result:

$\frac{3 \log (2)}{10}+\frac{\log (5)}{8}+\frac{3 \log \left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}}$

Decimal approximation:

$0.570527246083747654233802015447203459897564215544249912009 \ldots$
0.57052724608...

Alternate forms:

$\frac{1}{40}\left(\log (12800000)+6 \sqrt{5} \operatorname{csch}^{-1}(2)\right)$
$\frac{3 \log (2)}{10}+\frac{\log (5)}{8}+\frac{3 \operatorname{csch}^{-1}(2)}{4 \sqrt{5}}$
$\frac{1}{40}\left(5 \log (5)+\log (4096)+6 \sqrt{5} \log \left(\frac{1}{2}(1+\sqrt{5})\right)\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}= \\
& \frac{1}{8} \log (a) \log _{a}(5)+\frac{3}{10} \log (a) \log _{a}(2)+\frac{3 \log (a) \log _{a}\left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}} \\
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}=\frac{\log _{e}(5)}{8}+\frac{3 \log _{e}(2)}{10}+\frac{3 \log _{e}\left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}} \\
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}= \\
& -\frac{\mathrm{Li}_{1}(-4)}{8}-\frac{3 \mathrm{Li}_{1}(-1)}{10}-\frac{3 \mathrm{Li}_{1}\left(1+\frac{1}{2}(-1-\sqrt{5})\right)}{4 \sqrt{5}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}= \\
& \frac{17}{20} i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\frac{3 i \pi\left[\left.\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,\right.}{2 \sqrt{5}}+\frac{17 \log \left(z_{0}\right)}{40}+\frac{3 \log \left(z_{0}\right)}{4 \sqrt{5}}+\right.\right. \\
& \sum_{k=1}^{\infty}-\frac{(-1)^{k}\left(12\left(2-z_{0}\right)^{k}+5\left(5-z_{0}\right)^{k}+6 \sqrt{5}\left(\frac{1}{2}(1+\sqrt{5})-z_{0}\right)^{k}\right) z_{0}^{-k}}{40 k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}=\frac{3}{5} i \pi\left|\frac{\arg (2-x)}{2 \pi}\right|+ \\
& \quad \frac{1}{4} i \pi\left|\frac{\arg (5-x)}{2 \pi}\right|+\frac{3 i \pi\left|\frac{\arg \left(\frac{1}{2}(1+\sqrt{5})-x\right)}{2 \pi}\right|}{2 \sqrt{5}}+\frac{17 \log (x)}{40}+\frac{3 \log (x)}{4 \sqrt{5}}+ \\
& \quad \sum_{k=1}^{\infty}-\frac{(-1)^{k}\left(12(2-x)^{k}+5(5-x)^{k}+6 \sqrt{5}\left(\frac{1}{2}(1+\sqrt{5})-x\right)^{k}\right) x^{-k}}{40 k} \text { for } x<0 \\
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}= \\
& \frac{3}{10}\left\lfloor\left.\frac{\arg \left(2-z_{0}\right)}{2 \pi}\left|\log \left(\frac{1}{z_{0}}\right)+\frac{1}{8}\right| \frac{\arg \left(5-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(\frac{1}{z_{0}}\right)+\right. \\
& 3\left|\frac{\arg \left(\frac{1}{2}(1+\sqrt{5})-z_{0}\right)}{2 \pi}\right| \log \left(\frac{1}{z_{0}}\right) \\
& \left.\left.\frac{17 \log \left(z_{0}\right)}{40}+\frac{3 \log \left(z_{0}\right)}{4 \sqrt{5}}+\frac{3}{10} \right\rvert\, \frac{\arg \left(2-z_{0}\right)}{2 \pi}\right] \log \left(z_{0}\right)+ \\
& \quad \frac{1}{4} \\
& \frac{1}{8}\left\lfloor\frac{\arg \left(5-z_{0}\right)}{2 \pi}\left|\log \left(z_{0}\right)+\frac{\arg \left(\frac{1}{2}(1+\sqrt{5})-z_{0}\right)}{2 \pi}\right| \log \left(z_{0}\right)\right. \\
& 4 \sqrt{5} \\
& \sum_{k=1}^{\infty}-\frac{(-1)^{k}\left(12\left(2-z_{0}\right)^{k}+5\left(5-z_{0}\right)^{k}+6 \sqrt{5}\left(\frac{1}{2}(1+\sqrt{5})-z_{0}\right)^{k}\right) z_{0}^{-k}}{40 k}+
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}= \\
& \int_{1}^{1} \frac{1}{2}(1+\sqrt{5}) \frac{-90+48 \sqrt{5}-(9+47 \sqrt{5}) t+4(17+6 \sqrt{5}) t^{2}}{10 t(-3+\sqrt{5}+2 t)(-9+\sqrt{5}+8 t)} d t \\
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{3 i \Gamma(-s)^{2} \Gamma(1+s)}{20 \pi \Gamma(1-s)}-\frac{i 4^{-2-s} \Gamma(-s)^{2} \Gamma(1+s)}{\pi \Gamma(1-s)}-\right. \\
& \left.\frac{3 i\left(-1+\frac{1}{2}(1+\sqrt{5})\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{8 \sqrt{5} \pi \Gamma(1-s)}\right) d s \text { for }-1<\gamma<0
\end{aligned}
$$

$1 / 40 *$ sqrt(10-2sqrt5) $\ln ((((((4+\operatorname{sqrt}(10-2 \mathrm{sqr} 5))) /(4-\mathrm{sqrt}(10-2 \mathrm{sqr} 5)))))))+$ $1 / 40 * \operatorname{sqrt}(10+2 \mathrm{sqr} 5) \ln ((((4+\operatorname{sqrt}(10+2 \mathrm{sqrt} 5)) /(4-\mathrm{sqrt}(10+2 \mathrm{sqrt} 5))))$

Input:

$\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)$
$\log (x)$ is the natural logarithm

Decimal approximation:

$0.429773917801358845066792189915639095406723478805627468837 \ldots$
0.429773917801...

Alternate forms:

$$
\begin{aligned}
& \frac{1}{20} \sqrt{\frac{1}{2}(5-\sqrt{5})} \log (11-4 \sqrt{5}+2 \sqrt{2(25-11 \sqrt{5})})+ \\
& \frac{1}{20} \sqrt{\frac{1}{2}(5+\sqrt{5})} \log (11+4 \sqrt{5}+2 \sqrt{2(25+11 \sqrt{5})}) \\
& \frac{1}{40}\left(\sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\sqrt{2(5+\sqrt{5})} \log \left(\frac{4+\sqrt{2(5+\sqrt{5})}}{4-\sqrt{2(5+\sqrt{5})}}\right)\right) \\
& \sqrt{5-\sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\sqrt{5+\sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right) \\
& \hline
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40 \sqrt{10+2 \sqrt{5}}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)= \\
& \frac{1}{40} \log (a) \log _{a}\left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}+ \\
& \frac{1}{40} \log (a) \log _{a}\left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right) \sqrt{10+2 \sqrt{5}}
\end{aligned}
$$

$$
\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)=
$$

$$
\frac{1}{40} \log _{e}\left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}+\frac{1}{40} \log _{e}\left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right) \sqrt{10+2 \sqrt{5}}
$$

$$
\begin{aligned}
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)= \\
& -\frac{1}{40} \mathrm{Li}_{1}\left(1-\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right) \sqrt{10-2 \sqrt{5}}- \\
& \quad \frac{1}{40} \mathrm{Li}_{1}\left(1-\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right) \sqrt{10+2 \sqrt{5}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)= \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(-1+\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+ \\
& \frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(-1+\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)+ \\
& \sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k} \sqrt{10-2 \sqrt{5}}\left(-1+\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)^{-k}}{40 k}+\right. \\
& \left.\frac{(-1)^{-1+k} \sqrt{10+2 \sqrt{5}}\left(-1+\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)^{-k}}{40 k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)= \\
& \frac{1}{20} i \sqrt{10-2 \sqrt{5}} \pi\left[\left.\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,+\right. \\
& \frac{1}{20} i \sqrt{10+2 \sqrt{5}} \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|+\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(z_{0}\right)+ \\
& \frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(z_{0}\right)+\sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k} \sqrt{10-2 \sqrt{5}}\left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}-z_{0}\right)^{k} z_{0}^{-k}}{40 k}+\right. \\
& \left.\frac{(-1)^{-1+k} \sqrt{10+2 \sqrt{5}}\left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}-z_{0}\right)^{k} z_{0}^{-k}}{40 k}\right)
\end{aligned}
$$

$$
\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)=
$$

$$
\frac{1}{20} i \sqrt{10-2 \sqrt{5}} \pi\left|\frac{\arg \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}-x\right)}{2 \pi}\right|+
$$

$$
\frac{1}{20} i \sqrt{10+2 \sqrt{5}} \pi\left|\frac{\arg \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}-x\right)}{2 \pi}\right|+\frac{1}{40} \sqrt{10-2 \sqrt{5}} \log (x)+
$$

$$
\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log (x)+\sum_{k=1}^{\infty}\left(\frac{(-1)^{-1+k} \sqrt{10-2 \sqrt{5}}\left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}-x\right)^{k} x^{-k}}{40 k}+\right.
$$

$$
\left.(-1)^{-1+k} \sqrt{10+2 \sqrt{5}}\left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}-x\right)^{k} x^{-k}\right)
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)= \\
& \int_{1}^{\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}}\left(\frac{\sqrt{10-2 \sqrt{5}}}{40 t}+\right. \\
& \left.\frac{\sqrt{10+2 \sqrt{5}}\left(1-\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)\left(-1+\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)}{40\left(-1+\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)\left(-\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}+\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}+t-\frac{(4+\sqrt{10+2 \sqrt{5}}) t}{4-\sqrt{10+2 \sqrt{5}}}\right)}\right) d t \\
& \frac{1}{40} \sqrt{10-2 \sqrt{5}} \log \left(\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)+\frac{1}{40} \sqrt{10+2 \sqrt{5}} \log \left(\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i \sqrt{10-2 \sqrt{5}}\left(-1+\frac{4+\sqrt{10-2 \sqrt{5}}}{4-\sqrt{10-2 \sqrt{5}}}\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{80 \pi \Gamma(1-s)}-\right. \\
& \left.\frac{i \sqrt{10+2 \sqrt{5}}\left(-1+\frac{4+\sqrt{10+2 \sqrt{5}}}{4-\sqrt{10+2 \sqrt{5}}}\right)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{80 \pi \Gamma(1-s)}\right) d s \text { for }-1<\gamma<0
\end{aligned}
$$

$1 / 8 \ln 5+3 / 10 \ln 2+3 /(4 \mathrm{sqrt} 5) \ln ((\mathrm{sqrt5}+1) / 2)+0.42977391780135884506$

Input interpretation:

$\frac{1}{8} \log (5)+\frac{3}{10} \log (2)+\frac{3}{4 \sqrt{5}} \log \left(\frac{1}{2}(\sqrt{5}+1)\right)+0.42977391780135884506$

Result:

1.0003011638851064993...
1.00030116388...

Alternative representations:

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}+0.429773917801358845060000= \\
& 0.429773917801358845060000+\frac{1}{8} \log (a) \log _{a}(5)+ \\
& \frac{3}{10} \log (a) \log _{a}(2)+\frac{3 \log _{(a)} \log _{a}\left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}} \\
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}+0.429773917801358845060000= \\
& 0.429773917801358845060000+\frac{\log _{e}(5)}{8}+\frac{3 \log _{e}(2)}{10}+\frac{3 \log _{e}\left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}} \\
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}+0.429773917801358845060000= \\
& 0.429773917801358845060000-\frac{L i_{1}(-4)}{8}-\frac{3 \operatorname{Li}_{1}(-1)}{10}-\frac{3 \operatorname{Li}_{1}\left(1+\frac{1}{2}(-1-\sqrt{5})\right)}{4 \sqrt{5}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000= \\
& \frac{1}{\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}} 0.3000000000000000000000 \\
& \left(2 . 5 0 \operatorname { l o g } \left(\frac{1}{2}\left(1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)+\right.\right. \\
& 1.4325797260045294835333 \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+ \\
& 1.0000000000000000000000 \log (2) \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+ \\
& \left.0.41666666666666666666667 \log (5) \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\left(\begin{array}{c}
\frac{1}{2} \\
2 \\
k
\end{array}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}+0.429773917801358845060000= \\
& (0.3000000000000000000000(2.5000000000000000000000 \\
& \log \left(\frac{1}{2}\left(1+\exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)+ \\
& \left.1.4325797260045294835333 \exp \left(i \pi \left\lvert\, \frac{\arg (5-x)}{2 \pi}\right.\right]\right) \sqrt{x} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.0000000000000000000000 \\
& \left.\quad \exp \left(i \pi \left\lvert\, \frac{\arg (5-x)}{2 \pi}\right.\right]\right) \log (2) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 0.41666666666666666666667 \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \\
& \\
& \left.\quad \log (5) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(\exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000= \\
& \left(0.3000000000000000000000\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(2 . 5 0 \operatorname { l o g } \left(\frac { 1 } { 2 } \left(1+\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right.\right. \\
& \left.\left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right.} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)+ \\
& 1.4325797260045294835333\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2+1 / 2 \arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+1.00000000000000000000000 \log (2) \\
& \left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 0.41666666666666666666667 \log (5)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{\left.\left.(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}\right)\right) / k!}{k!}\right) / 1 \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000= \\
& 0.429773917801358845060000+ \\
& \int_{1}^{2}\left(\frac{3}{10 t}+\frac{1}{2(-3+4 t)}+\frac{3\left(-1+\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}\left(2-t+\frac{1}{2}(-1-\sqrt{5})+\frac{1}{2} t(1+\sqrt{5})\right)}\right) d t \\
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}+0.429773917801358845060000= \\
& 0.42977391780135884506+\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{1}{i \pi \Gamma(1-s) \sqrt{5}} 4^{-s} \Gamma(-s)^{2} \Gamma(1+s) \\
& (-1+\sqrt{5})^{-s}\left(0.37500000000000000 \times 8^{s}+(0.062500000000000000+\right. \\
& \left.\left.0.15000000000000000 \times 4^{s}\right)(-1+\sqrt{5})^{s} \sqrt{5}\right) d s \text { for }-1<\gamma<0
\end{aligned}
$$

$1 /[1 / 8 \ln 5+3 / 10 \ln 2+3 /(4 \mathrm{sqrt5}) \ln ((\mathrm{sqrt5}+1) / 2)+0.42977391780135884506]^{\wedge} 32$

Input interpretation:

$\frac{1}{\left(\frac{1}{8} \log (5)+\frac{3}{10} \log (2)+\frac{3}{4 \sqrt{5}} \log \left(\frac{1}{2}(\sqrt{5}+1)\right)+0.42977391780135884506\right)^{32}}$
$\log (x)$ is the natural logarithm

Result:

0.9904104820846705839 ..
$0.990410482 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternative representations:

$\frac{1}{\left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right)^{32}}=$
$\frac{1}{\left(0.429773917801358845060000+\frac{\log _{e}(5)}{8}+\frac{3 \log _{e}(2)}{10}+\frac{3 \log _{e}\left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}}\right)^{32}}$

1
$\left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right)^{32}=$
$1 /\left(0.429773917801358845060000+\frac{1}{8} \log (a) \log _{a}(5)+\right.$

$$
\left.\frac{3}{10} \log (a) \log _{a}(2)+\frac{3 \log (a) \log _{a}\left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}}\right)^{32}
$$

$$
\begin{aligned}
& \left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right)^{32} \\
& \frac{1}{\left(0.429773917801358845060000-\frac{\operatorname{Li}_{1}(-4)}{8}-\frac{3 \operatorname{Li}_{1}(-1)}{10}-\frac{3 \mathrm{Li}_{1}\left(1+\frac{1}{2}(-1-\sqrt{5})\right)}{4 \sqrt{5}}\right)^{32}}
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
\frac{1}{\left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right)^{32}}= \\
\left(5.39659527735429015323 \times 10^{16} \sqrt{4}^{32}\left(\sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{32}\right) / \\
\left(2.5000000000000000000000 \log \left(\frac{1}{2}\left(1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)\right)+\right. \\
1.4325797260045294835333 \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}+ \\
1.0000000000000000000000 \log (2) \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\left(\begin{array}{c}
\frac{1}{2} \\
2 \\
k
\end{array}\right)+ \\
\left.0.4166666666666666666667 \log (5) \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)^{32}
\end{gathered}
$$

$$
\begin{aligned}
& \overline{\left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right)^{32}}= \\
& \left(5.3965952773542901532 \times 10^{16} \exp ^{32}\left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x}^{32}\right. \\
& \left.\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{32}\right) /(2.5000000000000000000000 \\
& \log \left(\frac{1}{2}\left(1+\exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)+ \\
& 1.4325797260045294835333 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+1.0000000000000000000000 \\
& \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \log (2) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 0.4166666666666666666667 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \log (5) \\
& \left.\sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{32} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

$\overline{\left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right)^{32}}=$ $1 /(0.429773917801358845060000+$

$$
\begin{aligned}
& \frac{3}{10}\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)+ \\
& \frac{1}{8}\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(5-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)+ \\
& \left(3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right. \\
& \left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(\frac{1}{2}(1+\sqrt{5})-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right. \\
& \left.\left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{-k}}{k}\right)\right) / \\
& \left.\left(4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)^{32}
\end{aligned}
$$

4/log base $0.990410482((1 /[1 / 8 \ln 5+3 / 10 \ln 2+3 /(4 s q r t 5) \ln ((s q r t 5+1) / 2)+$ $0.42977391780135884506]))-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\log (x)$ is the natural logarithm $\log _{b}(x)$ is the base- b logarithm ϕ is the golden ratio

Result:

125.4764...
125.4764... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$$
-\pi+\frac{1}{\phi}+\frac{4}{\log \left(\frac{1}{\left(0.429773917801358845060000+\frac{\log (5)}{8}+\frac{3 \log (2)}{10}+\frac{3 \log \left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}}\right)}\right)}
$$

$\log (0.99041)$
$\frac{4}{\log _{0.99041}\left(\frac{1}{\left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right.}\right)}-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+
$$

$$
4
$$

$$
\begin{gathered}
\frac{4}{\log _{0.99041}\left(\frac{1}{\left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right.}\right)}-\frac{4}{1}-\pi+\frac{1}{\phi}=-\pi+\frac{1}{\phi}+ \\
\log _{0.99041}\left(\frac{1}{0.429773917801358845060000+\frac{1}{8} \log (a) \log _{a}(5)+\frac{3}{10} \log _{(a)} \log _{a}(2)+\frac{3 \log (a) \log a\left(\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}}}\right)
\end{gathered}
$$

Series representation:

$$
\begin{gathered}
\frac{4}{\log _{0.99041}\left(\frac{1}{\left(\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000\right.}\right)}-\pi+\frac{1}{\phi}= \\
\frac{1}{\phi}-\pi-(4 \log (0.99041)) /\left(\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k}(-1+(3.33333333333333333333333 \sqrt{5}) /\right. \\
\left(2.50000000000000000000000 \log \left(\frac{1}{2}(1+\sqrt{5})\right)+\right. \\
(1.43257972600452948353333+\log (2)+ \\
\left.0.416666666666666666666667 \log (5)) \sqrt{5}))^{k}\right)
\end{gathered}
$$

Integral representations:

$$
\begin{aligned}
& \left.\frac{4}{\log _{0.99041}\left(\frac{1}{\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000}\right)}\right)^{-\pi+\frac{1}{\phi}=} \\
& -\left(\left(-4 \phi-\log _{0.99041}((3.33333333333333333333333 \sqrt{5}) /\right.\right. \\
& \left(2.50000000000000000000000 \int_{1}^{\frac{1}{2}(1+\sqrt{5})} \frac{1}{t} d t+\right. \\
& \text { (1.43257972600452948353333 + } \\
& \left.\left.\left.\int_{1}^{2}\left(-\frac{1.66666666666666666666667}{3-4 t}+\frac{1}{t}\right) d t\right) \sqrt{5}\right)\right)+ \\
& \phi \pi \log _{0.99041}((3.33333333333333333333333 \sqrt{5}) / \\
& \left(2.50000000000000000000000 \int_{1}^{\frac{1}{2}(1+\sqrt{5})} \frac{1}{t} d t+\right. \\
& \text { (1.43257972600452948353333 + } \\
& \left.\left.\left.\left.\int_{1}^{2}\left(-\frac{1.66666666666666666666667}{3-4 t}+\frac{1}{t}\right) d t\right) \sqrt{5}\right)\right)\right) / \\
& \left(\phi \log _{0.99041}((3.33333333333333333333333 \sqrt{5}) /\right. \\
& \left(2.50000000000000000000000 \int_{1}^{\frac{1}{2}(1+\sqrt{5})} \frac{1}{t} d t+\right. \\
& \text { (1.43257972600452948353333 + } \\
& \left.\left.\left.\left.\left.\int_{1}^{2}\left(-\frac{1.66666666666666666666667}{3-4 t}+\frac{1}{t}\right) d t\right) \sqrt{5}\right)\right)\right)\right) \\
& \left.\frac{4}{\log _{0.09041}\left(\frac{1}{\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000}\right)}\right)^{-\pi+\frac{1}{\phi}=} \\
& \frac{1}{\phi}-\pi+4 / \log _{0.99041}\left(1 / \int 0.429773917801358845060000+\right. \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{3 \Gamma(-s)^{2} \Gamma(1+s)}{20 i \pi \Gamma(1-s)}+\frac{4^{-2-s} \Gamma(-s)^{2} \Gamma(1+s)}{i \pi \Gamma(1-s)}+\right. \\
& \left.\left.\frac{3 \Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{1}{2}(1+\sqrt{5})\right)^{-s}}{8 i \pi \Gamma(1-s) \sqrt{5}}\right) d s\right) \text { for }-1<\gamma<0
\end{aligned}
$$

From the sum of the two results, we obtain:
$1 / 8 \ln 5+3 / 10 \ln 2+3 /(4 \mathrm{sqrt5}) \ln ((\mathrm{sqrt5}+1) / 2)+0.42977391780135884506+$ $0.9620144640577+1 / 16\left(\left((2-\text { sqrt2 } 2)^{\wedge} 1 / 2\right)\right) * \ln \left(\left(\left(\left(2+(2-s q r t 2)^{\wedge} 1 / 2\right)\right) /((2-(2-\right.\right.$ sqrt2)^1/2))))

Input interpretation:
$\frac{1}{8} \log (5)+\frac{3}{10} \log (2)+\frac{3}{4 \sqrt{5}} \log \left(\frac{1}{2}(\sqrt{5}+1)\right)+0.42977391780135884506+$
$0.9620144640577+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)$
$\log (x)$ is the natural logarithm

Result:

2.000890091057...
$2.00089009 \ldots$ result practically equal to the graviton spin 2 (boson)

Series representations:

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000+ \\
& 0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)= \\
& 0.750000000000000(1.0000000000000000 \\
& \log \left(\frac{1}{2}\left(1+\exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\right)+ \\
& 1.855717842478745 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+0.4000000000000000 \\
& \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \log (2) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 0.16666666666666667 \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \log (5) \\
& \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}+ \\
& 0.08333333333333333 \exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \\
& \log \left(\frac{2+\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}{2-\sqrt{2-\exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}}\right) \\
& \sqrt{x} \sqrt{2-\exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(\exp \left(i \pi\left\lfloor\frac{\arg (5-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}+0.429773917801358845060000+ \\
& 0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)= \\
& \left(0.3000000000000000\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
& \left(2 . 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 \operatorname { l o g } \left(\frac { 1 } { 2 } \left(1+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right.\right.\right. \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)+4.639294606196863 \\
& \left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+ \\
& 1.0000000000000000 \log (2)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \begin{array}{l}
\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+0.4166666666666667 \log (5) \\
\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}+
\end{array} \\
& 0.2083333333333333 \log \left(\left(2+\sqrt{ }\left(2-\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right.\right. \\
& \left.\left.z_{0}^{\left.1 / 2\left(1+\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) / \\
& \left(2-\sqrt{\left(2-\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right)}\right. \\
& \left.\left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)\right) \\
& \left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \sqrt{\left(2-\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}\right.} \\
& \left.z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right) /\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$
\]

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000+ \\
& 0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)= \\
& 1.39178838185905885+\frac{3}{10}\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\frac{1}{8}\left\lfloor\frac{\arg \left(5-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+ \\
& \frac{17 \log \left(z_{0}\right)}{40}+\frac{3}{10}\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+\frac{1}{8}\left\lfloor\frac{\arg \left(5-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)- \\
& \frac{3}{10} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}+\frac{1}{16}\left\lfloor\frac{\arg \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right) \\
& \sqrt{2-\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{16} \log \left(z_{0}\right) \\
& \sqrt{2-\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& \frac{1}{16}\left\lfloor\frac{\arg \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right) \\
& \sqrt{2-\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}- \\
& \frac{1}{8} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k}+ \\
& 3\left\lfloor\frac{\arg \left(\frac{1}{2}(1+\sqrt{5})-z_{0}\right)}{2 \pi}\right] \log \left(\frac{1}{z_{0}}\right)\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \frac{3 \log \left(z_{0}\right)\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor}}{4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!}}+ \\
& 3\left[\frac{\arg \left(\frac{1}{2}(1+\sqrt{5})-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor}- \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \underline{3\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(5-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{-k}}{k}} \\
& 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(5-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \frac{1}{16} \sqrt{2-\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2+1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right) 3}{4 \sqrt{5}}+ \\
& 0.429773917801358845060000+0.96201446405770000+ \\
& \frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=1.39178838185905885+ \\
& \int_{1}^{2}\left(\frac{3}{10 t}+\frac{1}{2(-3+4 t)}+\frac{\left(-1+\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right) \sqrt{2-\sqrt{2}}}{16\left(2-t-\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}+\frac{t(2+\sqrt{2-\sqrt{2}})}{2-\sqrt{2-\sqrt{2}}}\right)}+\right. \\
& \left.\frac{3\left(-1+\frac{1}{2}(1+\sqrt{5})\right)}{4 \sqrt{5}\left(2-t+\frac{1}{2}(-1-\sqrt{5})+\frac{1}{2} t(1+\sqrt{5})\right)}\right) d t
\end{aligned}
$$

$\frac{\log (5)}{8}+\frac{1}{10} \log (2) 3+\frac{\log \left(\frac{1}{2}(\sqrt{5}+1)\right)^{3}}{4 \sqrt{5}}+0.429773917801358845060000+$

$$
0.96201446405770000+\frac{1}{16} \sqrt{2-\sqrt{2}} \log \left(\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)=
$$

$$
1.39178838185905885+\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(\frac{3 \Gamma(-s)^{2} \Gamma(1+s)}{20 i \pi \Gamma(1-s)}+\frac{4^{-2-s} \Gamma(-s)^{2} \Gamma(1+s)}{i \pi \Gamma(1-s)}+\right.
$$

$$
\frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{2+\sqrt{2-\sqrt{2}}}{2-\sqrt{2-\sqrt{2}}}\right)^{-s} \sqrt{2-\sqrt{2}}}{32 i \pi \Gamma(1-s)}+
$$

$$
\left.\frac{3 \Gamma(-s)^{2} \Gamma(1+s)\left(-1+\frac{1}{2}(1+\sqrt{5})\right)^{-s}}{8 i \pi \Gamma(1-s) \sqrt{5}}\right) d s \text { for }-1<\gamma<0
$$

This is the difference compared to 2: 0.0008900910571 , from which, performing the inversion, we obtain:
(1/0.0008900910571)-76-29+1/golden ratio
Where 76 and 29 are Lucas numbers

Input interpretation:

$\frac{1}{0.0008900910571}-76-29+\frac{1}{\phi}$

Result:

1019.098595...
1019.098595 result practically equal to the rest mass of Phi meson 1019.445

Alternative representations:

$\frac{1}{0.000890091}-76-29+\frac{1}{\phi}=-105+\frac{1}{0.000890091}+\frac{1}{2 \sin \left(54^{\circ}\right)}$
$\frac{1}{0.000890091}-76-29+\frac{1}{\phi}=-105+\frac{1}{0.000890091}+-\frac{1}{2 \cos \left(216^{\circ}\right)}$
$\frac{1}{0.000890091}-76-29+\frac{1}{\phi}=-105+\frac{1}{0.000890091}+-\frac{1}{2 \sin \left(666^{\circ}\right)}$

Page 104

$(513 * 0.5)^{*}\left(\left(\left(\left(\left(((\log 1))^{\wedge} 3\right) /(1\right.\right.\right.\right.$ sqrt1 $)+\left(((\log 2))^{\wedge} 3\right) /(2 s q r t 2)+$ $\left.\left.\left.\left.\left(((\log 3))^{\wedge} 3\right) /(3 \operatorname{sqrt} 3)\right)\right)\right)\right)$

Input:

$(513 \times 0.5)\left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right)$
$\log (x)$ is the natural logarithm

Result:

95.6552 .
95.6552...

Alternative representations:

$$
\left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right) 513 \times 0.5=256.5\left(\frac{\log _{e}^{3}(1)}{\sqrt{1}}+\frac{\log _{e}^{3}(2)}{2 \sqrt{2}}+\frac{\log _{e}^{3}(3)}{3 \sqrt{3}}\right)
$$

$$
\left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right) 513 \times 0.5=
$$

$$
256.5\left(\frac{\left.\log (a) \log _{a}(1)\right)^{3}}{\sqrt{1}}+\frac{\left(\log (a) \log _{a}(2)\right)^{3}}{2 \sqrt{2}}+\frac{\left(\log (a) \log _{a}(3)\right)^{3}}{3 \sqrt{3}}\right)
$$

$$
\left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right) 513 \times 0.5=256.5\left(\frac{\left(-\operatorname{Li}_{1}(0)\right)^{3}}{\sqrt{1}}+\frac{\left(-\operatorname{Li}_{1}(-1)\right)^{3}}{2 \sqrt{2}}+\frac{\left(-\mathrm{Li}_{1}(-2)\right)^{3}}{3 \sqrt{3}}\right)
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right) 513 \times 0.5= \\
& 256.5\left(\frac{\left(2 i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}}{k}\right)^{3}}{\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+\right. \\
& \frac{\left(2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)^{3}}{2 \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}+
\end{aligned}
$$

$$
\left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right) 513 \times 0.5=
$$

$$
256.5\left(\left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2\left(-1-\arg \left(1-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right.\right.
$$

$$
\left.\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(1-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right) /
$$

$$
\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(1-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+\left(\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2\left(-1-\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right.
$$

$$
\left.\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right) /
$$

$$
\left(2 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)+\left(\left(\frac{1}{z_{0}}\right)^{\left.-1 / 2 \arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\arg \left(3-z_{0}\right) /(2 \pi)\right)}\right.
$$

$$
\left.\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{3}\right) /
$$

$$
\left.\left(3 \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\right)
$$

$$
\begin{aligned}
& \left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right) 513 \times 0.5= \\
& \left(8 5 . 5 \left(\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \log ^{3}(3)\right.\right. \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(1-x)^{k_{1}}(2-x)^{k_{2}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}+ \\
& 1.5 \exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \log ^{3}(2) \\
& \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(1-x)^{k_{1}}(3-x)^{k_{2}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}+ \\
& 3 \exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \log ^{3}(1) \\
& \left.\sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(2-x)^{k_{1}}(3-x)^{k_{2}} x^{-k_{1}-k_{2}}\left(-\frac{1}{2}\right)_{k_{1}}\left(-\frac{1}{2}\right)_{k_{2}}}{k_{1}!k_{2}!}\right) / / \\
& \left(\exp \left(i \pi\left\lfloor\frac{\arg (1-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right) \exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x}\right. \\
& \left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(1-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right) 513 \times 0.5= \\
& \frac{256.5\left(0.333333\left(\int_{1}^{3} \frac{1}{t} d t\right)^{3} \sqrt{1} \sqrt{2}+0.5\left(\int_{1}^{2} \frac{1}{t} d t\right)^{3} \sqrt{1} \sqrt{3}+\left(\int_{1}^{1} \frac{1}{t} d t\right)^{3} \sqrt{2} \sqrt{3}\right)}{\sqrt{1} \sqrt{2} \sqrt{3}}
\end{aligned}
$$

Or:
(derivative $\left(\right.$ derivative $\left(\left(\left(\left(((\log 1))^{\wedge} 3\right) /(1 \operatorname{sqrt} 1)+\left(((\log 2))^{\wedge} 3\right) /(2\right.\right.\right.$ sqrt2 $)+$ $\left.\left.\left.\left.\left.\left.\left(((\log 3))^{\wedge} 3\right) /(3 \operatorname{sqrt3})\right)\right)\right)\right)\right)\right)=($ derivative $($ derivative 96.001$))$

Input interpretation:

$\frac{\partial}{\partial x} \frac{\partial}{\partial x}\left(\frac{\log ^{3}(1)}{1 \sqrt{1}}+\frac{\log ^{3}(2)}{2 \sqrt{2}}+\frac{\log ^{3}(3)}{3 \sqrt{3}}\right)=\frac{\partial}{\partial x} \frac{\partial 96.001}{\partial x}$

Result:

True
96.001
$(27 / 8.5)(((((\log 1)) /(1)+((\log 2)) /(4)+((\log 3)) /(9))))$
Input:
$\frac{27}{8.5}\left(\frac{\log (1)}{1}+\frac{\log (2)}{4}+\frac{\log (3)}{9}\right)$
$\log (x)$ is the natural logarithm

Result:

0.938186 .
$0.938186 \ldots$ result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

Alternative representations:

$\frac{\left(\log (1) \frac{1}{1}+\frac{\log (2)}{4}+\frac{\log (3)}{9}\right) 27}{8.5}=\frac{27\left(\log (a) \log _{a}(1)+\frac{1}{4} \log (a) \log _{a}(2)+\frac{1}{9} \log (a) \log _{a}(3)\right)}{8.5}$
$\frac{\left(\log (1) \frac{1}{1}+\frac{\log (2)}{4}+\frac{\log (3)}{9}\right) 27}{8.5}=\frac{27\left(\log _{e}(1)+\frac{\log _{e}(2)}{4}+\frac{\log _{e}(3)}{9}\right)}{8.5}$
$\frac{\left(\log (1) \frac{1}{1}+\frac{\log (2)}{4}+\frac{\log (3)}{9}\right) 27}{8.5}=\frac{27\left(-\mathrm{Li}_{1}(0)-\frac{\mathrm{Li}_{1}(-1)}{4}-\frac{\mathrm{Li}_{1}(-2)}{9}\right)}{8.5}$

Series representations:

$$
\begin{aligned}
& \frac{\left(\log (1) \frac{1}{1}+\frac{\log (2)}{4}+\frac{\log (3)}{9}\right) 27}{8.5}=6.35294 i \pi\left|\frac{\arg (1-x)}{2 \pi}\right|+ \\
& \left.\left.1.58824 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+0.705882 i \pi \right\rvert\, \frac{\arg (3-x)}{2 \pi}\right\rfloor+4.32353 \log (x)+ \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3.17647(1-x)^{k}-0.794118(2-x)^{k}-0.352941(3-x)^{k}\right) x^{-k}}{k} \text { for } x< \\
& 0 \\
& \frac{\left(\log (1) \frac{1}{1}+\frac{\log (2)}{4}+\frac{\log (3)}{9}\right) 27}{8.5}= \\
& 3.17647\left\lfloor\frac{\arg \left(1-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(\frac{1}{z_{0}}\right)+0.794118\left\lfloor\left.\frac{\arg \left(2-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(\frac{1}{z_{0}}\right)+\right.\right.\right. \\
& 0.352941\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(\frac{1}{z_{0}}\right)+4.32353 \log \left(z_{0}\right)+3.17647\left[\left.\frac{\arg \left(1-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(z_{0}\right)+\right.\right.\right. \\
& 0.794118\left\lfloor\left.\frac{\arg \left(2-z_{0}\right)}{2 \pi}\left|\log \left(z_{0}\right)+0.352941\right| \frac{\arg \left(3-z_{0}\right)}{2 \pi} \right\rvert\, \log \left(z_{0}\right)+\right. \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3.17647\left(1-z_{0}\right)^{k}-0.794118\left(2-z_{0}\right)^{k}-0.352941\left(3-z_{0}\right)^{k}\right) z_{0}^{-k}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\log (1) \frac{1}{1}+\frac{\log (2)}{4}+\frac{\log (3)}{9}\right) 27}{8.5}= \\
& \left.\left.6.35294 i \pi\left|-\frac{-\pi+\arg \left(\frac{1}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right|+1.58824 i \pi \right\rvert\,-\frac{-\pi+\arg \left(\frac{2}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+ \\
& 0.705882 i \pi\left[\left.-\frac{-\pi+\arg \left(\frac{3}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi} \right\rvert\,+4.32353 \log \left(z_{0}\right)+\right. \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3.17647\left(1-z_{0}\right)^{k}-0.794118\left(2-z_{0}\right)^{k}-0.352941\left(3-z_{0}\right)^{k}\right) z_{0}^{k}}{k}
\end{aligned}
$$

Or:
$($ derivative $($ derivative $((((\log 1)) /(1)+((\log 2)) /(4)+((\log 3)) /(9))))))=$ (derivative(derivative 0.9382))

Input interpretation:

$\frac{\partial}{\partial x} \frac{\partial}{\partial x}\left(\frac{\log (1)}{1}+\frac{\log (2)}{4}+\frac{\log (3)}{9}\right)=\frac{\partial}{\partial x} \frac{\partial 0.9382}{\partial x}$
$\log (x)$ is the natural logarithm

Result:

True
0.9382 result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

$\left.\left.108\left(\left(\left((((\log 1)))^{\wedge} 4\right) /(1)+\left(((\log 2))^{\wedge} 4\right) /(4)+\left(((\log 3))^{\wedge} 4\right) /(9)\right)\right)\right)\right)$

Input:

$108\left(\frac{\log ^{4}(1)}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)$
$\log (x)$ is the natural logarithm

Exact result:

$108\left(\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)$

Decimal approximation:

23.71325718982211176264492617232192146058049307233064281754...
23.713257189...

Alternate forms:

$27 \log ^{4}(2)+12 \log ^{4}(3)$
$3\left(9 \log ^{4}(2)+4 \log ^{4}(3)\right)$

Alternative representations:

$$
\begin{aligned}
& 108\left(\log ^{4}(1) \frac{1}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)=108\left(\log _{e}^{4}(1)+\frac{1}{4} \log _{e}^{4}(2)+\frac{1}{9} \log _{e}^{4}(3)\right) \\
& 108\left(\log ^{4}(1) \frac{1}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)= \\
& \left.108\left(\log (a) \log _{a}(1)\right)^{4}+\frac{1}{4}\left(\log (a) \log _{a}(2)\right)^{4}+\frac{1}{9}\left(\log (a) \log _{a}(3)\right)^{4}\right)
\end{aligned}
$$

$$
108\left(\log ^{4}(1) \frac{1}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)=108\left(\frac{1}{9}\left(-\mathrm{Li}_{1}(-2)\right)^{4}+\frac{1}{4}\left(-\mathrm{Li}_{1}(-1)\right)^{4}+\left(-\mathrm{Li}_{1}(0)\right)^{4}\right)
$$

Series representations:

$$
\begin{aligned}
& 108\left(\log ^{4}(1) \frac{1}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)= \\
& 108\left(\frac{1}{4}\left(2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)^{4}+\right. \\
& \quad \frac{1}{9}\left(2 i \pi\left[\frac{\arg (3-x)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}}{k}\right.\right)^{4}\right) \text { for } x<0
\end{aligned}
$$

$108\left(\log ^{4}(1) \frac{1}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)=$

$$
\begin{array}{r}
108\left(\frac{1}{4}\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{4}+\right. \\
\left.\frac{1}{9}\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{4}\right)
\end{array}
$$

$108\left(\log ^{4}(1) \frac{1}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)=$

$$
\begin{aligned}
& 108\left(\frac{1}{4}\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{4}+\right. \\
& \frac{1}{9}\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)^{4}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 108\left(\log ^{4}(1) \frac{1}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)=3\left(9\left(\int_{1}^{2} \frac{1}{t} d t\right)^{4}+4\left(\int_{1}^{3} \frac{1}{t} d t\right)^{4}\right) \\
& 108\left(\log ^{4}(1) \frac{1}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)= \\
& \frac{3\left(9\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{4}+4\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{2^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{4}\right)}{16 \pi^{4}} \text { for }-1<\gamma<0
\end{aligned}
$$

Or:
$\left(\right.$ derivative $\left(\right.$ derivative $\left.\left.\left(\left(\left(\left((((\log 1)) \wedge 4) /(1)+(((\log 2)))^{\wedge} 4\right) /(4)+\left(((\log 3))^{\wedge} 4\right) /(9)\right)\right)\right)\right)\right)=$ (derivative(derivative 24))

Input interpretation:

$\frac{\partial}{\partial x} \frac{\partial}{\partial x}\left(\frac{\log ^{4}(1)}{1}+\frac{\log ^{4}(2)}{4}+\frac{\log ^{4}(3)}{9}\right)=\frac{\partial}{\partial x} \frac{\partial 24}{\partial x}$

Result:

True
24

This value is linked to the "Ramanujan function" (an elliptic modular function that satisfies the need for "conformal symmetry") that has 24 "modes" corresponding to the physical vibrations of a bosonic string.

21060 * $\left(\left(\left(\left(((\log 1))^{\wedge} 5\right) /(1\right.\right.\right.$ sqrt1 $)+\left(((\log 2))^{\wedge} 5\right) /(2$ sqrt2 $)+\left(((\log 3))^{\wedge} 5\right) /(3$ sqrt3 $\left.\left.\left.\left.\left.)\right)\right)\right)\right)\right)$

Input:

$21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)$
$\log (x)$ is the natural logarithm

Exact result:

$21060\left(\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)$

Decimal approximation:

7677.679222678524882044754597609374166484502041159930665050...
7677.679222678...

Alternate forms:

$5265 \sqrt{2} \log ^{5}(2)+2340 \sqrt{3} \log ^{5}(3)$
$585\left(9 \sqrt{2} \log ^{5}(2)+4 \sqrt{3} \log ^{5}(3)\right)$
$585 \sqrt{6}\left(3 \sqrt{3} \log ^{5}(2)+2 \sqrt{2} \log ^{5}(3)\right)$

Alternative representations:

$$
21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)=21060\left(\frac{\log _{e}^{5}(1)}{\sqrt{1}}+\frac{\log _{e}^{5}(2)}{2 \sqrt{2}}+\frac{\log _{e}^{5}(3)}{3 \sqrt{3}}\right)
$$

$21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)=$

$$
21060\left(\frac{\left(\log (a) \log _{a}(1)\right)^{5}}{\sqrt{1}}+\frac{\left(\log (a) \log _{a}(2)\right)^{5}}{2 \sqrt{2}}+\frac{\left(\log (a) \log _{a}(3)\right)^{5}}{3 \sqrt{3}}\right)
$$

$$
21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)=21060\left(\frac{\left(-\mathrm{Li}_{1}(0)\right)^{5}}{\sqrt{1}}+\frac{\left(-\mathrm{Li}_{1}(-1)\right)^{5}}{2 \sqrt{2}}+\frac{\left(-\mathrm{Li}_{1}(-2)\right)^{5}}{3 \sqrt{3}}\right)
$$

Series representations:

$$
\begin{aligned}
& 21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)= \\
& 21060\left(\frac{\left(2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)^{5}}{2 \sqrt{2}}+\right. \\
& \left.\quad \frac{\left(2 i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}}{k}\right)^{5}}{3 \sqrt{3}}\right) \text { for } x<0 \\
& 21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)= \\
& 21060\left(\frac{\left(\log \left(z_{0}\right)+\left\lfloor\frac{\operatorname{agg}\left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{5}}{2 \sqrt{2}}+\right. \\
& \left(\frac{\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(3-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{5}}{3 \sqrt{3}}\right)
\end{aligned}
$$

$21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)=$
$21060\left(\frac{\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}\right)^{5}}{2 \sqrt{2}}+\right.$

$$
\left.\frac{\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right\rfloor+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{5}}{3 \sqrt{3}}\right)
$$

Integral representations:

$21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)=585\left(9 \sqrt{2}\left(\int_{1}^{2} \frac{1}{t} d t\right)^{5}+4 \sqrt{3}\left(\int_{1}^{3} \frac{1}{t} d t\right)^{5}\right)$

$$
\begin{aligned}
& 21060\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)= \\
& -\frac{585 i\left(9 \sqrt{2}\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{5}+4 \sqrt{3}\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left.\left.2^{-s} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{5}\right)}{32 \pi^{5}}\right. \text { for }\right.}{l} \text { for }
\end{aligned}
$$

Or:
derivative $\left(\right.$ derivative $\left(\left(\left(\left((((\log 1)))^{\wedge}\right) /\left(1\right.\right.\right.\right.$ sqrt1) $+\left(((\log 2))^{\wedge} 5\right) /(2$ sqrt2 $)+$ $\left(((\log 3))^{\wedge} 5\right) /(3$ sqrt3) $\left.\left.\left.\left.)\right)\right)\right)\right)=($ derivative (derivative 7680))

Input interpretation:

$\frac{\partial}{\partial x} \frac{\partial}{\partial x}\left(\frac{\log ^{5}(1)}{1 \sqrt{1}}+\frac{\log ^{5}(2)}{2 \sqrt{2}}+\frac{\log ^{5}(3)}{3 \sqrt{3}}\right)=\frac{\partial}{\partial x} \frac{\partial 7680}{\partial x}$
$\log (x)$ is the natural logarithm

Result:

True
7680
$8640\left(\left(\left(\left(((\log 1))^{\wedge} 5\right)(\operatorname{sqrt}(\ln 1)) /(1)^{\wedge} 2+\left(((\log 2))^{\wedge} 5\right)\left((\operatorname{sqrt}(\ln 2)) /(2)^{\wedge} 2\right)\right)\right)\right)$

Input:

$8640\left(\log ^{5}(1) \times \frac{\sqrt{\log (1)}}{1^{2}}+\log ^{5}(2) \times \frac{\sqrt{\log (2)}}{2^{2}}\right)$

Exact result:

$2160 \log ^{11 / 2}(2)$

Decimal approximation:

287.7357250412195720212692672840519885114175475767756890038...
287.735725...

Property:

$2160 \log ^{11 / 2}(2)$ is a transcendental number

Alternative representations:

$$
\begin{aligned}
& 8640\left(\frac{\log ^{5}(1) \sqrt{\log _{(1)}}}{1^{2}}+\frac{\log ^{5}(2) \sqrt{\log (2)}}{2^{2}}\right)= \\
& \left.8640\left(\log (a) \log _{a}(1)\right)^{5} \sqrt{\log (a) \log _{a}(1)}+\frac{1}{4}\left(\log (a) \log _{a}(2)\right)^{5} \sqrt{\log (a) \log _{a}(2)}\right) \\
& 8640\left(\frac{\log ^{5}(1) \sqrt{\log _{(1)}}}{1^{2}}+\frac{\log ^{5}(2) \sqrt{\log (2)}}{2^{2}}\right)= \\
& 8640\left(\log _{e}^{5}(1) \sqrt{\log _{e}(1)}+\frac{1}{4} \log _{e}^{5}(2) \sqrt{\log _{e}(2)}\right) \\
& 8640\left(\frac{\log ^{5}(1) \sqrt{\log _{(1)}}}{1^{2}}+\frac{\log ^{5}(2) \sqrt{\log _{(2)}}}{2^{2}}\right)= \\
& 8640\left(\frac{1}{4}\left(-\mathrm{Li}_{1(-1))^{5}}^{-\mathrm{Li}_{1}(-1)}+\left(-\mathrm{Li}_{1}(0)\right)^{5} \sqrt{-\mathrm{Li}_{1}(0)}\right)\right.
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 8640\left(\frac{\log ^{5}(1) \sqrt{\log (1)}}{1^{2}}+\frac{\log ^{5}(2) \sqrt{\log (2)}}{2^{2}}\right)= \\
& 2160\left(2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)^{11 / 2} \text { for } x<0 \\
& 8640\left(\frac{\log ^{5}(1) \sqrt{\log (1)}}{1^{2}}+\frac{\log ^{5}(2) \sqrt{\log (2)}}{2^{2}}\right)= \\
& 2160\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{11 / 2}
\end{aligned}
$$

$$
8640\left(\frac{\log ^{5}(1) \sqrt{\log (1)}}{1^{2}}+\frac{\log ^{5}(2) \sqrt{\log (2)}}{2^{2}}\right)=
$$

$$
2160\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{11 / 2}
$$

Integral representations:

$8640\left(\frac{\log ^{5}(1) \sqrt{\log (1)}}{1^{2}}+\frac{\log ^{5}(2) \sqrt{\log (2)}}{2^{2}}\right)=2160\left(\int_{1}^{2} \frac{1}{t} d t\right)^{11 / 2}$
$8640\left(\frac{\log ^{5}(1) \sqrt{\log _{(1)}}}{1^{2}}+\frac{\log ^{5}(2) \sqrt{\log (2)}}{2^{2}}\right)=\frac{135\left(-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{11 / 2}}{2 \sqrt{2} \pi^{11 / 2}}$
for $-1<\gamma<0$

Or:
(derivative (derivative $\left(\left(\left(\left(\left(((\log 1))^{\wedge} 5\right)(\operatorname{sqrt}(\ln 1)) /(1)^{\wedge} 2+\left(((\log 2))^{\wedge} 5\right)\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.(\operatorname{sqrt}(\ln 2)) /(2)^{\wedge} 2\right)\right)\right)\right)\right)\right)=($ derivative $($ derivative 288$))$

Input interpretation:

$\frac{\partial}{\partial x} \frac{\partial}{\partial x}\left(\log ^{5}(1) \times \frac{\sqrt{\log (1)}}{1^{2}}+\log ^{5}(2) \times \frac{\sqrt{\log (2)}}{2^{2}}\right)=\frac{\partial}{\partial x} \frac{\partial 288}{\partial x}$

Result:

True
288
From these results
96.001; 0.9382; 24; 7680; 288

We obtain:
derivative $($ derivative $(96.001+0.9382+24+7680+288))=($ derivative $($ derivative 8088.9392)

Input interpretation:
$\frac{\partial}{\partial x} \frac{\partial(96.001+0.9382+24+7680+288)}{\partial x}=\frac{\partial}{\partial x} \frac{\partial 8088.9392}{\partial x}$

Result:

True
integrate integrate $[(96.001+0.9382+24+7680+288))]=$ integrate integrate [(8088.9392)]

Input interpretation:

$\int\left(\int(96.001+0.9382+24+7680+288) d x\right) d x=\int\left(\int 8088.9392 d x\right) d x$

Result:

True
integral(integral8088.94 dx) dx
Input interpretation:
$\int\left(\int 8088.94 d x\right) d x$

Result:

$4044.47 x^{2}$

Indefinite integral assuming all variables are real:

$1348.16 x^{3}+$ constant
1348.16

We note that, adding 34 that is a Fibonacci number:
$1348.16+34=1382.16$ result practically equal to the rest mass of Sigma baryon 1382.8

Definite integral over a disk of radius R :

$$
\iint_{2 x^{2}<R^{2}} 8088.94 d x d x=25412.2 R^{2}
$$

Definite integral over a square of edge length 2 L :
$\int_{-L}^{L} \int_{-L}^{L} 8088.94 d x d x=32355.8 L^{2}$

Or:
$1 / 6[(96.001+0.9382+24+7680+288))]]$
Input interpretation:
$\frac{1}{6}(96.001+0.9382+24+7680+288)$

Result:
1348.1565333

Repeating decimal:

$1348.1565 \overline{3}$ (period 1)
1348.15653...

From which $1348.15653+34=1382.15653$ result practically equal to the rest mass of Sigma baryon 1382.8

And also, performing the average, we obtain:
$1 / 5[(96.001+0.9382+24+7680+288))]]$
Input interpretation:
$\frac{1}{5}(96.001+0.9382+24+7680+288)$

Result:

1617.78784
1617.78784

We have also:
$1 / 5[(96.001+0.9382+24+7680+288))]]+55$
Where 55 is a Fibonacci number

Input interpretation:

$\frac{1}{5}(96.001+0.9382+24+7680+288)+55$

Result:

1672.78784
1672.78784 result practically equal to the rest mass of Omega baryon 1672.45

From which:
$1 / 10^{\wedge} 3$ * $\left.1 / 5[(96.001+0.9382+24+7680+288))\right]$
Input interpretation:
$\frac{1}{10^{3}} \times \frac{1}{5}(96.001+0.9382+24+7680+288)$

Result:

1.61778784
1.61778784 result that is a very good approximation to the value of the golden ratio 1,618033988749...
$1 /\left(\left(\left(1 / 10^{\wedge} 3 * 1 / 5[(96.001+0.9382+24+7680+288))\right]\right)\right)$

Input interpretation:

$$
\frac{1}{\frac{1}{10^{3}} \times \frac{1}{5}(96.001+0.9382+24+7680+288)}
$$

Result:

0.618128023511414203731436131946695804067856017510924052933...
$0.6181280235 \ldots$ result practically equal to the golden ratio conjugate

While from the previous results obtained by our calculations, we obtain:
$1 / 10^{\wedge} 3 * 1 / 5[(95.6552+0.938186+23.713257189+7677.6792+287.735725)]$
Input interpretation:
$\frac{1}{10^{3}} \times \frac{1}{5}(95.6552+0.938186+23.713257189+7677.6792+287.735725)$

Result:

1.6171443136378
1.6171443136378 result that is a very good approximation to the value of the golden ratio 1,618033988749...
$1 /\left(\left(\left(1 / 10^{\wedge} 3 * 1 / 5[(95.6552+0.938186+23.713257189+7677.6792+\right.\right.\right.$ $287.735725)])))$

Input interpretation:

$$
\frac{1}{10^{3}} \times \frac{1}{5}(95.6552+0.938186+23.713257189+7677.6792+287.735725)
$$

Result:

$0.618374001359519397408843701837659980669851611646961678485 \ldots$
$0.6183740013 \ldots$ result practically equal to the golden ratio conjugate

Multiplying and integrating the several results, we obtain:
integrate integrate $[(96.001 * 0.9382 * 24 * 7680 * 288))]=$ integrate integrate [(4.781191459110912 $\left.\left.\times 10^{\wedge} 9\right)\right]$

Input interpretation:

$\int\left(\int 96.001 \times 0.9382 \times 24 \times 7680 \times 288 d x\right) d x=$ $\int\left(\int 4.781191459110912 \times 10^{9} d x\right) d x$

Result:

True
integrate integrate $\left[\left(4.781191459110912 \times 10^{\wedge} 9\right)\right]$

Input interpretation:

$\int\left(\int 4.781191459110912 \times 10^{9} d x\right) d x$

Result:

$2.390595729555456 \times 10^{9} x^{2}$

Indefinite integral assuming all variables are real:

$7.968652431851520 \times 10^{8} x^{3}+$ constant
$\ln (796865243.1851520)$
Input interpretation:
$\log \left(7.968652431851520 \times 10^{8}\right)$

Result:

20.496196142390025...
$20.49619 \ldots$ result very near to the black hole entropy 20.5520

Alternative representations:

$\log \left(7.9686524318515200000 \times 10^{8}\right)=\log _{e}\left(7.9686524318515200000 \times 10^{8}\right)$

```
log(7.9686524318515200000 * 10 8})=\operatorname{log}(a)\mp@subsup{\operatorname{log}}{a}{}(7.9686524318515200000 * 10 8)
```

```
log(7.9686524318515200000 < 10 年)=-Li
```


Series representations:

$\log \left(7.9686524318515200000 \times 10^{8}\right)=$

$$
\log \left(7.9686524218515200000 \times 10^{8}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-20.4961961411351074847 k}}{k}
$$

$\log \left(7.9686524318515200000 \times 10^{8}\right)=$
$2 i \pi\left|\frac{\arg \left(7.9686524318515200000 \times 10^{8}-x\right)}{2 \pi}\right|+\log (x)-$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(7.9686524318515200000 \times 10^{8}-x\right)^{k} x^{-k}}{k} \text { for } x<0
$$

$$
\begin{aligned}
& \log \left(7.9686524318515200000 \times 10^{8}\right)= \\
& \left.\left\lvert\, \frac{\arg \left(7.9686524318515200000 \times 10^{8}-z_{0}\right)}{2 \pi}\right.\right\rfloor \log \left(\frac{1}{z_{0}}\right)+ \\
& \left.\quad \log \left(z_{0}\right)+\left\lvert\, \frac{\arg \left(7.9686524318515200000 \times 10^{8}-z_{0}\right)}{2 \pi}\right.\right\rfloor \log \left(z_{0}\right)- \\
& \quad \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(7.9686524318515200000 \times 10^{8}-z_{0}\right)^{k} z_{0}^{k}}{k}
\end{aligned}
$$

Integral representations:

$\log \left(7.9686524318515200000 \times 10^{8}\right)=\int_{1}^{7.9686524318515200000 \times 10^{8}} \frac{1}{t} d t$
$\log \left(7.9686524318515200000 \times 10^{8}\right)=$

$$
\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-20.4961961411351074847 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
$$

golden $\operatorname{ratio}^{\wedge} 2 * \operatorname{sqrt}(796865243.1851520)-(322+76+18)+$ golden ratio ${ }^{\wedge} 3$

Input interpretation:

$\phi^{2} \sqrt{7.968652431851520 \times 10^{8}}-(322+76+18)+\phi^{3}$

Result:

73492.19827672097...
73492.198276....

Thence, we have the following mathematical connections:

$$
\binom{I_{21} \& \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{t}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant p^{1-},} \frac{a(\lambda)}{\sqrt{\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \preccurlyeq}{\& H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}},
$$

$$
/(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
$$

$$
\begin{aligned}
& \left(\phi^{2} \sqrt{7.968652431851520 \times 10^{8}}-(322+76+18)+\phi^{3}\right)=73492.198 \ldots \Rightarrow \\
& \Rightarrow-3927+2\binom{13 \sqrt{N \exp \left[\int d \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+}}{\int\left[d \mathbf{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathbf{X}^{\mu} D^{2} \mathbf{X}^{\mu}\right)\right\}\left|\mathbf{X}^{\mu}, \mathbf{X}^{i}=0\right\rangle_{\mathrm{NS}}}= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow \\
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $\mathrm{u} \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p -brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Series representations:

$$
\begin{aligned}
& \phi^{2} \sqrt{7.9686524318515200000 \times 10^{8}}-(322+76+18)+\phi^{3}= \\
& -416+\phi^{3}+\phi^{2} \sqrt{7.9686524218515200000 \times 10^{8}} \sum_{k=0}^{\infty} e^{-20.4061961411351074847 k}\binom{\frac{1}{2}}{k} \\
& \phi^{2} \sqrt{7.9686524318515200000 \times 10^{8}}-(322+76+18)+\phi^{3}= \\
& -416+\phi^{3}+\phi^{2} \sqrt{7.9686524218515200000 \times 10^{8}} \\
& \sum_{k=0}^{\infty} \frac{\left(-1.2549173273737161534 \times 10^{-9}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \phi^{2} \sqrt{7.9686524318515200000 \times 10^{8}}-(322+76+18)+\phi^{3}= \\
& -416+\phi^{3}+\phi^{2} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(7.9686524318515200000 \times 10^{8}-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

Dividing and integrating the various results, we obtain:

Input interpretation:

$\int\left(\int 7680 \times \frac{1}{288} \times \frac{1}{96.001} \times \frac{1}{24} \times \frac{1}{0.9382} d x\right) d x$

Result:

$0.00616817 x^{2}$

Indefinite integral assuming all variables are real:

$0.00205606 x^{3}+$ constant
0.00205606
$(1 / 0.00205606)+11$

Input interpretation:
$\frac{1}{0.00205606}+11$

Result:

497.3671293639290682178535645846911082361409686487748412011...
497.36712936.... result practically equal to the rest mass of Kaon meson 497.614

Performing the inversion, we obtain:
$1 /(($ integrate integrate $[(7680 * 1 / 288 * 1 / 96.001 * 1 / 24 * 1 / 0.9382))]))$
Input interpretation:
$\frac{1}{\int\left(\int 7680 \times \frac{1}{288} \times \frac{1}{96.001} \times \frac{1}{24} \times \frac{1}{0.9382} d x\right) d x}$

Result:

$\frac{162.123}{x^{2}}$

Plots:

Alternate form assuming x is real:
$\frac{162.123}{x^{2}}+0$
Indefinite integral assuming all variables are real:
$-\frac{162.123}{x}+$ constant

From which, for $\mathrm{x}=1$:
$162.123 / 1^{\wedge} 2-34-\mathrm{Pi}+1 /$ golden ratio
Input interpretation:
$\frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}$

Result:

125.599.
125.599.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$\frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=-34-\pi+162.123 \times \frac{1}{1}+-\frac{1}{2 \cos \left(216^{\circ}\right)}$
$\frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=-34-180^{\circ}+162.123 \times \frac{1}{1}+-\frac{1}{2 \cos \left(216^{\circ}\right)}$
$\frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=-34-\pi+162.123 \times \frac{1}{1}+\frac{1}{2 \cos \left(\frac{\pi}{5}\right)}$

Series representations:

$$
\begin{aligned}
& \frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=128.123+\frac{1}{\phi}-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=130.123+\frac{1}{\phi}-2 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}
\end{aligned}
$$

$$
\frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=128.123+\frac{1}{\phi}-\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}
$$

Integral representations:

$$
\begin{aligned}
& \frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=128.123+\frac{1}{\phi}-2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t \\
& \frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=128.123+\frac{1}{\phi}-4 \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{162.123}{1^{2}}-34-\pi+\frac{1}{\phi}=128.123+\frac{1}{\phi}-2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t
\end{aligned}
$$

Page 105

$2\left(\left(\log (1) /\right.\right.$ sqrt $\left.\left.1 \cos \left(2 \mathrm{Pi}^{*} 3\right)+\log (2) / \mathrm{sqrt} 2 \cos \left(4 \mathrm{Pi}^{*} 3\right)\right)\right)$
Input:
$2\left(\frac{\log (1)}{\sqrt{1}} \cos (2 \pi \times 3)+\frac{\log (2)}{\sqrt{2}} \cos (4 \pi \times 3)\right)$
$\log (x)$ is the natural logarithm

Exact result:

$\sqrt{2} \log (2)$
Decimal approximation:
$0.980258143468547191713901723635233381291460699099054721042 \ldots$
0.9802581434685...

Property:

$\sqrt{2} \log (2)$ is a transcendental number

Alternative representations:

$$
\begin{aligned}
& 2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)=2\left(\frac{\cosh (-6 i \pi) \log (1)}{\sqrt{1}}+\frac{\cosh (-12 i \pi) \log (2)}{\sqrt{2}}\right) \\
& 2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)= \\
& 2\left(\frac{\cosh (6 i \pi) \log (a) \log _{a}(1)}{\sqrt{1}}+\frac{\cosh (12 i \pi) \log _{(a)} \log _{a}(2)}{\sqrt{2}}\right) \\
& 2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)=2\left(\frac{\cosh (6 i \pi) \log _{e}(1)}{\sqrt{1}}+\frac{\cosh (12 i \pi) \log _{e}(2)}{\sqrt{2}}\right)
\end{aligned}
$$

Series representations:

$2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)=$ $2 i \sqrt{2} \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\sqrt{2} \log (x)-\sqrt{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}$ for $x<0$
$2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)=\sqrt{2}\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+$
$\sqrt{2} \log \left(z_{0}\right)+\sqrt{2}\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sqrt{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}$
$2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)=$
$2 i \sqrt{2} \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\sqrt{2} \log \left(z_{0}\right)-\sqrt{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}$

Integral representations:

$$
\begin{aligned}
& 2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)=\sqrt{2} \int_{1}^{2} \frac{1}{t} d t \\
& 2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)=-\frac{i}{\sqrt{2} \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& 2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)= \\
& 2\left(\frac{\left(-1+2 \cos ^{2}(3 \pi)\right) \log (1)}{\sqrt{1}}+\frac{\left(-1+2 \cos ^{2}(6 \pi)\right) \log (2)}{\sqrt{2}}\right) \\
& 2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)= \\
& 2\left(\frac{\log (1)\left(1-2 \sin ^{2}(3 \pi)\right)}{\sqrt{1}}+\frac{\log (2)\left(1-2 \sin ^{2}(6 \pi)\right)}{\sqrt{2}}\right) \\
& 2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)= \\
& 2\left(\frac{\cos (2 \pi)\left(-3+4 \cos ^{2}(2 \pi)\right) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi)\left(-3+4 \cos ^{2}(4 \pi)\right) \log (2)}{\sqrt{2}}\right)
\end{aligned}
$$

$\operatorname{sqrt}\left[2\left(\left(\log (1) /\right.\right.\right.$ sqrt1 $\cos \left(2 \mathrm{Pi}^{*} 3\right)+\log (2) /$ sqrt2 $\left.\left.\left.\cos \left(4 \mathrm{Pi}^{*} 3\right)\right)\right)\right]$

Input:

$\sqrt{2\left(\frac{\log (1)}{\sqrt{1}} \cos (2 \pi \times 3)+\frac{\log (2)}{\sqrt{2}} \cos (4 \pi \times 3)\right)}$

Exact result:

$\sqrt[4]{2} \sqrt{\log (2)}$

Decimal approximation:

0.990079867217057995517642189474547008677834627810553754345
$0.990079867217 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Property:

$\sqrt[4]{2} \sqrt{\log (2)}$ is a transcendental number

All 2nd roots of $\operatorname{sqrt}(2) \log (2):$

$\sqrt[4]{2} e^{0} \sqrt{\log (2)} \approx 0.99008$ (real, principal root)
$\sqrt[4]{2} e^{i \pi} \sqrt{\log (2)} \approx-0.9901$ (real root)

Alternative representations:

$$
\begin{aligned}
& \sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}= \\
& \sqrt{2\left(\frac{\cosh (-6 i \pi) \log (1)}{\sqrt{1}}+\frac{\cosh (-12 i \pi) \log (2)}{\sqrt{2}}\right)} \\
& \sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}= \\
& \sqrt{2\left(\frac{\cosh (6 i \pi) \log (a) \log _{a}(1)}{\sqrt{1}}+\frac{\cosh (12 i \pi) \log (a) \log _{a}(2)}{\sqrt{2}}\right)}
\end{aligned}
$$

$$
\sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}=
$$

$$
\sqrt{2\left(\frac{\cosh (6 i \pi) \log _{e}(1)}{\sqrt{1}}+\frac{\cosh (12 i \pi) \log _{e}(2)}{\sqrt{2}}\right)}
$$

Series representations:

$$
\begin{aligned}
& \sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}= \\
& \sqrt[4]{2} \sqrt{2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}} \text { for } x<0 \\
& \sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}= \\
& \sqrt[4]{2} \sqrt{\log \left(z_{0}\right)+\left[\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}} \\
& \sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}= \\
& \sqrt[4]{2} \sqrt{2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}=\sqrt[4]{2} \sqrt{\int_{1}^{2} \frac{1}{t} d t} \\
& \sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}=\frac{\sqrt{-i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s}}{\sqrt[4]{2} \sqrt{\pi}} \text { for }-1<\gamma<0
\end{aligned}
$$

Multiple-argument formulas:

$\sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}=\sqrt{2} \sqrt{\frac{\cos (6 \pi) \log (1)}{\sqrt{1}}+\frac{\cos (12 \pi) \log (2)}{\sqrt{2}}}$

$$
\begin{aligned}
& \sqrt{2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)}= \\
& \left.\exp \left(i \pi \left\lvert\,-\frac{-\pi+\arg (2)+\arg \left(\frac{\cos (6 \pi) \log (1)}{\sqrt{1}}+\frac{\cos (12 \pi) \log (2)}{\sqrt{2}}\right)}{2 \pi}\right.\right]\right) \\
& \sqrt{2} \sqrt{\frac{\cos (6 \pi) \log (1)}{\sqrt{1}}+\frac{\cos (12 \pi) \log (2)}{\sqrt{2}}}
\end{aligned}
$$

$64 \log$ base $0.990079867217\left[2\left(\left(\log (1) / s q r t 1 \cos \left(2 \mathrm{Pi}^{*} 3\right)+\log (2) / \mathrm{sqrt} 2\right.\right.\right.$ $\left.\cos \left(4 \mathrm{Pi}^{*} 3\right)\right)$)]-Pi+1/golden ratio

Input interpretation:

$64 \log _{0.090078867217}\left(2\left(\frac{\log (1)}{\sqrt{1}} \cos (2 \pi \times 3)+\frac{\log (2)}{\sqrt{2}} \cos (4 \pi \times 3)\right)\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base $-b$ logarithm

Result:

125.4764413...
$125.4764413 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$64 \log _{0.0900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$
$-\pi+64 \log _{0.05000788672170000}\left(2\left(\frac{\cosh (-6 i \pi) \log (1)}{\sqrt{1}}+\frac{\cosh (-12 i \pi) \log (2)}{\sqrt{2}}\right)\right)+\frac{1}{\phi}$
$64 \log _{0.09007786672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{64 \log \left(2\left(\frac{\cos (6 \pi) \log (1)}{\sqrt{1}}+\frac{\cos (12 \pi) \log (2)}{\sqrt{2}}\right)\right)}{\log (0.9900798672170000)}
$$

$64 \log _{0.0900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\begin{array}{r}
-\pi+64 \log _{0.0900798672170000}(\\
\left.2\left(\frac{\cosh (6 i \pi) \log _{(a)} \log _{a}(1)}{\sqrt{1}}+\frac{\cosh (12 i \pi) \log (a) \log _{a}(2)}{\sqrt{2}}\right)\right)+\frac{1}{\phi}
\end{array}
$$

Series representation:

$64 \log _{0.9900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{64 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{2 \cos (6 \pi) \log (1)}{\sqrt{1}}+\frac{2 \cos (12 \pi) \log (22)}{\sqrt{2}}\right)^{k}}{k}}{\log (0.9900798672170000)}
$$

Integral representations:

$64 \log _{0.9900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi+$

$$
64 \log _{0.0900798672170000}\left(\int_{\frac{\pi}{2}}^{6 \pi}\left(-\frac{2 \log (1) \sin (t)}{\sqrt{1}}-\frac{46 \log (2) \sin \left(\frac{1}{11}(-6 \pi+23 t)\right)}{11 \sqrt{2}}\right) d t\right)
$$

$64 \log _{0.9900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\begin{aligned}
& \frac{1}{\phi}-\pi+64 \log _{0.0900798672170000}\left(\frac{\sqrt{\pi}}{i \pi \sqrt{1} \sqrt{2}}\right. \\
& \left.\quad \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-\left(36 \pi^{2}\right) / s+s}\left(\log (2) \sqrt{1}+e^{\left(27 \pi^{2}\right) / s} \log (1) \sqrt{2}\right)}{\sqrt{s}} d s\right) \text { for } \gamma>0
\end{aligned}
$$

$64 \log _{0.9900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$

$$
\begin{aligned}
& -\frac{1}{\phi}\left(-1+\phi \pi-64 \phi \log _{0.9500798672170000}(\right. \\
& \left.\left.\int_{0}^{1} \int_{0}^{1} \sin \left(\frac{1}{2}\left(\pi+11 \pi t_{2}\right)\right) d t_{2} d t_{1}+\int_{0}^{1} \int_{0}^{1} \frac{\sin \left(\frac{1}{2}\left(\pi+23 \pi t_{2}\right)\right)}{1+t_{1}} d t_{2} d t_{1}\right)\right)
\end{aligned}
$$

Multiple-argument formulas:

$64 \log _{0.9900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi+64$

$$
\left(\log _{0.9900798672170000}(2)+\log _{0.9900798672170000}\left(\frac{\cos (6 \pi) \log (1)}{\sqrt{1}}+\frac{\cos (12 \pi) \log (2)}{\sqrt{2}}\right)\right)
$$

$64 \log _{0.9900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$
$\frac{1}{\phi}-\pi+64 \log _{0.9900798672170000}\left(2\left(\frac{\left(-1+2 \cos ^{2}(3 \pi)\right) \log (1)}{\sqrt{1}}+\frac{\left(-1+2 \cos ^{2}(6 \pi)\right) \log (2)}{\sqrt{2}}\right)\right)$
$64 \log _{0.9900798672170000}\left(2\left(\frac{\cos (2 \pi 3) \log (1)}{\sqrt{1}}+\frac{\cos (4 \pi 3) \log (2)}{\sqrt{2}}\right)\right)-\pi+\frac{1}{\phi}=$
$\frac{1}{\phi}-\pi+64 \log _{0.9900798672170000}\left(2\left(\frac{\log (1)\left(1-2 \sin ^{2}(3 \pi)\right)}{\sqrt{1}}+\frac{\log (2)\left(1-2 \sin ^{2}(6 \pi)\right)}{\sqrt{2}}\right)\right)$

$-1 / 2 *\left(2(2)^{\wedge} 1 / 5\right)+(((55 / 199+\mathrm{Pi} / 2+\log (8 \mathrm{Pi}))))$

Input:

$-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)$

Exact result:

$\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (8 \pi)$
3.92265130887...

Alternate forms:

$\frac{1}{398}(110-398 \sqrt[5]{2}+199 \pi+398 \log (8 \pi))$
$\frac{\pi}{2}+\frac{1}{199}(55-199 \sqrt[5]{2}+199 \log (8 \pi))$
$\frac{1}{398}(199 \pi+2(55-199 \sqrt[5]{2}+597 \log (2))+398 \log (\pi))$

Alternative representations:

$\frac{1}{2}(2 \sqrt[5]{2})(-1)+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{\pi}{2}+\log _{e}(8 \pi)-\sqrt[5]{2}+\frac{55}{199}$
$\frac{1}{2}(2 \sqrt[5]{2})(-1)+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{\pi}{2}+\log (a) \log _{a}(8 \pi)-\sqrt[5]{2}+\frac{55}{199}$
$\frac{1}{2}(2 \sqrt[5]{2})(-1)+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{\pi}{2}-\mathrm{Li}_{1}(1-8 \pi)-\sqrt[5]{2}+\frac{55}{199}$

Series representations:

$$
\begin{aligned}
& \frac{1}{2}(2 \sqrt[5]{2})(-1)+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (-1+8 \pi)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{1-8 \pi}\right)^{k}}{k} \\
& \frac{1}{2}(2 \sqrt[5]{2})(-1)+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& \quad \frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+2 i \pi\left[\frac{\arg (8 \pi-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(8 \pi-x)^{k} x^{-k}}{k} \text { for } x<0 \\
& \frac{1}{2}(2 \sqrt[5]{2})(-1)+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& \frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$\frac{1}{2}(2 \sqrt[5]{2})(-1)+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\int_{1}^{8 \pi} \frac{1}{t} d t$

$$
\begin{aligned}
& \frac{1}{2}(2 \sqrt[5]{2})(-1)+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& \quad \frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+8 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

Or:
$-1 / 2 * 8((713 \mathrm{Pi}) / 7800)+(((55 / 199+\mathrm{Pi} / 2+\log (8 \mathrm{Pi}))))$

Input:

$-\frac{1}{2} \times 8 \times \frac{713 \pi}{7800}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)$

Exact result:

$\frac{55}{199}+\frac{131 \pi}{975}+\log (8 \pi)$

Decimal approximation:

3.922654503866988041235389920385304486937503547769352085309
3.9226545038...

Alternate forms:

$\frac{55}{199}+\frac{131 \pi}{975}+\log (8)+\log (\pi)$
$\frac{53625+26069 \pi}{194025}+\log (8 \pi)$
$\frac{53625+26069 \pi+194025 \log (8 \pi)}{194025}$

Alternative representations:

$$
\begin{aligned}
& \frac{(8(713 \pi))(-1)}{7800 \times 2}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{\pi}{2}+\log _{e}(8 \pi)+\frac{55}{199}-\frac{2852 \pi}{7800} \\
& \frac{(8(713 \pi))(-1)}{7800 \times 2}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{\pi}{2}+\log (a) \log _{a}(8 \pi)+\frac{55}{199}-\frac{2852 \pi}{7800} \\
& \frac{(8(713 \pi))(-1)}{7800 \times 2}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{\pi}{2}-\operatorname{Li}_{1}(1-8 \pi)+\frac{55}{199}-\frac{2852 \pi}{7800}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{(8(713 \pi))(-1)}{7800 \times 2}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{55}{199}+\frac{131 \pi}{975}+\log (-1+8 \pi)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{1-8 \pi}\right)^{k}}{k} \\
& \frac{(8(713 \pi))(-1)}{7800 \times 2}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& \frac{55}{199}+\frac{131 \pi}{975}+2 i \pi\left[\frac{\arg (8 \pi-x)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(8 \pi-x)^{k} x^{-k}}{k}\right. \text { for } x<0\right. \\
& \frac{(8(713 \pi))(-1)}{7800 \times 2}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& \frac{55}{199}+\frac{131 \pi}{975}+2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{(8(713 \pi))(-1)}{7800 \times 2}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{55}{199}+\frac{131 \pi}{975}+\int_{1}^{8 \pi} \frac{1}{t} d t \\
& \frac{(8(713 \pi))(-1)}{7800 \times 2}+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& \frac{55}{199}+\frac{131 \pi}{975}-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+8 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

With this other data, we obtain:
$-2 / 3+4 / 5+2-0.0082(((55+\mathrm{Pi} / 2+\log (8 \mathrm{Pi}))))$

Input:

$-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)$

Result:

1.643015...
$1.643015 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternative representations:

$$
\begin{aligned}
& -\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{4}{3}-0.0082\left(55+\frac{\pi}{2}+\log _{e}(8 \pi)\right)+\frac{4}{5} \\
& -\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{4}{3}-0.0082\left(55+\frac{\pi}{2}+\log (a) \log _{a}(8 \pi)\right)+\frac{4}{5} \\
& -\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)=\frac{4}{3}-0.0082\left(55+\frac{\pi}{2}-\operatorname{Li}_{1}(1-8 \pi)\right)+\frac{4}{5}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& 1.68233-0.0041 \pi-0.0082 \log (-1+8 \pi)+0.0082 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+8 \pi)^{-k}}{k}
\end{aligned}
$$

$$
-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)=
$$

$$
1.68233-0.0041 \pi-0.0164 i \pi\left[\frac{\arg (8 \pi-x)}{2 \pi}\right]-
$$

$$
0.0082 \log (x)+0.0082 \sum_{k=1}^{\infty} \frac{(-1)^{k}(8 \pi-x)^{k} x^{-k}}{k} \text { for } x<0
$$

$$
\begin{aligned}
& -\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& 1.68233-0.0041 \pi-0.0082\left[\frac{\arg \left(8 \pi-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)-0.0082 \log \left(z_{0}\right)- \\
& \quad 0.0082\left\lfloor\frac{\arg \left(8 \pi-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+0.0082 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8 \pi-z_{0}\right)^{k} z_{0}^{k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& -\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)=1.68233-0.0041 \pi-0.0082 \int_{1}^{8 \pi} \frac{1}{t} d t \\
& -\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)= \\
& \quad 1.68233-0.0041 \pi-\frac{0.0041}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+8 \pi)^{-5} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

$1 / 10^{\wedge} 27$ * $\left(\left(\left(\left(29 / 10^{\wedge} 3-2 / 3+4 / 5+2-0.0082(((55+\mathrm{Pi} / 2+\log (8 \mathrm{Pi}))))\right)\right)\right)\right)$

Input:

$$
\frac{1}{10^{27}}\left(\frac{29}{10^{3}}-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)\right)
$$

$\log (x)$ is the natural logarithm

Result:

$1.672015 \ldots \times 10^{-27}$
$1.672015 \ldots * 10^{-27}$ result practically equal to the proton mass

Alternative representations:

$$
\frac{\frac{29}{10^{3}}-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)}{10^{27}}=\frac{\frac{4}{3}-0.0082\left(55+\frac{\pi}{2}+\log _{e}(8 \pi)\right)+\frac{4}{5}+\frac{29}{10^{3}}}{10^{27}}
$$

$$
\begin{aligned}
& \frac{\frac{29}{10^{3}}-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)}{10^{27}}= \\
& \frac{\frac{4}{3}-0.0082\left(55+\frac{\pi}{2}+\log (a) \log _{a}(8 \pi)\right)+\frac{4}{5}+\frac{29}{10^{3}}}{10^{27}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\frac{29}{10^{3}}-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)}{10^{27}}=1.71133 \times 10^{-27}- \\
& 4.1 \times 10^{-30} \pi-8.2 \times 10^{-30} \log (-1+8 \pi)+8.2 \times 10^{-30} \sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+8 \pi)^{-k}}{k} \\
& \frac{\frac{29}{10^{3}}-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)}{10^{27}}= \\
& 1.71133 \times 10^{-27}-4.1 \times 10^{-30} \pi-1.64 \times 10^{-29} i \pi\left[\frac{\arg (8 \pi-x)}{2 \pi}\right]- \\
& 8.2 \times 10^{-30} \log (x)+8.2 \times 10^{-30} \sum_{k=1}^{\infty} \frac{(-1)^{k}(8 \pi-x)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\frac{29}{10^{3}}-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)}{10^{27}}=1.71133 \times 10^{-27}- \\
& 4.1 \times 10^{-30} \pi-8.2 \times 10^{-30}\left[\frac{\arg \left(8 \pi-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)-8.2 \times 10^{-30} \log \left(z_{0}\right)- \\
& 8.2 \times 10^{-30}\left\lfloor\frac{\arg \left(8 \pi-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+8.2 \times 10^{-30} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\frac{29}{10^{3}}-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)}{10^{27}}= \\
& 1.71133 \times 10^{-27}-4.1 \times 10^{-30} \pi-8.2 \times 10^{-30} \int_{1}^{8 \pi} \frac{1}{t} d t \\
& \frac{\frac{29}{10^{3}}-\frac{2}{3}+\frac{4}{5}+2-0.0082\left(55+\frac{\pi}{2}+\log (8 \pi)\right)}{10^{27}}=1.71133 \times 10^{-27}-4.1 \times 10^{-30} \pi- \\
& \frac{4.1 \times 10^{-30}}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+8 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

From the principal result, we obtain:
$\left(\left(\left(1 / 4\left[-1 / 2^{*}\left(2(2)^{\wedge} 1 / 5\right)+(((55 / 199+\mathrm{Pi} / 2+\log (8 \mathrm{Pi}))))\right]\right)\right)\right)^{\wedge} 1 / 2$

Input:

$\sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}$
$\log (x)$ is the natural logarithm

Exact result:

$\frac{1}{2} \sqrt{\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (8 \pi)}$

Decimal approximation:

$0.990284215373904211395505494704027753725570040888517572997 \ldots$
$0.9902842153 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternate forms:

$$
\frac{1}{2} \sqrt{\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (8)+\log (\pi)}
$$

$$
\frac{1}{2} \sqrt{\frac{1}{398}(110-398 \sqrt[5]{2}+199 \pi+398 \log (8 \pi))}
$$

$$
\frac{1}{2} \sqrt{\frac{1}{398}(199 \pi+2(55-199 \sqrt[5]{2}+597 \log (2))+398 \log (\pi))}
$$

All 2nd roots of $1 / 4\left(55 / 199-2^{\wedge}(1 / 5)+\pi / 2+\log (8 \pi)\right)$:
$\frac{1}{2} e^{0} \sqrt{\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (8 \pi)} \approx 0.9903$ (real, principal root)
$\frac{1}{2} e^{i \pi} \sqrt{\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (8 \pi)} \approx-0.9903$ (real root)

Alternative representations:

$\sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}=\sqrt{\frac{1}{4}\left(\frac{\pi}{2}+\log _{e}(8 \pi)-\sqrt[5]{2}+\frac{55}{199}\right)}$
$\sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}=\sqrt{\frac{1}{4}\left(\frac{\pi}{2}+\log (a) \log _{a}(8 \pi)-\sqrt[5]{2}+\frac{55}{199}\right)}$

$$
\sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}=\sqrt{\frac{1}{4}\left(\frac{\pi}{2}-\operatorname{Li}_{1}(1-8 \pi)-\sqrt[5]{2}+\frac{55}{199}\right)}
$$

Series representations:

$$
\begin{aligned}
& \sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}= \\
& \frac{1}{2} \sqrt{\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (-1+8 \pi)-\sum_{k=1}^{\infty} \frac{\left(\frac{1}{1-8 \pi}\right)^{k}}{k}}
\end{aligned}
$$

$$
\sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}=\frac{1}{2}
$$

$$
\sqrt{\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+2 i \pi\left[\frac{\arg (8 \pi-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(8 \pi-x)^{k} x^{-k}}{k}} \text { for } x<0
$$

$$
\begin{aligned}
& \sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}= \\
& \frac{1}{2} \sqrt{\left(\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(8 \pi-z_{0}\right)}{2 \pi}\right]\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.}
\end{aligned}
$$

$$
\left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(8 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)
$$

Integral representations:

$$
\begin{aligned}
& \sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}=\frac{1}{2} \sqrt{\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\int_{1}^{8 \pi} \frac{1}{t} d t} \\
& \sqrt{\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)}= \\
& \frac{1}{2} \sqrt{\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}-\frac{i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+8 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }-1<\gamma<0
\end{aligned}
$$

64*log base 0.9902842153739 (((1/4[-
$\left.\left.\left.\left.1 / 2^{*}\left(2(2)^{\wedge} 1 / 5\right)+(((55 / 199+\mathrm{Pi} / 2+\log (8 \mathrm{Pi}))))\right]\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$64 \log _{0.9902842153739}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm
ϕ is the golden ratio

Result:

125.47644134...
125.47644134... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}=$
$-\pi+64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(\frac{\pi}{2}+\log _{e}(8 \pi)-\sqrt[5]{2}+\frac{55}{199}\right)\right)+\frac{1}{\phi}$
$64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{64 \log \left(\frac{1}{4}\left(\frac{\pi}{2}+\log (8 \pi)-\sqrt[5]{2}+\frac{55}{199}\right)\right)}{\log (0.99028421537390000)}
$$

$64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(\frac{\pi}{2}+\log (a) \log _{a}(8 \pi)-\sqrt[5]{2}+\frac{55}{199}\right)\right)+\frac{1}{\phi}
$$

Series representations:

$64 \log _{0.09028421537390000}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi+$

$$
64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (-1+8 \pi)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+8 \pi)^{-k}}{k}\right)\right)
$$

$64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{64 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{741}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\log (8 \pi)\right)^{k}}{k}}{\log (0.99028421537390000)}
$$

$64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+64 \log _{0.09028421537390000}\left(\frac { 1 } { 4 } \left(\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\right.\right.
$$

$$
\left.\left.2 i \pi\left[\frac{\arg (8 \pi-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(8 \pi-x)^{k} x^{-k}}{k}\right)\right) \text { for } x<0
$$

Integral representations:

$64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}=$ $\frac{1}{\phi}-\pi+64 \log _{0.09028421537390000}\left(\frac{1}{4}\left(\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\int_{1}^{8 \pi} \frac{1}{t} d t\right)\right)$
$64 \log _{0.99028421537390000}\left(\frac{1}{4}\left(-\frac{1}{2}(2 \sqrt[5]{2})+\left(\frac{55}{199}+\frac{\pi}{2}+\log (8 \pi)\right)\right)\right)-\pi+\frac{1}{\phi}=$

$$
\begin{aligned}
& \frac{1}{\phi}-\pi+64 \log _{0.09028421537390000}\left(\frac { 1 } { 4 } \left(\frac{55}{199}-\sqrt[5]{2}+\frac{\pi}{2}+\right.\right. \\
& \left.\left.\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{(-1+8 \pi)^{-s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)\right) \text { for }-1<\gamma<0
\end{aligned}
$$

Page 109

$\operatorname{Pi}^{\wedge} 2 /(10)-\left(\left((\ln ((\text { sqrt5-1)/2)})))^{\wedge} 2\right.\right.$

Input:

$\frac{\pi^{2}}{10}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
$\log (x)$ is the natural logarithm

Decimal approximation:

0.755395619531741469386520028756082353514963590674780191826...
$0.75539561953174 \ldots$...

Alternate forms:

$\frac{\pi^{2}}{10}-\operatorname{csch}^{-1}(2)^{2}$
$\frac{1}{10}\left(\pi^{2}-10 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\frac{1}{10}\left(\pi^{2}-10(\log (\sqrt{5}-1)-\log (2))^{2}\right)$
$\operatorname{csch}^{-1}(x)$ is the inverse hyperbolic cosecant function

Alternative representations:

$\frac{\pi^{2}}{10}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{10}-\log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)$
$\frac{\pi^{2}}{10}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{10}-\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}$
$\frac{\pi^{2}}{10}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{10}-\left(-\operatorname{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}$

Series representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{10}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{10}-\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2} \\
& \frac{\pi^{2}}{10}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{10}- \\
& \quad\left(2 i \pi\left[\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right.\right)^{2} \text { for } x<0\right. \\
& \frac{\pi^{2}}{10}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{10}- \\
& \quad\left(2 i \pi\left[\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2} \text { for } x<0
\end{aligned}
$$

Integral representation:

$\frac{\pi^{2}}{10}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{10}-\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$

We note that:
$0.755395619531741+\left(((\ln ((\text { sqrt5-1)/2)}))))^{\wedge} 2\right.$

Input interpretation:

$0.755395619531741+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$

Result:

0.986960440108935...
$0.986960440108935 \ldots$. result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternative representations:

$0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=$
$0.7553956195317410000+\log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)$
$0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=$
$0.7553956195317410000+\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}$
$0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=$
$0.7553956195317410000+\left(-\mathrm{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}$

Series representations:

$0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=$
$0.7553956195317410000+\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}$
$0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=$
$0.7553956195317410000+\log ^{2}\left(\frac{1}{2}\left(-1+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}\right)\right)$
$0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=0.7553956195317410000+$

$$
\left(2 i \pi\left[\frac{\arg \left(\frac{1}{2}(-1-2 x+\sqrt{5})\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k} x^{-k}(-1-2 x+\sqrt{5})^{k}}{k}\right)^{2} \text { for } x<
$$

0

Integral representation:

$0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=$ $0.7553956195317410000+\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$
$64^{*} \log$ base $0.99345882657\left(\left(\left(0.755395619531741+(((\ln ((\operatorname{sqr} 5-1) / 2))))^{\wedge} 2\right)\right)\right)-$ $\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$64 \log _{0.99345882657}\left(0.755395619531741+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

125.476441..
$125.4761441 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$64 \log _{0.993458826570000}\left(0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{64 \log \left(0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)}{\log (0.993458826570000)}
$$

$64 \log _{0.903458826570000}\left(0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+64 \log _{0.993458826570000}\left(0.7553956195317410000+\log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)+\frac{1}{\phi}
$$

$64 \log _{0.903458826570000}\left(0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$ $-\pi+64 \log _{0.993458826570000}$ (
$\left.0.7553956195317410000+\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)+\frac{1}{\phi}$

Series representations:

$64 \log _{0.903458826570000}\left(0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+64 \log _{0.993458826570000}\left(0.7553956195317410000+\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}\right)
$$

$64 \log _{0.903458826570000}\left(0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{64 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.2446043804682590000+\log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{k}}{k}}{\log (0.993458826570000)}
$$

Integral representation:

$64 \log _{0.903458826570000}\left(0.7553956195317410000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+64 \log _{0.093458826570000}\left(0.7553956195317410000+\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}\right)
$$

$\mathrm{Pi}^{\wedge} 2 /(15)-(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2$

Input:

$\frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
$\log (x)$ is the natural logarithm

Decimal approximation:

0.426408806162096182092036995426877315671173610433420504278...
0.426408806162096...

$$
\begin{aligned}
& \text { Alternate forms: } \\
& \frac{\pi^{2}}{15}-\operatorname{csch}^{-1}(2)^{2} \\
& \frac{1}{15}\left(\pi^{2}-15 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right) \\
& \frac{1}{15}\left(\pi^{2}-15(\log (\sqrt{5}-1)-\log (2))^{2}\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{15}-\log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right) \\
& \frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{15}-\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2} \\
& \frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{15}-\left(-\operatorname{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}
\end{aligned}
$$

Series representations:

$\frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{15}-\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}$
$\frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{15}-$

$$
\left(2 i \pi\left[\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2} \text { for } x<0
$$

$$
\frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{15}-
$$

$$
\left(2 i \pi\left[\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2} \text { for } x<0
$$

Integral representation:

$\frac{\pi^{2}}{15}-\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)=\frac{\pi^{2}}{15}-\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$
$1 / 10^{\wedge} 27\left[1+\left(\left((11+4) / 10^{\wedge} 3+0.426408806162096+(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2\right)\right)\right]$
Input interpretation:
$\frac{1}{10^{27}}\left(1+\left(\frac{11+4}{10^{3}}+0.426408806162096+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)\right)$

Result:

$1.672973626739290 \ldots \times 10^{-27}$
$1.67297362673 \ldots * 10^{-27}$ result practically equal to the proton mass

Alternative representations:

$$
\frac{1+\left(\frac{11+4}{10^{3}}+0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)}{10^{27}}=
$$

```
\(\frac{1+\left(\frac{11+4}{10^{3}}+0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)}{10^{27}}=\)
    \(\frac{1.4264088061620960000+\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}+\frac{15}{10^{3}}}{10^{27}}\)
```

$$
\begin{aligned}
& \frac{1+\left(\frac{11+4}{10^{3}}+0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)}{10^{27}}= \\
& \frac{1.4264088061620960000+\left(-\mathrm{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}+\frac{15}{10^{3}}}{10^{27}}
\end{aligned}
$$

Integral representation:

$\frac{1+\left(\frac{11+4}{10^{3}}+0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)}{10^{27}}=$
$1.4414088061620960000 \times 10^{-27}+$
$1.0000000000000000000 \times 10^{-27}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$
$\left[\left(\left(0.426408806162096+(((\ln ((\operatorname{sqrt5}-1) / 2))))^{\wedge} 2\right)\right)\right]^{\wedge} 1 / 64$
Input interpretation:
$\sqrt[64]{0.426408806162096+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)}$

Result:

0.99348086689512454...
$0.99348086689512454 \ldots$. result very near to the value of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)
$2 \log$ base 0.993480866895 ((([((0.426408806162096 + (() $\ln ((s q r t 5-$ $\left.\left.\left.\left.\left.1) / 2))))^{\wedge} 2\right)\right)\right]\right)\right)$)- $\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \log _{0.993480866895}\left(0.426408806162096+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

125.4764413...
125.4764413... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$2 \log _{0.9934808668950000}\left(0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$ $-\pi+\frac{1}{\phi}+\frac{2 \log \left(0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)}{\log (0.9934808668950000)}$
$2 \log _{0.9934808668950000}\left(0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$
$\quad-\pi+2 \log _{0.9934808668950000}\left(0.4264088061620960000+\log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)+\frac{1}{\phi}$
$2 \log _{0.9934808668950000}\left(0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$ $-\pi+2 \log _{0.9934808668950000}($

$$
\left.0.4264088061620960000+\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)+\frac{1}{\phi}
$$

Series representations:

$$
\begin{aligned}
& 2 \log _{0.9934808668950000}\left(0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}= \\
& \left.\frac{1}{\phi}-\pi+2 \log _{0.9934808668950000}\left(0.4264088061620960000+\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}\right)\right)
\end{aligned}
$$

$2 \log _{0.9934808668950000}\left(0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-0.5735911938379040000+\log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{k}}{k}}{\log (0.9934808668950000)}
$$

Integral representation:

$2 \log _{0.9934808668950000}\left(0.4264088061620960000+\log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}=$ $\frac{1}{\phi}-\pi+2 \log _{0.9934808668950000}\left(0.4264088061620960000+\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}\right)$
$\operatorname{Pi}^{\wedge} 2 /(16)-1 / 4(((\ln ((s q r t 2-1)))))^{\wedge} 2$

Input:

$$
\frac{\pi^{2}}{16}-\frac{1}{4} \log ^{2}(\sqrt{2}-1)
$$

Decimal approximation:

0.422645425094160918302012009969904719805341759375060686848...
$0.4226454250941609 \ldots$

Alternative representations:

$\frac{\pi^{2}}{16}-\frac{1}{4} \log ^{2}(\sqrt{2}-1)=\frac{\pi^{2}}{16}-\frac{1}{4} \log _{e}^{2}(-1+\sqrt{2})$
$\frac{\pi^{2}}{16}-\frac{1}{4} \log ^{2}(\sqrt{2}-1)=\frac{\pi^{2}}{16}-\frac{1}{4}\left(\log (a) \log _{a}(-1+\sqrt{2})\right)^{2}$
$\frac{\pi^{2}}{16}-\frac{1}{4} \log ^{2}(\sqrt{2}-1)=\frac{\pi^{2}}{16}-\frac{1}{4}\left(-\mathrm{Li}_{1}(2-\sqrt{2})\right)^{2}$

Series representations:

$$
\frac{\pi^{2}}{16}-\frac{1}{4} \log ^{2}(\sqrt{2}-1)=\frac{\pi^{2}}{16}-\frac{1}{4}\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}(-2+\sqrt{2})^{k}}{k}\right)^{2}
$$

$$
\frac{\pi^{2}}{16}-\frac{1}{4} \log ^{2}(\sqrt{2}-1)=
$$

$$
\frac{1}{16}\left(\pi^{2}-4\left(2 i \pi\left[\frac{\arg (-1+\sqrt{2}-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+\sqrt{2}-x)^{k} x^{-k}}{k}\right)^{2}\right) \text { for }
$$

$$
x<0
$$

$$
\begin{aligned}
& \frac{\pi^{2}}{16}-\frac{1}{4} \log ^{2}(\sqrt{2}-1)= \\
& \frac{\pi^{2}}{16}-\frac{1}{4}\left(2 i \pi\left[\frac{\arg (-1+\sqrt{2}-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-1+\sqrt{2}-x)^{k} x^{-k}}{k}\right)^{2} \text { for } x<0
\end{aligned}
$$

Integral representation:

$$
\frac{\pi^{2}}{16}-\frac{1}{4} \log ^{2}(\sqrt{2}-1)=\frac{\pi^{2}}{16}-\frac{1}{4}\left(\int_{1}^{-1+\sqrt{2}} \frac{1}{t} d t\right)^{2}
$$

$\left[1 / 4(((\ln ((s q r t 2-1)))))^{\wedge} 2+0.4226454250941609\right]^{\wedge} 1 / 64$

Input interpretation:

$\sqrt[64]{\frac{1}{4} \log ^{2}(\sqrt{2}-1)+0.4226454250941609}$

Result:

0.992479531455390870...
$0.992479531455 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)
$2 \log$ base $0.99247953145539\left(\left(\left([1 / 4(((\ln ((s q r t 2-1))))))^{\wedge} 2+\right.\right.\right.$ $0.4226454250941609])))-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \log _{0.99247953145539}\left(\frac{1}{4} \log ^{2}(\sqrt{2}-1)+0.4226454250941609\right)-\pi+\frac{1}{\phi}$

Result:

125.476441335...
125.476441335... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$2 \log _{0.992479531455390000}\left(\frac{1}{4} \log ^{2}(\sqrt{2}-1)+0.42264542509416090000\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{2 \log \left(0.42264542509416090000+\frac{1}{4} \log ^{2}(-1+\sqrt{2})\right)}{\log (0.992479531455390000)}
$$

$$
\begin{aligned}
& 2 \log _{0.992479531455390000}\left(\frac{1}{4} \log ^{2}(\sqrt{2}-1)+0.42264542509416090000\right)-\pi+\frac{1}{\phi}= \\
& \quad-\pi+2 \log _{0.992479531455390000}\left(0.42264542509416090000+\frac{1}{4} \log _{e}^{2}(-1+\sqrt{2})\right)+\frac{1}{\phi}
\end{aligned}
$$

$2 \log _{0.992479531455390000}\left(\frac{1}{4} \log ^{2}(\sqrt{2}-1)+0.42264542509416090000\right)-\pi+\frac{1}{\phi}=$ $-\pi+2 \log _{0.992479531455390000}($

$$
\left.0.42264542509416090000+\frac{1}{4}\left(\log (a) \log _{a}(-1+\sqrt{2})\right)^{2}\right)+\frac{1}{\phi}
$$

Series representations:

$2 \log _{0.992479531455390000}\left(\frac{1}{4} \log ^{2}(\sqrt{2}-1)+0.42264542509416090000\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{(-0.25000000000000000000)^{k}\left(-2.3094182996233564000+\log ^{2}(-1+\sqrt{2})\right)^{k}}{k}}{\log (0.992479531455390000)}
$$

$2 \log _{0.992479531455390000}\left(\frac{1}{4} \log ^{2}(\sqrt{2}-1)+0.42264542509416090000\right)-\pi+\frac{1}{\phi}=$

$$
\begin{aligned}
& \frac{1}{\phi}-\pi+2 \log _{0.992479531455390000}(0.25000000000000000000 \\
& \left.\quad\left(1.6905817003766436000+\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}(-2+\sqrt{2})^{k}}{k}\right)^{2}\right)\right)
\end{aligned}
$$

Integral representation:

$2 \log _{0.992479531455390000}\left(\frac{1}{4} \log ^{2}(\sqrt{2}-1)+0.42264542509416090000\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+2 \log _{0.902479531455390000}
$$

$\left.0.42264542509416090000+0.25000000000000000000\left(\int_{1}^{-1+\sqrt{2}} \frac{1}{t} d t\right)^{2}\right)$
$\mathrm{Pi}^{\wedge} 2 /(12)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2$

Input:

$\frac{\pi^{2}}{12}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
$\log (x)$ is the natural logarithm

Decimal approximation:

$0.648793417991217423863510779899363024597170188066425065756 \ldots$
$0.648793417991217 \ldots$.
Alternate forms:
$\frac{1}{12}\left(\pi^{2}-9 \operatorname{csch}^{-1}(2)^{2}\right)$
$\frac{1}{12}\left(\pi^{2}-9 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\frac{1}{12}\left(\pi^{2}-9(\log (\sqrt{5}-1)-\log (2))^{2}\right)$
$\operatorname{csch}^{-1}(x)$ is the inverse hyperbolic cosecant function

Alternative representations:
$\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{12}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)$
$\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{12}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}$
$\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{12}-\frac{3}{4}\left(-\mathrm{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}$

Series representations:

$\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{12}-\frac{3}{4}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}$

$$
\begin{aligned}
& \frac{\pi^{2}}{12}- \frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\
& \frac{1}{12}\left(\pi^{2}-9\left(2 i \pi\left[\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right.\right)^{2}\right)\right.
\end{aligned}
$$

for $x<0$
$\begin{aligned} & \frac{\pi^{2}}{12}--\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\ &\left.\frac{\pi^{2}}{12}-\frac{3}{4}\left(2 i \pi \left\lvert\, \frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right.\right)+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}\end{aligned}$
for $x<0$

Integral representation:

$\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{12}-\frac{3}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$
$\left.\left(\left(\left(\left(\operatorname{Pi}^{\wedge} 2 /(12)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))\right)^{\wedge} 2\right)\right)\right)\right)^{\wedge} 1 / 64$

Input:

$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)}$

Decimal approximation:

$0.993262783105259960603637261160646797589051377925255098896 \ldots$
$0.993262783105 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684 .10 .}$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternate forms:
$\frac{\sqrt[64]{\frac{1}{3}\left(\pi^{2}-9 \operatorname{csch}^{-1}(2)^{2}\right)}}{\sqrt[32]{2}}$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{3}{4}(\log (\sqrt{5}-1)-\log (2))^{2}}$
$\frac{\sqrt[64]{\frac{1}{3}\left(\pi^{2}-9 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)}}{\sqrt[32]{2}}$

Alternative representations:
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)}$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}}$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{3}{4}\left(-\mathrm{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}}$

Integral representation:

$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{3}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}}$
$2 \log$ base $0.99326278310525996\left(\left(\left(\left(\mathrm{Pi}^{\wedge} 2 /(12)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2\right)\right)\right)\right)-$ $\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \log _{0.90326278310525996}\left(\frac{\pi^{2}}{12}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base $-b$ logarithm

Result:

125.476441335160...
125.476441335... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$2 \log _{0.903262783105259960000}\left(\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{2 \log \left(\frac{\pi^{2}}{12}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)}{\log (0.993262783105259960000)}
$$

$2 \log _{0.903262783105259960000}\left(\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$
$-\pi+2 \log _{0.903262783105259960000}\left(\frac{\pi^{2}}{12}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)+\frac{1}{\phi}$
$2 \log _{0.993262783105259960000}\left(\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$ $-\pi+2 \log _{0.993262783105259960000}\left(\frac{\pi^{2}}{12}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)+\frac{1}{\phi}$

Series representations:

$2 \log _{0.993262783105259960000}\left(\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+2 \log _{0.993262783105259960000}\left(\frac{1}{12}\left(\pi^{2}-9\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}\right)\right)
$$

$2 \log _{0.903262783105250960000}\left(\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{12}\right)^{k}\left(-12+\pi^{2}-9 \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{k}}{k}}{\log (0.993262783105259960000)}
$$

Integral representation:

$$
\begin{aligned}
& 2 \log _{0.993262783105259960000}\left(\frac{\pi^{2}}{12}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi+2 \log _{0.093262783105259960000}\left(\frac{1}{12}\left(\pi^{2}-9\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}\right)\right)
\end{aligned}
$$

$\mathrm{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2$

Input:

$\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)$
$\log (x)$ is the natural logarithm

Decimal approximation:

$0.237559901279160814745406988237856727292432712764725456322 \ldots$
$0.23755990127916 \ldots$

Alternate forms:

$\frac{1}{24}\left(\pi^{2}-18 \operatorname{csch}^{-1}(2)^{2}\right)$
$\frac{1}{24}\left(\pi^{2}-18 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\frac{1}{24}\left(\pi^{2}-18(\log (\sqrt{5}-1)-\log (2))^{2}\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right) \\
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2} \\
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4}\left(-\mathrm{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2} \\
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\
& \quad \frac{1}{24}\left(\pi^{2}-18\left(2 i \pi\left[\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\
& \frac{\pi^{2}}{24}-\frac{3}{4}\left(2 i \pi\left|\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right|+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}
\end{aligned}
$$

Integral representation:

$\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{24}-\frac{3}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$
$\left(\left(\left(\left(\operatorname{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2\right)\right)\right)\right)^{\wedge} 1 / 128$

Input:

$\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)}$

Decimal approximation:

0.988833628580485387235048704408866760465401974342081212010...
$0.988833628580 \ldots$. result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternate forms:

$$
\begin{aligned}
& \frac{\sqrt[128]{\frac{\pi^{2}}{3}-6 \operatorname{csch}^{-1}(2)^{2}}}{2^{3 / 128}} \\
& \frac{128}{\frac{\pi^{2}}{24}-\frac{3}{4}(\log (\sqrt{5}-1)-\log (2))^{2}} \\
& \frac{12}{\frac{1}{3}\left(\pi^{2}-18 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)} \\
& 2^{3 / 128}
\end{aligned}
$$

All 128th roots of $\pi^{\wedge} 2 / 24-3 / 4 \log ^{\wedge} 2(1 / 2(\operatorname{sqrt}(5)-1))$:
$e^{0} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.98883$ (real, principal root)
$e^{(i \pi) / 64} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.98764+0.04852 i$
$e^{(i \pi / 32} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.98407+0.09692 i$
$e^{(3 i \pi) / 64} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.97813+0.14509 i$
$e^{(i \pi) / 16} \sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)} \approx 0.96983+0.19291 i$

Alternative representations:

$\sqrt[128]{\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)}$
$\sqrt[128]{\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}}$

$$
\sqrt[128]{\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4}\left(-\operatorname{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}}
$$

Integral representation:

$$
\sqrt[128]{\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3}=\sqrt[128]{\frac{\pi^{2}}{24}-\frac{3}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}}
$$

\log base $0.988833628580485\left(\left(\left(\left(\mathrm{Pi}^{\wedge} 2 /(24)-3 / 4(((\ln ((\operatorname{sqrt5-1)}) / 2))))^{\wedge} 2\right)\right)\right)\right)-$ $\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\log _{0.988833628580485}\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)-\pi+\frac{1}{\phi}$

$\log (x)$ is the natural logarithm

$\log _{b}(x)$ is the base- b logarithm

Result:

125.4764413352...
125.4764413352... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$
$-\pi+\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)+\frac{1}{\phi}$
$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{\log \left(\frac{\pi^{2}}{24}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)}{\log (0.9888336285804850000)}
$$

$$
\begin{aligned}
& \log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}= \\
& \quad-\pi+\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}\right)+\frac{1}{\phi}
\end{aligned}
$$

Series representations:

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+\log _{0.9888336285804850000}\left(\frac{1}{24}\left(\pi^{2}-18\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}\right)\right)
$$

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{24}\right)^{k}\left(-24+\pi^{2}-18 \log ^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{k}}{k}}{\log (0.9888336285804850000)}
$$

Integral representation:

$\log _{0.9888336285804850000}\left(\frac{\pi^{2}}{24}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+\log _{0.0888336285804850000}\left(\frac{1}{24}\left(\pi^{2}-18\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}\right)\right)
$$

From the multiplication of these results
0.75539561953174.... $0.426408806162096 \ldots 0.4226454250941609 \ldots$...
0.648793417991217.... 0.23755990127916....
we obtain:

55/(0.75539561953174*0.426408806162096*0.4226454250941609*0.64879341799 1217*0.23755990127916)+24

Input interpretation:

$55 /(0.75539561953174 \times 0.426408806162096 \times$
$0.4226454250941609 \times 0.648793417991217 \times 0.23755990127916)+24$

Result:

2645.237174596988348018205398208368800154815071382453829710...
2645.2371745... result practically equal to the rest mass of charmed Xi baryon 2645.9
golden
ratio^2 $+55(0.75539561953174+0.426408806162096+0.4226454250941609+0.64879$ 3417991217+0.23755990127916)

Input interpretation:

```
\phi}\mp@subsup{}{}{2}+55(0.75539561953174+0.426408806162096 +
    0.4226454250941609 +0.648793417991217+0.23755990127916)
```


Result:

139.61220834196...
139.612208 ... result practically equal to the rest mass of Pion meson 139.57

```
Alternative representations:
\phi}\mp@subsup{}{}{2}+55(0.755395619531740000 
    0.4264088061620960000 + 0.42264542509416090000 +
    0.6487934179912170000+0.237559901279160000) =
    136.9941743532105645 +(2 \operatorname{sin}(5\mp@subsup{4}{}{\circ})\mp@subsup{)}{}{2}
\phi + +55 (0.755395619531740000 +
    0.4264088061620960000 + 0.42264542509416090000 +
    0.6487934179912170000 +0.237559901279160000) =
    136.9941743532105645 +(-2 cos(216 %))}\mp@subsup{)}{}{2
\phi}\mp@subsup{}{}{2}+55(0.755395619531740000 
    0.4264088061620960000 + 0.42264542509416090000 +
    0.6487934179912170000+0.237559901279160000) =
136.9941743532105645+(-2 \operatorname{sin}(666\mp@subsup{6}{}{\circ})\mp@subsup{)}{}{2}
```


$\mathrm{Pi}^{\wedge} 2 /(12)-1 / 2(\ln 2)^{\wedge} 2$

Input:

$\frac{\pi^{2}}{12}-\frac{1}{2} \log ^{2}(2)$
$\log (x)$ is the natural logarithm

Exact result:

$\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}$
Decimal approximation:
$0.582240526465012505902656320159680108744198474806126425434 \ldots$
0.582240526465....

Alternate form:
$\frac{1}{12}\left(\pi^{2}-6 \log ^{2}(2)\right)$

Alternative representations:

$\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}=\frac{\pi^{2}}{12}-\frac{1}{2} \log _{e}^{2}(2)$
$\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}=\frac{\pi^{2}}{12}-\frac{1}{2}\left(\log (a) \log _{a}(2)\right)^{2}$
$\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}=\frac{\pi^{2}}{12}-\frac{1}{2}\left(2 \operatorname{coth}^{-1}(3)\right)^{2}$

Series representations:

$$
\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}=\frac{\pi^{2}}{12}-\frac{1}{2}\left(2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right.\right)^{2} \text { for } x<0\right.
$$

$$
\begin{aligned}
& \frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}= \\
& \frac{\pi^{2}}{12}-\frac{1}{2}\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2} \\
& \frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}=\frac{\pi^{2}}{12}-\frac{1}{2}\left\{2 i \pi\left\{\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right)^{2}\right.
\end{aligned}
$$

Integral representations:

$\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}=\frac{\pi^{2}}{12}-\frac{1}{2}\left(\int_{1}^{2} \frac{1}{t} d t\right)^{2}$
$\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}=\frac{\pi^{2}}{12}+\frac{\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{2}}{8 \pi^{2}}$ for $-1<\gamma<0$
$\left(\left(\left(\operatorname{Pi}^{\wedge} 2 /(12)-1 / 2(\ln 2)^{\wedge} 2\right)\right)\right)^{\wedge} 1 / 64$

Input:

$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{2} \log ^{2}(2)}$
$\log (x)$ is the natural logarithm

Exact result:

$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}$

Decimal approximation:

0.991584490933901847970659058658057777705075571468450563364 .
$0.9915844909339 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{54} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Alternate form:

$\frac{\sqrt[64]{\frac{1}{3}\left(\pi^{2}-6 \log ^{2}(2)\right)}}{\sqrt[32]{2}}$

All 64th roots of $\pi^{\wedge} 2 / 12-\left(\log ^{\wedge} 2(2)\right) / 2$:
$e \sqrt[0]{\frac{64}{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}} \approx 0.991584 \text { (real, principal root) }{ }^{2}}$
$e^{(i \pi / / 32} \sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}} \approx 0.98681+0.09719 i$
$e^{(i \pi) / 16} \sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}} \approx 0.97253+0.19345 i$
$e^{(3 i \pi) / 32} \sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}} \approx 0.94889+0.28784 i$
$e^{(i \pi) / 8} \sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}} \approx 0.91610+0.37946 i$

Alternative representations:

$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{2} \log _{e}^{2}(2)}$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{2}\left(2 \operatorname{coth}^{-1}(3)\right)^{2}}$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{2}\left(\log (a) \log _{a}(2)\right)^{2}}$

Series representations:

$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{2}\left(2 i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)^{2}}$
for $x<0$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}=$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{2}\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}}$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}=$

$$
\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{2}\left(2 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}}
$$

Integral representations:

$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}=\sqrt[64]{\frac{\pi^{2}}{12}-\frac{1}{2}\left(\int_{1}^{2} \frac{1}{t} d t\right)^{2}}$
$\sqrt[64]{\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}}=\sqrt[64]{\frac{\pi^{2}}{12}+\frac{\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{2}}{8 \pi^{2}}}$ for $-1<\gamma<0$

2 log base $0.9915844909339\left(\left(\left(\mathrm{Pi}^{\wedge} 2 /(12)-1 / 2(\ln 2)^{\wedge} 2\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \log _{0.9915844909339}\left(\frac{\pi^{2}}{12}-\frac{1}{2} \log ^{2}(2)\right)-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm
$\log _{b}(x)$ is the base- b logarithm

Result:

125.47644134...
125.47644134... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representations:

$$
2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)-\pi+\frac{1}{\phi}=-\pi+\frac{1}{\phi}+\frac{2 \log \left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)}{\log (0.99158449093390000)}
$$

$$
2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)-\pi+\frac{1}{\phi}=
$$

$$
-\pi+2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{1}{2} \log _{e}^{2}(2)\right)+\frac{1}{\phi}
$$

$2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)-\pi+\frac{1}{\phi}=$
$-\pi+2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{1}{2}\left(\log (a) \log _{a}(2)\right)^{2}\right)+\frac{1}{\phi}$

Series representations:

$2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)-\pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi-\frac{2 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{12}\right)^{k}\left(\pi^{2}-6\left(2+\log ^{2}(2)\right)\right)^{k}}{k}}{\log (0.99158449093390000)}$
$2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)-\pi+\frac{1}{\phi}=\frac{1.00000000000000}{\phi}-$
$1.00000000000000 \pi-236.656448860183 \log \left(\frac{1}{12}\left(\pi^{2}-6 \log ^{2}(2)\right)\right)-$
$2.00000000000000 \log \left(\frac{1}{12}\left(\pi^{2}-6 \log ^{2}(2)\right)\right) \sum_{k=0}^{\infty}(-0.00841550906610000)^{k} G(k)$ for $\left(G(0)=0\right.$ and $\left.\frac{(-1)^{k} k}{2(1+k)(2+k)}+G(k)=\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)$
$2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)-\pi+\frac{1}{\phi}=\frac{1.00000000000000}{\phi}-$
$1.00000000000000 \pi-236.656448860183 \log \left(\frac{1}{12}\left(\pi^{2}-6 \log ^{2}(2)\right)\right)-$
$2.00000000000000 \log \left(\frac{1}{12}\left(\pi^{2}-6 \log ^{2}(2)\right)\right) \sum_{k=0}^{\infty}(-0.00841550906610000)^{k} G(k)$
for $\left(G(0)=0\right.$ and $\left.G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)$

Integral representations:

$2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)-\pi+\frac{1}{\phi}=$ $\frac{1}{\phi}-\pi+2 \log _{0.99158449093390000}\left(\frac{1}{12}\left(\pi^{2}-6\left(\int_{1}^{2} \frac{1}{t} d t\right)^{2}\right)\right)$
$2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\log ^{2}(2)}{2}\right)-\pi+\frac{1}{\phi}=$

$$
\frac{1}{\phi}-\pi+2 \log _{0.99158449093390000}\left(\frac{\pi^{2}}{12}-\frac{\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{2}}{8 i^{2} \pi^{2}}\right) \text { for }-1<\gamma<0
$$

Thence, in total, we have:
$0.75539561953174 \ldots . \quad 0.426408806162096 \ldots \quad 0.4226454250941609 \ldots$.
$0.648793417991217 \ldots 0.23755990127916 \ldots .0 .582240526465$

From the sum:

$$
\begin{aligned}
& (0.75539561953174+0.426408806162096+0.4226454250941609+0.6487934179912 \\
& 17+0.23755990127916+0.582240526465)^{\wedge} 7-11
\end{aligned}
$$

Where 11 is a Lucas number

Input interpretation:

$(0.75539561953174+0.426408806162096+0.4226454250941609+$ $0.648793417991217+0.23755990127916+0.582240526465)^{7}-11$

Result:

2577.100577352973126535956392444871239044809065826753449082.
2577.100577..... result practically equal to the rest mass of charmed Xi prime baryon 2577.9

And:
$(0.75539561953174+0.426408806162096+0.4226454250941609+0.6487934179912$ $17+0.23755990127916+0.582240526465)^{\wedge} 7-(843+18-2)$

Input interpretation:

$(0.75539561953174+0.426408806162096+$

$$
0.4226454250941609+0.648793417991217+
$$

$0.23755990127916+0.582240526465)^{7}-(843+18-2)$

Result:

1729.100577352973126535956392444871239044809065826753449082...
1729.100577....

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

From the multiplication of results:

$$
\begin{aligned}
& 21 /(0.75539561953174 * 0.426408806162096 * 0.4226454250941609 * 0.64879341799 \\
& 1217 * 0.23755990127916 * 0.582240526465)+47+18
\end{aligned}
$$

where 21 is a Fibonacci number and 18, 47 are Lucas numbers

Input interpretation:

```
21/(0.75539561953174\times0.426408806162096 < 0.4226454250941609\times
    0.648793417991217 }\times0.23755990127916\times0.582240526465)+47+1
```


Result:

1783.939109572636327559181562052733211177542071275630478748...
$1783.9391095 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.

Page 110

$\mathrm{Pi}^{\wedge} 2 /(24)-1 / 8(\ln 2)^{\wedge} 2$

Input:

$$
\frac{\pi^{2^{*}}}{24}-\frac{1}{8} \log ^{2}(2)
$$

Exact result:

$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}$

Decimal approximation:

0.351176889972281431034715975870673175838418356352381411075
$0.351176889972281 \ldots$.

Alternate form:

$\frac{1}{24}\left(\pi^{2}-3 \log ^{2}(2)\right)$

Alternative representations:

$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}=\frac{\pi^{2}}{24}-\frac{1}{8} \log _{e}^{2}(2)$
$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}=\frac{\pi^{2}}{24}-\frac{1}{8}\left(\log (a) \log _{a}(2)\right)^{2}$
$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}=\frac{\pi^{2}}{24}-\frac{1}{8}\left(2 \operatorname{coth}^{-1}(3)\right)^{2}$

Series representations:

$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}=\frac{\pi^{2}}{24}-\frac{1}{8}\left(2 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+\log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}\right)^{2}$ for $x<0$
$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}=$
$\frac{\pi^{2}}{24}-\frac{1}{8}\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}$
$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}=\frac{\pi^{2}}{24}-\frac{1}{8}\left(2 i \pi\left\{\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right)+\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}$

Integral representations:
$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}=\frac{\pi^{2}}{24}-\frac{1}{8}\left(\int_{1}^{2} \frac{1}{t} d t\right)^{2}$
$\frac{\pi^{2}}{24}-\frac{\log ^{2}(2)}{8}=\frac{\pi^{2}}{24}+\frac{\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s\right)^{2}}{32 \pi^{2}}$ for $-1<\gamma<0$
$\mathrm{Pi}^{\wedge} 2 /(20)-3 / 8(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2$

Input:

$$
\frac{\pi^{2}}{20}-\frac{3}{8} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)
$$

Decimal approximation:

0.406643412338020033755376148281982771759532589093552454764 .
0.40664341233802003.....

Alternate forms:

$\frac{\pi^{2}}{20}-\frac{3}{8} \operatorname{csch}^{-1}(2)^{2}$
$\frac{1}{40}\left(2 \pi^{2}-15 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\frac{\pi^{2}}{20}-\frac{3}{8}(\log (\sqrt{5}-1)-\log (2))^{2}$

Alternative representations:

$\frac{\pi^{2}}{20}-\frac{1}{8} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{20}-\frac{3}{8} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)$
$\frac{\pi^{2}}{20}-\frac{1}{8} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{20}-\frac{3}{8}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}$
$\frac{\pi^{2}}{20}-\frac{1}{8} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{20}-\frac{3}{8}\left(-\operatorname{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}$

Series representations:

$\frac{\pi^{2}}{20}-\frac{1}{8} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{20}-\frac{3}{8}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}$

$$
\begin{aligned}
& \frac{\pi^{2}}{20}-\frac{1}{8} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\
& \frac{\pi^{2}}{20}+\frac{3}{8}\left(2 \pi\left|\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right|-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}
\end{aligned}
$$

for $x<0$

$$
\begin{aligned}
& \frac{\pi^{2}}{20}-\frac{1}{8} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\
& \quad \frac{\pi^{2}}{20}-\frac{3}{8}\left(2 i \pi\left\lfloor\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right.\right)^{2}\right.
\end{aligned}
$$

Integral representation:

$\frac{\pi^{2}}{20}-\frac{1}{8} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{20}-\frac{3}{8}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$
$\mathrm{Pi}^{\wedge} 2 /(30)-3 / 4(((\ln ((\operatorname{sqrt5-1}) / 2))))^{\wedge} 2$

Input:

$$
\frac{\pi^{2^{2}}}{30}-\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)
$$

Decimal approximation:

0.155313197936749492921786229905555467831485217704385534435...
$0.155313197936749 \ldots$.

Alternate forms:

$\frac{\pi^{2}}{30}-\frac{3}{4} \operatorname{csch}^{-1}(2)^{2}$
$\frac{1}{60}\left(2 \pi^{2}-45 \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)\right)$
$\frac{\pi^{2}}{30}-\frac{3}{4}(\log (\sqrt{5}-1)-\log (2))^{2}$
$\operatorname{csch}^{-1}(x)$ is the inverse hyperbolic cosecant function

Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{30}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{30}-\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right) \\
& \frac{\pi^{2}}{30}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{30}-\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2} \\
& \frac{\pi^{2}}{30}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{30}-\frac{3}{4}\left(-\mathrm{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}
\end{aligned}
$$

Series representations:

$\frac{\pi^{2}}{30}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{30}-\frac{3}{4}\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-3+\sqrt{5})^{k}}{k}\right)^{2}$
$\frac{\pi^{2}}{30}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=$
$\frac{\pi^{2}}{30}+\frac{3}{4}\left(2 \pi\left|\frac{\arg (-1+\sqrt{5}-2 x)}{2 \pi}\right|-i\left(\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)\right)^{2}$
for $x<0$
$\begin{aligned} & \frac{\pi^{2}}{30}- \frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3= \\ & \frac{\pi^{2}}{30}-\frac{3}{4}\left(2 i \pi\left[\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi} \left\lvert\,+\log (x)-\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right.\right)^{2}\right.\end{aligned}$
for $x<0$

Integral representation:

$\frac{\pi^{2}}{30}-\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3=\frac{\pi^{2}}{30}-\frac{3}{4}\left(\int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{1}{t} d t\right)^{2}$

Page 111

$\mathrm{Pi}^{\wedge} 2 /(60)+3 / 4(((\ln ((\operatorname{sqrt5}-1) / 2))))^{\wedge} 2+(\mathrm{sqrt5}+2) \ln 4+(3 \mathrm{sqrt5}+5+\ln 2) *((\ln ((\mathrm{sqrt} 5-$
1)/2)))

Input:

$\frac{\pi^{2}}{60}+\frac{3}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right)+(\sqrt{5}+2) \log (4)+(3 \sqrt{5}+5+\log (2)) \log \left(\frac{1}{2}(\sqrt{5}-1)\right)$

Decimal approximation:

$0.242927370325999289096060777200874716712732726005641102986 \ldots$
0.242927370325999289.....

Alternate forms:

$\frac{\pi^{2}}{60}+\sqrt{5} \log (4)+\log (16)+\frac{3}{4} \operatorname{csch}^{-1}(2)^{2}-(5+3 \sqrt{5}+\log (2)) \operatorname{csch}^{-1}(2)$

$$
\begin{aligned}
& \frac{1}{60}\left(\pi^{2}+15\left(3 \log ^{2}(\sqrt{5}-1)-\right.\right. \\
& \quad \log (2)(4(1+\sqrt{5})+\log (2))-2(\log (2)-2(5+3 \sqrt{5})) \log (\sqrt{5}-1)))
\end{aligned}
$$

$$
\frac{\pi^{2}}{60}+\frac{1}{4}\left(3 \log ^{2}(\sqrt{5}-1)-\right.
$$

$$
\log (2)(4(1+\sqrt{5})+\log (2))-2(\log (2)-2(5+3 \sqrt{5})) \log (\sqrt{5}-1))
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{60}+\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3+(\sqrt{5}+2) \log (4)+(3 \sqrt{5}+5+\log (2)) \log \left(\frac{1}{2}(\sqrt{5}-1)\right)= \\
& \frac{\pi^{2}}{60}+\frac{3}{4}\left(\log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\right)^{2}+\log (a) \log _{a}(4)(2+\sqrt{5})+ \\
& \quad \log (a) \log _{a}\left(\frac{1}{2}(-1+\sqrt{5})\right)\left(5+\log (a) \log _{a}(2)+3 \sqrt{5}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi^{2}}{60}+\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3+(\sqrt{5}+2) \log (4)+(3 \sqrt{5}+5+\log (2)) \log \left(\frac{1}{2}(\sqrt{5}-1)\right)= \\
& \frac{\pi^{2}}{60}+\frac{3}{4} \log _{e}^{2}\left(\frac{1}{2}(-1+\sqrt{5})\right)+\log _{e}(4)(2+\sqrt{5})+ \\
& \quad \log _{e}\left(\frac{1}{2}(-1+\sqrt{5})\right)\left(5+\log _{e}(2)+3 \sqrt{5}\right)
\end{aligned}
$$

$$
\frac{\pi^{2}}{60}+\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3+(\sqrt{5}+2) \log (4)+(3 \sqrt{5}+5+\log (2)) \log \left(\frac{1}{2}(\sqrt{5}-1)\right)=
$$

$$
\frac{\pi^{2}}{60}+\frac{3}{4}\left(-\operatorname{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\right)^{2}-\operatorname{Li}_{1}(-3)(2+\sqrt{5})-
$$

$$
\mathrm{Li}_{1}\left(1+\frac{1}{2}(1-\sqrt{5})\right)\left(5-\mathrm{Li}_{1}(-1)+3 \sqrt{5}\right)
$$

Series representations:

$$
\begin{aligned}
& \frac{\pi^{2}}{60}+\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3+(\sqrt{5}+2) \log (4)+(3 \sqrt{5}+5+\log (2)) \log \left(\frac{1}{2}(\sqrt{5}-1)\right)= \\
& \frac{\pi^{2}}{60}+\frac{3}{4}\left(\log \left(z_{0}\right)+\left[\left.\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-z_{0}\right)}{2 \pi} \right\rvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{-k}}{k}\right)^{2}+ \\
& \left(\log \left(z_{0}\right)+\left[\left.\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-z_{0}\right)}{2 \pi} \right\rvert\,\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\right.\right. \\
& \left.\quad \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{-k}}{k}\right) \\
& \left(5+3 \sqrt{5}+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)+ \\
& (2+\sqrt{5})\left(\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(4-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi^{2}}{60}+\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3+(\sqrt{5}+2) \log (4)+(3 \sqrt{5}+5+\log (2)) \log \left(\frac{1}{2}(\sqrt{5}-1)\right)= \\
& \frac{1}{60}\left(\pi^{2}+840 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]+480 i \sqrt{5} \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]-\right. \\
& 420 \pi^{2}\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right]^{2}+420 \log \left(z_{0}\right)+240 \sqrt{5} \log \left(z_{0}\right)+ \\
& 420 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right] \log \left(z_{0}\right)+105 \log ^{2}\left(z_{0}\right)-300 \\
& \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{-k}}{k}-180 \sqrt{5} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{k}}{k}- \\
& 300 i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\, \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{-k}}{k}-\right.\right. \\
& 150 \log \left(z_{0}\right) \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{-k}}{k}+ \\
& 45\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-1+\sqrt{5}-2 z_{0}\right)^{k} z_{0}^{k}}{k}\right)^{2}-120 i \pi\left\lfloor\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right] \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}-60 \log \left(z_{0}\right) \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{k}}{k}- \\
& 120 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k}-60 \sqrt{5} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(4-z_{0}\right)^{k} z_{0}^{-k}}{k}+ \\
& \left.60 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(2-z_{0}\right)^{k_{1}}\left(\frac{1}{2}(-1+\sqrt{5})-z_{0}\right)^{k_{2}} z_{0}^{-k_{1}-k_{2}}}{k_{1} k_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi^{2}}{60}+\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3+(\sqrt{5}+2) \log (4)+(3 \sqrt{5}+5+\log (2)) \log \left(\frac{1}{2}(\sqrt{5}-1)\right)= \\
& \frac{1}{60}\left\{\pi^{2}+240 i \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor+120 i \sqrt{5} \pi\left\lfloor\frac{\arg (4-x)}{2 \pi}\right\rfloor+\right. \\
& 600 i \pi\left[\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right\rfloor+360 i \sqrt{5} \pi\left\lfloor\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right]- \\
& 240 \pi^{2}\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\left[\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right\rfloor- \\
& 180 \pi^{2}\left\lfloor\left.\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right|^{2}+420 \log (x)+240 \sqrt{5} \log (x)+\right. \\
& 120 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor \log (x)+300 i \pi\left\lfloor\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right\rfloor \log (x)+ \\
& 105 \log ^{2}(x)-300 \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}- \\
& 180 \sqrt{5} \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}- \\
& 120 i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}- \\
& 180 i \pi\left|\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right| \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}- \\
& 150 \log (x) \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}+ \\
& 45\left(\sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-1+\sqrt{5}-2 x)^{k} x^{-k}}{k}\right)^{2}-120 i \pi\left[\frac{\arg \left(\frac{1}{2}(-1+\sqrt{5})-x\right)}{2 \pi}\right] \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}-60 \log (x) \sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}- \\
& 120 \sum_{k=1}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}}{k}-60 \sqrt{5} \sum_{k=1}^{\infty} \frac{(-1)^{k}(4-x)^{k} x^{-k}}{k}+ \\
& \left.60 \sum_{k_{1}=1}^{\infty} \sum_{k_{2}=1}^{\infty} \frac{(-1)^{k_{1}+k_{2}}(2-x)^{k_{1}}\left(\frac{1}{2}(-1+\sqrt{5})-x\right)^{k_{2}} x^{-k_{1}-k_{2}}}{k_{1} k_{2}}\right) \text { for } x<0
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \frac{\pi^{2}}{60}+\frac{1}{4} \log ^{2}\left(\frac{1}{2}(\sqrt{5}-1)\right) 3+(\sqrt{5}+2) \log (4)+(3 \sqrt{5}+5+\log (2)) \log \left(\frac{1}{2}(\sqrt{5}-1)\right)= \\
& \frac{1}{60}\left(\pi^{2}+45\left(\int_{1}^{2}(-1+\sqrt{5}) \frac{1}{t} d t\right)^{2}+60 \int_{1}^{\frac{1}{2}(-1+\sqrt{5})} \frac{-30-22 \sqrt{5}+6(7+4 \sqrt{5}) t}{t(-9+\sqrt{5}+6 t)} d t+\right. \\
& \left.\quad 2 \int_{0}^{1} \int_{0}^{1} \frac{1}{\left(1+t_{1}\right)\left(2+(-3+\sqrt{5}) t_{2}\right)} d t_{2} d t_{1}\right)
\end{aligned}
$$

From the sum of the results, we obtain:
$10^{\wedge} 3 * 2 /(0.351176889972281+0.40664341233802003+0.155313197936749+0.24292$ 7370325999289)-2

Input interpretation:

```
10}\times2/(0.351176889972281+0.40664341233802003
    0.155313197936749 +0.242927370325999289) - 2
```


Result:

1728.012710324342518821946849966765742510037311981759029439
1728.01271....

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729
$1 /(0.351176889972281+0.40664341233802003+0.155313197936749+0.2429273703$ 25999289)^1/16

Input interpretation:

$1 /((0.351176889972281+0.40664341233802003+$ $\left.0.155313197936749+0.242927370325999289)^{\wedge}(1 / 16)\right)$

Result:

0.99097729950757135 .
0.9909772995 . result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}-1}}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)
$8 \log$ base 0.99097729950757135
$(((1 /(0.351176889972281+0.40664341233802003+0.155313197936749+0.24292737$
$0325999289))))-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$8 \log _{0.99097729950757135}(1 /(0.351176889972281+0.40664341233802003+$

$$
0.155313197936749+0.242927370325999289))-\pi+\frac{1}{\phi}
$$

$\log _{b}(x)$ is the base $-b$ logarithm

Result:

125.47644133516...
125.47644133516... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ (see Appendix)

Alternative representation:

$8 \log _{0.990977299507571350000}($
$1 /(0.3511768899722810000+0.406643412338020030000+$
$0.1553131979367490000+0.2429273703259992890000))-$

$$
\pi+\frac{1}{\phi}=-\pi+\frac{1}{\phi}+\frac{8 \log \left(\frac{1}{1.1560608705730493190}\right)}{\log (0.990977299507571350000)}
$$

Series representations:

$8 \log _{0.990977209507571350000(}$
$1 /(0.3511768899722810000+0.406643412338020030000+$
$0.1553131979367490000+0.2429273703259992890000)$) -

$$
\pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi-\frac{8 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.1349936448378287406)^{k}}{k}}{\log (0.990977299507571350000)}
$$

$8 \log _{0.990977299507571350000(}$
$1 /(0.3511768899722810000+0.406643412338020030000+$
$0.1553131979367490000+0.2429273703259992890000))-\pi+\frac{1}{\phi}=$ $\frac{1}{\phi}-\pi-882.6525057229990566 \log (0.8650063551621712594)-$ $8 \log (0.8650063551621712594) \sum_{k=0}^{\infty}(-0.009022700492428650000)^{k} G(k)$ for $\left(G(0)=0\right.$ and $\left.G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)$

Appendix

From:

Rotating strings confronting PDG mesons

Jacob Sonnenschein and Dorin Weissman - arXiv:1402.5603v1 [hep-ph] 23 Feb 2014
$c \bar{c}$. The Ψ trajectory: The left side of figure (15) depicts the Ψ trajectory. Here we use the states $J / \Psi(1 S)(3097) 1^{--}, \chi_{c 1}(1 P)(3510) 1^{++}$, and $\Psi(3770) 1^{--}$. Since no $J=3$ state has been observed, we use three states with $J=1$, but with increasing orbital angular momentum ($L=0,1,2$) and do the fit to L instead of J. To give an idea of the shifts in mass involved, the $J^{P C}=2^{++}$state $\chi_{c 2}$ has a mass of 3556 MeV , and the $J^{P C}=3^{--}$state is expected to lie $30-60 \mathrm{MeV}$ above the $\Psi(3770)$ [23].

The best linear fit is

$$
\alpha^{\prime}=0.418, a=-4.04
$$

with $\chi_{l}^{2}=3.41 \times 10^{-4}$, but the optimal fit is far from the linear, with endpoint masses in the range of the constituent c quark mass:

$$
m_{c}=1500, \alpha^{\prime}=0.979, a=-0.09
$$

with $\chi_{m}^{2}=5 \times 10^{-7}\left(\chi_{m}^{2} / \chi_{l}^{2}=0.002\right)$. Aside from the improvement in χ^{2}, by adding the mass we also get a value for the slope (and to a lesser extent, the intercept) that is much closer to that obtained in fits for the light meson trajectories.
where α^{\prime} is the Regge slope (string tension)

We know also that:

$$
\begin{array}{r|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
\omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
$$

The average of the various Regge slope of Omega mesons are:
$1 / 7 *(0.979+0.910+0.918+0.988+0.937+1.18+1)=0.987428571$
result very near to the value of dilaton and to the solution $0.987516007 \ldots$ of the above expression.

From:

Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.
from:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan
Quarterly Journal of Mathematics, XLV, 1914, 350-372
We have that:

Hence

$$
\begin{array}{rlrl}
64 g_{22}^{24} & =e^{\pi \sqrt{22}} \quad 24 \quad 276 e^{-\pi \sqrt{22}} & \cdots \\
64 g_{22}^{-24} & = & & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)-e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots-64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{\tau}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots \\
64 G_{37}^{-24}= & 1096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{37}^{24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\} .
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978
$$

Similarly, from

$$
g_{58}-\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain

$$
64\left(g_{58}^{24} \mid g_{58}^{-24}\right)=e^{\pi \sqrt{58}} \quad 24\left|4372 e^{-\pi \sqrt{58}}\right| \cdots=64\left\{\left.\left(\frac{5+\sqrt{29}}{2}\right)^{12} \right\rvert\,\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\} .
$$

Нене

$$
e^{\pi \sqrt{58}}=24591257751.09909982 \ldots
$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

From the following vacuum equations:

$$
\begin{aligned}
& T e^{\gamma_{E} \phi}=-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
& 16 k^{\prime} e^{2 C}=\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
&\left(A^{\prime}\right)^{2}-k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

we have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.

For
$\exp \left(\left(-\mathrm{Pi}^{*} \mathrm{sqrt}(18)\right)\right.$ we obtain:

Input:

$$
\exp (-\pi \sqrt{18})
$$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:

Property:

$e^{-3 \sqrt{2} \pi}$ is a transcendental number

Series representations:

$\boldsymbol{e}^{-\pi \sqrt{18}}=e^{-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{1 / 2}{k}}$
$e^{-\pi \sqrt{18}}=\exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$e^{-\pi \sqrt{18}}=\exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)$

Now, we have the following calculations:

$$
\begin{gathered}
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}} \\
e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}
\end{gathered}
$$

from which:

$$
\begin{gathered}
\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{-6} \\
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}
\end{gathered}
$$

Now:

$$
\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}
$$

And:

$\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)$

Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...

Thence:

$$
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}
$$

Dividing both sides by 0.000244140625 , we obtain:

$$
\begin{aligned}
& \frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}} \\
& e^{-6 C+\phi}=0.0066650177536
\end{aligned}
$$

$\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right) * 1 / 0.000244140625$

Input interpretation:

$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
$0.00666501785 \ldots$

Series representations:

$$
\begin{aligned}
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
\end{aligned}
$$

Now:

$$
\begin{aligned}
& e^{-6 C+\phi}=0.0066650177536 \\
& \exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}= \\
& e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625} \\
& =0.00666501785 \ldots
\end{aligned}
$$

From:
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
$-5.010882647757 .$.

Alternative representations:

$\log (0.006665017846190000)=\log _{e}(0.006665017846190000)$
$\log (0.006665017846190000)=\log (a) \log _{a}(0.006665017846190000)$
$\log (0.006665017846190000)=-\mathrm{Li}_{1}(0.993334982153810000)$

Series representations:

$$
\begin{aligned}
& \log (0.006665017846190000)=-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.993334982153810000)^{k}}{k} \\
& \log (0.006665017846190000)=2 i \pi\left|\frac{\arg (0.006665017846190000-x)}{2 \pi}\right|+ \\
& \log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.006665017846190000-x)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$\log (0.006665017846190000)=\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+$

$$
\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.006665017846190000-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representation:

$$
\log (0.006665017846190000)=\int_{1}^{0.006665017846190000} \frac{1}{t} d t
$$

In conclusion:

$$
-6 C+\phi=-5.010882647757 \ldots
$$

and for $\mathrm{C}=1$, we obtain:

Note that the values of n_{s} (spectral index) 0.965 , of the average of the Omega mesons Regge slope 0.987428571 and of the dilaton 0.989117352243 , are also connected to the following two Rogers-Ramanujan continued fractions:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

(http://www.bitman.name/math/article/102/109/)

Also performing the $512^{\text {th }}$ root of the inverse value of the Pion meson rest mass 139.57, we obtain:
$((1 /(139.57)))^{\wedge} 1 / 512$

Input interpretation:

$\sqrt[512]{\frac{1}{139.57}}$

Result:

$0.990400732708644027550973755713301415460732796178555551684 \ldots$
$0.99040073 \ldots$. result very near to the dilaton value $\mathbf{0} \mathbf{9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ and to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$

From:

Eur. Phys. J. C (2019) 79:713 - https://doi.org/10.1140/epjc/s10052-019-7225-2-Regular Article - Theoretical Physics
Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity
Yermek Aldabergenov, Auttakit Chatrabhuti, Sergei V. Ketov

Table 1 The predictions for the inflationary parameters ($\left.n_{s}, r\right)$, and the values of φ at the horizon crossing $\left(\varphi_{i}\right)$ and at the end of inflation $\left(\varphi_{f}\right)$, in the case $3 \leq \alpha \leq \alpha_{*}$ with both signs of ω_{1}. The α parameter is taken to be integer, except of the upper limit $\alpha_{*} \equiv(7+\sqrt{33}) / 2$

α	3	4		5	6		
$\operatorname{sgn}\left(\omega_{1}\right)$	-	+	-	$+/-$	+	-	
n_{s}	0.9650	0.9649	0.9640	0.9639	0.9634	0.9637	0.9632
r	0.0035	0.0010	0.0013	0.0007	0.0005	0.0004	0.0003
$-\kappa \varphi_{i}$	5.3529	3.5542	3.9899	3.2657	3.0215	2.7427	2.5674
$-\kappa \varphi_{f}$	0.9402	0.7426	0.8067	0.7163	0.6935	0.6488	0.6276

Received: April 10, 2019 - Revised: July 9, 2019 - Accepted: October 1, 2019
Published: October 18, 2019
Gravitational waves from walking technicolor
Kohtaroh Miura, Hiroshi Ohki, Saeko Otani and Koichi Yamawaki

The phase transition dynamics is modified via the shift of $\left(2 f_{2} / N_{j}\right)\left(s^{0}\right)^{2} \rightarrow\left(\Delta m_{s}\right)^{2}+$ $\left(2 f_{2} / N_{f}\right)\left(s^{0}\right)^{2}$ in $m_{s^{i}}^{2}$ with finite Δm_{s}. The details of the mass spectra at one loop with $\left(\Delta m_{s}\right)^{2}$ are summarized in appendix A. Using eq. (4.18), the total effective potential becomes,

$$
\begin{align*}
V_{\text {eff }}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)= & \frac{N_{f}^{2}-1}{64 \pi^{2}} \mathcal{M}_{s^{i}}^{4}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)\left(\ln \frac{\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)}{\mu_{\mathrm{GW}}^{2}}-\frac{3}{2}\right) \\
& +\frac{T^{4}}{2 \pi^{2}}\left(N_{f}^{2}-1\right) J_{B}\left(\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right) / T^{2}\right)+C(T), \tag{4.19}
\end{align*}
$$

with,

$$
\begin{equation*}
\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)-m_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}\right)+\Pi(T) \tag{1.20}
\end{equation*}
$$

where the thermal mass $\Pi(T)$ is given in eq. (3.3). We require that the following properties remain intact for arbitrary Δm_{s}; (1) the vev $\left\langle s^{0}\right\rangle(T=0)$ determined by the minimum of the potential eq. (4.19) is identified with the dilaton decay constant favored by the walking technicolor model, $F_{\phi}=1.25 \mathrm{TeV}$ or 1 TeV , (2) the dilaton mass given by the potential curvature at the vacuum is identified with the observed SM Higgs mass, $m_{s^{0}}=125 \mathrm{GeV}$.

Thence $\quad F_{\phi}=1.25 \mathrm{TeV}$

Acknowledgments

I would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

References

Manuscript Book Of Srinivasa Ramanujan Volume 2

Andrews, G.E.: Some formulae for the Fibonacci sequence with generalizations. Fibonacci Q. 7, 113-130 (1969) zbMATH Google Scholar

Andrews, G.E.: A polynomial identity which implies the Rogers-Ramanujan identities. Scr. Math. 28, 297-305 (1970) Google Scholar

The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks (Memoirs of the American Mathematical Society), by Bruce C. Berndt, L. Jacobsen, R. L. Lamphere, George E. Andrews (Editor), Srinivasa Ramanujan Aiyangar (Editor) (American Mathematical Society, 1993, ISBN 0-8218-2538-0)

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

[^1]: for $(x \in \mathbb{R}$ and $x<0)$

