Theorem 1 Let *G* be a group and ϕ an automorphism of *G*. If $a \in G$ is of order o(a) > 0, then $o(\phi(a)) = o(a)$. *Proof.* This is Lemma 2.8.3 in [1].

Theorem 2 $V = \{e, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\}$ is a characteristic subgroup of A_4 . *Proof.* The elements of A_4 are

 $e, (1 \ 2 \ 3), (1 \ 3 \ 2), (1 \ 2 \ 4), (1 \ 4 \ 2), (1 \ 3 \ 4), (1 \ 4 \ 3), (2 \ 3 \ 4), (2 \ 4 \ 3), (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3).$

Let ϕ be an automorphism of A_4 . Clearly $\phi(e) = e$. If $a \neq e \in V$, then o(a) = 2 and hence $o(\phi(a)) = 2$ by Theorem 1. Since V contains all elements of A_4 of order 2, $\phi(a) \in V$.

References

[1] I. N. Herstein, *Topics in Algebra*, John Wiley & Sons, New York, 1975.