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Abstract

In this research thesis, we have described some mathematical connections between
various Ramanujan’s equations, values of mass and electric charges of fundamental
particles and physical data of Kerr Supermassive Black Hole M87. We have obtained
some very interesting results concerning a possible mathematical unification between
some sectors of particle and string physics and some sectors of black hole physics,
through the use and development of some formulas discovered by S. Ramanujan
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An equation for me has no meaning unless it
expresses a thought of God.

(Srinivasa Ramanujan)

izquotes.com

https://quotesgram.com/img/equation-quotes/5286174/

; "/ amanujan—Hardy number 1729

' '1° Famous British mathematician G. H.
Hardy visited the hospital to see
Ramanujan ,when he was ill at Putney.
He said that he had ridden in taxi cab

number 1729 and remarked that the

number seemed to me rather a dull one,
and that I hoped it was not an
unfavorable . "No," Ramanujan replied,
"it is a very interesting number; it is the
smallest number expressible as the sum of
two cubes in two different ways."

https://www.slideshare.net/SSridhar2/talk-on-ramanujan
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The supergravity multiplet consists of the metrie g, the gravitino v, and a three-
form €' (with feld strength G, normalized as in a previous footnote). The supergravity

Lagrangian, up Lo terms gquartic in the gravitino (which we will nol need), is [8]
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From Polchinski book “String Theory vol. I, we have that:
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where tildes have bee d a that indi

rted as a reminder that indices here are raised
with G*. In terms of G,rn'- he gravitational Lagrangian density takes
the standard Hilbert form (—G)/2R/2«k2. The constant k = xee® is the
gravitational coupling, which in four-dimensional gravity has the value

(8m)'/

= (2.43 x 10! GeV)™! (3.7.26)
Mp

k= (87Gn)'/? =

Thence: (8nGy)"* =1 =(2.43 * 10'® GeV)' =4,115226337448 * 107",
and k> =1,693508780843 * 107" .

We have that:
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-3860,34018656 / 3456 =—1,11699658

1/« = 59049 * 10°°  that multiplied to — 1,11699658 = — 6,59575311 * 10°°

Now the gravitational coupling is:
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= ( ) ~ 1.751751596 x 10~ %
(1) In weakly coupled heterotic string theory, the gauge
and gravitational couplings unify at tree level to form one
dimensionless string coupling constant gsering [10]

where gy, go, and g3 are the gauge couplings for the
U(l)y, SU(2)., and SU(3)c, respectively, Gx is the
gravitational coupling and o' is the string tension. Here,
by, ko and kq are the levels of the corresponding Kac-
Moody algebras: ko and ks are positive integers while ky
is a rational number in general [10].

In the paper “INTRODUCTION TO STRING THEORY * version 14-05-04

of Gerard ’t Hooft” o’ appeared to be universal, approximately 1 GeV™ . Thence:
g® =8m (1,751751596 * 107") = 4,40263196 * 10™**; g=12,09824497 * 10,

Vg = 1,44853201 * 107",

Now, we calculate the following integral:



5.9049 * (10"36) integrate [(1.44853201 * 107-11)*(-1.11699658)] x

1.44853201
10!

5.9049 . 10°° j[ i 1.11599558}]1".;!‘1:

Result:

_4.77708 % 10°° »°

Plot:

(% from=1.2t01.2)

Ex1025 |
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Indefinite integral assuming all variables are real:

~1.59236 x10°° x° + constant

Now:

(1/10°54) * 1.0864372 * 5.9049 * (10°36) integrate [(1.44853201 * 10/-11)*(-
1.11699658)] x, [0, 34/(2Pi)]

1 31 44853201
. 1.08643% ~5.9049 « 10 Eﬂ[— [—1.11599558}}36.;{1:
10°% o 101!

Result:

~1.65106x107%7
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Result:



~-1.6180053011905258 = 10!

Now, we calculate the following double integral:
(1*107-52) * (2*0.618)"3 * 1.08643 integrate integrate [-4.77708*10"25]

11072 (20.618)° « 1.08643 [[[-4.???03 10% dx)dx

~4.89993 x 10727 »?

L

I_-hl‘ I_-hl‘ I_-\.'I I_-\.'I I_-CI I_-CI I_-\.I"'

1.0 0.3
1,210

2.x10

3.x10
/ 4.%10
5.x10

,f/ f.ox 10
T.x10

(# from=1.2t01.2)

~1.63331 %1077 ¥°

Now:

From “Ramanujan - “Twelve Lectures on subjects suggested by his life and work” —
by G. H. Hardy — Cambridge at the University Press - 1940



10.5. The congruences of § 10.4 are satisfied by all » of certain arithmetical
progressions. There are also congruences satisfied by “almost all” n,
For example

(10.5.1) 7(n)=0 (mod5)
for almost all » (in the sense of § 3.4).

We begin by proving that

(10.5.2) T(n)=n0(n) (mod5),

where o(n) is the sum of the divisors of n, for all n. This depends on two
identities in the theory of the modular functions, viz.

(10.5.3) Q3— R? = 1728g(x),
and
nixm
10.5. — P2 = L
(10.5.4) @—-P 2882}'(1_xn)2,
where } '
z 22 323
(10-5.5) P’- 1—24(1_x+1_w2+1__x3+~--);

(10.5.8) Q= 1+240(1fm+

9842 33,8
1—x2+1-—:c3+"')

. x 2622 353
10.5.7 R=1-5
( ) 004(1_$+1_32+1_x3+-..).

The identity (10.5.3) is familiar, but I have not seen (10.5.4) anywhere
except in Ramanujan’s work.

We have that Q =241, P=-23 Q—P*=241-529= —288

Q’ —R? = (1 +240) — (1 — 504)* = 13997521 — 253009 = 13744512;
Where 13744512 =1728 * 7954; 1728 * 7954 = 13744512;

1728 = 13744512 / 7954

We observe that 1728 is very near to the mass of candidate glueball f,(1710) meson.
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross—
Zagier theorem. The number 1728 is one less than the Hardy—Ramanujan number
1729

We calculate the following simple integral:

integrate [13744512] x, [0, 1/(1.644934~13*Pj)]



1

[ 164493413 7 13744512 x dx = 1.67086
Wi

where 1,644934 = {(2) = /6
And the following simple double integral:
1/(10734) * 1.08643 * (Pi/sqrt(2)) integrate integrate [13744512]

1 " 5
= e = [[13?44512.;:1:].;:::
147+ vz Jh

1.65858% 1077 &*

Result that is a good approximation to the proton mass
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12.2. Computing the spectrum of states.

The general method to compute the number of states consists of calcularing, for the entire
Hilbert space,

Glg) =) Wag" ="Irq" , (12.12)

=
Il
=

where g is a complex number corresponding to 1/z = ¢77, as in Fe. (10.3), W, is the
degree of degeneracy of the n™ level, and N is the nunber operator,

n—2 ('] —2 e
N — Z ( Z O, — Z rd_.,d,) & Z (Z n .-’\'rfof + ZT f\ie:m) \ (12.13)
P = >0 p=1 n=1 >0

where the sum over the fermionic operators is either over integers (Ramond) or integers
—l—% (Neveu-Schwarz). Since N receives its contributions independently from each mode,
we can write G'{g) as a product:

D-3 oo
Glg) =TT TT TI f=(2)g:(a) . (12.14)
u=1n=1r>0
with
if < - 1 i
o= @™ =02 (12.15)
m=0 —q
while
1 »
gl — D d™—144q . (12.16)
m=0
We find thar, for the prirely hosonie string in 24 transverse dimensions:
G(g)=T[(1—q ). (12.17)

n=1

The Taylor expansion of this function gives us the level density functions W,,. There are
also many mathematical theorems concerning fanctions of this sort.

For the superstring in 8 transverse dimensions, we have

¢ 1 &
o1+ ? ,
Glg) = H T —— (NS} :
n=1 1 == q
oo ny 8
cl@) = 16]] (ig ) (Ramond) | (12.18)
n=1

where, in the Ramond case, the overall factor 16 comes from the 16 spinor elements of
the ground state.

Now let us impose the G5O projection. In the Ramond case, it simply divides the
result by 2, since we start with an 8 component spinor in the ground state. In the NS
case, we have to remove the states with even fermion number. This amounts to

Glg) = 4T (¢ — (-1)"¢") | (12.19)



where F is the fermion number. Multiplying with (—1)* implies that we replace g(r) in
Eq. (12.16) by
1
irN=>(-g™=1-q . (12.20)

m=l

This way, Eq. (12.18) turns into

oo = 2 [ B o

2\/1]' n=1 n=1 I qn
. Y .
Gr(g) = S]] “_Lqﬂ (Ramond) . (12.21)
n=1 1 4

Here, in the NS case, we divided by ,/g because the ground state can now be situated at
N = —%, and it cancels out.

The mathematical theorem alluded to in the previous subsection says that, in Eq.
12.21), Gys and GRr(q) are equal. Mathematica gives for both:
q v q g

Glq) = 84 128¢+ 11524% + 7680¢° + 42112 ¢* + 200448 ¢°
+ 855552 ¢° + 3345408 ¢" + 12166272¢° + -+ - . (12.22)
We note that:
1152/288=4 12166272 /288 =42244 200448 /1728 =116
3345408 / 1728 = 1936; where 288 * 6 =1728

The number 1728 is very near to the mass of candidate glueball f,(1710) meson.
Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic
curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross—

Zagier theorem. The number 1728 is one less than the Hardy—Ramanujan number
1729

We calculate the following simple double integral:

1/(10738) * 1.0864372 * (P1/2) integrate integrate [1728]

10



1 " -
. x1.08643% x = [[[1?284::]4::
1038 2J\

1.60191 %1077 &°

Result very near to the Planck length about equal to 1.6 * 107

\ 210733 | /

1.5%10735 |

[ (x from -1.2t0 1.2}
1, %1074 |

And:
1.08643 integrate [1728] x, [0, Pi/((1.618)"9)]

"0.0413374
1.08643 I 1728 x dx = 1.60399
Jo

Now we take some parts of the following very interesting paper: “RAMANUJAN’S
UNPUBLISHED MANUSCRIPT ON THE PARTITION AND TAU FUNCTIONS
WITH PROOFS AND COMMENTARY - Bruce C. Berndt and Ken Ono”

PROPERTIES OF p(n) AND 7(n)
DEFINED BY THE FUNCTIONS
Yong P()g™ — (G 9)=,

Yo T(n)g" = q(g; )2

S. RAMANUJAN

We take:

Yo T(n)g" = q(q; 9)2

11



Modulus 5

1. Let
oo 'ﬂ-qn
P:=1-—-24 .
= ?13q”
Q:=1+240)" -
n=1 g
and
et
R:=1-504)" :
n=1 l il
so that?
(1.1) Q° — R* = 1728q(g; q)22.

Let o,(n) denote the [sum of the] s*" powers of the divisors of n. Then it is easy
to see that

1) Q) =1+5J; R=P+5J.

Hence,

(1.3) G*—- B* =0 - P* 451

But®

(1.4) Q- P° =288 "noy(n)g";
n=1

and it 1s obvious that

5 gt PP )e .
Now:
Q* — B> = 1728¢(q; q)22.
where

Yoo iT(n)g™ = qlq; )2

Wenote that: Q=1+240=241; R =1-504=-503; thence

12



Q' —R*=241° — (= 503%) = 13997521 — 253009 = 13744512;

We have that: 13744512 /1728 = 7954; thence q(q; q)% = 7954. Indeed:
13744512 = 1728 * 7954.

Now, we calculate the following simple double integral:

1/(10733) * 1/((sqrt(e))"3) * 1.08643 * integrate integrate [ 13744512]

o5 ¥ 3 © 108643 “f13?445124x']£:x
Ve A

1.66594 %1077 *

Also this result is very near to the proton mass

[ from=1.2t01.2)

(8 W

(1.4) Q—P* =288 noy(n)q"

n=1

We note that 288 / 144 = 2 and that 288 * 6 = 1728 and 1728/ 144 =12

(3.2) Q*— PR=1008 3" nos(n)q";
n—1

We note that 1008 / 144 =7

We have:

13



(5.2) Q*=P+1J; BR=147T;
and so
(5.3) (Q* —R%)2=P*—-2PQ+ R+17J.

But®

PQ— R =720 naa(n)q",

(5_1) n—=1

P*—3PQ+2R —— 1728 ) " n’o1(n)q";

n=1

We note that 720 / 144 = 5; 1728 /288 =16

Then: R=1+7J; forR=-503; 1+7J=-503; 7] =-504; J=-504/7=-72.
Q*=P-504; P—504=Q% P=Q"+504=241%+ 504 = 58585;

PQ — R =58585 * 241 - (- 503) = 14118985 + 503 = 14119488;

Indeed: 720 * 19610,4 = 141194888;

P’ —3PQ + 2R =201075567351625 — 3(14118985) — 1006 = 201075524993664;
Indeed: -116363151038 * -1728 =201075524993664

Now, we calculate the following double integral:

1.105672 * 1/(10740) * 1/(e)*2 integrate integrate [201075524993664]

where 1.1056 is the value of the cosmological constant (Planck 2018)

1.1056° e “(201&?5524993554dx T
F Y -

1.66317% 10727 &°

A result similar to the previous one

14



25x107% |

\‘x 7. %10 —: ._/j

(x from=1.2t01.2)

Now:
3 2 — n
() — R =1 fERZ: T(n)q",
(7.1) 3Q° +2R? — 5PQR = 1584 Y _ noo(n)q",
n—1
5Q° +4R* — 18PQR +9P2Q? =8640)  n’a7(n)e™;
n=1
We have that:

5% 241° +4 * (-503)” — 18(58585*241* -503) + 9(58585 * 241°%) =

= 69987605 + 1012036 + 127833290190 + 1794111636872025 =
=1794239541161856. We have that

1038333067802 * (8640/5) = 1794239541161856 and 1728 * 5 = 8640
Now, we calculate the following double integral, where -0.165421 is {'(-1):

1/(10°33) * (-0.165421) * 1.08643 * integrate integrate [1794239541161856]

1 P .
ﬁ (-0.165421) - 1.08643 [[[ 1794239541 161856 dx]dx

~1.61220%x 10717 ¥°

Result very near to the electric charge of electron

15



(x from=1.2t01.2)

Now:

P® —10P*Q + 20P°R — 15PQ” + 4QR = —20736 ) " n*o1(n)q",
n=—1
P’Q - 3P’R+3PQ” — QR = 3456  n’os(n)q",
(9.3) Lo
P?R—2PQ* + QR — —1728 Y " n’a5(n)q",

n=1

oo

PQ? — QR =120

noz(n)q™;
1

58585% * (-503) —2(58585)(241)" + 241* (-503) =

= 1726397719175 — 6805350770 — 121223 = 1719592247182:
We have that - 995134402,304398148 * - 1728 = 1719592247182
Now, we calculate the following double integral:

1.0864372 * 1/(10737) * 1/(4e’e) integrate integrate [1719592247182]

1
1.08643% x ——

1 " u
i Fj[jl?wwzzwlszdx]dx
&

Result:

1.67419% 10727 ¥*

Result practically equal to the neutron mass

(# from=1.2t01.2)

16



And:

(13.3)
5(P% — 15P'Q + 40P3R — 45P2Q? + 24PQR)

— (993 + 16R?) = _2435322 nSoq(n)q™,

n—1

7(P'Q —4PR +6P*Q* —4PQR) + (3Q" + 4R?) = 41472 ) " n'o3(n)q",

n=1

2(P*R —3P*Q* +3PQR) — (Q* + R*) = —5184 ) ~ n’os(n)q",
n=1

O(PQ — R)* +5(Q° — R*) =8640 ) _n’o7(n)q",

n=1

5PQR — (3Q° +2R*) = —1584 > nog(n)q",

n=1

\ n=1

Where — 248832/ 1728 =— 144

Thence:

2(9%241° + 16%(-503)*) = -(125977689 + 4048144) = - 130025833
-248832 * 522,54466065457818930041152263374 = - 130025833

(1728 * (-144)) * 522,54466065457818930041152263374 = - 130025833.

Now, we calculate the following double integral:

1.0864372 * 1/(10725) * 1/(Pi*ee) integrate integrate [-130025833]

2 1 1 pop \
1.08643% x — x — [[-13(:1 025 833 dx| dx
105 retJ\.

_1.61183x107%° ¥*

17



(x from=1.2t01.2)

Now:

6912 " n’oy(n)q" = 6P°Q —8PR +3Q* — P*.

n=1
6*58585 * 241 — 8*58585%(-503) + 3*241° — 58585 =
= 4962964417350 + 235746040 + 174243 — 11780012113294950625 =
=-11780007150094769992
(4%1728) * -1704283441853988,7141203703703704 = -11780007150094769992
Now, we calculate the following double integral:

1.0864372 * 1/(10"36) * 1/(P1"2*1.61803398*¢) integrate integrate |-
11780007150094769992]

1
1035 x° . 1.61803398 ¢ -

1.08643 f[ [1- 11780 007 150 094769 992 d x| dx

_1.60154 %107 ¥

[ from=1.21t01.2)

_1.61183x107%° ¥*
_1.60154 %107 ¥

Results both very close to the value of the electron electric charge

18



From: Canad. Math. Bull. Vol. 42 (4), 1999 pp. 427-440
“Ramanujan and the Modular j-Invariant” - Bruce C. Berndt and Heng Huat Chan

Now, we have the following Ramanujan function:

Except for four entries, the last two pages in Ramanujan’s third notebook, pages 392 and
393 in the pagination of [21, vol. 2], are devoted to values of the modular j-invariant. Recall
[14, p. 81], [15, p. 224] that the invariants J(7) and j{r), for 7 € H:= {7 : ImT > 0}, are
defined by

3
(1.1) J(7) = i:: and  j(r) = 1728](7),
where
(1.2) AlT) =g(r) — 27g3(T),

oo
@l(r) =60 Z (mT +n)"4,

M H=—00
(rnar=£(0,0)

and
s

g(7) = 140 Z (mrm +n)~".

M, H=—100
(m,n)00,00

Furthermore, the function 42(7) is defined by [15, p. 249]

(1.3) () =/ jlr),

19



Theorem 1.1  For q = exp(—m/n), define

sl @)

1.13 ey o,V
( ) n 1 fq)
Then
. FE— . | 1/6
(1.14) rr,:(2\/64,’,3,—24Lr+9—(16.’,;—3}) .

Ramanujan then gives a table of polynomials satisfied by t,,, for five values of n.

Theorem 1.2 For the values of n given below, we have the following table of polynomials

Pult) satisfied by t,,.

n Pu{”
11 s |
35 =+t —1
59 42t —1
83 | £ +2

i+ 2t —1

e

=3 "L

Proof of Theorem 1.2 Itis well known that J;; = 1 [15, p. 261]. Thus, we find that

as desired.

o= (2-7—13)"% =1,

Secondly, from a paper of W. E. Berwick [6],

Hence,

[ -
tys = (3\!454- 5 (‘/5; 1

Isszw/.ﬁ(ﬁ; 1)4.
)8—24£(“’!§;l)4+9— (161/5(

S —— /6
= (2\,/734% 3276v/5— 117 — ssﬁ) ;

We have:
J35=15,3262379; and

tys = (2*%121,1377674149 — 117 — 125,219806739)"° = (0,0557280908)" =

=0,618033990227 = (V5 - 1) /2

For

i(r) = 1728 (1),

20
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2

)
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we have: 1728 * 15,3262379 = 26483,7390912

We calculate the following double integral:

1.0864372 * 1/(10720) * 1/(Pi*6) integrate integrate [26483.7390912]

1 1 3 N
1.08643% x — x — J U 26483.7390912 d’x] dx
130 A

Result:

1.62575x107%° »?

Plot:

(o from=1.2t01.2)

-1.0 -0.5 ' 0.5 1.0

It is easy to verify that if a> — db® = (2, then

(4.1) b [T

Now, since

we find that

V73494 3276V5 =

by (4.1). Hence,

1/6 ; /5 —1
ns=(2(63+26v5) — 117 56v5) = (90— 4V/E)/ = T—.

Hence, t35 is a root of t* + t — 1, and the second result is established.
For n = 59, Greenhill [ 18] showed that usq, defined by (1.4), is a root of the equation

27

u—392.213,23 ¢ 1072. 443,13 _ 2816 = 0.

21



We have that: 63 +26V5 = 121,13776741499453210663851538701;
Note that (121,1377674149)""° = 1,61557809657...

We calculate the following double integral:

1.0864372 * 1/(10720) * 0.226 integrate integrate
[121.13776741499453210663851538701]

where 0.225791 = log(sqrt(n/2) = 0.226

1 . ;
1.08643° TS 0.226 ([(12l.lB??6?4l49945321DI5I5385lSBE?Dl dx] dx
10°

1.6157%1071° »°

¥

“\ 2.%10-19 |

1.5 \m'.

v from =1.2to0 1.2)
1.x1o~ 19
e 100 ”

1.62575% 1071 &*
1.6157x1071% »*

Result very close to the value of the electron electric charge

From Wikipedia

The Dirac sea is a theoretical model of the vacuum as an infinite sea of particles with
negative energy. It was first postulated by the British physicist Paul Dirac in 1930
to explain the anomalous negative-energy quantum states predicted by the Dirac
equation for relativistic electrons.'”! The positron, the antimatter counterpart of the
electron, was originally conceived of as a hole in the Dirac sea, well before its

experimental discovery in 1932.1"° !
Upon solving the free Dirac equation,
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ov

one finds
u expli(p - x — et) /A]
PYor =N (cor-p) U —3 ,
me +AE, A 2mh
where

g=Fl,.: By= +"~"|,r.-"llll:'2 +m*e®, A =sgne

for plane wave solutions with 3-momentum p. This is a direct consequence of the
relativistic energy-momentum relation

= I .
E? = pc +mie

1
upon which the Dirac equation is built. The quantity U is a constant 2 X 1 column
vector and N is a normalization constant. The quantity ¢ is called the time evolution
factor, and its interpretation in similar roles in, for example, the plane wave solutions
of the Schrédinger equation, is the energy of the wave (particle). This interpretation is
not immediately available here since it may acquire negative values. A similar
situation prevails for the Klein—Gordon equation. In that case, the absolute value of ¢
can be interpreted as the energy of the wave since in the canonical formalism, waves
with negative ¢ actually have positive energy E,. But this is not the case with the
Dirac equation. The energy in the canonical formalism associated with negative ¢ is —
E,. In hole theory, the solutions with negative time evolution factors are reinterpreted
as representing the positron, discovered by Carl Anderson. The interpretation of this
result requires a Dirac sea, showing that the Dirac equation is not merely a
combination of special relativity and quantum mechanics, but it also implies that the
number of particles cannot be conserved

Generalization of the Dirac’s Equation and Sea
H. Javadi, F. Forouzbakhsh and H.Daei Kasmaei - 14 June 2016
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2
mc 0 0
2 0 mc? 0 0
Bmet=> | 0 "o _os2 (16)
0 0 0 —mc?

For eigenvalues and considering p = 0 (in equation (4)), we will have®:

E, =mc?, E. =—-mc? (17)

From the Dirac equation to the photon structure

In pair production of "electron-positron", one photon with spin 1 and at least energy E = 1.022 MeV/
is converted to two fermions, electron and positron with spin 7 each of them with context of energy

0.511 MeV in vicinity of a heavy nucleus so that we have the following relation:
y—oe +et (18)

Relation (18) is justifiable according to Dirac equation by relations (16) and (17), (Figure 1.A). In pair
decay. an electron is combined with a positron and is produced two photons (Figure 1.B).

e+ e
Y Y
A l
time
e e"‘
/ B
space —
Feyriman diagram for pair production.
A photon decays into an electron- Feynman diagram of electron/positron
positron pair. annihilation

Figl: Production and decay of pair "electron-positron™
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In pair decay, reverse of relation (18) takes place and we will have:
e”+et o2y (19)

In all physical processes including pair production and decay. it must be held the following conservation
laws:

1-  Electric charge conservation law, pure charge before and after the process must be equal.

2- Linear momentum and total energy conservation laws: These rules has made forbidden
production of just one photon (Gamma ray). As it is seen in Figure (2), two photon with the same energy
move but in two opposite directions. Angular momentum conservation law must be held too. In fact, in
the process of "electron-positron” decay. these following relations hold:

e” +et o2y
EEV = ngcz + Ee— + Ee-i-

mgc? = 0.511 MeV

In which mgc? is zero rest mass of electron (also positron) and E,- , E,+ are kinetic energy of electron

and positron that are converted to energy of photons (E3,) at the time of pair decay.

We take the value E = 1.022 MeV and calculate the following integral:

1.08643 * [(2*0.61803398)"5] integrate integrate [1.022]

1.08643 (2 - 0.61803398)° f[fl.n:nzz ax)ax

Result:

1.6019 x*
Plot:

(o from=1.2t01.2)

result that is practically equal to the electric charge of the positron.
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From: RAMANUJAN'S EXPLICIT VALUES FOR THE CLASSICAL THETA-
FUNCTION - BRUCE C. BERNDT AND HENG HUAT CHAN

§2. Evaluations of ¢(q).

All page numbers below refer to Ramanujan’s first notebook.

THEOREM 1.
ple”’") _ 1
oe™) J5PB-10
THEOREM 2 (p. 284).
¢(€_3’)= 1
ele™™) Y69

From Theorem 1, we have:
1 1

5J5-10  1,0864344837582

= 0,920442065259

We note that 0,920442 is a value very near to the spin of the Kerr black hole
SMBHS&7 that1s a=0,9375

(0,920442065259)° = 0,6081052449363...
We note that 1/0,920442065259 = 1,08643448... and that

2
(1,08643448...)° = 1,6444521529221 =((2) == = 1.644934 ...

With regard 1.08643448, we have that:

i/4 14 f°° et?/2 4e”(62” — cos(@t))
T (%) - o V2m |e*™ — 2e27 cos(V2mt) + 1

where:

(3) _ V2 444288293815

B r (%) ~ 3,625609908

= 1,2254167025
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m/*  1,3313353638

r(%) ~ 1,2254167025

= 1,08643481 ...

We calculate the following double integral:

(11/(P1)) * integrate integrate [0.920442065259]
ll . ) \
= [( [ 0920442065259 ax) ax

1.61142194967 x*

(o from=1.2t01.2)

From Theorem 2, we have:

———— =10,920590346
6v3 — 9

We note that 0,920590346 is a value very near to the spin of the Kerr black hole
SMBHS7 that is a = 0,9375

We note that 1/0,920590346 = 1,08625949027.... We have that (0,920590346)° =
=0,6086932664295... and (1,08625949027)° = 1,64286358189...

From Theorem 5, we have:
1+°2(v3+1)
3 = 0,920441787836

We note that 0,92044178 is a value very near to the spin of the Kerr black hole
SMBHS&7 that1s a=0,9375

We note that 1/0,920441787836 = 1,0864348112... and that (0.920441787836)° =
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=0,6081041452326... and (1.0864348112)° = 1,6444551607959...

From the Theorem 7, we have:

3+ V5 + (V3+ V5 + (60)*)V2++3 _

3v10 + 10vV5
_ 5,23606797+(1,732050807+5,0192256612)(1,551133518071245) _ 15,70819918959
17,06593443017349 - 17,06593443017349 -

=0,920441787343196...
We note that 0,92044178 is a value very near to the spin of the Kerr black hole
SMBHS&7 that1s a=0,9375

We note that 1/0,920441787343196 = 1,0864348117945... and that
(0,920441787343196)° = 0,608104143279149... and (1,0864348117945...)° =
=1,644455166195...

From the Theorem 8, we have:

V13 +V7 +7 +3V7

12 (28)/8 = 0,558596102528 - 1,516682772959 =

=0,84721308574758....

We note that 1 /0,84721308574758 = 1,180340597687... and that
(0,84721308574758)" = 0,60810414728439... and (1,180340597687)° =
=1,64445515536166478

From the Theorem 9, we have:
G=Ge

1 13+3\/ﬁ)"3
= ((Jﬁ+2)+(—-—2

¢ s 1/3 Y 173y,
x{(11+v13+3\5) +(“+2“13—3J§) })

LW

2

a=(G-GVY+NUG-G).

qo(e*'“)=(G_3(a+. /a2+52))""‘.

ole™™) 2
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1
G = 5(5,60555127546 + 2,283583604339 - 3,60265210495172565) =

=1/3 (5,60555127546 + 8,2269572790051469) =
=4,610836184821...
a=(4,610836184821 — 1 /4,610836184821)" + 7 (4,393955783974) =
= 84,8334339420727 + 30,7576904878238
=115,5911244298...

Thence:

(e

2

/

(4,6108361848217(115,70348060040195)) " =
=(0,01020142689650143961492534977045(115,70348060040195)) " =

= 1,1803405990157729898986354312672™"* =

=0,920441787835717....

We note that 0,92044178 1s a value very near to the spin of the Kerr black hole
SMBH&7 thatis a=0,9375

Note that 1/0,920441787835717 = 1,0864348112.... and (0,920441787835717)° =
=0,60810414523149....; (1,0864348112)° = 1,6444551607959....

From Theorem 10, we have:

tp(e‘m)=1(t+(\/§_l)(,’/2(ﬁ+1)+1)"3).

o) 3 23— -1

2,7613253635096 /3 B
0,135508544551208> B

1
§<1 + 0,732050807568 - (
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1
=3 (1+0,732050807568 - 2,731389488758629) =

=0,9998386270095...

We note that 0,9998386 1s a good approximation to the spin of the Kerr black hole
SMBHS7 thatis a = 0,9375

We note that 1 /0,9998386270095 = 1,0001613990359... and that
(1,0001613990539)°'2 = 1,08613947969... and (1,08613947969)° = 1,64177485549...
1/1,08613947969 = 0,9206920646...

From Theorem 11, we have:

‘P(€_63n)=}_(l+(~f4+ﬁ—7'/4) \/ﬁ;—ﬁ(z_‘_ﬂ)l/s

@e’™) 3 2
><\/z-c~\/7+\/7+4\/7 J3+ﬁ+(6ﬂ)"‘)
2 SIHST- (6D

Thence:

L1 + (010763244) - 2,60586945 - 2,102256018 |20 Ax 270101
5|1 2 ’ 0,3800121949 |

[1+(0,10763244) - 2,60586945 - 2,102256018 - 3,391943] =

W[ =

=10,99999999144589576154611990169733.

We have that 1/0,99999999144589576154611990169733 = 1,0000000085541...
and 1,0000000171082 = 1,0000000085541>

Note that:

1,0743942252863497655136433325161 = 1,0000000085541%50%
(1,0743942252863497655136433325161)” = 1,65251594167422578....
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Now, we have

(28)"*(/ 13+ T+ /T+ 31 ((2JT +9)/4/T+7+./1820 + 688./7)

a4y A e
=u4)2(7 +\;4+"’7). (3.45)

(196) (86,320436234837760525804749984845) = 16918,8055;
(16918,8055)"" = 1,66934374266... and (1,66934374266...)"° = 1,0891581918...

Now:
56+ 23\/’_!-'=,f'7(4+\/7)2

(56 + 60,85228015448) = 116,85228... (116,85228)"'° =1,609769590768... and
(1,609769590768)" = 1,08258154636...

Now:

(418,682332597) (253.9960629311) = 106343,664098465 (106343,664098465)"%
=1,61974376738679... and (1,61974376738679...)"° = 1,08369662189088...

Now we calculate the following double integral:

1.086434811 * integrate integrate [sqrt(106343.664)] [Pi/336]

1.086434811 ([(\H106343ﬁ64 Bgﬁdx]dx

1.6563 x°

15 | S

[ (x from -1.2t0 1.2}
1.0 |
If]..'-é

x
1.0 0.5 0.5 1.0
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Now:

5,734 9]

+ :
V2 PRS2

JA55+172,/7=

(3.51)

That is equal to 30,1673536377175... (30,1673536377175...)"" = 1,626905993875...
and (1,626905993875)"¢ = 1,0844938075...

Now:

A=4/2(133+ 59.ﬁ)(£+ \/%)4-4 . 7”"(14+9\/7)(4+\ﬁ)(\/g+\/§)

+2. 74204+ 4/D(5 . 74491 . T

+24.73“(\/g+ \/g)(8+3\/'_/). (3.52)

(4215,93700689) + (4214,8055475) + (4244,6010469) + (4243,461483) =
=16918,80508429 result that is equal to (3.45)
And

3={14}2(7m+‘@+‘/g)6.
2

That is: (196) (86,320436234837760525804749984845) = 16918,805502028... result
that is equal to (3.45) and (3.52)

We note that (16918,805)"*° = 1,62711588227593... and that A + B = 33837,61
(33837,61)"*' = 1,6431821143123... and (1,6431821143123)"° = 1,0862945896...

Further, we note that: 126 (1,086294589) = 136,8731 and 126 =21 * 3 * 2 and is the
mass of the Higgs boson.

Now, we calculate the following double integral of the result 16918,805
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1.086434811 * integrate integrate [sqrt(16918.805)] [Pi/137.035]

1D85434811] jw,."lﬁ?lﬂ 805

Result:

1.61986 x°

137.035 ax)ax

Plot:

(o from=1.2t01.2)

We note also that 1,64318211 * 4 =6,57272844 ; 1,64318211 * 8 =13,14545688
and 13,14545688 — 0,2 = 12,94545688.

Further: 1,64318211 *5=28,21591055.

And: 16918,805 * 8 or 33837,61 * 4 =135350,44 = 13,535044 * 10* where
13,5350 is a value very near to the value of SMBH&7

We note that 6,57 is the value of the supermassive black hole M87 equal to about 6,5
milliard of solar masses, i.e. 12,92915 * 10°” kg (the mass is about 6,5 — 6,6 * 10’
solar masses, thence 12,92915 * 10°” - 13,12806 * 10°° kg or 1,292915 - 1,312806 *
10* kg) that is practically equal to 13,14545688 — 0,2 = 12,94545688. While 8,2159
is equal to the supermassive black hole of our galaxy the Milky Way that is 8,2 * 10
kg. It is wonderful to see how from the number 1,64318211 we can obtain different
and precise results, concerning observed and measured phenomena, such as the mass
of supermassive black holes as M87.

https://www.livescience.com/65196-black-hole-event-horizon-image.html
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This is the first-ever image of a black hole.
Credit: NSF

MB87 is 53 million light-years away, deep in the center of a distant galaxy, surrounded by clouds of dust and gas
and other matter, so no visible light telescope could see the black hole through all that gunk. It's not the nearest
black hole, or even the nearest supermassive black hole. But it's so huge (as wide as our entire solar system, and
6.5 billion times the mass of the sun) that it's one of the two biggest-appearing in Earth's sky. (The other is
Sagittarius A* at the center of the Milky Way.) To make this image, astronomers networked radio telescopes all
over the world to magnify M87 to unprecedented resolution. They called the combined network the Event
Horizon Telescope.

The Fine Structure Constant

From various papers of Michael John Sarnowski:

http://www.vixra.org/author/michael john sarnowski

proton-neutron mass ratio
mp /My
Value 0.998 623 478 44

v2 is exactly the ratio of the mass of the neutron minus the mass of the electron
divided my the mass of the neutron

1.674927351%1077 —9.10938291*10~

= =0.999456133
1.674927351*10°

Equation 4
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Why is the ratio of the proton divided by the neutron mass important? It is
important since has been found in other examples to be important. In “The
Aether Found, Discrete Calculations of Charge and Gravity with Planck Spinning
Spheres and Kaluza Spinning Spheres” (5) In the calculation of the Force of

. SO I

Charge ¢* =Tnhce(Me)/ 2Mn where 7° =22F Mej;f“ T2 ) which uses
Mn®

the value described above of the mass of the proton minus the mass of the

electron all over the mass of the neutron.

We have:

ﬂr’.@) — Me )1 - Mn 2 +(.ﬂ'ﬂ?)2] .

T =
Mn Mhn Mn

T? =2.99616291064

T =1.73094278087

1 5 Me
1 Ji

’]_ ( TMe )? 4Mn
3*3Mn

T? is equal to:

q
I

((1.67262171 - 1077 -9.10938356 - 1071 +
(1.674927351 - 10727 +(1.674927351 - 107%7%} /(1.674927351 . 1077)?

2.996162829692097388678407188913541510083216938513291684423...

\ 2.996162829692097388678
Where T is equal to
1.730042757485670693800...

Now we put the values that have obtained from the Ramanujan’s expressions with the
mass of the electron:

((1.6444551589 - 107%7 - 9.10938356 - 10°')* +(1.6444551589 - 107°7f +
(1.6444551589 - 10727)%) /{1.6444551589 - 1077
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2.008802416073470474304005578056746545000319947267420695234 ...

V(((1.6444551589 - 10727 ~9.10938356 - 10717 +(1.6444551589 - 10727)% +
(1.6444551589 - 107°7)) /(1.6444551589 - 1077

1.7317310461...

This number 1,7317310461 is given from the value 1,6444551589 i.e.

(1,086434811)° and after we calculate the fine structure constant with a specific
formula.

We have also

((1.6444551589 - 107%7 - 8.9933557229 - 1071 +
(1.6444551589 1077 +(1.6444551589 - 107°7)%) /(16444551589 10727

2.998006519708065270565036692000750754483007671310230000574..
and

V(((1.6444551589 - 10727 ~8.9933557229 - 107317 +(1.6444551589 - 10727)2 +
(16444551589 - 107°7%) /(1.6444551589 - 107%7))

1.7317351182...

Where 8,9933557229 = 1,7317310461"

electron-proton mass ratio
Me /My
Value 5.446 170 213 52 x 107*
Standard uncertainty 0.000 000 000 52 x 107*

Relative standard uncertainty 9.5 x 107**

Concise form 5 .446 170 213 52(52) x 107*

((1.6444551589%107-27 - 8.99%10°-31))*2 + (1.6444551589%107-27)"2 +
(1.6444551589*107-27)"2)/(1.6444551589*10°-27)"2

=2.99890693 and 2.99890693"(0.5)=1.73173524
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Also this number can be utilized for to obtain the fine structure constant with the
usual formula

((1.6513017728*107-27 - 8.99%107-31))*2 + (1.6513017728*107-27)"2 +
(1.6513017728*107-27)2)/(1.6513017728*10°-27)"2 = 2.99891146

2.998911467(0.5) = 1.73173654

Where 1.6513017728 = 115.591124102 / 70 and 1.6444551589 is (1.086434811)°
Further, we note that 115.591124102 / 72 = 1,605432279194

We have also 4,610836180/(0,920442 * 3) = 1,66976059... and
0,99999999144589576154611990169733 * 9 = §,999999923013061853914 = 8,99...

(((1.66979059 - 107 ~8.99 - 107! +(1.66979059 - 10727 +
(1.66979059 - 107°7)*) /{1.66979059 - 10727}

1.73174002. ..

With this number 1,73174002 after we calculate the fine structure constant with a
usual specific formula.

Now:
Me
o= 1 T de
1—( TMe .- 4Mn
3*3Mn
We have that:

3. Mass of Neutron=Mn=1.674 927 471 (21) x 10-
27 kg1.674 927 351(74) x 107 kg

5. Mass of Electron=Me =9.109 383 56(11) x 103 kg
9.109 382 91(40) x 10" kg.

Thence:

|
s 9.1093829140 - 1071 x
‘ul 3x3x1.67492735174 » 10727

0.999999981979339639...
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1

|'
B _[ ©.1093829140 10731 5 }2
‘,'I 3-31.67402735174 - 10727

1.00000001802066069...
T? =2.99616291064

T =1.73091278087

Now: (1.73094278087*Pi"3) * [((9.1093829140*10-31))/((4*1.67492735174*10"-
27))]

0.1093829140 103!

(1.73094278087 »° | -
' " 4.1.67492735174 1072

0.0072973524411...

Thence:

1,00000001802066069 * 0,0072973524411 = 0,007297352572603112276406310359
and 1/0,0072973525726 = 137,03599....

Indeed:

! =1.00000001802066067 / (1.73094278087 * pi’ *0.00054386734442 / 4)
o' =137.035999098

From the first formula, for T obtained with the same values for the mass of proton
and/or neutron:

V(16444551589 - 1077 ~9.10938356 - 1071 +(1.6444551589 - 10727F +
(1.6444551589 - 107°7)) /(1.6444551589 - 1077

1.7317310461...
We have, for 0,000544617 that is the electron-proton mass ratio:
1,0000000171082 / (1,7317310461 * ° * 0,000544617 / 4) =

=1,0000000171082 / 0,00731073872692234245157049784385 = 136,78508.. We
note that 137,035 — 0.25 = 136,785.

Further, with the following values:
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J(((1.66979059 - 10727 ~8.99 - 1073112 4 (1.66979059 - 10727 +
(1.66979059 - 107%7)) /(1.66979059 - 10777

1.73174002...

and V35 (0,920442) = 5,445408 where 5,445408 / 10" = 0,0005445408 a value
practically equal to the electron-proton mass ratio, we obtain:

1,0000000171082 / (1,73174002 * > * 0,0005445408 / 4) =
1,0000000171082 / 0,00730975372533 = 136,8035168;
136,8035168 + 0,25 = 137,0535168 that is practically equal to 137.0359... =

This result has been obtained only with the values of the various Ramanujan’s
expressions that we have previously analyzed.

From:
ACTA ARITHMETICA LXXIII.1 (1995)
Ramanujan’s class invariants and cubic continued fraction

By - Bruce C. Berndt (Urbana, I11.), Heng Huat Chan (Princeton, N.J.) and Liang-
Cheng Zhang (Springfield, Mo.)

We have the following expression:

THEOREM 6.

(3.9) Gu
Y f?+v"7+\/7+4\/‘7 ff\,@mﬁ[ﬂ '«/34—\: + GL/471/8
_\J 2 \' 2 \I,f3_|_\/|, gL/AT1/8
We have that:

2,102256018 * 1,479493514 * 1,2454451084 * 3,3919430295 =
= 13,139287349123...  (13,139287349123)"° = 1,67384161897728 and
13,139287349123 / 2 = 6,56964367...

We note that 13,1392873 — 0,2 = 12,9392873 value practically equal to the mass of
the supermassive black hole M87 equal to about 6,5-6,6 milliard of solar masses, 1.e.
12,92915 * 10 kg - 13,12806 * 10’ kg
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a distance measurement of 16.87)5 Mpc gives a black hole mass of M = 6.5 = 0.2}y £ 0.7|ys 10° M. This
measurement from lensed emission near the event horizon is consistent with the presence of a central Kerr black hole,
as predicted by the general theory of relativity.

Also 1,67384161 * 8 =13,39073288 — 0,5 = 12,89073288

Now, we have:

THEOREM 7.

sy, e, e § (BB Fge ]
(3.15) gg”_(2+v’5ﬂ’bw’5+vﬁ)‘*’(V 4“" +V* ‘c )

1,272019649514 * 1,293580763607 * 1,76918089239 =2,9111166557...

We note that: (2,9111166557) / e = (1,070940688876...) = 1,61568962048...

29111166557 * 43 =125,1780161951 result very near to the dilaton mass calculated
as a type of Higgs boson: 125 GeV for T=0

We observe that 43 is the 14th smallest prime number. The previous is 41, with
which it comprises a twin prime, and the next is 47. 43 is the smallest prime that is
not a Chen prime. It is also the third Wagstaff prime. In number theory, a Wagstaff
prime is a prime number p of the form:

241
LT
7
where ¢ is an odd prime. Indeed: 43 = 2 ;1 = 122“ = % . The number 43 is also

the sum of 34 + 8§ + 1 that are Fibonacci’s number. Further, 43 is the smallest prime
number expressible as the sum of 2, 3, 4, or 5 different primes:

43=41+2; 43=11+13+19; 43=2+11+13+17; 43=3+5+7+11+17.
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Now, we have:

THEOREM 8.

{ Tn G [ 59\

o - 30 1 ; "‘33
(3.20)  gyos = m@"@"‘ ‘/ﬁ}”& t\/ Tg\r +\/ TBV ) '

1,55377397403 (1,50023676572) (2,2757858778) = 5,304922518... We note that:
5,304922518 * 26 = 137,927985468 and that 2e/5,304922518 = 1,0248142138...
(1,0248142138)*' = 1,673200347... result very near to the proton mass

Note that (5,304922518 * 24)/10=12,7318140432 + 0,2 = 12,9318140432 value
very near to the mass of the supermassive black hole M87 that is 12,92915 * 10> kg -
13,12806 * 10°° kg .

Now, we have:

ExXAMPLE 2.

G(—e ™5) =

I )
; .

(-0,7639320225002) (0,5040171699309) / 4 = - 0,096258714.

Note that 0,096258714 * 10 = 0,96258714 is a value very near to the spin of the Kerr
black hole SMBHR&7 that is a =0,9375

We have that:

(- 0,096258714 * 13 * 10%) = - 125,1363282; - (0,096258714)"° =-0,6261638787

- 0,096258714 * 2 =- 0,6048113374928 and 1/ (-0,6048113374928) =

=-1,65340815889... Practically, we have used the formula of a circle A =2nr where
r=0,096258714 and after we have calculated the inverse.

Now, we have:

EXAMPLE 3.

_ 13-2V3( [11+6V3 9463
Goe VT = _ K\/m+~;f’_ (\/ +2v"__\/ +2~./_)_

that is equal to:
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-0,1463343962452094 (0,156632726623639) = - 0,02292075548271117

0,02292 * 41 =0,93975097... practically equal to the spin of SMBHS87. Furthermore,
(1/0,02292075) * 17 =43,6285898 * 17 = 741,686 value that is a good
approximation to the value of the energy of SMBHS&7 that is 737,4497.

We have also that V43,6285898 = 6,6051941; 6,6051941 * 2 =13,21038 where
6,6051941 is about the value of the reduced Planck’s constant, while 13,21038 is
about the mass of the SMBHS87 that is 13,128 . And (43,6285898)"% =
1,6031398028... that is the electric charge of the positron.

We have:

EXAMPLE 4.
- uzv"_— V3 [ [146 + b—'l\/S 144 +54\/3
G(—e )=—-v ovarr12 \V

that is equal to: - 0,00171240918; 0,00171240918 * 55 * 10 =0,941825 value very
near to the spin of SMBHS&7

We note that 1 /0,0017124 = 583,9757066 and (583,9757066)"" = 1,6322985638...

1,6322985638 * 4 = 6,5291942552; 1,6322985638 * 8 = 13,058388... very near to
the values of the mass of the proton, the reduced Planck’s constant and the mass of
the SMBH&7.

We calculate the following double integrals:

integrate integrate [(583.9757066)"0.33333333333] [Pi/8]

f[f533.9?5?055”-33333333333 ’T—Erﬁ:x'] di
1.6412 x°

integrate integrate [sqrt(583.9757066)] [P1/23] 23 =5+ 7+ 11 ¢ la somma di tre
numeri primi consecutivi

( [/ 583.9757066 » = ax|ax
”[ 23 ]

1.6504 x*
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2
Results that are very near to {(2) = % = 1.644934 ...

We have:

EXAMPLE 6.

=m0y V9+3v6 - v7+3V6
(1+v5)Vv6+ b

that is equal to: 0,0364586006; 0,0364586006 * 26 = 0,947923 value very near to
the spin of SMBHS7.

We have that 1/0,0364586006 = 27,42837035 and (27.42837035)"" =
1,604933874428... (1,604933874428) * 4 = 6,419735497; (1,604933874428) * 8§ =
12,83947009... very near to the values of the electric charge of the positron, the
reduced Planck’s constant and the mass of the SMBHS7.

We have:

EXAMPLE 7.

(=) V36 + 633 — /34 + 61/33
e TV = — .
(2+2v2)V/ V33 +/32

that is equal to: 0,0073592864817; 0,0073592864 * 13 * 10 =0,956707 value that is
a good approximation to the spin of SMBHS87.

We have that 1 /0,0073592864 = 135,882739 and (135,882739)"'° =1,63424223...
(1,634242239) * 4 = 6,53696; (1,634242239) * 8 =13,07393 all values very near to
the values of the fine structure constant, the mass of the proton, the reduced Planck’s
constant and the mass of the SMBHS7.

We have:

ExXAMPLE 8.

GV V729 + 2976 — v/ 72T + 2976
E = %
(5 4+ +/29)/11v/6 + 5,/20

3,438796051186 * 10™ = 0,0003438796051186
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that is equal to: 3,438796051 * 10™*; 0,0003438796051 * 27 * 10> = 0,92847493...
value very near to the spin of SMBH&7.

We have that 1 /0,0003438796051 = 2907,99449... and (2907,99449)"'° =
= 1,646169681609; (1,646169681609) * 4 = 6,584678...; (1,646169681609) * 8 =

=13,169357 all values very near to the values of the mass of the proton, the reduced
Planck’s constant and the mass of the SMBH&7.

We remember that for the Kerr black hole SMBHS87 the spinis a=0,9375 and the
mass is about 6,5 — 6,6 * 10’ solar masses, thence 12,92915 * 10* - 13,12806 * 10%
kg or 1,292915 - 1,312806 * 10™ kg

From:

First M87 Event Horizon Telescope Results. V. Physical Origin of the
Asymmetric Ring - The Event Horizon Telescope Collaboration - (See the end
matter for the full list of authors.) - Received 2019 March 4; revised 2019 March 12;
accepted 2019 March 12; published 2019 April 10
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Figure 11. Decomposition of time-averaged 1.3 mm images from Figure 4 into midplane, nearside,

and farside components (MAD and SANE models with a* = 0.94). Each model (row) of the figure
corresponds to a simulation in Figure 4. The percentage of the total image flux from each
component is indicated in the bottom right of each panel. The color scale is logarithmic and spans
three decades in total flux with respect to the total image from each model, chosen in order to
emphasize both nearside and farside components, which are nearly invisible when shown in a linear
scale. The field of view is 80 uas

From:
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Two-temperature, Magnetically Arrested Disc simulations of the jet from the
supermassive black hole in M87 — 09/04/2019 - Andrew Chael, Ramesh Narayan
and Michael D. Johnson - Harvard-Smithsonian Center for Astrophysics, 60 Garden
Street, Cambridge, MA 02138, USA

3 NUMERICAL SIMULATIONS
3.1 Units

In both simulations presented in this work, we fix the dis-
tance to M87 as D = 16.7 Mpec (Mei et al. 2007) and fix
the black hole mass to 6.2 x 10° M, (Gebhardt et al. 2011,
scaled for this distance). We take the dimensionless black
hole spin in both simulations as a = 0.9375.

For this mass, the gravitational length scale of M7 is
re = GM/c® = 9.2 x 10 em = 61 AU. The corresponding
angular scale is r, /D = 3.7 pas. The gravitational time-scale
is t, =7z /e =3 x 10*s = 8.5hr.

M&7's Eddington luminosity 158 Lgga = ?.8 = 10%
erc s '. The Eddington aceretion rate is Mpaq =
Lgaa/ne® = 77 Mg yr~ ', where for our chosen value of spin,
we set the efficiency 17 = 0.18, as expected for a thin accre-
tion disc with a = 0.9375 (Novikov & Thorne 1973).

Model || Spin  Heating (M/Mgaa) (Ppu/(Mc)'/*rg) | (Py(100) lergs™'] €7 (Prraa(100)) lerg s™'] €graa
H10 0.9375 Turb. Cascade 3.6 x 10—F 55 6.6 x 1077 0.5 8.3 =x10% 0.7
R17 0.9375 Mag. Reconnection | 2.3 x 10—% 63 1.3 % 10%2 1.6 1.4 x10% 1.6

Table 1. Time-averaged guantities for both simulations. From left to right, the quantities presented are the model name, the spin and
heating prescription used, the average mass accretion rate through the black hole horizon measured in Eddington units, the magnetic flux
threading the horizon measured in natural units, the mechanical jot power P; measured at a radius of 1007, (Eqg. 15), the corresponding
jet eficiency e; = (P;)/(M:?), the jet power including radiation Pj1ua (Eq. 16) and the corresponding efficiency, both measured at the
same radius.

We measure the thermal, magnetic, and jet mechanical
power in both simulations as a function of radius using the
definition (Tchekhovskoy et al. 2011; Ryan et al. 2018)

Py / (T" + pu") /=g dods, (15)
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where the integral is at a fixed r is over the jet cap,
which we define by the criterion Be > 0.05 (Narayan et al.
2012; Sadowski et al. 2013b). The time-averaged jet power
measured by Eq. 15 is roughly constant with radius from
around r = 10r, out to r = 1000 r,. We measure the av-
erage jet powers at 1007, from the averaged data to be
6.6 % 10" erg s~ for model H10 and 1.3 x 10* erg s~ for
R17 (Table 1).

While the jet powers obtained from the two simula-
tions agree to within a factor of two, the walue obtained

for model R17 is more consistent with the measured val-
ues for MB87 of ~10** — 10*erg s~ (Reynolds et al. 1996;
Stawarz et al. 2006). Comparing the jet power to the accre-
tion rate gives a jet efficiency e; = Pifﬂ;i'cz of 1.6 and 0.5
for R17 and H10, respectively, indicating that spin energy is
being extracted from the black hole. This is especially true
in model R17, which has greater than 100 per cent efficiency
(Tchekhovskoy et al. 2011).

Because much of H10's energy and momentum is con-
verted to radiation in the jet, it has a correspondingly lower
mechanical jet power. Including radiation in the jet power
measurement, we define

P f (T, + B¢ — pu’) v/—gdéds,  (16)

This increases the measured jet powers to Pjraqg = 8.8 1x*?
erg s~ ! for H10 and Przua =14 % 1043 erg s~ ! for R17, and
increases the jet efficiencies in the two models to 0.7 and
1.6, respectively.

these preferred parameter values in this study. Unlike in the
present work, at M = 6.2 x lﬂgﬂ-i’@ and a = 0.9375, they ob-
tain a compact, counterjet-dommated 230 GHz image that is

consistent with past EHT measurements of the overall image
size. However, the jet powers produced in their simulations

hizghly magnetized regions. The matter content of the jet is
still unknown; it may be populated by a pair plasma of elec-
trons and positrons {Z‘-.-'Iﬂécihmdzka et al. 2011; Broderick &
Tchekhovskoy 2015). Further work with our simulations us-

La luminosita dell’anello e la sua asimmetria possono essere spiegata in termini di “radiazione
relativistica dell’emissione di un plasma che ruota quasi alla velocita della luce attorno al buco nero”
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For the Kerr black hole SMBHS87 the spin is a=10,9375 and the mass is about 6,5 —
6,6 * 10° solar masses, thence 12,92915 * 10°° - 13,12806 * 10* kg or 1,292915 -
1,312806 * 10*° kg. With regard the mass of the SMBHS87, we have calculated the
equivalent energy utilizing the formula E = mc*. We obtain, for ¢ =9 * 10'® m?%/s”
M = 13.12806 * 10* kg; E=118,15254 * 10> kg m*/s* = 118,15254 I.

Now 118,15254 * 10™ J =737,4497 * 10" eV. Thence, the energy of the SMBHS87
is equal to 737,4497 * 107 eV.

From:
RAMANUJAN'S CLASS INVARIANTS,
KRONECKER'S LIMIT FORMULA,

AND MODULAR EQUATIONS
BRUCE C. BERNDT, HENG HUAT CHAN, AND LIANG{CHENG ZHANG

We have:

3
I|'I ) ~n o 0 Feo T 0
lb-i-#_}v.i_\/li-l-.)\/d :L\/Tamn—..m:an:wﬁ—“—'r;?+..1v/§).
1 4 V2 V2

The result is: 0,707106781186 (125,34585139) + 6,36396103067 (13,9282032302)
= 88,63290151 + 88,63854258 = 177,27144409;

Note that V177,27144409 = 13,31433062 and that (177,27144409)""' =1,60111198..
and 1,60111198 * 8§ = 12,8088958... values very near to the mass of SMBH&7 and to
the charge of the positron.

We have:
3
(J = = 'II B =
1 v/ 145 94+ 14
2v/20 + 55 + V’f-z.m + 200145 = (v # + V{¥ :

The result is (1,90530819615 + 1,62178892657)° = 43,8785488241248

Note that V43,87854882241248 = 6,62408 that is a value practically equal to the
Planck’s constant h = 6,62606957. Further, 6,62408 * 2 = 13,24817... We have also
that (43,8785488241248)"® = 1,604285033 and 1,604285033 * 8 = 12,834280269...
that are values very near to the charge of the positron and to the mass of SMBH&7
13,12806

We have also that (145)"'° = 1,644889772; 1,644889772 * 8 = 13,159118... and
that 13,159118... /2 = 6,579559... Further: (1 / 1,644889772)"* = 0,939686...

The number 1729 = (145 * 12) — 11

Ramanujan said on the number 1729: "...it is a very interesting number; it is the
smallest number expressible as the sum of two cubes in two different ways."

The two different ways are:
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1729 =1>+12>=9° + 10°

We have:

v B
V541 ) ( A3 + :wzu.-t,)
2 2
2 \ 2

- (T—:ivﬁ)z (3\/3+ v’ﬂ\]z

)

A

that is equal to: 46,9787137637477918 (42,9767315949145297) =2018,991572...
And (2018,991572)"'° = 1,6090550645269... 1,6090550645 * 8 = 12,8724405162
Further: (1/1,6090550645269)" =0,942277... that are values very near to the
charge of the positron and to the mass and spin of SMBHS7.

We have:

9 —

(Vfr+\/ﬁ+ f\/ﬁl) _Vai+3 | [ir+sva

| 'II o]

that is equal to: 2,35078105935821217 +2,127480103088467959 =
4,47826116244668 and 4,47826116244668 * 3 =13,43478348734...

we have that (4,47826116244668)"” = 1,648300811203... and 1,648300811203 * 8
= 13,186406489... Further: (1/1,648300811203)"® =0,9394430... that are values
very near to the charge of the proton and to the mass and spin of SMBH&7.

We have:

T I 3
f _ 5% +12 G [ 012 5)
[ 135610+ 78300v3) + 2 (87 +5043) = 1,-’“1 v e
\" 2 'VFZ : 2 ."I 2

that is equal to: 736,53184348... We have that (736,53184348)"" = 1,661702198...
And 1,661702198 * 4 = 6,646808; 1,661702198 * 8 =13,2936175...

Further: (1/1,661702198)" =0,9384925... that are values very near to the charge of
the proton and to the mass and spin of SMBHS&7.

We have:
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]

/ 1 \ l80 + 5365  [81+5v368 )
V6917 + 425365 + (85 + 5v/265) = (\ TV [

|
242
that is equal to: 83,185030096... We have that (83,185030096)"” = 1,6343247329...
and 1,6343247329 * 4 =6,53729893... 1,6343247329 * 8 = 13,0745978... Further:
(1/1,6343247329)"® = 0,94044349... that are values very near to the charge of the

proton and to the mass and spin of SMBHS87. We note that: 83,185 *9—11=
= 737,665

We have:

o \
(301 + 46v/43) + —=1/7(25941 + 39561/43)
V2

-

A%

3

3

(v 16+7VE | |12+ ?\;‘E)
I 4 I ]

4

that is equal to: 852,2635597... We have that (852,2635597)""* = 1,6192977355292
and 1,6192977355292 * 4 =6,47719094... 1,6192977355292 * 8 = 12,9543818...
Further: (1/1,6192977355292)" =0,941529... that are values very near to the
charge of the positron and to the mass and spin of SMBHS87. We note that:
(1,6192977355292) * 25 + 8 = 737,838834 value very near to the value of the
energy of the SMBHS&7

We have that:

E

e ; e / =Ty [ /R0
180 + 20/RT + /71320 + TE60VED = (\; 5 :"‘ S N '“*) _

that is equal to: 755,3579214... We have that (755,3579214)"'* = 1,605396611576...
and 1,605396611576 * 4 =6,4215864463... 1,605396611576 * 8§ =12,8431728...
Further: (1/1,605396611576)" =0,9425452... that are values very near to the
charge of the positron and to the mass and spin of SMBHS7.
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Let Q = (Gs.{]s/Glm’;ajS. Then, by Lemma 3.4 and (4.35).

Q= (P !'—P)+(P-1-P2_-1
(4.36) = (1305 + 29v/101) — \/ 169440 + 7540+/505.

Therefore, by (4.35) and (4.36).

; v 1/4

S o f VBT
GEODZP—lf.lQI;(s :E\/?__]}l;, (V )+ J Ea’]{]l_l_l“}lfi

s

s fis
Y ( (130+/5 + 26+/101) + \/ 169440 + 75.;:'1./5(!5) :

Thus. it remains to show that

/T I y &

= = e 113 + 54/505 105 + 5+/505
;1:5uv”.a+29\/1t11J+\/1usa44u+:54{1\/5&3:(\/ oV J—\f :‘/J )) ,

b

which is straightforward. O

We have:
3

( [113 45505 105 +n\f.-3r.)
: + 1/ )

H o]

that is equal to 1164,269601267364. We note that (1164,269601267364)""* =
1,655784548804 and 1,655784548804 * 8 = 13,2462763904...

Further: (1 /1,655784548804)"® = 0,60394330936)"® = 0,93891120462... that are
values very near to the charge of the proton and to the mass and spin of SMBH&7.
We note that ((1164,2696)"% * 21) + 21 = 737,549296 a value very near to the value
of the energy of SMBHS87. We have also that ((1,655784548804)" * 21) + 21 =

= 737,549296

From:
CHAPTER 3. WEBER-RAMANUJAN'S CLASS INVARIANTS

We have:
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1

= 2= 2\/5'409 + 6580V/7.

and

% = 94 + 35V/7 + /17409 + 6580V/7.

that are equal to: 373,19187358143 and 373,19723267797

We note that 373,19187 / 28 = 13,32828... and 373,19723267 / 28 = 13,32847...
(note that 13.328 / 2 = 6,664). Further, we have that (373,19187)""* = 1,638051988...
and 1,638051988 * 8 =13,1044159... (note that 13,1044159 /2 = 6,5522...) all
values very near to the mass of the proton and of the SMBHS87 that is 13,12806.

Further, we have that: ((1,638051988) * 23) + 10 = 737,8160089 value very near to
the energy of SMNH&7

We have that:

) 3
04 + 357 | \/174(}9+6580\/'? _ \/11 H4VT | \/9 +4v/7
V2 2 - 2 2

that is equal to:  (3,2850422557600657 + 3,12913768027697)° = 263,89029394...
we have that 263,89029394 / 20 = 13,194514697. Further, (263,89029394)"'! =
1,66008146838 and 1,66008146838 * 8 =13,280651747... all values very near to
the mass of the proton and of the SMBH87. We note that (1,66008146838)" =
34,746079 and that (34,746079 * 21) + 8 =737,667659 value practically equal to
the value of the energy of the SMBHS?7.

We have that:

14 r
3+vV13  [3+3V/13 5+ /13 V13-3
( i V% ) :V/ g +\/ g

is equal to: 1,3122819078... We have that 1,3122819078 * 10 = 13,122819... and that
(1/1,3122819078)"* = 0,93431477.... Further, (1,3122819078)/2 =0,6561409539
We have that 13,122819 and 0,93431477 are values very near to the mass and spin
of the SMBH&7.

We have that:
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(g+fﬁ+\/g—5+—;ﬁ)w=\/“8ﬁ+\/ﬁs_l'

Is equal to: 1,46755625975... We have that 1,46755625975 * 9 =13,2080... and that
(1/1,46755625975)=0,681404881997 and (0,681404881997)1/6 =0,93806775...
We note that that 13,2080 and 0,93806775 are values very near to the mass and spin
of the SMBHS7

We have that:

o ([ ) (. )

i

e (- D) ()

that are equal to: 2,311710024865895 (2,5247272355065468) = 5,83643726037...
0,432580206532612651 (2,5247272355065468) = 1,09214702897...

We note that 1/1,09214702897 = 0,91562763389... and that (5,83643726)"7 * 10 =
12,86618194; and 1,09214702897 * 12 = 13,105764347.

Further: 5,83643726037 — 1,09214702897 = 4,7442902314;

(4,7442902314)"" = 1,6414663847751.

All values very near to the mass of the proton and to the mass and spin of the
SMBH&7.

and

We have said that:

We have:

3
2v/20 + 5¢/5 + 1/ 240 + 20v/145 =

- / (\'flT—l-vliE\ " fl!]—l-vl—l-ﬁ
/ 3 8

The result is (1,90530819615 + 1,62178892657)° = 43,8785488241248

Note that V43,87854882241248 = 6,62408 that is a value practically equal to the
Planck’s constant h = 6,62606957. Further, 6,62408 * 2 = 13,24817... We have also
that (43,8785488241248)"® = 1,604285033 and 1,604285033 * 8 = 12,834280269...
that are values very near to the charge of the positron and to the mass of SMBHS87
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13,12806 (The black hole mass has been measured to be 6.6 * 10° solar masses, that
is 13,12806 * 10™).

We have also that (145)"'° = 1,644889772; 1,644889772 * 8 = 13,159118... and
that 13,159118... / 2 = 6,579559... Further: (1 / 1,644889772)" = 0,939686... value
very near to the SMBHS87 spin, that is 0.9375

The Rydberg constant represents the limiting value of the highest wavenumber (the
inverse wavelength) of any photon that can be emitted from the hydrogen atom, or,
alternatively, the wavenumber of the lowest-energy photon capable of ionizing the
hydrogen atom from its ground state. The spectrum of hydrogen can be expressed
simply in terms of the Rydberg constant, using the Rydberg formula.

The Rydberg unit of energy, symbol Ry, is closely related to the Rydberg constant.
It corresponds to the energy of the photon whose wavenumber is the Rydberg
constant, i.e. the ionization energy of the hydrogen atom.

This constant is often used in atomic physics in the form of the Rydberg unit of

energy:

4
1 Ry = heR.. = :2; — 13.605 693 009(84) eV ~ 2.179 x 10787,
€0

Indeed, we have:

(9,109 * 10°") (1,602 * 107'%)*/ 8 * (8,854 * 10%)* (6,626 * 107*)* =
=2,17992866 * 10™® J = 13,606 eV.
We note that 13,248 is very near to the value of the Rydberg unit of energy.

With regard the mass of the SMBHS87, we have calculated the equivalent energy
utilizing the formula E = mc®. We obtain, for ¢ =9 * 10'° m*/s :

M = 13.12806 * 10*° kg; E=118,15254 * 10> kg m*/s* = 118,15254 I.

Now 118,15254 * 10™ J =737,4497 * 10" eV. Thence, the energy of the SMBHS87
is equal to 737,4497 * 107 eV.

From the above formula, we have that (43,8785488241248)" = 1,604285033 and
(1,604)" * (11 + 16) = 737,55483. Further, we have also: 2 * V43,87854882241248 =
6,62408; 6,62408 * 2 =13,24817. Now: (13,24817 * 55)+ 9 = 737,64935. Thence,
we obtain values very near to the energy of the SMBH&7
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On the numbers 1728 and 1729

From:

[llinois Journal of Mathematics - Volume 45, Number 1, Spring 2001, Pages 75{90 S 0019-2082
EISENSTEIN SERIES AND APPROXIMATIONS TO =

BRUCE C. BERNDT AND HENG HUAT CHAN

Dedicated to K. Venkatachaliengar

2. Eisenstein series and the modular j—invariant

Recall the definition of the modular 7 -inwvariant j(7),

. QH(U} Dwir
2.1 ) =¥ s s g=e", Im7 > 0.
e o R ’
In particular, if n is a positive integer,
3+-n 2
(2.2) i (—f" ”) —1728 "0 __
2 Qu - Rn
where, for brevity, we set
(2.3) Qn = Q{—e_'IVW} and R, = R{(—e™ "m).

In his third notebook, at the top of page 392 in the pagination of [17], Ramanu-
jan defined a certain function J;, of singular moduli, which, as the authors [4]

easily showed. has the representation

I / 8++/—n
2.4 L= =i ——— -
(2-4) 32 \u“ ( 2 )
Hence, from (2.2) and (2.4),

" 3
(2.5 (—82Jp)" = 1728 s

) ! Q% = R%,

After a simple manipulation of (2.5), we deduce the following theorem.

We note that /1728 = 12 and 1728 /32 =54
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THEOREM 2.1. For each positive integer n,

g 3 8 3
(2.6) ((EJ") - 1) Q8 — (Ej“j R =0,
\ L " ' _}' b3 ¥

where Jy, is defined by (2.4), and Qn and R, are defined by (2.3).

ExampLEs 2.2 [19, p. 211]. We have
53690Q7, — 512R3, =0,
(8° + 1)@ty — 8 Rig =0,
(40* + 9)Q3. — 40°R3. =0,
(80% + 1)Q3s — 80 R3; =0,
(440° + 1)Q3. — 440° R2. =0,
(53360° 4 1)Q353 — 53360° B35y =0,
((60 +28v/5)* + 27)Q3; — (60 + 28v5)* R, =0,

and

(44 + V17?2 (5 + VIT)? + 1)Q3; — (4 + V1T (5 4+ VIT) R, =0.

Proof. In [4], [3, pp. 310, 311], we showed that

=k Jig =3,
Jor =5 . 313, Jgz =30,
(2.7) Jgr =165, Jiga =20, 010,
Jas.—\fjh'ifﬁv. Ty =S84 ',3,3!/ 54 VIT\
z )" \"z )

“

Using (2.7) in (2.6), we readily deduce all eight equations in Qy and Rn. O

The expression J3s = 15,3262379... and Js; = 55,298756114.... We note that
(55 *32)— 32 = 1728
We have already determined the value of fq315 in Section 4. It suffices
to compute Jagp5 in order to write down a series for 1/7m associated with
n = 3315. We first quote the identity [4] [5],

(3+v=3n\ _ (A2-—1)(9A% =1y
1 5 = =27 }‘% :

E:ﬁfﬁ fﬁ{e—ra\!n,ﬂﬂ)
3vV3  [E(e~mVan)
where f(—q) is defined prior to (4.25). Since [5]

24 G
Nros = (‘/3; 1) [+ VTP (”T 221) (8+ VG5,

the value of Jaa15 follows immediately from (5.9). The values Ja315 and #2315,
when substituted into (5.8), vield the series which we mentioned at the end
of Section 4.

)l.n:
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The expression:

AL | ; i
: 5 —1 . | 154220 it
Aﬂn5: (NJ9 ] ¢ﬂ4'ﬁ1ﬂb(—j—ﬁ¥——- (8 + vB5)".

is equal to
5672353980974662982450422,1841

We have that:

<10\/ (5672353980974662982450422,1841)

) = 1,6184366917....
(1728)7

Indeed:

5.6723539809746629824504221841 x 10°* ]'3-1
17287

1.61844. ..
where 1,6184366917 * 4 = 6,4737467668 and 1,6184366917 * 8 = 12,9474935336
Now, we calculate the following double integral:

integrate integrate [(5672353980974662982450422.1841)/(1728"7)] [1/(12P1)]

r[Iﬂi6?23539809?46629824504221841x1024 1 b
dax|ax

17287 127

1.6352947541809757012654459871 x*

We note that 1,63529475418 * 4 =6,54117901672 and
1,63529475418 * 8 = 13,082358

The values 6,473746 6,541179 12,94749 and 13,082358 are very near to the
reduced Planck’s constant 6,582119 and to the mass of SMBHZ&7 that 1s 13,12806
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From:

The Fate of Massive F-Strings
Bin Chen, Miao Li, and Jian-Huang She - https://arxiv.org/abs/hep-th/0504040v2

In the following, we set o/ = % Energy conservation gives

M= \JM2+ k2 /Mg + 12, (2.5)

with £ the momentum in the noncompact dimension.

What we want to consider is the averaged semi-inclusive two-body decay rate. That
is, for the initial string, we average over all states of some given mass, winding and KK
momentum. For one of the two final strings, we sum over all states with some given mass,
winding and KK momentum; only the other string’s state is fully specified (by keeping
explicit its vertex operator).

This decay rate can be written as

d,
Ap-d. » ¥ Fr .p 5 4. 1T p—t
T ssims ipmar— - ] : R,
"= M2 % G(NL) G(VR) H ‘

(26)

with closed string coupling g., compactification radius R;, and numerical coeflicient A, =

2—p
2 Py 2

Ty and Fj, and Fg are given by
2

Fo=30 Y @Vl wi, b)|@)[° (2.7)

‘i’i|Nr, ‘I’f|-'\’2L.

Fp= Z Z |(‘I’f|VR(ﬂn,'wii:k)@i)‘?

®ilng PriNgp

1) = 26 is the full space-time dimension.
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In the following, we shall calculate the decay rate (2.6). In the above discussions, we

have fixed the levels of the incoming string states and one of the outgoing string state

il
-

wrhinrh arva V. ~ AJ

WALLIL AL REC AV, fs L le.jH
we fix the quanta of the incoming string states, the outgoing string states could have
various kinds of masses, KK-momenta and windings, with respect to the energy condition

(2.5), and conservations:
Q=6 +0:, Q=01 +Q: (2.40)

Omne important observation is that we have inequality

o N af Ny, € +f/ Ny (2.41)
¥ pE 1 v Lls — Y A X '
The equality saturate when
M M- i
k=0 - (2.42)
Q- Qo
arh s i tha mameantinm v the nancronmant Aivendtinne aned ~ ). awntha qvanta AF ko
WAL U LD WEAY. DRANPRIANRIULRREE BRI ULINY AINFREIVASLLL ROt D LRI LAV IR LN }.!L‘:., \‘ﬂz_ Ll LRI \_]_L.I(_I.n.l_LIJ(_I.: L R T A

cutgoing string states with fixed level Ny 'I'he same inequality holds in the right-mover.
Given a very massive initlal string of high level, ivs stale density has the asyipiotic

form

2o _DHL aoW D—2

G(N)~ N "+ 3% | a.=2'.'rv— . (2.43)

The ratio between the first two terms in (2.37) can be estimated to be

G(NL —1) | a(vNi—n—y/NiomFml ) (2.44)

G(Nr —2n+m3)

Using the incquality(2.41), it is at most of order

IR = =y == / .N—__ ; :
exp(aly' Ny — VNap)), v Nap =2 — (2.45)
ar

exp(a(3v/ Nor, —v/N1)), Vv Nap < (2.46)

In the extremal case Ny;, = Ny, one can try to calculate I direcily. Thus if generically

1 58 = M- >~ Np the Arat torm dominates the whole @rmmmation in 2927V and t o oather
L7 1y - r I_L‘. -~ n L] WAL LA WW O LAL ARl WAWFALRILICA LR VAL Y RALALN, WLLRALILARULANSLL LBL I‘—'-U L] j, LRLANA Vil'e WAUAANL

terms will he neglected to get
Fy & (N, — Nog — s )G(N (2.47
L‘“{iL_*EL_EmL}d( 21,). (2.47)
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Fr can be carried out in the same way.

Note that in our approximation, Fy, g do not depend on the details of the state
specified in eq.(2.7) and (2.8) by the vertex operators, and all states of the same level are
emitted with the same probability. Taking advantage of this, we can get the total decay
rate for decays into arbitrary states of given mass, winding and KK momentum by simply

multiplying eq.(2.6) by the state density G(N;)

2 d.
TI(M, ns, w;) — (m, nag, wig) + (Mo, n9s, wes)] = Ap_a Je N NaGyGrkP—3—d H i

“ M2
(2.48)
where . ]
.N’L — IVL — I\TQL e 5?11%‘ 5 NR = f\'r,q — I\'rzR — ngR: (2.49)
s G(N N N- N.
g, = J(+ 'LL)‘:?( 2L) . Gp= G(! 1R)€(1 QR)_ (2_50)
G(NL) G(Ng)
Remember that
2 1 : : .
mi = E(m2 — Q% )~ 2Ny;. (2.51)
As long as Ny, 3> 1 and Npp, 3> 1, we can use eq.(2.43) to write
T
Gi v (QJ;TTH)—DEI (w)—%e—ﬁ%ﬁn’ (2.52)

N—L

with the Hagedorn temperature Ty = %\/% and t; = N, — /Ny, — vNap, in a
sense coming from the kinetic energy released in the decay process. We have in the above
restored the multiplicative constant in front of the state density. Note that for later
convenience, in our notation we set G(M)dN = G(N )dN, a little different from usual sense

G(M)dM = G(N)dN.

We can also compactify type II strings on the torus. According to the above caleula-
tions, we will obtain the same formulas as in (2.37), (2.47)-(2.50). Now the state density
has the asymptotic form

o oAl
G(NL) m 2 £ N, < emVENL, (4.1)
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Consider first open strings and NS sector only. The state degeneracy Gy g(n) is given

by
_|_ :TF X3 ,wn

fns(w) = Trl Z Gns(n)w™ H — w“ , (A1)

with N the summation of the bosonic and fermionic number operators. Generalization of

Hardy-Ramanujan formula gives

i l—i—w”'"1 Inw, 1 B
H = 94(0]w) = (———) " 0x(0]e™), (A.2)
where the modular transformation of ¥ function
TN 1
94(0]7) = (~ir)205(0] - 2) (A.3)
has been used, with "
ilnw
B (A4)
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As w — 1, the second argument of 75, which now reads

3 1 i ¥
TTTTT Thw (A.5)
approaches oco. We know from the expansion
Y2(0)r") = Z eim(n—3)*r' (A.6)
that
i i
D207 — 00) — 23T = 2eThw, 7
) ! A.T)
Thus (A.2) is asymptotically
S R Y Inw,. 1 2
H(l—'w“) e T ) 22exl)(fllnw)' (4.8)

n=1

(From (A.1), the state degeneracy Gng(n) can be expressed as a contour integral on

a small cirele around w =10

Gusn) = — ¢ ¥ g, (A9)

2mg | wntl

To compute the above integration, we make a saddle point approximation near w = 1.

The power of w can be put on the exponential

Gns(n) = %j{& ln:) 9 exp[——i— (n + 1) Inw]duw, (A.10)

to get the saddle point at

V2m

Inwy = 3 Al
1= art .

where expansion can be made
Inw = Inwy + i (A.12)

Then Gy g(n) is approximately

1 1 \/_ ni
Gns(n) ~ 555 (= ji “‘/ﬁ/ u?)du. (A.13)
Carrying out the integration over u we find

Gns(n) ~ 2 n—demVER, (A.14)
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Or using n ~ a/m?, write it out in terms of mass

n .
Gns(m) ~ 2= 5/ s m—z emVBa'm (A.15)

Here we use the convention Gy g(m)dn = Gy s(n)dn, different from [17].
At this point, we also note that R sector has the same expression. And combine the

left and right pieces together we arrive at the expression for closed strings
G (n) = [g7(n)]? ~ 2~ ¥n VR, (A.16)

Taking care of the difference between the mass shell conditions of open and closed strings
(a/m? ~ 4n for closed strings), the state degeneracy for closed string as a function of mass

reads

: i >
G m) ~ 2% o/ T2 m 1T VEEm (A.17)

Thus open and closed strings have the same Hagedorn temperature

1 i
Thp=———. A18
" Ty 8a’ ( )

We know that (The Legacy of Srinivasa Ramanujan, RMS-Lecture Notes Series No.
20, 2013, pp. 261-279.The Partition Function Revisited - M. Ram Murty):

The partition function. denoted p(n). is the number of ways of writing n as a non-
decreasing sum of positive integers. Thus, p(1) = 1, p(2) = 2, p(3) = 3 and
p(4) = 5 since

4y 148 242 TddaZy kb I-4140
are the five partitions of 4. Thus, each partition can be “factored™ uniquely as
thghe. ..
where the notation symbolizes

n=141+4--+1+2424---42+--.
ki ks

and that:
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The question of the asymptotic behaviour of p(n) was first answered in the 1918 paper
ol Hardy and Ramanujan [9]. They proved that

eV 2n/3

p(n) ~ ., M — DO. (4)
dn+/3

In their proof, they discovered a new method called the circle method which made
fundamental use of the modular property of the Dedekind »-function. We see from the

Hardy-Ramanujan formula that p(n) has exponential growth.

We have, from (2.41), that:

VNiL + VN < VN

V3 + /5 < V/8; 1,732050807 +2,23606797 < 2,82842712;
3,968118777 < 2,82842712

Thence, we have that:

p()~ =™/ (4)

G(N)~ N(Dﬂm e2m/(D=2)/6VN (3 43)

We observe that the eq. (2.43) and the (4) is practically very similar.
Now, we have, from (2.43), for N=10, o’ =1/2, and D = 26:

1 N D _ 2
VN a—= QTI'\/ ;

G(N)~ N~

that is:

g(N) N(D+1)/4— Zn,/(D—z)/ax/ﬁ

GIN) ~ N™5T VN _ (274 410 _ (675 J4n(3.1622776) _ — (1,778279410038 * 107)

* (181195519824656285,625) = 32221626209,548572. Given a very massive initial

string of high level, its state density has the above asymptotic form. We note that
(32221626209,548572)"* = 1,65546399123955

64



From the paper “RAMANUJAN'S CLASS INVARIANTS,KRONECKER'S LIMIT
FORMULA, AND MODULAR EQUATIONS BRUCE C. BERNDT, HENG HUAT CHAN,
AND LIANG-CHENG ZHANG”, we have various expressions that can be related with
some sectors of the string theory.

We take:

I 3
s o /113 + 5505 | 105 + 5./508
(130v/5+20V/101) +/ 169440 + 7540/505 = (\ +8“ s +| ’ +;" i

3
—
( ,;1 13+ 5505 / 106 + m_f.-',r.)

Fa) / =
: \ .

that is equal to 1164,269601267364. We note that (1 164,269601267364)1/ 14—
1,655784548804.
We have that:

48\/ L. p2m/(26-2)/6V10 = 1 6554639 ...

N(26+1)/4

and

= 1,6557845

3
1 \/113+5\/505+\/105+5\/505
8 8

Thence a new possible mathematical connection between the asymptotic form of the
state density of a very massive initial string of high level, and the above Ramanujan’s
class invariant. We have indeed:

3
43\/ L 2n/@6-D6VT0 — 14\/(\/113+Z\/505 +\/105+:\/505>

N(26+1)/4

1,65546 =~ 1,65578
results that are very near to the mass of the proton (1,672 * 107")

We have, from (2.52), that:
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p—1, Nyt N D41 7
Gr ~ (2nTy) "2 ( li.- . )—Te—ﬁfm Tu
Np

with the Hagedorn temperature Ty = %\f% and t; = VN, — VN1 — vVNap,
76,1095894446859531 * 0,01436287608 * 1659103,33006 = 1813653,1217337...
that is the total decay rate for decays into arbitrary states of given mass. We note that

(1813653,1217337)"*° = 1,6166591858....

We have that:

(301 1 45V33) | ﬁ\/wz.ﬂu | 2056y/13)

I T 3
[ fa+7vE | [42+7VE3
()

that is equal to: 852,2635597... We have that (852,2635597)"" = 1,6192977355292

Thence, we have the following new mathematical connection:

p-1 N+ N D41 :
Gr ~ (2nT) ™5 (T ) T eI,

—27/4
/G- ~30\/(2n - 0,1125395)25/2 (%) e—V2(-1,1396916/0,1125395) —

32/1813653,1217337 =1,6166591858 ...

3
1w 46 + 7V43 42 + 7V43
\/ +\/ =1,6192977 ...

4 4

Thence:

30 15 —27/4
(27 - 0,1125395)-2 /2 <§> e—V2(-1,1396916/0,1125395) ~

3
I |46+ 7V43 |42+ 7V/43
= T+ 7
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1,61665 = 1,61929

values very near to the electric charge of the electron.

Now, we have:

That is equal to: 28390031,9 we note that (28390031,9)"** =1,65657369... and

3
" 113 + 5v505 105 + 5v505
+ = 1,6557845

8 8

Thence, we have:

3
113 + 5v505 N \/105 + 5v505
8 8

14
3§/(2—1 /4.8-11/4 . g8T) = \/
1,65657 = 1,65578

results that are very near to the mass of the proton.

We have:

13 11 ¥
Gns(n) ~2 4 Te™ven

That, for n =4, is equal to: 121357,2462164 and (121357,2462164)"* =
1,66359013

and:

3

. - < [o1 L19v3 [10L190A
\.IEEH:S:JM'J-I— T83V0V3I) + 5[57+;>uv’§} = (‘”.’ - 4] ; .

| “ “
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that is equal to: 736,53184348... We have that (736,53184348)"" = 1,661702198...
Thence:

3
13
23\/(2—13/4 L 4m11/4 - om3Z) = 21+ 12V3 N 19+ 12v3
2 2

1,66359 = 1,66170

results that are very near to the mass of the proton.

Now, we have:

- 11
13 j— = 11

> - - il — =
Gyg(m)~2"2a *m ze" VBa'm

That is equal to: 121357,180534 with results similar as the expression obtained
above.

We have:
G (n) = [GP(n)]> ~ 27 2n 3 V2",

That is equal to: 58910324836,98435 and (58910324836,98435)"* =
1,65882214636257.

We have that:

=)
[n]

'/'“_._4__+5ufm_15'1”5_5\;m 3
VT s /— |

that is equal to 1164,269601267364. We note that (1164,269601267364)"* =
1,655784548804

We obtain:

3

14
43/2—9/2 L 4-11/2 . p4mV8 — \/113 + 5v505 N \/105 + 5505
8 8
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1,65882 = 1,65578
results that are very near to the mass of the proton.

In conclusion, we have:

._.
[

11
=2y

—1 lfrry’&n-"m

I1|||

G m) ~ 27 a n

That is equal to: 2309101,7209 and (2309101,7209)"% = 1,657406627...

We have that:

2'i/213/2 . 0’5—11/2 . 2,828427_11 . p212,828427

3
o \/113 + 5v/505 N \/105 + 54505
B 8 8

1,65740 = 1,65578

values that are very near to the mass of proton.

From:

Brane World of Warp Geometry: An Introductory Review
Yoonbai Kim, Chong Oh Lee, Ilbong Lee

https://arxiv.org/abs/hep-th/0307023v2
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3.1 Pure anti-de Sitter spacetime

When the bulk is filled only with negative vacuum energy A < 0 without other matters
Smatter = 0 s0 that Typ = 0, then the Einstein equations (2.14)~(2.15) are

2A

A =0amdA®—— "
p(p+1)

(3.1)

Notice that A(Z) can have a real solution only when A is nonpositive. General solution of

_ 2/A|
Au(Z) =2y T+ Ao (3.2)

where the integration constant A, can be removed by rescaling of the spacetime variables of

Eq. (3.1) is given by

p-brane, ie., dr* — di* = eodz*. The resultant metric is

ds? = e*H7y  ditdi” — dZ°, (3.3)

A

/p(p + 1) and a schematic shape of the metric €?4(?) is shown in Fig. 2. Since

where k = 4/2|A
the metric function €24+ vanishes or is divergent at spatial infinity Z = Foc respectively,
there exists coordinate singularity at those points. Despite of the coordinate singularity, the

spacetime is physical-singularity-free everywhere as expected

RABCDR o — 8(p +2)

———|A]% 3.4
2oy (54)
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4.2 Gauge hierarchy from model I

As we explained briefly in the introduction, the gauge hierarchy problem is a notorious fine
tuning problem in particle phenomenology of which the basic langnage is quantum field
theory. So the readers unfamiliar to field theories may skip this subsection.

Let us assume that we live on the p-brane at Z = r.m and try a dimensional reduction
of the Einstein gravity from the D = p 4+ 2-dimensional gravity to p + 1-dimensional gravity

on the p-brane at Z = r.m. Then we have

B 2 —f‘ép [ d%\/@ R (4.23)

= _féfﬂ [1 — gt / dPt iz /| det g | (Rpp1 + - -) (4.25)

- ﬂ‘zpéfck [ e /| det g | (Rprs + ) (4.26)

= SgHpt1+-- (4.27)

We used gp = e 2PHV¥Zl det g,,, and R = e?lg R, + ... = ¢®ZIR, .1 + ... when we

calculated the second line (4.24) from the first line (4.23). By comparing the third line (4.25)
with the fourth line (4.27), we obtain a relation for 3-brane among three scales Mpjanex, M.,

Al (p=3):
M e 1[% [1 — exp (—4 p(i% )] MP=3, (4.28)

A natural choice for the bulk theory is to bring up almost the same scales for two bulk

mass scales, i.e., M, ~ |/|A|. Suppose that the exponential factor in the relation (4.28) is

negligible to the unity, which means r. is slightly larger than 1/4/|A|. Then we reach

Mpianae = M. ~ \J|A]. (4.29)

A striking character of this Randall-Sundrum compactification I is that it provides an

explanation for gauge hierarchy problem that why is so large the mass gap between the Planck

scale Mpgpac ~ 1019GeV ~ 1073 M, and the electroweak scale Mgy ~ 10°GeV ~ 1073 M,

without assuming supersymmetry or others. As a representative example, let us consider a
massive neutral scalar field H which lives on our 3-brane at Z = rom :

Seealar = /.rfﬂ— dza(z - Tc""‘—) /d4r g5 [%9.433_4H63H - %ﬂ{g]ancng

o —Tew
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- [mr ng_%'z](?[Z— Tatl) [(1'-41"-\/—7@'4
1

1 : i
iLirglm‘lrcl(J'TjT2 - EQZZ (aZH)Q}

X Eeg’“‘lfl §0,HO,H — S

= et [t [, ng’apﬂa,,ﬂ . g(e—fcﬁ*ﬂfmmuszﬂ (4.30)

= e-?&”’ff diz\/—ds [%_f}*“’BPHBVH - %MEWHQ} (4.31)

where ds? = gapdadde? = e 2lg  dotdzr” — dZ2. The last two lines give us a relation:

Mpw  _ exp (_ %rcﬂ) e P28 (4.32)

iq?'fPlanck P+ 1

Therefore, the radius r, of compactified extra dimension of the Randall-Sundrum brane
world model T is determined nearly by the Planck scale :

il a ﬂJP’&IICk
SaBp— a— ]\ ; 4.33
e 166110 Al 30 (4.33)

All the scales such as the fundamental scale of the bulk M., the bulk cosmological constant
/|A|, the inverse size of the compactification 1/r,, are almost the Planck scales Mpa ~
10" GeV together. The masses of matter particles on our visible brane at Z = 7.7 are in

electroweak scale Mpw ~ 10° GeV, however those on the hidden brane at Z = 0 in the
Planck scale. Though the gange hierarchy problem seems to be solved, it is actually not
because a fine-tuning condition was urged in Eq. (3.25). However, it becomes much milder
than that before.
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Finally let us consider a fermionic field of which mass is provided by spontaneous sym-
metry breaking and its Lagrangian is

ﬁf&rmion = ‘i"".f;lv:!.q” + Q@‘i‘@. ('-136)

where g is the coupling constant of Yukawa interaction. If we neglect the quantum fluctuation
d¢ of ¢, i.e. ¢ = (@) + d¢b, the Lagrangian (4.36) becomes

*Cfermion — "IJ'".“"_I'GA‘IJI +g {U} ﬂ:'IID A vy (—137)

where the second term is identified as mass term, and we neglected the vertex term gdgpUW
because we are not interested in quantum fluctuation. Again the fermion lives on our 3-brane
at Z = r.m, and then the action is

AP [ N ATEET v / d'z/g5 [TV A + Mpiana P (4.38)

where ¢ is vielbein defined by gip = nuetel and Mpua = g (¢) since the symmetry
breaking scale should coincide with the fundamental scale. Subsequently, the action (4.38)
becomes

Stemion = [ dZ8(Z — rer) [ d'e /5[0 eAV AY + Mprana U]

_ / T dZeMI§(Z — rom) [ RS

< [HHTy eV, Y — B EEV LY + Mptana U]

= 6_3\"ch / (fl:.t‘\a' —§4 [‘i"‘}ﬂégvp v+ '?errmion@@]- (4'40)

Once again we obtain the same mass hierarchy relation mermion = €= Mpanek = Mpw for
the fermion from Eq. (4.39) and Eq. (4.40) with the help of Eq. (4.32).

We know that the mass Planck is defined as:

[he
mp = 1#."51

where c 1s the speed of light in a vacuum, G 1is the gravitational constant, and 7 is the
reduced Planck constant.

Substituting values for the various components in this definition gives the
approximate equivalent value of this unit in terms of other units of mass:

1 mp=~ 1.220910x10" GeV/c* =2.176470(51)x10"° k.
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Particle physicists and cosmologists often use an alternative normalization with the
reduced Planck mass, which is

he
By

My ~2.435%10" GeV/c* =4.341x10 " kg

Mp =

Now, from (4.28)

P 8[A s
M2 Pt = - M3
Planck — \| 2| ".!. C‘Xp }(P + 1) T &
we have that:

M2 gneie = 1,4906212281 x 1038 and E = 1,098819 * 10°° or:
M2, e = 5929225 x 10%¢ and E =2,1915 * 10

And, from (4.33), we have that:

i o i | i \‘IP]a.nc'k
30

re  16v/61n10"Y 1]

Thence: — = 4,0697 * 107 and 1, = 2,4571835761 * 10™"*

Tc

r. = 2,4571835761849767796152050519694 * 10"* or:
— =28,11666 * 10'® and 7. = 1,2320328542 * 10"’

Tc
We have that:
Mpw ~ 10°GeV
and
Mtermion = € * Mpianck = Mpw
We have that:

Meermion = 1,22091 * 10" GeV/c or
Meermion = 2,435 x 10'® GeV/c*. The energy Eis: 2,1915 * 10%

Now:
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(2,435 x 10"%)¥¥ =1 61784715017 or (2, 435 x 10" )" =1,609125347 and for
the value of the fermion energy E (for E = mc?):

(2,1915 * 10*)1%* = 1,6231608397 or (2,1915 * 10°%)"'% =1,6185153159.
Further, we have:

(1,2320328542 * 10"7)"" = 0,614656924537 and the reciprocal is 1,626923833;
and

(5,929225 x 1036)"1%* =1 65533879.. and (5,929225 x 103¢)"'7® =1,609125347.

Now, we have that:

: 2 S
2 o va [¥E11 43 | 3v/205
P™% = (G205G4yys)” = ( 5 5

LT —:,\/‘\ (wa+\xn\

SR )

that is equal to: 46,9787137637477918 (42,9767315949145297) = 2018,991572...
and (2018,991572)"'® = 1,6090550645269

Thence:

_ | p(p+1) 8[A L
ﬂ 2 _ — }?I(IJ _ex L - ‘:1 r‘p___..
-{P]a,ut'k \ El-"\ 1 EXp P(P-F I) e 1s

= 5,929225 x 103¢ and (5,929225 x 103¢)"'7* =1,609125347.

We have the following interesting mathematical connection:

178
p(p + 1) 8|A| p=3
———|1—-exp| — |———=r. | | M, =
2|A P p(p+1)°

1677 43vV5\"  [3V5 + VAT’
(2 (5

1,6091253 = 1,609055

Values that are very near to the electric charge of positron.
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Now:

i . m ;’T| i Mpianck
30

Te 164/61n 10 v :

= 8,11666 * 10'° and 7. = 1,2320328542 * 107"
and 1/(1,2320328542 * 1077)""% = 1,626923833.

We have that:

| : 1
SEE B | SR
W,,§[J(]l +46v43) + \./EV 7(25941 + 3956+/43)

3

) (\yf 16+7VA | |42+ ?\,-"-B) |

1 V"

=852,2635597... and (852,2635597)""* = 1,6192977355292.
Thence:

3
80 ,M anc Wi a6+7va3 424743
(1/ P;Ok>:\/<\/ . +\/ " );

1,626923 = 1,619297

Values that are a good approximations to the electric charge of the positron.
Now:
Mfermion = € " Mpianck = Mew
=2,435x 10" and (2,435 x 10")"% =1,609125347.
We have that:

J<7 + 3&)2 . (3\/§+ VAT

2
= 1,609055.
2 2 >

Thence:

2 2

1,60912 = 1,60905
values very similar and very near to the electric charge of the positron.

o —— 1607 +3vV5\"  [3V5 + VAT’
e 7™ Mpianck = +

We calculate the following double integrals:
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(4P1/23) 1/(10"55) integrate integrate [5.929225 *10736]

(4 1] s [[5 929225  10° arx) dx
23/ q1pss JT
Result:
1.61976 % 107 +*
Plot:
¥

2.x10719 |
-
1510719 | ) .
’ [ [ from=1.2t01.2)
1.x10719|

-2 |
and
(2*21) * integrate integrate [5.929225]

2,21 11[115.929225 ax)dx

Result:

124.514 x°

[ from=1.2t01.2)

(4P1/86) 1/(10"53) integrate integrate [2.1915 * 10735]

(4 é] m% 1[[2.1915 10 dx) x

Result:

1.60112x 107 &°

Plot:
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(# from=1.2t01.2)

-1.0 -0.5 ' 0.5 1.0

(4P1/95) 1/(10"36) integrate integrate [2.435 x 10"18]
T 1 e 18

[4 E] ﬁ [12.435 10 d’x]d’x

Result:

1.61048% 107 &°

Plot:

¥

2. x10-19 |
L5x10-19]

| (x from=1.2t01.2)
1.x10-19 |

-1.0 -0.5 ' 0.5 1.0

(24P1/5) 1/(10"36) integrate integrate [2.1915 * 10735]

(24 g] :m% 1[112.1915 10 drx) dx

Result:

1.65235 x°

Plot:

[ from=1.2t01.2)

1.0 -0.5 i 0.5 1.

(3Pi72/2) * 1/(10"55) * integrate integrate [2.1915 * 10735]
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) 1 fer 5
3 E th[l[llglE 107" dx|dx

1.62219x 107 &?

[ from=1.2t01.2)

All values very near to the electric charge of the positron.

From:

Modular Relations for J-invariant and Explicit evaluations

M.S. Mahadeva Naika, D.S. Gireesh and N.P. Suman

Communicated by P. K. Banerji - Palestine Journal of Mathematics - Vol. 5(2) (2016)
, 83-95
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Theorem 4.2. We have

it

5 73 3

i gy oo S A 12

(i) J@3—32 (4(0‘-14-'51)) : (4.12)

%
(i) Jos =3 (3@9330 — 165393 \/5) ' (4.13)
479510 0832633+/33 \ °
i = (mmj 1079 19983 ?11\/1_) | i
1

(iv) Jig = (31?45995375 + 116036489250v/21 ) i3 (4.15)
] 1

(v) Jin=~(az+h)?, (4.16)

4
where
a; = 180040533 + 39288067+/21,
by = 2?3\/ 2 ('-'13402596'9567 + 94908627499v/21 )

ar = 21187806942033 + 2806393586997+/357,
and
by = 2\/448923%301283]I072.984I3933 4 594@|325524651%8{512@@?7@1\/ﬁ_

We have:

1
3

(ii) s = 3 (369830 — 1653935

that is equal to: 0,6239645246738... we have that: (1/0,6239645246738...) =
=1,60265521589... and (1,60265521589) * 8§ =12,821241..; (1,60265521589) * 4 =
= 6,41062.. values that are good approximations to the mass of the SMBHS87 and to
the reduced Planck’s constant.

~
- i~

1
J ( 1147951079 1998326;?13«.;’33) :

that is equal to: 1047,06697; (1047,06697)""* = 1,64328337... and (1,64328337) * 8
=13,146266997; (1,64328337) * 4 =6,573133... values that are very near to the
mass of the SMBHS&7 and to the reduced Planck’s constant.

1
Ty = (531745995375 + 116036489250v/21)

that is equal to: 10207,312425; (10207,312425)""? = 1,6255313... and (1,6255313) *
8 =13,00425; (1,6255313) * 4=6,5021252; values that are very near to the mass of
the SMBHS87 and to the reduced Planck’s constant .
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Now:

ay = 21187806942033 + 2806393586997 37,

and

by — —;.\/448'323?630]286]107293413‘}33 59461325524651981512667761v/57
)= & 2 T 2 :

I 1
(v) Jm = 7 (a2 + b2)?

a, = 42375613884065,949055701411614262
b, =42375613884065,967937986172212435

The result is : 10981,3400827; (10981,3400827)""" =1,63179677... and
(1,63179677) * 8 = 13,0543742; (1,63179677) * 4 =6,5271871...; values that are
very near to the mass of the SMBH87 and to the reduced Planck’s constant.

Now:

a; = 180040533 4 3928806721,
by =273 \/2 (43492596956? + 94908627499y 2 l) ;

_ 5 (3 3
(1) -163:32 1('5114—51) ;

a; = 360081073,935996
by = 360081088,577444

The result is: 127,2478775... (127,2478775)"'% = 1,6235477... (1,6235477) * 8 =
12,9883816; (1,6235477) * 4 =6,4941908... values that are very near to the mass of
the SMBHS87 and to the reduced Planck’s constant.

Now, we have that:

Theorem 4.3.

. ) 726039836531 10¢; _ 3
Tz = 5  8704c 151022371885959 ) 4.22
(1) Juz ( “ F 144731803018405828801 : ) ' )
544127 592131660065 + 264809328784v/5
(ii) Jns = ies7v34 Y s AT (4.23)

7 2

where ¢ = 52235675270180751422872710058531/7,
|

72603983653110c1 | 1 c1099001 0050 gg) :
o Lol JI. .

144731803018405828801
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5(151022371885959,00037 + 8703,999 + 151022371885959)"° =

=5 (67095,0417540786) = 335475,2087...

We have that (335475,2087)"*" = 1,6019689349... (1,6019689349) * 8 = 12,81575...
(1,6019689349) * 4 = 6,407875 values that are very near to the mass of the SMBHS87
and to the reduced Planck’s constant.

We now calculate the following double integral:

(P)*2 * (1/(10)"33) * integrate integrate [335475.2087]

2 1 - u X
X —— ([[3354?5.2D8?dx] dx
103% J L

1.6555% 10727 »°

¥
. 2.5%10°% g
\ 2.x107% | i
\ - )

1.5%1027 | /!

{ (% from =1.2to 1.2)
L1027 |
A 109 |

— x

1.0 0.5 ) 0.5 1.0

Now:

544127 592131660065 + 264300328784+/5
L 121667V5 + v i e Vs

— —

(ii) Jays =

We have that: 272063,5 +272055,682618 + 544119,316028 = 1088238,498646

We obtain: (1088238,498646)"*" = 1,61496420014; (1,61496420014) * 8 = 12,9197
and (1,61496420014) * 4 = 6,4598568 values that are a good approximation to the
reduced Planck’s constant and to the mass of the SMBH&7

We calculate the following double integral:

(P1)/(13*0.25)"2 * (1/(10)"24) * integrate integrate [1088238.498646]

T 1
(13- 0.25° 10°** .

([ 1.088238498646 x 10 x| dx
[(J )

1.61837x 107 &*
82



Plot:

(x from=1.2t0 1.2)

9./2 (b ;
(i) Jaes =15 (? +—(43 +C3)) : (4.25)
lT
i) T — [ 1 by | a) 4.26
(i) Jig7 = ?—i_i ?‘1‘5 . (4.26)
275805
(iii) Jurs = w + 28527876V/5 + as, (4.27)

(tv) Jooz = (— +

where a3 = 893587548090400075 + 1555536257627762611/33,
by = 9858008717311272244225627492154461,
3 = 1716059049900381797208659334764635+/33.

ay = 21134513639551192813125 + 1860790168869410611875v/129,

by = 446667666780375406374724355998383412241203125,

cq = 39326895204313325954377906531132680150421875v/129,

ag = 97331038812393474148072097625 + 6865265632433907880859325375v/201,
bg = 9473506312979507174752669289493277723352589662548820015625,

and

ce = 668209614466884909039855025792091189769949745940542671875v/201.

We have that:

3
g a4 1 /by &4
I | f i
(ii) Jag7 (4—%2 2+),
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s = 21134513639551192813125 + 1860790168869410611875v/129,
by — 446667666T80375406374724355998383412241203125,

¢4 = 39326895204313325954377906531132680150421875v/129,
We obtain:

(((((21134513639551192813125+(1860790168869410611875(sqrt(129)))/4)+0.5(sqr
t((446667666780375406374724355998383412241203125)/2+((39326895204313325
95437790653 1132680150421875%sqrt(129))/2)))))*0.33333

1
[[:l 21134513639551192813125+ 1860790 168869410611875 11.35?8] -

0.5 J [446 667 666 780375406374 724 355998 383412241203 125
. +
2

39326895 204313325054 377906 531132680 150421875
]0.33333

B | =

11.35?8}

T

3.33121... x 10°
33.312.064;

Note that: 3,33121 * 4 =13,32484 and 3,33121 * 2 =6,66242. Furthermore,
(33312064)"*° = 1,6403309248 and (1,6403309248) * 8 = 13,12264739;
(1,6403309248 * 4) = 6,56132369 values very near to the Planck’s constant and to
the mass of SMBHS&7.

We now calculate the following double integral:
(P1)"2 * (1/(10)*35) * integrate integrate [3.33121*10"7]

1 - -
2% —— [[3.33121 mﬂ:x}irx
10°% J L

1.64389% 1077 &°

¥

2510~ |

\ 2.x10- | /

(x from=1.2t01.2)
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We have:

x 0./ 2a1e3) \
(1) J3gz =15 ((LT-O- (;—'_ﬁ'))

where a3 = 893587548090400075 4 155553625762776261V 33,
b; = 9858008717311272244225627492154461,
c3 = 1716059049900381797208659334764635v/ 33,

We obtain:

15 ((0.25 - 893587548 090400075 + 155553 625762776 261 - 1.43614) +
2.25+/(2 (9858008 717311272 244 225627492 154461 +
1716059 049 900 381 797 208 650 334 764 635
5.74456))"3333

T

1.44280... » 10

14428000;
Now: 1,4428 * 9=12,9852 and 12,9852 /2 =6,4926. Furthermore:

(14428000)"*° = 1,6479561079... and 1,6479561079 * 8 = 13,183648;
1,6479561079 * 4 = 6,591824... all values very near to the reduced Planck’s constant

and to the mass of the SMBHZ&7.

We calculate the following double integral:

(P1)/14 * (1/(10)"25) * integrate integrate [1.44280*10"7]

i

o .
= m?[” 1.44280 - 10 E:x}a:x

1.61882x 107 &*
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Vv

2 x10-19 |

T

1.5%10719 |
! [ (# from=1.2t01.2)

1e10-19 |

|

A lo M|

-1.0 -0.5 ) 0.5 1.0

Now, we have:

. ia 1 /b T
(iv) J.5.03=(46 | ) 2{! | 26

as = 97331938812393474148072097625 + 6865265632433907880859325375v 201,
be = 9473506312979507174752669289493277723352589662548820015625,

and
e = 668209614466854909039855025792091189769949745940542671875+/201.
We obtain:

0.5
J(94?35D5 312979507174 752669289493 277723352589 662548820015625/

1
/8
2

668200614466 884 909039 855025792091 189 769949 745 040542671 -
B75. 14.1??4]

4 86659, = 10%®
(0.25(97331938812393474 148 072097625 +
6865 265632433907 880 859325375 - 14.1774) +
4.85559 1D28}D.33333333

450003 . % 107
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4.599.930.000;

We note that 4,59993 * 3 =13,79979; 13,79979 /2 = 6,899895. Furthermore:

(4.599.930.000)1/46 =1,62203346153.. and 1,62203346153 * 8 =12,976267692...;
1,62203346153 * 4 = 6,4881338; value very near to the reduced Planck’s constant

and to the mass of the SMBH&7.
We calculate the following double integral:
(P1)/44 * (1/(10)*35) * integrate integrate [4.59993*10"9]

i

L ([ (459993 10° ax)a
44 1035 [{I ’ ix]ix

1.64217% 10727 &*

¥

2510~ |

\\ :.«:m"f‘é /

(x from=1.2t01.2)

We have:

Theorem 4.5. We have

T
|

3
(i) Ju —(g) (-1[}4359189+181666(}3@) .

Gy T —3 (369830— 165393\/5)",

3
5

(5383(}] 50915 + 24073575344 ﬁ)

11
544 2
(iii) Ju i) ?+ 121667v/5 — v

= 2 2

l
(iv) J3 =15 (15?554369 _ 34381 182\/3]) :
Now:

Gy Fs =15 (]5?5543-69 _34381182\/5)3
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We obtain: 15(157554369 - 157554368,9970532)"° = 2,150505873... and

5(2,150505873) = 10,7525293... (10,7525293)"° =1,60805954.... Thence:
(1,60805954) * 8 = 12,864476; (1,60805954) * 4 =6,432238... values that are a
good approximation to the reduced Planck’s constant and to the mass of the
SMBHS7.

We have:

] / 11 (53830150915 + 2407 35?5344\/3)
54417 {
= ‘J'J,'ﬁll“?Jrlzme?ﬁ— \ ( 5

(iii) Jy

We obtain:

(2720635 + 272055,6826184 - 544119,31602868) = -0,13341028; -(0,13341028)""
=0,60436224239. Now we note that 1/0,60436224239 = 1,6546367887... and
1,6546367887 * 8 = 13,237094309; 1,6546367887 * 4 = 6,618547... that are values
very near to the Planck’s constant and to the mass of the SMBH&7.

We calculate the following double integral:

Pi"2 * integrate integrate [0.13341028]

- .[1[.(1':]'13341':'28‘”‘] dx

0.658353 x°

1.0 ;
\ .
A\ 0.8 | i

0.6 | J"r.

[ (# from=1.2t01.2)
04|
0.2|

——

— e ¥

1.0 0.5 0.5 1.0
We note that the integral is given utilizing the following simple rules:

fadzza.a:+c

a+1
f gt de = m+ T+ C  (for a # —1) (Cavalieri's quadrature formula)
a
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We have:

1
N

I
o
:]
s

0 T e (ﬂ) (104359189 + 18166603733

T 7

We obtain: -0,35718823192 and (0,35718823192)"° = 0,6847309205...

(0,6847309205) * 19 =13,00988; 13,00988 / 2 =6,504943 that are values very near
to the reduced Planck’s constant and to the mass of the SMBH&7.

We calculate the following double integral:
Pi * 3 integrate integrate [0.35718823192]

e f[[tlas?laazalgzdx]dx

1.6832098880 x°

/

5| / (x frem=1.2t01.2)

x
0.5 1.0

We note that (1,6832098) * 8 = 13,4656784; (1.6832098) * 4 =6,7328392

We have that:
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Theorem 4.6. We have

i - — 5 3
(i) [(lw? ~25) + @-‘} L3 (13v5— 25} RI=0, (4.38)
(i) (5° 1 #)L3 S5RE=0, (4.39)
(ii)) (miz+23) L3 —mi;RY, =0, (4.40)

where myp; — —155 + 4513,

(iv) (45 (a1 + b)) +4")Liz—45(ay + b)) R; =0, (4.41)
(v) (mys+877) Lis — mysIfs — 0, (4.42)

where mis = 369830 — 165393/5,

["In’i)l ‘.85'!7?.-14'; + 35) L%4’? — 837??-]4;5}]4,‘ =0, (4’3—3)

where myg = 531745995375 + 116036489250+ 21,

vii) [2" (az+b) + 3% Ly — [2" (ap + Bp)] B}y =0, (4.44)
3 _ g e ! —— "
(viii ) [4() (a; + 9\/2 (b3 + c;}) + '——‘ L_%ﬁ_q — 403 I\a; +U4/2(by+ ) ,) Higs =0, (4.45)
(ix) |:Tn-3/25 + 8_3) Lg,"25 =3 ?'.’1.3;25}?.%;25 =10, (4.46)
(X) [403?7'{-3/4{] + |J L; 140 — 4(..'37?1-_”49_9%;;39. (4.47)

where ma 55 — 369830 — 1653935 and ms 3 — (1575543& — 34381182V2I ) .

We have:

mysy = 531745995375 + 116036489250,/21,

We obtain: 1063491990740,054608; we note that: (1063491990740,054608)"° =
1,6545042800359... and (1,6545042800359) * 8 = 13,2360342;
(1,6545042800359)*4 = 6,61801712 that are values very near to the Planck’s
constant and to the mass of the SMBHR&7.

Now, we calculate the following double integral:

Pi * (1/(10)39) * integrate integrate [1063491990740.054608]

1

1079 .

[[ f’l.ﬂ5349199t3?4m545usx 10%2 ﬁfx] i

1.670529312630269987 % 10727 x°
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i ferd
23x107

1 : K
\ 2.x107% | f

% 15x10-7 | /

; (x from=1.2tc 1.2}
L x10=H |
Me10-38 |

— X

1.0 0.5 ' 0.5 1.0

From:

MODULAR EQUATIONS FOR THE RATIOS OF RAMANUJAN’S THETA
FUNCTION v AND EVALUATIONS

M. S. MAHADEVA NAIKA, S. CHANDANKUMAR AND K. SUSHAN BAIRY
(Received August 2010)

We have:

V13 +5VE+ TV3+0v2 /15 + 66 + 03 + 122 :
lopr = + . (4.6)
V2 V2

That is equal to

(5,004983837549 + 5,5792454002) = 10,5842292; (10,5842292)"" = 1,6029938]1...
and (1,60299381) * 8 =12,82395; (1,60299381) * 4 =6,41197... that are values
very near to the reduced Planck’s constant and to the mass of the SMBHS&7.

We calculate the following double integral:

Pi * (1/(10)"28) * integrate integrate [10.5842292]

l " " o
my [ [[ 10.5842292 dx) dx

1.66257 %1077 &*
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¥

25x107% |

\ z.ﬂn"ﬁé /

1.5x107 37 |

(x from=1.2t01.2)

w10~ |

And (1,66257) * 8 =13,30056; (1,66257)* 4 =6,65028 values very near to the
Planck’s constant and to the mass of the SMBHS&7.

Now:

34 2VTH+4VE+ V2T + 9+ 20/21(2+ 3v3 - VT)
s . :

f
8

(4.15)

That is equal to: 27,37560109; we note that (27,37560109)"” = 1,604492407... and
(1,604492407) * 8 = 12,835939; (1,604492407) * 4 =6,41796... that are values very
near to the reduced Planck’s constant and to the mass of the SMBHR&7.

We calculate the following double integral:

Pi74/8 * (1/(10)*29) * integrate integrate [27.37560109]

II'4

8 10%°.

[1[[2?.3?55131[)9 dx] dx

1.66665% 1077 *

[ from=1.2t01.2)

Now:

lhag = TVT +11V3+ 4v21 + 18+ (2 + VT)(2 + V3){/ 9+ 2V21. (4.21)
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18,52025917 + 19,052558 + 18,33030 + 18 + (4,64575131)(3,7320508)(4,2620595)
= 147,79947... we note that (147,79947)"'° = 1,64803825... and (1,64803825) * 8
=13,184306; (1,64803825) * 4 =6,592153... that are values very near to the
reduced Planck’s constant and to the mass of the SMBHS&7.

We calculate the following double integral:

Pi*3/14 * (1/(10)"29) * integrate integrate [147.79947]

JTI_3

14 1029 .

( [{ 147.79947 dx) dx

1.63668 %1077 &°

R 2. %10 ’-F'g /
"\ !

1.5%10° 2 |

(x from=1.2t01.2)

M87 is known to host a supermassive black hole (SMBH) of mass~ 6.6x10° solar mass. Models of the stellar
velocity distribution imply a mass for the central core M = 6.2 *10° solar mass. 22/04/2019 Astrophysics,
said April 12 at a talk at MIT. “Easy check, we can see whether one or the other of these [mass measuring

methods] is correct.” The shadow of M87’s black hole yielded a diameter of 38 billion kilometers, which let
astronomers calculate a mass of 6.5 billion suns — very close to the mass suggested by the motion of stars.

Corollary 4.5. We have

lss = /10 1 2V31 | /0 | 221, (4.33)
{
ly.1/7 = \/ 104+ 2v3T — /9.4 2VAT. 4.34)
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Corollary 4.6. We have

[ T— -
/ 7 +21/13 + 44/3 + 124/39 \/THQNBJFJ‘NBHQE

fi e (43
9,13 v 5 5 (4.39)
|'
T V13 + 44+/3 + 12v/39 (75 + 2113 + 443 + 1239
fq /13 = V 9 — VJ 2 2
(4.40)

We note that:

((sqrt(10+2sqrt(21))) + ((sqrt(9+2sqrt(21)))

[nput:

J1022z1 o922y

Open code

Enlarge Data Customize A Interactive
Decimal approximation:
More digits

8.639861643078390510710112906734320169572685560382258845765...

Open code

Alternate forms:
Step-by-step solution
oot Mt ettt

Jor2y21 3 +y7

Open code

Enlarge Data Customize A Interactive

| .
J 19+41,"E+2\/2[8?+ 19@]

Open code

= e e ome | “
Vo-iv3 +~.*2[~.*3+~.f?+\(511[v3+-91}]

v2
Minimal polynomial:

x 765 +102x* 76X +1

Continued fraction:
Linear form
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1+

1+

1+ 1
3+

2+ 1
11+

8+ 1
21+

1+ 1
48+

((sqrt(10+2sqrt(21))) - ((sqrt(9+2sqrt(21)))

Input:

meﬁ -J;uzﬁ

Open code

Enlarge Data Customize A Interactive
Decimal approximation:
More digits

0.115742594188545257348011283555945415733443313403402771082...

Open code

Alternate forms:
More forms
Step-by-step solution

-\ 9+2\E +\E +\G

Open code

J2(5+v21) -y 9+2v21

Open code

,J 19+4E—2\/2[a?+ wﬁ]

Open code

Minimal polynomial:
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¥ 76 x% +102x% —76 5% 41

° Linear form

8+ 1
1 1
% 1
1+
l 1
¥ 1
3+
2+

11+ 1
8+

21+ 1

48+ 1

Note that the sum of two results is:

8,639861643 +0,1157425941 = 8,7556042371 and
(8,7556042371) /2 =4,37780211855

8,639861643 —0,1157425941 = 8,5241190489 and
(8,5241190489) / 2 = 4,26205952445

1/2 * (8,7556042371)* = 38,3303027.....

The value 4,3778 is very near to the value of mass of the dark atom = 5 GeV =4.5 *
10", while 38,33 is a good approximation to the M87’s black hole diameter of 38
billion kilometres. The value 4,262059 is very near to the range of DM particle mass
4,2

[LTCCC((sqrt[((77+21sqrt(13)+44sqrt(3)+12sqrt(39)) 2D +
[LELCCCC((sqrt[((75+21sqrt(13)+44sqrt(3)+12sqrt(39))/ 2NN
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\/%[?hzl 13 +44 3+12\@]+J%[?5+21 13 +44 3+12\@]

Open code

Enlarge Data Customize A Interactive
Decimal approximation:
More digits

24.61162176090378001010289077274321226594063424808258109346...

Open code

Alternate forms:
More forms
Step-by-step solution

é[\/z[?5+44 3 +21 13+12\('§]+\/2{??+44 3 +21 13+12v?9]]

Open code

é[[2+\}q][3+ 13]+\/15D+88 3 +42+/13 +24@]

Open code

}[\/2[?+4E][11+3m]+\/150+88 3 442 13+24\/¥]

2

Open code

Minimal polynomial:

X —24x" —16x% +24%° —18x* +24x° —16x% —24x+1

Open code

Continued fraction:
Linear form
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24 +

The result is:
24.61162176090378001010289077274321226594063424808258109346

This result is very near to the range of black hole entropy 24,24 — 24,78

Furthermore, we have:

32 *(24.61162176090378001010289077274321226594063424808258109346)

32.24.61162176090378001010289077274321226594063424808258109346

Enlarge Data Customize A Interactive

More digits

787.5718963489209603232925047277827925101002959386425949907...
787.5718963489209603232925047277827925101002959386425949907

Linear form
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787 +

1+

1+
2+ 1
1+

42+ 1
1+

10+ 1
1+

1+ 1
2+

1+ 1
1+

1+ 1
2+

3+ 1
Bgs il
b 1
e —
5+

':"+l

Possible closed forms:
More

32141 53187 941n

40 3207 80
Enlarge Data Customize A Interactive

1840670411 :
sec(cus (— D = 787 57180634802006031 1420
828 644 147

7485 r ! + 23851 - 6614 1+ 5125 »°
00

= 787.5718963489209603202942

= 787.5718963489209603228173

72 * (24.61162176090378001010289077274321226594063424808258109346) -
(36+8)

Input interpretation:

72.24,61162176000378001010280077274321226504063424808258100346 —
(36 +8)

Open code

Enlarge Data Customize A Interactive

Result:
More digits

1728.036766785072160727408135637511283147725665861945838729...

Open code

1728.036766785072160727408135637511283147725665861945838729

Continued fraction:
Linear form
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1728 +

27 +

5+

25+ 1

17+

Possible closed forms:

More
11 173
-4524 - — + — - 1735+ m +2939 7 = 1728.036766785072160734400

T Vo

Enlarge Data Customize A Interactive
1
o7 (14417 ~ 4815~ 230 log(m) + 3011 log2 m) + 722 tan”'(m) =

1728.0367667850721607250018
7485 m ! + 23851 - 8374 & + 5125 »*

40 7

= 1728.0367667850721607263301

We note that 787,57 is very near to the rest mass of Omega meson 782.65+0.12 and
1728,036 is very near to the range of the mass of f,(1710) candidate glueball.

[LTCC((sqrt[((77+21sqrt(13)+44sqrt(3)+12sqrt(39)) 2D -
[LICC((sqrt[((75+21sqrt(13)+44sqrt(3)+12sqrt(39))/2]))N]I]]

Input:
f

\Jé[?hzl 13 +44ﬁ?+12w@] -\Ilé [?5&1@?44@&2{?9]

Open code

Enlarge Data Customize A Interactive
Decimal approximation:
More digits

0.040631211129228662564783907655191188463334639030709524571...

Open code

Alternate forms:
More forms
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Step-by-step solution

:—;[\(rz[??war 3 +21 13+12\('§]—\/2{?5+44 3 +21 13+12v?9]]

Open code

é[[mﬁ][hm]-\/wmaa 3 442413 +24@]

Open code

E[Jg[?mﬁ][luam] —\/150+88 3 442413 +24\/¥]

2

Open code

Minimal polynomial:

X —24x" —16x%+24x° —18x +24x° —16x° —24x+1

Open code

Continued fraction:
Linear form

24 +

1+

1+ 1
1+

1+ 1
2+

1+ 1
5+

3+ 1
O+

2+ 1
1+

2+ 1
1+

1+ 1

The result is:
0.040631211129228662564783907655191188463334639030709524571
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LA((C(((((sqrt(10+2sqrt(21))) + ((sqrt(9+2sqrt(21))N))NN™1/5

Input:

1

{/‘4/10+2me No+2val

Open code

Enlarge Data Customize A Interactive
Decimal approximation:
More digits

0.649678720896300756321777877443674502662270857429030871299...

Open code

Alternate forms:
More forms
Step-by-step solution

Jovata 7]

Open code

é‘q(ll+ﬁ—,f2[3+\'{z]

Open code

1

[
‘3’\1'2[5+m} +V9+2v21

Minimal polynomial:

xg—x6—3x4—x2+1

Open code

Continued fraction:
Linear form
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13+

The result is:
0.649678720896300756321777877443674502662270857429030871299

Or:

(((((((sqrt(10+2sqrt(21))) - ((sqrt(9+2sqrt(21))))))))"1/5

[nput:

|
| [ P [
\j|\f1D+21,"21 -\It;uzﬁ

Open code

Enlarge Data Customize A Interactive
Decimal approximation:
More digits

0.649678720896300756321777877443674502662270857429030871299. ..

Open code

Alternate forms:
More forms
Step-by-step solution

[F =
d-y9+2Va +V3 7

Open code
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éJl+J§f-Jz[3+JEI]

Open code

otof x®—x®—3x* —x% +1 near x = 0.649679

Open code

Minimal polynomial:

xs—x6—3x4—x2+1

Open code

(24.61162176090378001010289077274321226594063424808258109346)"1/(2P1)

Input interpretation:

E{"I 24.61162176090378001010289077274321226594063424808258109346

Open code

Enlarge Data Customize A Interactive

Result:
More digits

1.664971655506222039600151378640104820580714954008608575824....

Series representations:
More

21’? 24.611621760903780010102890772743212265940634248082581093460000 =
24.611621760903780010102890772743212265940634248082581093460000 ™

1

o0 'i—lilk
Bl 142k

Open code

Enlarge Data Customize A Interactive

21’? 24.611621760903780010102890772743212265940634248082581093460000 =
24.611621760903780010102890772743212265940634248082581093460000 ™

k
4L1+zﬁ fr]

Open code
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EQTJI 24.611621760903780010102890772743212265940634248082581003460000 =
24.611621760903780010102890772743212265940634248082581093460000 ™

1

sinjk x|

2x+4 50, —

Open code

Integral representations:
More

Ew’j'll 24.611621760903780010102890772743212265940634248082581093460000 =
0.800804600 170930832005 75593 73262 TEO0 746722 820082350 1793 6198 6543 { i ] dr]
fl 1+t|_

[

Open code

Enlarge Data Customize A Interactive

Ew’:'ll 24.611621760903780010102890772743212265940634248082581093460000 =

0. 40040234508 54600164078 TPOREGA3 130003 T33601414901 1 750 806800032 72 .-"[L_jl V12 :!r]
[
[ 3

Open code

Ew’:"l 24.611621760903780010102890772743212265940634248082581093460000 =

0.800804600 17093983290575503 732627800 746722 820082350 179361986543 | jig %“U dt |
e / !

Open code

Possible closed forms:
More

1
¢ (147" - 997 1 + 890 log(m - 677 log(2 m) - 27 tan () =

1.664071655506222043167
Enlarge Data Customize A Interactive

1237063231 ;
= 1.66497165550622203951214
2334183135

-169 + 1213 7 + 80 #°
3(468 + 1247 + 3 17)

= 1.66497165550622203988377

The result is:
1.664971655506222039609151378640104829589714954098698575824

Or:

1/
((((((0.040631211129228662564783907655191188463334639030709524571)"1/(2P

1))
Input interpretation:
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1

E{'/ 0.040631211129228662564783907655191188463334639030709524571

Open code

Enlarge Data Customize A Interactive
Result:

More digits

1.66497165550622203960915137864010482958971409540986985758. ..

1.664971655506222039609151378640104829589714954098698575824 * 8

Input interpretation:

1.664971655506222039609151378640104820589714954008698575824 - 8

Open code

Enlarge Data Customize A Interactive
Result:
More digits

13.31977324404977631687321102912083863671771963278958860659. ..

Open code

Continued fraction:
Linear form

13 +

3+ 1
7 1
N 1
1+
6 1
s 1
5+
1 1
N 1
2+
T+

1+ 1
3+

5+ 1
T+
6+ 1
1+

2+ 1
4+

13++
215+—1

1+ I

1+—

Possible closed forms:
More

1,'{ -5521 + 6676 ¢ - 5203 r + 5622 log(2) = 13.31977324404977628100
Enlarge Data Customize A Interactive

x| root of 67x° -192x* -400x® - 74 x* + 666 x - 758 near x =4.23982 [~
13.3197732440497763152377
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4894016655
11542099438

= 13.319773244049776317263

The range for the mass of SMBH87 is 6.5 — 6.7 * 10° solar masses, thence:
12,92915 — 13,12806 — 13,3269 * 10%

We note that the result 13,319 is in the range of the mass of SMBHS87

We have also that:
1.664971655506222039609151378640104829589714954098698575824 * ¢ =
=4.525862196061936816672713582829299539188265746766292064495.

This result is practically equal to the value of mass of the dark atom = 5 GeV =4.5 *
10"

We note that 1,66497 is is a good approximation to the value of the fourteenth root of

Ramanujan’s class invariant 1164.2696 and very near to the mass of the proton.
Indeed:

We have the following Ramanujan’s class invariant Q = (6505 /G101 /5)3 =
1164,2696

= 1164,269601267364

3
\/113 + 5v505 N \/105 + 5v505
8 8

and

3

1 113 + 5v505 105 + 5v505
+ = 1,65578 ...

8 8
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Chronology of the universe
From Wikipedia

Electroweak symmetry breaking|edit]
1072 seconds after the Big Bang

As the universe's temperature continued to fall below a certain very high energy
level, a third symmetry breaking occurs. So far as we currently know, it was the
final symmetry breaking event in the formation of our universe. It is believed that
below some energies unknown yet, the Higgs field spontaneously acquires a
vacuum expectation value. When this happens, it breaks electroweak gauge
symmetry. This has two related effects:

1. Via the Higgs mechanism, all elementary particles interacting with the Higgs
field become massive, having been massless at higher energy levels.

2.As a side-effect, the weak force and electromagnetic force, and their
respective bosons (the W _and Z bosons and photon) now begin to manifest
differently in the present universe. Before electroweak symmetry breaking
these bosons were all massless particles and interacted over long distances,
but at this point the W and Z bosons abruptly become massive particles only
interacting over distances smaller than the size of an atom, while the photon
remains massless and remains a long-distance interaction.

After electroweak symmetry breaking, the fundamental interactions we know of —
oravitation, electromagnetism, the strong interaction and the weak interaction —
have all taken their present forms, and fundamental particles have mass, but the
temperature of the universe is still too high to allow the formation of many
fundamental particles we now see in the universe.

The quark epoch
Between 10~ seconds and 10”° seconds after the Big Bang

The quark epoch began approximately 10 ' seconds after the Big Bang. This was
the period in the evolution of the early universe immediately after electroweak
symmetry breaking, when the fundamental interactions of gravitation,
electromagnetism, the strong interaction and the weak interaction had taken their
present forms, but the temperature of the universe was still too high to allow
quarks to bind together to form hadrons.
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During the quark epoch the universe was filled with a dense, hot quark—gluon
plasma, containing quarks, leptons and their antiparticles. Collisions between
particles were too energetic to allow quarks to combine into mesons or baryons.

The quark epoch ended when the universe was about 10 ° seconds old, when the
average energy of particle interactions had fallen below the binding energy of
hadrons.

W and Z bosons
From Wikipedia, the free encyclopedia

The W and Z bosons are together known as the weak or more generally as the
intermediate vector bosons. These elementary particles mediate the weak

+ —
interaction; the respective symbols are W , W , and Z. The W bosons have either a
positive or negative electric charge of 1 elementary charge and are each other's

antiparticles. The Z boson is electrically neutral and is its own antiparticle. The three

particles have a spin of 1. The W bosons have a magnetic moment, but the Z has
none. All three of these particles are very short-lived, with a half-life of about
3x107* s. Their experimental discovery was a triumph for what is now known as the
Standard Model of particle physics.

These bosons are among the heavyweights of the elementary particles. With masses
of 80.4 GeV/c> and 91.2 GeV/c, respectively, the W and Z bosons are almost
80 times as massive as the proton:

W: 80.379£0.012 GeV/c*> Z: 91.18760.0021 GeV/c’

We note that: 80,379 / 48 = 1,6745625; 80,379 /50 =1,60758 and 91,1876 /55 =
1,6579563; 91.1876 / 56 = 1,62835 values very near to the mass of the proton and
the electric charge of the electron.

B decay (electron emission)

An unstable atomic nucleus with an excess of neutrons may undergo  decay, where
a neutron is converted into a proton, an electron, and an electron antineutrino (the
antiparticle of the neutrino).

This process is mediated by the weak interaction. The neutron turns into a proton
through the emission of a virtual W~ boson. At the quark level, W emission turns a
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down quark into an up quark, turning a neutron (one up quark and two down quarks)
into a proton (two up quarks and one down quark). The virtual W boson then decays
into an electron and an antineutrino.

B* decay (positron emission)

Unstable atomic nuclei with an excess of protons may undergo B~ decay, also called
positron decay, where a proton is converted into a neutron, a positron, and an electron
neutrino.

Beta Decay

[f-decay, radioactive decay of an atomic nucleus accompanied by the escape of an
electron or positron from the nucleus. This process is caused by a spontaneous
transformation of one of the nucleons in the nucleus into a nucleon of another type—
specifically, a transformation either of a neutron (n) into a proton (p) or of a proton
into a neutron. In the former case, with an electron (e") escaping from the nucleus, so-
called B “decay takes place. In the latter case, with a positron (e") escaping from the
nucleus, B * -decay takes place. The electrons and positrons emitted in beta decay are
termed beta particles. The mutual transformations of the nucleons are accompanied
by the appearance of still another particle—the neutrino (v) in the case of # -decay,
the antineutrino (v) in the case of f~ -decay. In " -decay, the number of protons (Z) in
the nucleus increases by a unit and the number of neutrons decreases by a unit. The
mass number A4 of the nucleus—equal to the total number of nucleons present in the
nucleus—does not vary, and the product nucleus is an isobar of the original nucleus,
standing on the right of the latter in the periodic table of the elements. Conversely,
the number of protons in B -decay decreases by a unit and the number of neutrons
increases by a unit, so that an isobar standing to the left of the original nucleus is
formed. The two beta decay processes are written symbolically as

;x"*z+1x S A
*;xn*z_’}x + &'+ v
where #Xis the symbol of the nucleus, consisting of Z protons and 4 - Z neutrons.

The simplest example of B~ -decay is the transformation of a free neutron into a
proton with the emission of an electron and an antineutrino (neutron half-life =~ 13
min)

'n Dlp+e+ s
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Higgs Boson

The Higgs boson is an elementary, massive and scalar boson that plays a fundamental
role within the standard model. It was theorized in 1964 and detected for the first
time in 2012 in the ATLAS and CMS experiments, conducted with the LHC
accelerator of CERN. Its importance is to be the particle associated with the Higgs
field, which according to the theory permeates the universe by giving the mass to
elementary particles.

Since the Higgs field is scalar, the Higgs boson has no spin. The Higgs boson is also
its own antiparticle and is CP-even, and has zero electric and colour charge.

The Standard Model does not predict the mass of the Higgs boson. If that mass is
between 115 and 180 GeV/c” (consistent with empirical observations of 125 GeV/c?),
then the Standard Model can be valid at energy scales all the way up to the Planck
scale (10" GeV).

We note that 1,602176 * 78 = 124,969728 and 1,672621 * 74 = 123,773954
where 1,602176 and 1,672621 are the electric charge of the positron and the mass of
the proton respectively.

Furthermore, we have that:

125,09 * 9 * 10'° = 11258100000000000000;  (11258100000000000000)""”* =
= 1,6027082167167

Now, we want to analyze the parabola plots concerning the results of the various
double integrals. Indeed, for all values i.e. for the electric charge of positron, the mass
of the proton and the mass of the Higgs boson, the plot is always a parabola of this

type:

H“-\ 1.5x%10-19 | ’

[ (# from=1.2t01.2)
w107 19|
My10-2 |

— x

1.0 0.5 ' 0.5 1.0
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From Wikipedia:

Quantum harmonic oscillator

I L (x)
E- '
A
E; ;
| -
Esam e (%)
h*"'" /ﬂ o )
. _d -
— Ea ' !H.tX)
E, ' W)
' EaE 1 (x)
T ——y - —_— T
ho o )

X

-

1 he2

Fig.: Wavefunction representations for the first eight bound eigenstates, » = 0 to 7. The horizontal
axis shows the position x. Note: The graphs are not normalized, and the signs of some of the

functions differ from those given in the text.

This suggests that the graphs representing the parabolas associated with the particle-like solutions

of the integrals performed could mean that electrons / positrons, protons / neutrons and massive
bosons, such as Higgs, are open strings. It is important to underline that from the above mentioned

graphs, it is highlighted that these strings are in a sort of "ground state". Subsequently, due to the

quantum fluctuations of the false vacuum, these strings pass from the "ground state" to a dynamic
state, in which they begin to vibrate and behave like waves, as happens for the quantum harmonic

oscillator.
Thus, this could mean that the static parabola represented in the graphs is the corpuscular nature of
the electron, the proton and the Higgs boson, while the graph, again of the parabola type, of the
harmonic oscillator, their undulatory nature (dualism wave-particle)
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One-dimensional harmonic oscillator

Hamiltonian and energy eigenstates

The Hamiltonian of the particle is:

]
1 A

= ‘p_ + —mwzmz ,

2m

.2
p 1. .2
M 2

2m | 2

[® 5
where M is the particle's mass K is the force constant,w = V — is the angular frequencyof the cscillator, 2 is the position operator

.. 5 0
(given by X), andp is the momentum operator (given by f = —iﬁ.a ). The first term in the Hamiltonian represents the kinetic

energy of the particle, and the second term represnts its potential eney, as in Hooke's law.

One may write the time-independentSchrddinger equarion
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Hiy)=E|y) , .

where E denotes a to-be-determined real number that will specify a time-
independent energy level, or eigenvalue, and the solution |/} denotes that level's

energy eigenstate.

One may solve the differential equation representing this eigenvalue problem in the

coordinate basis, for the wave function {X|l;.'l) = q’J[X), using a spectral method. It ! ;.:'.- -

fims out that there is a family of solutions. Tn this basis, they amount to Hermite wavefunction representations for the

functions, first eight bound eigenstates,n = 0 to
7. The horizontal axis shows the
position x. Note: The graphs are not
normalized, and the signs of some of
the functions difer frcm those given

in the text.
]
| W Fani
W by
IRy [ R

& M
\ - Fyisi
i, | . Fiial
B
_‘_ Fusp
1 L ~ i - — )

Corresponding probability densities.

1 mw\1/4 _mw? mw
1&“[;)_?‘(5) e 2 - H, Ta: ) n=012,....
V2" nl

The functions Hy, are the physicists'Hermite polynomials

H,(z) =(-1)" e % (e'zn) .

The corresponding enegy levels are

E, = hw n—{—% =(2n+1);w.

This energy spectrum is noteworthy for three reasons. First, the energies are quantized, meaning that only discrete energy values
(integer-plus-half multiples off1() are possible; this is a general feature of quantum-mechanicalsysterns when a particle is confined
Second, these discrete energy levels are equally spaced, unlike in the Bohr model of the atom, or the particle in a box. Third, the
lowest achievable energy (the energy of the 11 = O state, called the ground state) is not equal to the minimum of the potential well,
but [1¢5/2 above it; this is called zero-point eneigy. Because of the zero-point energy, the position and momentum of the oscillator in
the ground state are not fixed (as thev would be in a classical oscillator), but have a small range of variance, in accordance with the

Heisenberg uncertainty principle

The ground state probability density is concentrated at the origin, which means the particle spends most of its time at the bottom of
the potential well, as one would expect for a state with little eneizy. As the energy increases, the probability density peaks at the
classical "turning points”, where the state’s enegv coincides with the potential enegy. (See the discussion below of the highlv excited

states.) This is consistent with the classical harmonic oscillator, in which the particle spends more of its time (and is therefore more
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likely to be found) near the twning peints, where it is moving the slowest. The correspondence principleis thus satisfied. Moreover,
special nondispersive wave packets, with minimum uncertainty, called coherent states oscillate very much like classical objects, as

illustrated in the figure; they arenot eigenstates of the Hamiltonian.

From:
http://www.umich.edu/~chem461/Ex5.pdf

1. For a classical harmonic oscillator, the particle can not go beyond the
points where the total energy equals the potential energy. Identify these
points for a quantum-mechanical harmonic oscillator in its ground state.
Write an integral giving the probability that the particle will go beyond
these classically-allowed points. (You need not evalnate the integral.)

2, Evaluate the average (expectation) values of potential cnerzy and kinetic
energy for the ground state of the harmonic oscillator. Comment on the
relative magnitude of these two quantities.

3. Apply the Heisenberg uncertainty principle to the ground state of the
harmonic oscillator. Applying the formula for expectation values, calculate

N = yf (22— (z)2 and A= A f{p®) — (p)2

v bl i’ b v j¥3 Y

and find the product ArAp.
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1. The turning points for quantum number occur where the kinetic energy
equals 0, so that the potential energy equals the total energy. For quantum
number n, this is determined by

1
Ei\f;ztﬁmx — (n + E) hw
recalling that w = /k/m and o = Vmk /h, we find

hi 2n+1
2 = (2n+1) ! :(”4_)

max
v km v

Therefore

PlZinas € & € 00) = P(—60 €% € —Fi) = / \-1;"1n(:17_)|2 da

[Optional: For n = 0,

e v\ 1/2 ; 2 oo
Poutside = 2/ (2) L Tf et d
tiva * T T ol

where erfc is the complementary error function. This result means that in
the ground state, there is a 167, chance that the oscillator will “tunnel”
outside its classical allowed region.]
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2.
o(z) = (a-/:fr)l/ile_mzﬂ, o = (mk/h?)Y?

Using integrals in Supplement 5,

<L > — / 'QIO(,I) (gkl ) '?_;.‘U(I) dr = E = lﬁu«‘ == EED

o — 00 =
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Thus the average values of potential and kinetic energies for the harmonic
oscillator are equal. This is an instance of the virial theorem. which states
that for a potential energy of the form V' (r) = const ™, the average kinetic
and potential energies are related by

3. The expectation values (z) and (p) are both equal to zero since they
are integrals of odd functions, such that f(—z) = — f(x), over a symmetric
range of integration. You have already calculated the expectation values
{_.E\,_..lf,Q i Beereise 9. e sy
x®) and (p?) in Exercise 2, namely

2
hoa
9

&t

1 2
— and =
2a ‘ )

Therefore

AzAp =

€

bo | ¢

which is its minimum possible value.

We know that the reduced Planck’s constant is:
h = 1,054 571 726(47) x 107> J.s = 6,582 119 28(15) x 10 ® eV - 5
Thence, we have that the minimum possible value is:

h 6582119 x 10716 _
AxAp = 5= > = 3,2910595 x 10716

Now, we calculate the following double integrals:

(2#1.618*Pi) * 1/(10"12) integrate integrate [0.00000000000000032910595]

1 - -
(2 1.618 1)« —— [JB.EQIDSQleU'IE’JI]JI
1|:|12

Result:

1.67288 % 10727 »?

Plot:
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2.%107 |
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Or:

1.08643 * (8P1/27) * 1/(10"11) integrate integrate [0.00000000000000032910595]

1.08643(8 - —_ L. ‘[j‘B.EQIDSQSxID_mdx]dx

2';-" 1|:|11
Result:
1.66412x 1077 x*
Plot:

¥
25%1075

(x from=1.2t01.2)

-1.0 -0.5 ) 0.5 1.0

Or:

(Pi*2) * 1/(10"4) integrate integrate [0.00000000000000032910595]

1 " "
sy J U 3.2010595x 1071 d'x] %
10*

Result:

1.62407 %107 &*

Plot:

2 w1019 |

Y
1.5=10 |
' | (# from=1.2t01.2)

1.x10719]
B 102 |

-1.0 -0.5 ' 0.5 1.0

And
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1.08643 (7*Pi"2) (10"16) integrate integrate [0.00000000000000032910595]
1.08643 (7%} 10'6 [U 3.2910595x107'® dx| dx

123.511 °

[ from=1.2t01.2)

Value very near to the mass of the Higgs boson, while the energy from the E = mc?,
considering the value 125,09 is 11,2581 * 10'® . Note that (11,2581 * 10'%)""¥ =
1,63704797... value very near to the mass of the proton.

We now calculate the following double integral:

1.08643 (Pi/12) * 1/(10737) * integrate integrate [11.2581*1018]

T 1
1.08643 . — =
12 1037 .

“ f'll.zsm g™ dx] dx

1.60105x107%° ¥?

(o from=1.2t01.2)

1.08643 (Pi*5/(3*37)) * 1/(10"46) * integrate integrate [11115990000000000000]
That is the value of the energy obtained from 123,511 (123,511 * 9 * 10'° =

=11115990000000000000)

5

1.08643 [U 11115 990 000 000 000 DDDdx] dx

3.37 10% .
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Result:

1.66474 %1077 ¥°

¥
25xl0 T

Bl

|
& w10~ |
L= (x from=1.2to0 1.2}

1. %10~ |
Ly um'iﬁi
1.0 -0.5 ) 0.5 1.

Or:

1.08643 * (e) * 1/(10°46) * integrate integrate [11115990000000000000]

1 3 N
1.08643 ¢ - —— U 11115990 000 000 000 D00 d’x] dx

1046

Result:

1.6414x 10727 »?

[ from=1.2t01.2)
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Composite Twin Dark Matter - John Terning , Christopher B. Verhaaren , and Kyle
Zora - arXiv:1902.08211v2

If the recombination of these particles into twin atoms is not sufficiently efficient then
the DM remains primarily a plasma, which can develop instabilities that affect galaxy
collisions, like the Bullet Cluster [2]. This translates into a bound on the twin fine structure
constant o' as a function of mp [67]:

a" (Qph?\ [GeV\? [(1+ R)?
e \o1l /J\mn /) | R

where §1ph? is the relic density of dark matter and £ is the ratio of the present day tem-
perature of the dark radiation to the CMB temperature

Tp )
¢ (Tc,\-m i

Reecall from Fig. 1 that larger values of my also lead to larger mar. In addition, it is
clear that if Ay > Ay then even larger values of my and ma, would be required to agree
with experiment. Thus, direct detection and naturalness (preferring lighter my ) push us
toward twin bottom Yukawas that are smaller than the SM value. This. in turn, reduces
mpr. pushing it toward the naive ADM expectation of ~5 GeV.

E oo 1y 11
g9 A 1uU N

2
fz—l fi= “;."

-~
N

——
b
e

ln
§Lt

(4.5)

asymmetric dark matter (ADM)

The mass of the dark atom mp

In short, twin atoms can make up an interesting ADM population. To have mp values
closest to b GeV the 7/ mass should be close to mar, so that R ~ 1. These lightest mass
atoms also require the o' coupling be somewhat stronger than in the visible sector. In
addition, the velocity dependence of the self-interaction of these twin atoms agrees with
self-interaction estimates better than DM with a velocity independent self-interaction cross
section.

Thence, we have the following value: ~5 GeV =4.5 * 10"
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Observations

The Universe, according to the most accredited theories, would have been born of a
singularity (Big Bang), even the rotating black holes of Kerr, like every black hole,
are singularities. From the study of them it is therefore possible to understand the
origin of the universe.

In fact the black hole of the M87 type, which is an asymmetric ring singularity, can
be compared to the Hilbert space, which we foresee in our cosmological model,
which is in fact also a singularity, represented as a toroid of infinite dimensions. As it
is logical to deduce such geometric entities we must represent at a level lower than
the Planck scale, as we are describing a period inherent to the universe before the Big
Bang, then in a phase prior to the clash of the strings / branes. At that time, therefore,
there was only one point of infinite density and energy which, at a later time, with a
well-defined collapse of wave function, gave way to the formal phase in which a pair
of particles (massive bosons) it annihilates (collision between branes), giving rise to
the particles of matter and energy (electrons, protons, neutrons and photons),
therefore to the explosion defined Big Bang. The "no-boundary proposal" by Hartle-
Hawking appears more and more likely, in which the universe simply "is", where
therefore the Big Bang is nothing but a phase of a cycle, eternal in time and infinite in
space. S. Ramanujan was right when he said that "an equation makes no sense if it
does not express a thought of God". The Universe "is", just as God called himself "I
Am", this affirmation, which reinforces a pantheistic vision of a Universe as a
manifestation-thought of an immanent and transcendent Cosmic Intelligence.
(Antonio Nardelli)
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