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Abstract

This paper describes a novel perspective on the foundations of math-

ematics: how mathematics may be seen to be largely about `information

compression (IC) via the matching and uni�cation of patterns' (ICMUP).

That is itself a novel approach to IC, couched in terms of non-mathematical

primitives, as is necessary in any investigation of the foundations of math-

ematics. This new perspective on the foundations of mathematics re�ects

the idea that, as an aid to human thinking, mathematics is likely to be

consonant with much evidence for the importance of IC in human learning,

perception, and cognition. This perspective on the foundations of mathemat-

ics has grown out of a long-term programme of research developing the SP

Theory of Intelligence and its realisation in the SP Computer Model, a sys-

tem in which a generalised version of ICMUP�the powerful concept of SP-

multiple-alignment�plays a central role. The paper shows with an example

how mathematics, without any special provision, may achieve compression

of information. Then it describes examples showing how variants of ICMUP

may be seen in widely-used structures and operations in mathematics. Ex-

amples are also given to show how several aspects of the mathematics-related

disciplines of logic and computing may be understood as ICMUP. Also dis-

cussed is the intimate relation between IC and concepts of probability, with

arguments that there are advantages in approaching AI, cognitive science,

and concepts of probability via ICMUP. Also discussed is how the close rela-

tion between IC and concepts of probability relates to the established view

that some parts of mathematics are intrinsically probabilistic, and how that
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latter view may be reconciled with the all-or-nothing, `exact', forms of cal-

culation or inference that are familiar in mathematics and logic. There are

many potential bene�ts and applications of the mathematics-as-IC perspec-

tive.

Keywords: Foundations of mathematics; information compression; SP Theory of
Intelligence.

1 Introduction

The fundamental nature of mathematics has been a considerable puzzle to math-
ematicians and others for many years. For example, Roger Penrose writes:

�It is remarkable that all the SUPERB theories of Nature have proved
to be extraordinarily fertile as sources of mathematical ideas. There is
a deep and beautiful mystery in this fact: that these superbly ac-
curate theories are also extraordinarily fruitful simply as mathematics.�
([45, pp. 225�226], bold face added).

In a similar vein, John Barrow writes:

�For some mysterious reason mathematics has proved itself a reli-
able guide to the world in which we live and of which we are a part.
Mathematics works: as a result we have been tempted to equate under-
standing of the world with its mathematical encapsulization. ... Why

is the world found to be so unerringly mathematical?�1 ([7,
Preface, p. vii], bold face added).

And Eugene Wigner [59] writes about �The unreasonable e�ectiveness of math-
ematics in the natural sciences�:

�The miracle of the appropriateness of the language of mathematics
for the formulation of the laws of physics is a wonderful gift which we
neither understand nor deserve. We should be grateful for it and
hope that it will remain valid in future research and that it will extend,
for better or for worse, to our pleasure, even though perhaps also to

1It is clear that, in this quote, the expression �the world� is intended to mean �everything in
the observable universe�, in accordance with normal usage. That expression is intended to have
the same meaning elsewhere in this paper.
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our ba�ement, to wide branches of learning.�2 (ibid, p. 14, bold face
added).

In keeping with those remarks, Øystein Linnebo writes that: �Mathematics
poses a daunting philosophical challenge, which has been with us ever since the
beginning of Western philosophy.� [33, p. 4]. He goes on to say: 1) that math-
ematics is a priori because it seems to be practiced by means of re�ection and
proof alone, without any reliance on sense experience or experimentation; 2) that
mathematics seems to deliver knowledge of truths that are necessary in the sense
that things could not have been otherwise; and 3) that mathematical knowledge is
abstract, being concerned with objects such as numbers, sets, and functions, that
are not located in space or time, and that don't participate in causal relationships.
�In short, by being so di�erent from the ordinary empirical sciences, mathematics
is philosophically puzzling; but simultaneously, it is rock solid.� [33, pp. 4�5].

This paper attempts to provide some answers. It describes how much of math-
ematics, perhaps all of it, may be seen as structures and processes for compressing
information via a search for patterns that match each other and by the merging
or unifying patterns that are the same.3 This perspective appears to be novel, not
apparently described anywhere in writings about the fundamentals of mathematics
(Section 2).

The ideas and arguments presented in this paper have grown out a long-term
programme of research developing the SP System, meaning the SP Theory of
Intelligence and its realisation in the SP Computer Model, both of them outlined
in Section 3, and both of them founded on evidence that information compression
(IC) is a unifying principle in much of human learning, perception, and cognition
(HLPC).

What appear to be the most compelling kinds of evidence for the importance
of IC in HLPC are described in [71, Sections 4 to 21]. Examples include: the
mismatch between the relatively large volumes of information reaching the retina
of the eye and the relatively small capacity of the optic nerve to transmit that
information, with evidence for compression of information in the eye; the way in

2In this connection: �... against Wigner's `unreasonable e�ectiveness' statement (based on
success in the physical sciences) one must ask why maths is often so unreasonably ine�ective in
the human and social sciences of behaviour, psychology, economics, and the study of life and
consciousness. These complex sciences are dominated by non-linear behaviour and only started
to be explored e�ectively by many people (rather than only huge well-funded research groups)
with the advent of small personal computers (since the late 1980s) and the availability of fast
supercomputers. Some complex sciences contain unpredictabilities in principle (not just in
practice): predicting the economy changes the economy whereas predicting the weather doesn't
change the weather.� John Barrow, personal communication, 2017-04-06, with permission.

3This paper draws on and considerably expands and re�nes some of the thinking in [61,
Chapter 10].
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which we merge successive views of a scene to make one; how recognition may
be seen as a merging of sensory information with already-stored information; how
people with two functioning eyes merge the two simultaneous views of a scene from
the two eyes into a single view; how natural language provides an abundance of
examples of the `chunking-with-codes' technique for compression of information;
and more.

In view of that evidence, and since mathematics has been developed almost
exclusively by human brains and as an aid to human thinking, it should not be
surprising that mathematics may be founded on compression of information.

The main sections which follow are: a summary of some writings about the
foundations of mathematics, with a description of the novelty of the idea that
mathematics may be understood in terms of IC (Section 2); an outline description
of the SP System and its foundations (Section 3); a summary of some related re-
search (Section 4); a description of seven techniques for compression of information
which are central in the arguments in the sections (Section 5); the main subject of
this paper: how mathematics may be interpreted in terms of IC (Section 6); how
similar principles may be seen in the mathematics-related disciplines of logic and
computing (Section 7); some remarks about the intimate relation between IC and
concepts of probability (Section 8); and Section 9 outlines some potential bene�ts
and applications of the ideas which have been described; Appendix A describes
two apparent contradictions of the idea that IC is fundamental in mathematics
and related disciplines, and how those apparent contradictions may be resolved.

2 Writings about the foundations of mathematics

This section �rst describes the more prominent `isms' in the philosophy of math-
ematics, and then describes the novelty of the idea that mathematics may be
understood in terms of IC.

2.1 Isms in the philosophy of mathematics

The variety of `isms' in the philosophy of mathematics testi�es to the di�culty of
arriving at a satisfactory account of the fundamental nature of mathematics. The
more prominent of those isms are summarised alphabetically here:

• Formalism. Linnebo writes: �Formalism is the view that mathematics has
no need for semantic notions, or at least none that cannot be reduced to
syntactic ones.� [33, p. 39]. He goes on to describe two versions of formalism
and another variant called deductivism:
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� Game Formalism. �One version of formalism latches on to the compar-
ison of a formal proof with a game played with syntactic expressions.
According to game formalism, this is all there is to mathematics. That
is, mathematics revolves around formal systems, which are syntactical
games played with meaningless expressions.� ([33, p. 39], emphasis in
the original).

� Term Formalism. �As we [de�ne] it, formalism seeks either to banish all
semantic notions from mathematics or else to reduce any such notions
to purely syntactic ones. While game formalism pursues the former
alternative, term formalism pursues the latter. Mathematical singular
terms are now allowed to denote themselves.� ([33, p. 44], emphasis in
the original). The gist of what Lennebo says to explain the idea is that
something like `6' or `22' is not simply a pattern on a piece of paper, it
is a pattern with an associated meaning.

� Deductivism. �Deductivism (sometimes also known as if-then-ism) is
the view that pure mathematics is the investigation of deductive con-
sequences of arbitrarily chosen sets of axioms in some formal and unin-
terpreted language.� ([33, p. 48], emphasis in the original).

• Hilbert's ideas. Linnebo describes David Hilbert's ideas about the nature of
mathematics like this:

�The most sophisticated development of formalist ideas is that of
Hilbert's program. Hilbert proposes ... a brilliant strategy of di-
vide and conquer. The way forward, he thinks, is to distinguish
mathematics into two parts. Finitary mathematics is a contentful
theory of �nite and quasi-concrete syntactic types. Hilbert is par-
ticularly fond of numerals that take the form of strings of strokes;
for example, `|||' is the third numeral. Such numerals are sequences
of what we may call Hilbert strokes. Hilbert thinks that �nitary
mathematics and its foundational axioms can be accounted for us-
ing ideas from Kant and term formalism. In�nitary mathematics,
on the other hand, is strong enough to describe all of the in�nite
structures that modern mathematics studies. This part of mathe-
matics can be regarded as a purely formal theory, Hilbert thinks,
and when so regarded, can be accounted for by drawing on ideas
from game formalism.� ([33, p. 56], emphasis in the original).

Linnebo goes on to discuss problems for Hilbert's program associated with
Cantor's ideas about in�nities in mathematics and Gödel's incompleteness
theorems.
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• Holism. About holism, Michael Resnik writes: �The observational evidence
for a scienti�c theory bears upon the theoretical apparatus as a whole rather
than upon individual component hypotheses.� [47, Location 550], and �... we
can construct a so-called indispensability argument for mathematical real-
ism along these lines: mathematics is an indispensable component of natural
science; so, by holism, whatever evidence we have for science is just as much
evidence for the mathematical objects and mathematical principles it presup-
poses as it is for the rest of its theoretical apparatus; whence, by naturalism,
this mathematics is true, and the existence of mathematical objects is as
well-grounded grounded as that of the other entities posited by science.�
(ibid.).

• Intuitionism. Leon Horsten writes: �Intuitionism originates in the work of the
mathematician L. E. J. Brouwer [57], and it is inspired by Kantian views of
what objects are [40, Chapter 1]. According to intuitionism, mathematics is
essentially an activity of construction. The natural numbers are mental con-
structions, the real numbers are mental constructions, proofs and theorems
are mental constructions, mathematical meaning is a mental construction
... Mathematical constructions are produced by the ideal mathematician,
i.e., abstraction is made from contingent, physical limitations of the real life
mathematician.� [25, Section 2.2].

• Logicism. Linnebo writes: �Frege's philosophy of mathematics combines two
tenets. On the one hand, he was a platonist, who believed that abstract
mathematical objects exist independently of us. On the other hand, he was
a logicist, who took arithmetic to be reducible to logic.� [33, p. 21]. And
Horsten writes:

�The idea that mathematics is logic in disguise goes back to Leib-
niz. But an earnest attempt to carry out the logicist program in
detail could be made only when in the nineteenth century the ba-
sic principles of central mathematical theories were articulated (by
Dedekind and Peano) and the principles of logic were uncovered
(by Frege). ... In a famous letter to Frege, Russell showed that
Frege's Basic Law V entails a contradiction [49]. This argument
has come to be known as Russell's paradox ....� [25, Section 2.1].

An account of Russell's paradox is in [28].

• Methodological naturalism. Alexander Paseau writes: �In philosophy of math-
ematics of the past few decades methodological naturalism has received the
lion's share of the attention, so we concentrate on this. ... Methodological
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naturalism has three principal and related senses in the philosophy of mathe-
matics. The �rst is that the only authoritative standards in the philosophy of
mathematics are those of natural science (physics, biology, etc.). The second
is that the only authoritative standards in the philosophy of mathematics
are those of mathematics itself. The third, an amalgam of the �rst two,
is that the authoritative standards are those of natural science and mathe-
matics. We refer to these three naturalisms as scienti�c, mathematical, and
mathematical-cum-scienti�c. Note that throughout this entry `science' and
cognate terms encompass only the natural sciences.� [42, Section 1].

• Nominalism. Linnebo writes: �In contemporary philosophy of mathematics,
`nominalism' typically refers to the view that there are no abstract objects.�
[33, p. 101], and:

�... we need to do to every scienti�c theory what we did to �nite
number ascriptions, namely to `nominalize' the theory by reformu-
lating it in a way that avoids all commitment to abstract objects.�
[33, p. 105].

• Platonism. In the `Platonism' view, mathematical entities �are not merely
formal or quantitative structures imposed by the human mind on natural
phenomena, nor are they only mechanically present in phenomena as a brute
fact of their concrete being. Rather, they are numinous and transcendent
entities, existing independently of both the phenomena they order and the
human mind that perceives them.� [23, pp. 95�96]. Such ideas are �invisible,
apprehensible by intelligence only, and yet can be discovered to be the for-
mative causes and regulators of all empirical visible objects and processes.�
([23, pp. 95]).

• Predicativism. Horsten writes: �The origin of predicativism lies in the work
of Russell. On a cue of Poincaré, he arrived at the following diagnosis of the
Russell paradox. The argument of the Russell paradox de�nes the collection
C of all mathematical entities that satisfy ¬x ∈ x. The argument then
proceeds by asking whether C itself meets this condition, and derives a
contradiction. ...� [25, Section 2.4].

• Realism. Resnik writes: �My realism consists in three theses: (1) that math-
ematical objects exist independently of us and our constructions, (2) that
much of contemporary mathematics is true, and (3) that mathematical truths
obtain independently of our beliefs, theories, and proofs. I have used the
quali�er `much' in (2), because I do not think mathematical realists need be

7



committed to every assertion of contemporary mathematics.� [47, Location
84].

• Structuralism. Linnebo writes: �Structuralism is a philosophical view that
emphasizes mathematics' concern with abstract structures, as opposed to
particular systems of objects and relations that realize these structures. Con-
sider three children linearly ordered by age and three rocks linearly ordered
by mass. These two systems of objects and relations realize the same abstract
structure, namely that of three objects in a linear order. All that matters for
mathematical purposes, according to structuralism, is the abstract structure
of some system of objects and relations, not the particular natures of these
objects and relations.� [33, p. 154].

There is more about structuralism in Section 4.4.

2.2 The novelty of the idea that mathematics may be un-

derstood in terms of IC

With regard to the idea that mathematics may be understood in terms of IC, three
recent books about the philosophy of mathematics [33, 34, 41], an article about the
�Philosophy of Mathematics� in the Stanford Encyclopedia of Philosophy [25], two
near-recent books in the same area [52, 47], and one recent book on mathematics-
related areas [11], make no mention of anything resembling IC. More generally,
the idea that IC might be part of the foundations of mathematics appears to have
no place in any of the isms in the philosophy of mathematics (Section 2.1), or any
other writings about the nature of mathematics.

Devlin's academic book, Logic and Information [19], aims to develop a math-
ematical theory of information, a goal which is related to but distinct from the
central idea in this paper, that mathematics may be seen to be largely about IC.

A book for non-specialists by Devlin, called Mathematics: The Science of Pat-
terns [18], discusses things like: �patterns of symmetry [such as] the symmetry of a
snow�ake or a �ower� (p. 145) (where `symmetry' implies redundancy, which is an
important part of IC); and �the patterns involved in packing objects in an e�cient
manner� (p. 152) (where `e�cient' may be seen to relate to IC). But these kinds of
pattern are quite di�erent from the concept of an `SP-pattern' in the SP System
(Section 3.2), and IC in the foundations of mathematics is not made explicit or
discussed.

Resnik's academic book on Mathematics As a Science of Patterns [47] is dis-
cussed in Section 4.4, below.

Amongst isms in the philosophy of mathematics (Section 2.1), the one which
is perhaps most closely related to the thesis of this paper is intuitionism, meaning
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that mathematics is a creation of the human mind. Clearly, the invention and
development of mathematical concepts has been done mainly by human brains,
and they are designed to assist human thinking. But there appears to be no
recognition in intuitionism of IC as a unifying principle in HLPC or mathematics,
of unsupervised learning, or of the representation of knowledge with structures like
SP-multiple-alignment.

Concepts in the SP System also relate to structuralism, as discussed in Section
4.4.4.

3 Outline of the SP Theory of Intelligence and the

SP Computer Model

As noted in the Introduction, much of the thinking in this paper derives from the
SP System, meaning the SP Theory of Intelligence and its realisation in the SP
Computer Model. This section describes the SP System in outline, with su�cient
detail to allow the rest of the paper to be understood.

In most papers in the SP programme of research, including this one, it has
proved necessary to provide a section like this one, or an appendix, which provides
an outline of the SP System. This is to ensure that each paper is free standing
and can be read without the need to look elsewhere for information about the SP
System.

The most comprehensive account of the SP System is in the book Unifying
Computing and Cognition [61], which includes a detailed description of the SP
Computer Model with many examples of what the Model can do. A shorter
but fairly full description of the SP System and its strengths and potential is
in [63]. Details of these and other publications, including several papers about
potential applications of the SP System, may be found, with download links, on
bit.ly/2Gxici2.

Source code and Windows executable code for the SP Computer Model may
be downloaded via a link under the heading `SOURCE CODE' on the same page.

3.1 Foundations

The overarching goal in developing the SP System is, in accordance with Ockham's
razor, the simpli�cation and integration of observations and concepts across arti-
�cial intelligence, mainstream computing, mathematics, and HLPC, with IC as a
unifying theme.

Since people often ask what the name �SP� stands for, it is short for Simplicity
and Power. This is 1) because �simpli�cation and integration of observations and
concepts� means the same as promoting Simplicity in one's theory whilst retaining
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as much as possible of its descriptive and explanatory Power; and 2) because
within the SP Theory, compression of a body of information, I, means maximising
the Simplicity of I by reducing, as much as possible, repetition of information
or redundancy in I, whilst retaining as much as possible of its non-redundant
descriptive or explanatory Power.

Despite the ambition of attempting simpli�cation and integration across AI,
computing, mathematics, and HLPC, much has been achieved: the SP System
combines Simplicity�in being largely composed of the relatively simple mech-
anisms for creating and processing SP-multiple-alignments (Section 3.3); and it
exhibits descriptive and explanatory Power�in modelling diverse aspects of in-
telligence, in accommodating diverse kinds of knowledge, and in their seamless
integration in any combination, as outlined in Section 3.7.

The idea that IC might be signi�cant in the workings of brains and nervous
systems was pioneered by Fred Attneave [1], Horace Barlow [5, 6], and others,
and it has been developed in many other studies, many of which are outlined and
referenced in [71, Section 3].

3.2 The main features of the SP System

As shown schematically in Figure 1, the SP System is conceived as a brain-like
system that receives New information via its senses and stores some or all of it, in
compressed form, as Old information.

Old
(compressed)

New
(not compressed)

Figure 1: Schematic representation of the SP System from an `input' perspective.
Adapted from Figure 1 in [63], with permission.

In the SP System, all kinds of knowledge are stored in SP-patterns, where
an SP-pattern is an array of atomic SP-symbols in one or two dimensions, where
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an `SP-symbol' is simply a distinctive mark that can be matched in a yes/no
manner with any other SP-symbol. At present, the SP Computer Model works
only with one-dimensional SP-patterns but it is envisaged that it will be generalised
to work with two-dimensional SP-patterns, in addition to 1D SP-patterns. Each
SP-pattern and SP-symbol has an associated value for the frequency with which
it has occurred in a given body of data.

Although SP-patterns are not very expressive in themselves, they come alive
within the framework of SP-multiple-alignments (Section 3.3), yielding most of the
capabilities summarised in Section 3.7.

3.3 SP-multiple-alignment

Two important ideas in the SP System are that:

• IC may be achieved via a search for patterns that match each other and the
merging or `uni�cation' of two or more patterns that are the same. There is
more detail in Section 5.

The expression �IC via the matching and uni�cation of patterns� may be
shortened to `ICMUP'. The expression `mathematics as ICMUP' may be
abbreviated as `MICMUP'.

• More speci�cally, IC may be achieved via the concept of SP-multiple-
alignment which may be seen as a generalisation of six variants of ICMUP,
as described in Section 5.7.

The concept of SP-multiple-alignment has been borrowed and adapted from
the concept of `multiple sequence alignment' in bioinformatics. An example of
a multiple sequence alignment from bioinformatics is shown in Figure 2. Here,
�ve DNA sequences have been arranged in rows and, by judicious �stretching� of
sequences in a computer, matching symbols have been brought into line. A `good'
multiple sequence alignment is one with a relatively large number of matching
symbols.

With any multiple sequence alignment that is realistically large, the number
of possible alignments is astronomically large. For that reason, it is normally
necessary to use heuristic search (hill-climbing or descent) to �nd alignments that
are good, with backtracking to avoid getting stuck on local peaks (hill-climbing),
or troughs (descent). With heuristic search one cannot normally prove that the
best possible result has been found, but it is normally possible to achieve results
that are acceptably good.
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G G A G C A G G G A G G A T G G G G A

| | | | | | | | | | | | | | | | | | |

G G | G G C C C A G G G A G G A | G G C G G G A

| | | | | | | | | | | | | | | | | | | | |

A | G A C T G C C C A G G G | G G | G C T G G A | G A

| | | | | | | | | | | | | | | | | |

G G A A | A G G G A G G A | A G G G G A

| | | | | | | | | | | | | | | | |

G G C A C A G G G A G G C G G G G A

Figure 2: A `good' multiple sequence alignment amongst �ve DNA sequences.
Reproduced with permission from Figure 3.1 in [61], with permission.

The key di�erence between the concept of multiple sequence alignment in bioin-
formatics and the concept of SP-multiple-alignment is that, in the latter case, a
`good' SP-multiple-alignment is one that allows one New SP-pattern (sometimes
more than one) to be encoded economically in terms of one or more Old SP-
patterns.

As with the creation of multiple sequence alignments that are good, it is nor-
mally necessary to use heuristic techniques, with backtracking where necessary,
to �nd SP-multiple-alignments that are good. As before, with such techniques,
it is normally possible to �nd one or more SP-multiple-alignments that are `rea-
sonably good' but it is not normally possible to guarantee that the best possible
SP-multiple-alignment(s) have been found.

An example of an SP-multiple-alignment is shown in Figure 3. Here, the New
SP-pattern is the sentence `t w o k i t t e n s p l a y' shown in row 0. Each
of rows 1 to 8 shows one Old SP-pattern representing a grammatical structure,
which in each of rows 1, 3 and 5 is a word. The overall e�ect of the SP-multiple-
alignment is to analyse or parse the sentence into its constituent parts, each one
marked with its grammatical category.
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0 t w o k i t t e n s p l a y 0

| | | | | | | | | | | | | |

1 | | | Nr 5 k i t t e n #Nr | | | | | 1

| | | | | | | | | |

2 | | | N Np Nr #Nr s #N | | | | 2

| | | | | | | | | |

3 D Dp 4 t w o #D | | | | | | | 3

| | | | | | | | |

4 NP D #D N | #N #NP | | | | 4

| | | | | | |

5 | | | Vr 1 p l a y #Vr 5

| | | | |

6 | | | V Vp Vr #Vr #V 6

| | | | | |

7 S Num ; NP | #NP V | #V #S 7

| | | |

8 Num PL ; Np Vp 8

Figure 3: The best SP-multiple-alignment created by the SP Computer Model
with a store of Old SP-patterns like those in rows 1 to 8 (representing grammatical
structures, including words) and a New SP-pattern, ` t w o k i t t e n s p l

a y', shown in row 0 (representing a sentence to be parsed). Adapted from Figures
1 in [62], with permission.

Contrary to what this example may suggest, the concept of SP-multiple-
alignment within the SP System can do much more than the parsing of sentences.
It is largely responsible for the versatility of the SP System, summarised in Section
3.7. It is not restricted to hierarchical structures as in the parsing example. It can,
for example, accommodate discrimination networks and trees, if-then rules, entity-
relationship structures, and more. With SP-symbols representing relatively large
things such as letters or words, the SP System would have a `symbolic' �avour,
but with SP-symbols representing relatively small things like pixels in an image,
the SP System would have a `non symbolic' �avour.

3.4 The calculation of probabilities associated with SP-

multiple-alignments

Because of the intimate relation between IC and concepts of probability (Section
8), it is a relatively straightforward matter for the SP Computer Model to calculate
absolute and relative probabilities associated with each SP-multiple-alignment that
it creates. Details of how probabilities are calculated, using values for the frequency
of occurrence of SP-patterns, may be found in [63, Section 4.4] and [61, Section
3.7].

Because SP-multiple-alignments are the basis for all the several aspects of intel-
ligence exhibited by the SP Computer Model�unsupervised learning, natural lan-
guage processing, pattern recognition, several kinds of probabilistic reasoning, and
more�the probabilities calculated for each SP-multiple-alignment provide proba-
bilities as required for each aspect of intelligence. For example, with each instance
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of a given kind of probabilistic reasoning, a measure of probability may serve as a
measure of the level con�dence one may have in that line of reasoning.

3.5 Unsupervised learning

Unsupervised learning in the SP System means processing one or more New SP-
patterns to develop one or more collections of Old SP-patterns which, via the
creation of SP-multiple-alignments, can encode the given set of New SP-patterns
economically. Each such collection of Old SP-patterns is called an SP-grammar.

In this process of unsupervised learning, Old SP-patterns may be created di-
rectly from New SP-patterns, but most of them are likely to have been created
via partial matches between New and Old SP-patterns. As with the building of
SP-multiple-alignments, heuristic search with backtracking is normally needed to
�nd SP-grammars that are `good'.

The SP Computer Model has already demonstrated an ability to learn gener-
ative SP-grammars from unsegmented samples of English-like arti�cial languages,
including segmental structures, classes of structure, and abstract patterns, and
to do this in an `unsupervised' manner ([63, Section 5], [61, Chapter 9]). But
there are (at least) two shortcomings in the system [63, Section 3.3]: 1) it can-
not learn intermediate levels of structure in an SP-grammar, and 2) it cannot
learn discontinuous dependencies in such a grammar. These two shortcomings in
learning apply, although the SP-multiple-alignment framework can accommodate
structures of those kinds. It appears that those two problems may be overcome
and that their solution would greatly enhance the capabilities of the SP Computer
Model in unsupervised learning.

3.6 SP-Neural

Key concepts in the SP Theory may be mapped on to structures of neurons and
their interconnections in a version of the SP Theory called SP-Neural. Current
thinking about the structure and workings of SP-Neural, how it relates to known
features of the brain, and how the concepts may be developed, is described in [68].

3.7 Strengths and potential of the SP System

Distinctive features and advantages of the SP System compared with other AI-
related systems are described in [69].

The strengths and potential of the SP System are described quite fully in [63],
and in much more detail in [61]. In brief, the SP System has strengths and potential
in four main areas summarised here:
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• Versatility in aspects of intelligence including: unsupervised learning; the
analysis and production of natural language; pattern recognition that is ro-
bust in the face of errors; pattern recognition at multiple levels of abstraction;
computer vision; best-match and semantic kinds of information retrieval; sev-
eral kinds of reasoning (next item); planning; and problem solving. There is
more detail in [63] and [61].

• Versatility in reasoning including: one-step `deductive' reasoning; chains of
reasoning; abductive reasoning; reasoning with probabilistic networks and
trees; reasoning with `rules'; nonmonotonic reasoning and reasoning with
default values; Bayesian reasoning with `explaining away'; causal reasoning;
reasoning that is not supported by evidence; the inheritance of attributes
in class hierarchies; and inheritance of contexts in part-whole hierarchies.
There is more detail in [63, Section 10] and [61, Chapter 7]. There is also
potential for spatial reasoning [65, Section IV-F.1] and what-if reasoning [65,
Section IV-F.2].

• Versatility in the representation of diverse kinds of knowledge including: the
syntax of natural languages; class-inclusion hierarchies (with or without cross
classi�cation); part-whole hierarchies; discrimination networks and trees; if-
then rules; entity-relationship structures; relational tuples; and concepts in
mathematics, logic, and computing, such as `function', `variable', `value',
`set', and `type de�nition. The addition of two-dimensional SP-patterns to
the SP Computer Model is likely to expand the representational repertoire
of the SP System to structures in two-dimensions and three-dimensions, and
the representation of procedural knowledge with parallel processing. There
is more detail in [66, Section III-B], and in [63, 61].

• Seamless integration. Because of the versatility of the SP System as outlined
above, and because this versatility is largely due to the central role of SP-
multiple-alignment, there is clear potential for the seamless integration of
diverse aspects of intelligence and diverse kinds of knowledge, in any combi-
nation. It appears that that kind of seamless integration is essential in any
arti�cial system that aspires to the �uidity, versatility and adaptability of
the human mind.

Figure 4 shows schematically how the SP System, with SP-multiple-alignment
at centre stage, exhibits versatility in its capabilities and their seamless integration.

In view of the versatility of the SP System, and the seamless integration of
diverse aspects of intelligence and diverse kinds of knowledge, and since those
AI-related strengths of the SP System are due largely to the versatility of the
SP-multiple-alignment construct, there are reasons to believe that the concept

15



SP-
multiple-

alignment

 oyr f Io ne teh lT l igP eS ne ch eT
Unsupervised learning

Analysis and production
      of natural language

Computer vision
scene analysis 
and more.

 Several kinds of reasoning:

probabilistic networks and trees; with ‘rules’;

nonmonotonic; Bayesian;

causal; inheritance of

 abductive; chains of reasoning;deductive;

  attributes; with 
potential for
more.

Seamless integration of diverse kinds of
intelligence and knowledge, in any

combination.

Pattern recognition:
robust against

  at multiple levels
 of abstraction.

errors in data;

Information

best-match
retrieval:

and ‘semantic’.

Figure 4: A schematic representation of versatility and integration in the SP Sys-
tem, with SP-multiple-alignment at centre stage. Adapted from Figure 6 in [71],
with permission.

of SP-multiple-alignment may prove to be as signi�cant for an understanding of
human intelligence as is DNA for biological sciences: it may come to be seen as
the `double helix' of intelligence.

3.8 The SP Machine

It is envisaged that the SP Computer Model will provide the basis for the devel-
opment of a highly-parallel SP Machine, as shown schematically in Figure 5. This
projected development, described in [39], would be a vehicle for further research,
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and ultimately the basis for a system with the scale and robustness needed for
scienti�c, industrial, commercial, and administrative applications.

SP Theory and SP Computer Model

SP MACHINEHigh parallel
In the cloud

Open source
Good user interface

Representation of knowledge Natural language processing

Several kinds of reasoning Planning & problem solving

Information compression Unsupervised learning

Pattern recognition Information retrieval

MANY APPLICATIONS

Figure 5: Schematic representation of the development and application of the SP
machine. Reproduced from Figure 2 in [63], with permission.

3.9 Potential bene�ts and applications of the SP System

The SP System has potential in several areas of application including: helping to
solve nine problems with big data; helping in the development of human-like intel-
ligence in autonomous robots; helping in the understanding of human vision and in
the development of computer vision; helping with medical diagnosis; functioning
as a database system with intelligence; and more.

Details of peer-reviewed papers and other documents about the potential ben-
e�ts and applications of the SP System may be found, with download links on
bit.ly/2Gxici2.

As its title suggests, a paper called �Unsolved problems in AI, described in the
book Architects of Intelligence by Martin Ford, and how they may be solved via
the SP System� [72] describes how the SP System may solve at least 10 problems
in AI, described by experts in AI in interviews with the science journalist, Martin
Ford [20].

17

http://bit.ly/2Gxici2


4 Related research

Research relating to the main thesis of this paper is considered in the subsections
that follow.

4.1 Established techniques for IC

Established techniques for the compression of information such as Hu�man coding,
arithmetic coding, and wavelet compression, have a mathematical �avour (see,
for example, [50]). Since techniques like those have a good pedigree and have
proved their worth in many applications, one might suppose that they would be
the starting point for any research, like the SP programme of research, where IC
has a central role�and they would be the starting point for any discussion of how
mathematics may be understood in terms of IC. But:

• The SP programme of research (Section 3) has adopted a di�erent perspec-
tive. It attempts to reach down below the mathematics of other approaches,
and, as noted in Section 3, it focusses on ICMUP, the relatively simple,
`primitive' idea that IC may be understood as a search for patterns that
match each other, with the merging or `uni�cation' of patterns that are the
same.

• Since ICMUP is a relatively `concrete' idea, which is less abstract than much
of mathematics, it suggests avenues that may be explored in understanding
possible mechanisms for IC in arti�cial systems like the SP System, including
SP-Neural, the `neural' version of the SP System (Section 3.6 and [68]).

• Perhaps most importantly, in any discussion of the fundamentals of mathe-
matics, it would not be appropriate for anything except peripheral arguments
to use mathematics itself.

4.2 Algorithmic probability and algorithmic information

theory

As with Hu�man coding, arithmetic coding, and wavelet compression, it may seem
that, because they relate closely to IC, two other concepts would have a bearing
on the design and workings of the SP System. These are the Algorithmic Prob-
ability Theory (ALP, pioneered by Ray Solomono� [53, 54], [32, Chapter 4]) and
Algorithmic Information Theory (AIT, based on ALP and pioneered by Andrey
Kolmogorov [31, 30] and Gregory Chaitin [15, 13, 12], see also [32, Chapter 2]).
But, for reasons given in this subsection, their usefulness for present purposes is
not as great as one may suppose.
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4.2.1 The shortest computer program

Informally, the central idea in ALP and AIT is that the information content, or
`complexity', of any given string of atomic symbols is equivalent to the length (in
bits) of the shortest computer program (for a `universal Turing machine') that can
create that string.

In simple cases, it may be possible to prove that the shortest program has been
found, but normally one can only say that the `shortest program' is the shortest
that one or more people have been able to �nd or create after a certain amount of
e�ort, perhaps with assistance from an established compression algorithm.

In ALP, the bit length of the shortest program is used, via Thomas Bayes' The-
orem (see Section 8.1) to assign to objects an `a priori probability' that is in some
sense universal. Marcus Hutter and colleagues [27] describe applications for ALP
which include �Solomono� induction� (Section 4.1), �expected time/space com-
plexity of algorithms under the universal distribution� (Section 4.3), and �halting
probability� (Section 4.5).

With AIT, the `shortest program' idea has applications in three main areas de-
scribed by Hutter [26]: philosophy (Section 6.1: helping to formalize and quantify
such concepts as simplicity and complexity in the foundations of thermodynam-
ics, and helping to solve the problem of Maxwell's demon), practice (Section 6.2:
applications in linguistics and genetics, and in the development of a �universal sim-
ilarity metric�), and science (Section 6.3: applications in mathematics, theoretical
computer science, statistics, cognitive sciences, biology, physics, economics, and
machine learning).

4.2.2 A di�erent perspective

Although ALP and AIT are important, the SP programme of research has a dif-
ferent perspective:

• Unlike ALP and AIT, the SP System is not founded on the concept of a
universal Turing machine. Instead:

� A central idea in the SP System is the conjecture that all kinds of
information processing may be achieved via IC.

� More speci�cally, the SP System is dedicated to ICMUP.

� And more speci�cally again, a central part of the SP System is the
concept of SP-multiple-alignment (Section 3.3), which, as described in
Section 5.7, is itself a generalisation of the �rst six variants of ICMUP
described in Section 5.
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• Although the details have not been fully worked out, it seems that the con-
cept of a `universal Turing machine', and the equivalent concept of a `Post
canonical system' [46], may themselves be seen as special cases of the SP
System, as described in [61, Chapter 4].

• The SP System provides much of the human-like intelligence (Section 3.7)
which, as Turing recognised [56, 58], is missing from the concept of a universal
Turing machine.

• The Bayesian view of probability (which, as noted in Section 4.2.1, makes a
contribution to the concept of ALP) is very di�erent from the `frequentist'
view of probability which has been adopted in the SP System (Section 8.1).

In connection with these issues, an interesting example is provided by the
decimal expansion of π (3.14159265358979 ...) which has a small algorithmic com-
plexity (because it can be created by a simple program) but which appears to most
people to be entirely random. The fact that the SP System, like most people, fails
to recognise the underlying regularity of this sequence may be seen as indirect
evidence, in conjunction with other evidence, that ICMUP is a unifying principle
in HLPC [71, Section 19].

4.3 Algorithmic cognition

Another area of research which aims to develop new insights into the nature of
human cognition is Algorithmic Cognition (see, for example, [22, 73]). This per-
spective takes advantage of insights gained in the development of ALP (with Bayes'
Theorem) and AIT (Section 4.2). It comes after that section on ALP and AIT to
save having to repeat what is there.

Achievements with Algorithmic Cognition include:

�... we have o�ered what we think is an essential and what appears a
necessary connection between the concept of cognition and algorith-
mic information theory. Indeed, within cognitive science, the study of
working memory, probabilistic reasoning, the emergence of structure
in language, strategic response, and navigational behavior is cutting-
edge research. In all these areas we have made contributions [references
given] based upon algorithmic complexity as a useful normative tool,
shedding light on mechanisms of cognitive processes.� [22, Section 4].

and

�In the cognitive sciences, the study of working memory, of probabilistic
reasoning, the emergence of structure in language, strategic response,
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and navigational behavior is cutting-edge research. In all these areas
the algorithmic approach to cognition has made contributions [refer-
ences given] based upon algorithmic probability as a useful normative
tool, shedding light on the algorithmic mechanisms of cognitive pro-
cesses.� [73, Conclusion]

Algorithmic Cognition and the SP System are two di�erent `�avours' of research
on human cognition, each with distinctive contributions to make. In the interests
of a diversity in approaches to the solution of di�cult problems, this is as it should
be.

4.4 Structuralism and mathematics-as-a-science-of-

patterns

The `structuralism' view of the foundations of mathematics, mentioned in Section
2.1 above, is considered a little more fully in this subsection.

4.4.1 Resnik

In the previously-mentioned Mathematics as a Science of Patterns by Resnik [47],
he describes his concept of `structure' and makes clear that he is using that term
to mean essentially the same thing as `pattern':

�... for some time the practice of pure mathematics has re�ected the idea
that mathematics is concerned with structures involving mathematical
objects and not with the `internal' nature of the objects themselves. ...

�The underlying philosophical idea here is that in mathematics the pri-
mary subject-matter is not the individual mathematical objects but
rather the structures in which they are arranged. The objects of math-
ematics, that is, the entities which our mathematical constants and
quanti�ers denote, are themselves atoms, structureless points, or posi-
tions in structures. And as such they have no identity or distinguishing
features outside a structure.

�For epistemological purposes I �nd it more suggestive to speak of
mathematical patterns and their positions rather than of structures.
... In what follows I will use the terms `pattern' and `structure' more
or less interchangeably.� ([47, Locations 2310�2316]).

This concept of pattern or structure has some similarity to the concept of `SP-
pattern' in the SP System: an SP-pattern is �an array of atomic SP-symbols in
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one or two dimensions, where an `SP-symbol' is simply a distinctive mark that can
be matched in a yes/no manner with any other SP-symbol.� (Section 3).

But the concept of `SP-pattern' in the SP System appears to di�er from
Resnik's concept of `pattern' because each SP-symbol belongs to an alphabet of
SP-symbols in which an SP-symbol representing one class of SP-symbols in the
alphabet (e.g., `A') can be distinguished from any SP-symbol representing any
other class of SP-symbols in the alphabet ((e.g., `B')), and so SP-symbols do have
�identity or distinguishing features outside a structure�.

4.4.2 Shapiro

In his book on the Philosophy of Mathematics: Structure and Ontology [52], Stew-
art Shapiro writes:

�... pure mathematics is the study of structures, independently of
whether they are exempli�ed in the physical realm, or in any realm for
that matter. The mathematician is interested in the internal relations
of the places of these structures, and the methodology of mathematics
is, for the most part, deductive.� [52, Locations 1139�1145], and later:

�...the boundary between mathematics and ordinary discourse is at
least as fuzzy as the boundary between mathematics and science.� [52,
Locations 4143�4147] and �... one result of the structuralist perspective
is a healthy blurring of the distinction between tween mathematical and
ordinary objects: ...� [52, Location 4147].

These points are discussed in Section 4.4.4, below.

4.4.3 Burgin

In his book on Structural Reality [11], Mark Burgin, after describing how structures
may be seen in physics, writes:

�Structures appear not only in physics. Personality has its structure,
there is the structure of a novel, any language contains many structures
and even a dream has its structure. As a result, in the context of the
theory of named sets, it was discovered that everything in the world
has a structure , even chaos (... [10]). Vacuum is considered as absence
of matter, void, but physicists study the structured vacuum [2]. Thus
structures exist not only in languages, society or human personality,
but everywhere. Consequently, it is necessary to study structures not
only in linguistics, psychology and anthropology, which were the �rst
areas where the structural approach called structuralism was applied,
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but in all sciences: in natural sciences, such as physics [and] social
sciences, ... [in] humanities, such as sociology and psychology, and [in]
technical sciences, such as computer science.� [11] (emphasis in the
original).

These points are discussed in Section 4.4.4, next.

4.4.4 Structuralism, IC, and the SP System

Structuralism relates to the SP System because the SP programme of research
recognises that structures are pervasive in HLPC, and because the SP System is
largely about the representation, learning, and application of HLPC structures.

An important di�erence between the SP System and structuralism as it has
been developed by the authors quoted in Sections 4.4.1, 4.4.2, and 4.4.3, is that
those authors appear to have no role for IC or ICMUP.

As an example, IC has proved to be a key to understanding how, in the (un-
supervised) learning of their �rst language (or languages), young children may
isolate words as signi�cant structures or patterns in the language that they hear
which, almost invariably, has no systematic physical markers to the beginnings and
ends of words [71, Section 15.1]. There is evidence that similar principles apply to
the unsupervised learning of the phrase structure of natural language [71, Section
15.2], and the unsupervised learning of other syntactic structures [71, Section 16].

The idea that IC may be the key to the learning or discovery of `natural'
structure in the world has been dubbed the `DONSVIC' principle, short for `The
Discovery of Natural Structures Via Information Compression' [63, Section 5.2].
It appears to be relevant, not only to the discovery of linguistic structures as in
the examples just given, but also to the discovery of three-dimensional structures
as described in [64, Sections 6.1 and 6.2], and, by conjecture, with potential for
the discovery of any kind of structure in the world.

The generality of the SP System in modelling structures in any domain sits well
with: �... pure mathematics is the study of structures, independently of whether
they are exempli�ed in the physical realm, or in any realm for that matter.�
(quoted in Section 4.4.2); and the �blurring of the distinction between mathe-
matical and ordinary objects� (quoted in the same section); and the very wide
applicability of structuralism as described by Burgin (in the quotation in Section
4.4.3).

5 Seven techniques for ICMUP

As its title suggests, this section describes seven techniques for ICMUP. They are
fundamental in the SP System and are central in the main thesis of this paper,
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that, to a large extent, mathematics may be understood as ICMUP.
While care has been taken in this programme of research to avoid unnecessary

duplication of information across di�erent publications, the importance of the
following seven variants of ICMUP has made it necessary, for the sake of clarity,
to describe them quite fully both in this paper and also in [71].

5.1 Basic ICMUP

The simplest of the techniques to be described is to �nd two or more patterns that
match each other within a given body of information, I, and then merge or `unify'
them so that multiple instances are reduced to one. This is illustrated in the upper
part of Figure 6 where two instances of the pattern `INFORMATION' near the top of
the �gure has been reduced to one instance, shown just above the middle of the
�gure. Below it, there is the pattern `INFORMATION', with `w62' appended at the
front, for reasons given in Section 5.2, below.

Here, and in subsections below, we shall assume that the single pattern which
is the product of uni�cation is placed in some kind of dictionary of patterns that
is separate from I.

The version of ICMUP just described will be referred to as basic ICMUP.
A detail that should not distract us from the main idea is that, when compres-

sion of a body of information, I, is to be achieved via basic ICMUP, any repeating
pattern that is to be uni�ed should occur more often in I than one would expect
by chance for a pattern of that size.

5.2 Chunking-with-codes

A point that has been glossed over in describing basic ICMUP is that, when a
body of information, I, is to be compressed by unifying two or more instances of a
pattern like `INFORMATION', there is a loss of information about the location within
I of each instance of the pattern `INFORMATION'. In other words, basic ICMUP
achieves `lossy' compression of I.

This problem may be overcome with the chunking-with-codes variant of
ICMUP:

• A uni�ed pattern like `INFORMATION', which is often referred to as a `chunk'
of information,4 is stored in a dictionary of patterns, as mentioned in Section
5.1.

4There is a little more detail about the concept of `chunk' in [71, Section 2.4.2].
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• Now, the uni�ed chunk is given a relatively short name, identi�er, or `code',
like the `w62' pattern appended at the front of the `INFORMATION' pattern,
shown below the middle of Figure 6.

• Then the `w62' code is used as a shorthand which replaces the `INFORMATION'
chunk of information wherever it occurs within I. This is shown at the bottom
of Figure 6.

• Since the code `w62' is shorter than each instance of the pattern
`INFORMATION' which it replaces, the overall e�ect is to shorten I. But, unlike
basic ICMUP, chunking-with-codes may achieve `lossless' compression of I
because the original information may be retrieved fully at any time.

• Details here are: 1) that compression can be optimised by giving shorter
codes to chunks that occur frequently and longer codes to chunks that are
rare. This may be done using some such scheme as Shannon-Fano-Elias
coding, described in, for example, [17]; and 2) By ensuring that any chunk,
C, to be given this treatment should be more frequent in I than the minimum
needed (for a chunk of the size of C) to achieve compression (Section 5.1),
and by ensuring that the size of every code is optimal, there should be an
overall compression of I.
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Raw data

Compressed data

....w62................w62.........

....INFORMATION................INFORMATION.........

w62INFORMATION
Unified pattern
with identifier

INFORMATION
Unified pattern
without identifier

Figure 6: A schematic representation of the way two instances of the pattern
`INFORMATION' in a body of data may be uni�ed to form a single `uni�ed pattern',
shown just above the middle of the �gure. To achieve lossless compression, the rel-
atively short identi�er `w62' may be assigned to the uni�ed pattern `INFORMATION',
as shown below the middle of the �gure. At the bottom of the �gure, the origi-
nal data may be compressed by replacing each instance of `INFORMATION' with a
copy of the relatively short identifer, `w62'. Adapted from Figure 2.3 in [61], with
permission.

5.3 Schema-plus-correction

A variant of the chunking-with-codes version of ICMUP is called schema-plus-
correction. Here, the `schema' is like a chunk of information and, as with chunking-
with-codes, there is a relatively short identi�er or code that may be used to rep-
resent the chunk.

What is di�erent about the schema-plus-correction idea is that the schema may
be modi�ed or `corrected' in various ways on di�erent occasions.

For example, a menu for a meal in a cafe or restaurant may be something like
`MN: ST MC PG', where `MN' is the identi�er or code for the menu, `ST' is a variable
that may take values representing di�erent kinds of `starter', `MC' is a variable that
may take values representing di�erent kinds of `main course', and `PG' is a variable
that may take values representing di�erent kinds of `pudding'.

With this scheme, a particular meal may be represented economically as some-
thing like `MN: ST(st2) MC(mc5) PG(pg3)', where `st2' is the code or identi�er
for `minestrone soup', `mc5' is the code for `vegetable lassagne', and `pg3' is the code
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for `ice cream'. Another meal may be represented economically as `MN: ST(st6)

MC(mc1) PG(pg4)', where `st6' is the code or identi�er for `prawn cocktail', `mc1'
is the code for `lamb shank', and `pg4' is the code for `apple crumble'; and so
on. Here, the codes for di�erent dishes serve as modi�ers or `corrections' to the
categories `ST', `MC', and `PG' within the schema `MN: ST MC PG'.

5.4 Run-length coding

A third variant, run-length coding, may be used where there is a sequence of two
or more copies of a pattern, each one except the �rst following immediately after
its predecessor like this:

`INFORMATIONINFORMATIONINFORMATIONINFORMATIONINFORMATION'.

In this case, the multiple copies may be reduced to one, as before, something
like `INFORMATION×5', where `×5' shows how many repetitions there are; or some-
thing like `[INFORMATION*]', where `[' and `]' mark the beginning and end of the
pattern, and where `*' signi�es repetition (but without anything to say when the
repetition stops).

In a similar way, a sports coach might specify exercises as something like �touch
toes (×15), push-ups (×10), skipping (×30), ...� or �Start running on the spot
when I say `start' and keep going until I say `stop' �.

With the `running' example, �start� marks the beginning of the sequence, �keep
going� in the context of �running� means �keep repeating the process of putting
one foot in front of the other, in the manner of running�, and �stop� marks the end
of the repeating process. It is clearly much more econonomical to say �keep going�
than to constantly repeat the instruction to put one foot in front of the other.

5.5 Class-inclusion hierarchies

A widely-used idea in everyday thinking and elsewhere is the class-inclusion hi-
erarchy: the grouping of entities into classes, and the grouping of classes into
higher-level classes, and so on, through as many levels as are needed.

This idea may achieve ICMUP because, at each level in the hierarchy, attributes
may be recorded which apply to that level and all levels below it�so economies
may be achieved because, for example, it is not necessary to record that cats have
fur, dogs have fur, rabbits have fur, and so on. It is only necessary to record that
mammals have fur and ensure that all lower-level classes and entities can `inherit'
that attribute. In e�ect, multiple instances of the attribute `fur' have been merged
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or uni�ed to create that attribute for mammals, thus achieving compression of
information.5

This idea may be generalised to cross-classi�cation, where any one entity or
class may belong in one or more higher-level classes that do not have the rela-
tionship superclass/subclass, one with another. For example, a given person may
belong in the classes `woman' and `doctor' although `woman' is not a subclass of
`doctor' and vice versa.

5.6 Part-whole hierarchies

Another widely-used idea is the part-whole hierarchy in which a given entity or
class of entities is divided into parts and sub-parts through as many levels as are
needed. Here, ICMUP may be achieved because two or more parts of a class such
as `car' may share the overarching structure in which they all belong. So, for
example, each wheel of a car, the doors of a car, the engine or a car, and so on, all
belong in the same encompassing structure, `car', and it is not necessary to repeat
that enveloping structure for each individual part.

5.7 Generalisation of ICMUP via SP-multiple-alignment

The seventh version of ICMUP, the SP-multiple-alignment construct outlined in
Section 3.3, encompasses all the preceding six versions of ICMUP.

How the preceding six versions of ICMUP may be modelled within the SP-
multiple-alignment framework is described in [70, Section 2].

The strengths and potential of the SP-multiple-alignment construct in mod-
elling aspects of human intelligence and the representation of knowledge is sum-
marised in Section 3.7, described fairly fully in [63], and described in much more
detail in [61].

6 Mathematics as ICMUP

This section presents the main MICMUP thesis of this paper: that much of math-
ematics, perhaps all of it, may be seen as ICMUP.

At this point it is perhaps appropriate to mention that there are two apparent
contradictions of that idea: 1) With mathematics (and computing) it is easy to
create large amounts of redundancy, which is the opposite of IC; 2) Redundancy

5The concept of class-inclusion hierarchies with inheritance of attributes is quite fully
developed in object-oriented programming, which originated with the Simula programming
language [9] and is now widely adopted in modern programming languages.

28



is often useful as, for example, in safeguarding information against loss or corrup-
tion. Those two apparent contradictions of the main thesis of this paper, and how
they may be resolved, are discussed brie�y in Appendix A, with references to [71,
Appendix C], where fuller discussions may be found.

Since the arguments in Appendix A.1 depend on the arguments in this section,
it is probably best to read it after reading this section.

6.1 An example of IC via mathematics

This subsection begins with an example showing how ordinary mathematics, with-
out any specialised technique, can be very e�ective in compressing information.

The equation s = (gt2)/2, which expresses one aspect of one of the laws of
motion, is a very compact means of representing any table, including large ones,
showing the distance, s, travelled by a falling object in a given time, t, since it
started to fall, as illustrated in Table 1.6 The constant, g, is the acceleration due
to gravity�about 9.8m/s2.

Distance (m) Time (sec)

0.0 0
4.9 1
19.6 2
44.1 3
78.5 4
122.6 5
176.5 6
240.3 7
313.8 8
397.2 9
490.3 10
593.3 11
706.1 12
828.7 13
961.1 14
1103.2 15
1255.3 16

Etc Etc

Table 1: The distance (in metres) travelled by a falling object in a given time (in
seconds) since it started to fall.

6Of course, the law does not work for something like a feather falling in air.
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That small equation would represent the values in the table even if it was a
1000 times or a million times bigger, and so on. Likewise for other equations such
as a2 + b2 = c2, PV = k, F = q(E + v ×B), and so on.

To make these points, it is not strictly necessary to show Table 1. But the
table helps to emphasise the contrast between the potentially huge volumes of
data in such a table and the small size of the equation which describes those
data�and, correspondingly, the potentially high levels of IC that may be achieved
with ordinary mathematics which is not specialised for compression of information.

6.2 How ICMUP may be seen in the structures and work-

ings of mathematics

The subsections that follow describe how some of the basic principles and tech-
niques for the compression of information that were described in Section 5 may be
seen in the structures and workings of mathematics.

In themselves, these examples do not prove that mathematics may be under-
stood as being entirely devoted to the compression of information. But there are
reasons to think that compression of information is fundamental in mathematics:

• Since the techniques to be described are techniques which are widely used in
more complex forms of mathematics, it seems likely that mathematics may
indeed be understood in its entirety as ICMUP.

• As described in Section 7.1.1, the workings of simple logical functions, in-
cluding the NAND logical function, may be understood in terms of ICMUP.
Since it is widely accepted that, in principle, the computational heart of any
general-purpose digital computer may be constructed entirely from NAND
gates [38], it appears that, within the bounds imposed by computational
complexity, ICMUP has the generality to support any kind of computation,
including mathematical computations.

6.3 Basic ICMUP

The simplest version of ICMUP, which may be called �basic ICMUP� (Section 5.1),
may be seen in mathematics whenever one identi�er is matched with another, with
implicit uni�cation of the two.

6.3.1 The matching and uni�cation of identi�ers: assigning a value to

a variable

In mathematics, ICMUP may be seen wherever there is a need to invoke a named
entity. If, for example, we want to calculate the value of z from these three

30



equations: x = 4; y = 5; z = x+ y, we need to match the identi�er x in the third
equation with the identi�er x in the �rst equation, and to unify the two, so that
the correct value is used for the calculation of z. Likewise for y.

For anyone familiar with computer programming, what has been described may
seem simple enough. But in computer programs, a variable is more complex than
its name. It has a structure that allows it to hold a `value' and there are procedures
for assigning values to variables. But none of that complexity should obscure the
basic processes of matching and uni�cation of identi�ers, as described above.

6.3.2 The matching and uni�cation of identi�ers: calling a function

In a similar way if we wish to invoke or `call' a function such as `log x' (the logarithm
of a number), there must be a match between the name of the function in the call
to the function (such as `log 1000') and the name of the function in its de�nition,
`log x'. Uni�cation of the call to the function with the de�nition of the function
may be seen to have the e�ect of assigning the number in the call (1000 in this
example) to the variable x in the de�nition of the function.

As before, the complexity of assigning a number to a variable should not obscure
the simplicity of matching identi�ers and unifying them.

6.3.3 The execution of a function

At an abstract level, any function may be seen as a table in which each row shows
the connection between one or more input values and one or more output values.
And simple functions, such as a one-bit adder, may be speci�ed in exactly that
way, as shown in Table 2.

Input (1) Input (2) Sum Carry

1 1 0 1
1 0 1 0
0 1 1 0
0 0 0 0

Table 2: A table to de�ne a function for the addition of two one-bit numbers in
binary arithmetic, with provision for the carrying out of one bit.

To see how ICMUP features in the workings of this function, consider how the
function would calculate a sum for the input values `1' and `0'. In this case: there
is a search for a match between the �rst of those two input values (1) and the four
values that appear in the �rst column of the table, leading to positive matches in
the �rst two rows of the table; and there is a similar search for a match between
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the second of those two input values (0) and the four values that appear in the
second column of the table, leading to positive matches in the second and fourth
rows of the table.

But the matches which, via uni�cation, achieve the greatest overall compression
(both `1' and `0' in the �rst and second columns in one row) have the e�ect of
selecting the second row in the table. The sum obtained in this case is `1' (in the
third column, second row), with the carry digit, `0' (in the fourth column, second
row). Those two values are of course the correct result for the addition of the
input values `1' and `0'.

6.3.4 Matching and uni�cation of patterns with Peano's axiom for nat-

ural numbers

The sixth of Peano's axioms for natural numbers�for every natural number n,
S(n) is a natural number�provides the basis for a succession of numbers: S(0),
S(S(0)), S(S(S(0))) ..., itself equivalent to unary numbers in which 1 = /, 2 = //,
3 = ///, and so on. Here, S at one level in the recursive de�nition is repeatedly
matched and uni�ed with S at the next level.

6.4 Chunking-with-codes

This subsection describes aspects mathematics that may be seen to exemplify the
chunking-with-codes technique for IC, as described in Section 5.2.

6.4.1 Named functions

If a body of mathematics is repeated in two or more parts of something larger
then it is natural to declare it once as a named `function', where the body of the
function may be seen as a `chunk' of information, and the name of the function is
its `code' or identi�er. This avoids the need to repeat the body of the function in
two or more places.

An example of this kind of thing is the calculations needed to �nd the square
root of a number, often provided in spreadsheets, programming languages, and
the like, as a ready-made square-root function with a name like `

√
x'. That name

may be used to invoke the function wherever it is needed, like this: `
√

16'. Similar
things may be done with functions such as `sin(x)', `cos(x)', and `log(x)'.

Although they are not commonly seen as `functions', all of the operations of
addition, subtraction, multiplication, the power notation, and division, may be
cast in that mould as, for example, `plus(x,y)', `subtract(x,y)', and so on. As such,
they may be seen as examples of the chunking-with-codes device for compression
of information. As we shall see in Section 6.5, they may also be seen as examples
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of the schema-plus-correction device, and in Section 6.6, they provide examples of
run-length coding.

6.4.2 The number system

Number systems with bases greater than 1, like the binary, octal, decimal and
hexadecimal number systems, may all be seen to illustrate the chunking-with-
codes technique for compressing information. For example:

• A unary number like `///////' may be referred to more brie�y in the decimal
system as `7'. Here, `///////' is the chunk and `7' is the code.

• A unary number like `/////////////////' may be split into two parts:
`//////////' and `///////'. Then, in the decimal system, the �rst part,
which is the number of 10s, would be represented by `1', and the second
part, which is number of units, would be `7', giving us the decimal number
`17'.

• Of course, this `positional' system can be extended so that a digit in the
third position from the right represents the number of 100s, a digit in the
fourth position from the right represents the number of 1000s, and so on.

Here, we can see how the chunking-with-codes technique allows us to eliminate
the repetition or redundancy that exists in all unary numbers except `/'. This
means that large numbers, like 2035723, may be expressed in a form that is very
much more compact than the equivalent unary number.

6.5 Schema-plus-correction

Most functions in mathematics, like those mentioned above, are not only examples
of chunking-with-codes: they are also examples of the schema-plus-correction de-
vice for compressing information. This is because they normally require input via
one or more `arguments' or `parameters'. For example, the square root function
needs a number like 49 for it to work on. Without that number, the function
is a very general `schema' for solving square root problems. With a number like
49, which may be regarded as a `correction' to the schema, the function becomes
focussed much more narrowly on �nding the square root of 49.

6.6 Run-length coding

Run-length coding appears in various forms in mathematics, often combined with
other things. The key idea is that some entity, pattern, or operation is repeated
two or more times in an unbroken sequence. Here are some examples:
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• Since all numbers with bases above 1 may be seen to be compressed represen-
tations of unary numbers (Section 6.4.2), unary numbers may be regarded
as more fundamental than non-unary numbers. If that is accepted, then,
for example, `3 + 7' may be seen as a shorthand for the repeated process of
transferring one unary digit from a group of seven unary digits to a group of
three unary digits. Thus the expression `+7' within `3 + 7' may be seen as
an example of run-length coding.

Subtraction may be interpreted in a similar way when a smaller number is
subtracted from a larger number.

• Multiplication is repeated addition. So, for example, `3 × 10' is the 10-fold
repetition of the operation `x+ 3', where `x' starts with the value `0'. Thus
`×10' within `3× 10' may be seen as run-length coding. Since addition may
itself be seen as a form of run-length coding (as described in the preceding
bullet point), multiplication may be seen as run-length coding on two levels.

• Division of a larger number by a smaller one (eg, `12/3') is repeated sub-
traction which, as with multiplication, may be seen as run-length coding.
Of course there will be a `remainder' if the larger number is not an exact
multiple of the smaller number. As with addition as a part of multiplication,
and addition as itself an example of run-length coding, subtraction as a part
of division, and subtraction as run-length coding, means that division may
be seen as run-length coding on two levels.

• The power notation (eg, `109') is repeated multiplication, and is thus another
example of run-length coding. Since multiplication, as repeated addition, is
a form of run-length coding, and since addition may be seen as run-length
coding (the �rst bullet point above), the power notation may be seen as
run-length coding on three levels!

• A factorial (eg, `25!') is repeated multiplication and subtraction.

• The bounded summation notation (eg, `
∑5

i=1
1
i
') and the bounded power

notation (eg, `
∏10

n=1
n

n−1 ') are shorthands for repeated addition and repeated
multiplication, respectively. In both cases, there is normally a change in the
value of one or more variables on each iteration, so these notations may be
seen as a combination of run-length coding and schema-plus-correction.

6.7 Class-inclusion hierarchies

Classes and subclasses (Section 5.5) feature in mathematics as `sets', both as a
sometimes-disputed foundation for mathematics, and as a branch of mathematics.
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The notion of `inheritance' does not have the prominence in set theory that it
does in object-oriented programming, but, nevertheless, ICMUP may be seen in
other concepts associated with sets, described in Section 7.1.

6.8 Part-whole hierarchies

It seems that part-whole hierarchies are not much used in mathematics, except
perhaps in set theory, but, as we shall see in Section 7.2, they are quite prominent
in the mathematics-related discipline of computing.

6.9 SP-multiple-alignment

Preliminary work described in [61, Chapter 10] shows that the SP System, with SP-
multiple-alignment centre-stage, has potential to model mathematical constructs
and mathematical processes. This should not be altogether surprising since, as
noted in Section 5.7, SP-multiple-alignments can do everything that can be done
with the six variants of ICMUP described in Sections 5.1 to 5.6, and it provides
for their seamless integration too.

Other reasons for believing that the SP System has potential to model many
and perhaps all concepts and processes in mathematics are:

• The generality of IC as a means of representing knowledge in a succinct
manner (Section 3.7).

• The central role of IC in the SP-multiple-alignment framework (Section 3.3).

• The versatility of the SP-multiple-alignment framework in aspects of intelli-
gence and the representation of knowledge (Section 3.7).

• The close connection that is known to exist between IC and concepts of
probability (Section 8).

6.10 Some equations

It seems that most equations that have become established in mathematics and
science may be interpreted in terms of some combination of the techniques for
compressing information described in Section 5. Thus:

• Einstein's equation, E = mc2, illustrates run-length coding in its power
notation (c2) and in the multiplication of m with c2.
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• Newton's equation, s = (gt2)/2, that featured in Section 6.1, illustrates run-
length coding in its power notation (t2), in the multiplication of g with t2,
and in the division of (gt2) by 2.

• Pythagoras's equation, a2 + b2 = c2, illustrates run-length coding via the
power notation in a2, b2, and c2, and via the addition of b2 to a2 (the �rst
bullet point in Section 6.6).

• Boyle's law, PV = k, illustrates run-length coding in the multiplication of
P by V .

• The charged particle equation, F = q(E + v × B), illustrates run-length
coding in the multiplication of v by B, in the multiplication of (E + v ×B)
by q, and in the addition of v ×B to E.

• One of special relativity's equations for time dilation, ∆t′ = ∆t/
√

1− v2/c2,
illustrates chunking-with-codes and schema-plus-correction in its use of the
square root function, and it illustrates run-length coding in the division of
v2 by c2, in the subtraction of v2/c2 from 1, and in the division of ∆t by√

1− v2/c2.

• In its use of bounded summation (
∑
), Shannon's equation for entropy, H =

−∑
i pi log2(pi), illustrates a combination of run-length coding and schema-

plus-correction (as noted in Section 6.6). It also illustrates chunking-with-
codes in its use of the log2 notation.

Since addition, subtraction, multiplication, the power notation, and divi-
sion, may each be seen as an example of chunking-with-codes and schema-plus-
correction (Sections 6.4 and 6.5), as well as run-length coding (Section 6.6), the
same can be said about the appearance of those notations in each of the examples
above.

7 Mathematics-related disciplines as ICMUP

It seems that, to a large extent, what has been said about mathematics in Section
6 also applies to the mathematically-related disciplines of logic and computing.7

The following two subsections present some examples in support of that idea.

7Where computing has its modern sense of computation by machine.
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7.1 Logic

Subsections that follow describe some evidence for ICMUP in logic and related
disciplines.

As a preliminary, we may guess that logic may, to a large extent, be understood
in terms that are much like MICMUP because of Frege's considerable and largely
successful e�orts in demonstrating that mathematics may be largely understood
in terms of logic [33, Chapter 2]. In the light of his research, it seems likely that,
if mathematics can be understood largely in terms of ICMUP, the same would be
true of logic.

7.1.1 XOR and other logical operations

The XOR logical function, shown in Table 3, and other simple logical functions,
may be de�ned and interpreted in much the same way as the one-bit adder shown
in Table 2.

Input (1) Input (2) Output

1 1 0
0 1 1
1 0 1
0 0 0

Table 3: A table to de�ne the XOR logical function.

As with the one-bit adder, the operation of the XOR function may be under-
stood in terms of basic ICMUP. Input values such as 1 (�rst) and 0 (second) may
be matched and uni�ed with values in the corresponding `input' columns of the
table. With those two input values, the third row is selected because it yields
most matches�which, with uni�cation, also means the greatest compression of
information. And of course the third row yields the correct output value, which in
this example is 1.

There are two points of interest here:

• The XOR Function and Arti�cial Neural Networks. As is well known, Marvin
Minsky and Seymour Papert [35] demonstrated that basic perceptrons of the
kind that were available in the late 1960s could not produce correct results
with the XOR function, a demonstration which, for a time, led to a fall in
interest in arti�cial neural networks.

• The Generality of the NAND Logical Function. As noted in Section 6.2, the
fact that the NAND logical function may, like XOR and other simple logical
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functions, be understood in terms of ICMUP, and the generally-accepted
idea that the computational heart of any general-purpose computer may, in
principle, be constructed entirely from NAND gates [38], provide evidence
in support of the idea that compression of information is fundamental in all
kinds of computation including mathematical computations.

7.1.2 Deriving a sets from a multiset

In logic and mathematics, a `multiset' or `bag' is like a set but any element within
the multiset may be repeated as, for example, in the multiset {a, b, a, c, b, b, c,
a, c}.

Conversion of any such multiset into the corresponding set means matching
each element within the multiset with every other element and, wherever a match
is found, unifying the two elements, including elements that are the result of earlier
uni�cations, thus achieving ICMUP. In this case, the multiset {a, b, a, c, b, b, c,
a, c} is reduced to the set {a, b, c}.

7.1.3 The union and intersection of sets

In much the same way that a set may be derived from a multiset (Section 7.1.2), the
union and intersection of two sets may be found by the matching and uni�cation
of elements, yielding a reduction in the overall size of the two sets when uni�cation
has been achieved. Thus, for example, the union of the sets {b, f, d, a, c, e} and
{e, g, i, f, d, h} is {a, b, c, d, e, f, g, h, i}, with the intersection {d, e, f}. In
accordance with ICMUP, the union is smaller than the two sets from which it was
derived.

7.1.4 ICMUP in Prolog

Further evidence for the signi�cance of ICMUP in logic is that systems like
Prolog�a computer-based version of logic�may be seen to function largely via
the matching and merging of patterns.

Here, the meaning of `uni�cation' in Prolog�comparing two terms to see if
they can be made to represent the same structure�is quite close to the meaning
of `uni�cation' in this paper.

7.1.5 Versatility in reasoning with the SP System

As noted in Section 3.7, the SP Computer Model demonstrates several kinds of
reasoning including one-step `deductive' reasoning, chains of reasoning, abductive
reasoning, and more.
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Because of the probabilistic nature of the SP System, these forms of reasoning
are probabilistic. So it may seem that they have little to do with logic, because of
its all-or-nothing character. But if it is accepted that logic, like mathematics, is
probabilistic at a deep level�for reasons given in Section 8�then the versatility
of the SP System in probabilistic reasoning may be seen as further evidence for
the importance of ICMUP in logic.

7.2 Computing

As with logic, it seems likely that, since computing is closely related to mathe-
matics, it may, like mathematics, be understood in terms of ICMUP. Evidence in
support of that view is presented in subsections that follow.

7.2.1 Matching and uni�cation of patterns in de�nitions of `computing'

Emil Post's [46] �Canonical System�, which is recognised as a de�nition of `com-
puting' that is equivalent to a universal Turing machine, may be seen to work
largely via ICMUP [61, Chapter 4].

Much the same is true of the workings of the transition function in a universal
Turing machine. This is essentially a look-up table like that shown in Table 4.

Input (1) Input (2) Output (1) Output (2)

s0 1 s0 �

s0 0 s1 1
s1 1 s1 �

s1 0 s2 �

Table 4: An example of a transition function in a universal Turing machine, rep-
resented as a look-up table, as described in the text. Key: `�' means �move the
read/write head one place to the right�; `�' means �move the read/write head one
place to the left�. Based on the example in [4, Section 2], with permission.

Much as with the examples described in Sections 6.3.3 and 7.1.1, ICMUP may
be seen, for example, in the matching and uni�cation of input values `s1' and `1'
with corresponding values in the input columns of the table. In this case, the
e�ect will be to select the third row in the table, with the output values `s1' and
`�'�which mean �Set the state of the machine to `s1' and move the read/write
head of the machine one place to the left�.

In a similar way, ICMUP may be seen in the workings of the NAND logical
function which, as noted in Sections 6.2 and 7.1.1 may in principle provide the
computational heart of any general-purpose digital computer.
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7.2.2 Some other examples of ICMUP in computing

Here, in brief, are some other putative examples of ICMUP in computing:

• Basic ICMUP. As in mathematics (Section 6.3), basic ICMUP may be seen in
computing in the matching of identi�ers for variables and in calls to functions.

• Chunking-With-Codes and Schema-Plus-Correction. As in Section 6.4,
named functions in computing may be seen as examples of the chunking-with-
codes version of ICMUP, and as in Section 6.5, functions with parameters
may be seen as examples of the schema-plus-correction version of ICMUP.

• Run-Length Coding. As in mathematics (Section 6.6), run-length coding may
be seen in computing in the basic arithmetic functions. It may also be seen in
iteration statements like while ..., do ... while ..., for ..., or repeat ... until ....
And it may be seen in the use of recursion in functions such as factorial(x)
for the calculations of the factorial of any number.

• Class-Inclusion Hierarchies and Part-Whole Hierarchies. In computing, the
creation of classes and hierarchies of classes is supported in such object-
oriented programming languages as Simula, Smalltalk, C++, and many
more. Part-whole hierarchies are also prominent in software. In both cases,
ICMUP has a role to play, much as described in Sections 5.5 and 5.6.

• Retrieving Data From Computer Memory. It is true that electronic circuits
provide the mechanism for �nding an address in computer memory but,
at a more abstract level, the process may be seen as one of searching for a
match between the address held in the CPU and the corresponding address in
computer memory. When a match has been found between the address in the
CPU and the corresponding address in memory, there is implicit uni�cation
of the two.

• Query-by-Example. Query-by-example, which is a popular technique for re-
trieving information from databases, may be seen to be essentially a pro-
cess of �nding good matches between a query pattern and patterns in the
database, with uni�cation of the best matches.

8 The intimate relation between IC and concepts

of probability

The main focus of this paper is on MICMUP, but in view of the previously-noted
very close relation between IC and concepts of probability, and because of the
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importance of probabilities in theories of AI and HLPC, it is relevant to explore
that relationship in a little more detail.

The relationship is evident in classical Information Theory [51], but has been
explored most notably in Ray Solomono�'s Algorithmic Probability Theory (ALP,
[53, 54], and [32, Chapter 4]).

In the SP System, the very close connection between IC and concepts of prob-
ability (and inference) makes sense in terms of ICMUP because:

• IC via the uni�cation of SP-patterns. The uni�cation of two or more copies
of an SP-pattern achieves compression of information.

• Frequencies of occurrence. For a given SP-pattern, its frequency of occur-
rence may be derived via ICMUP from the number of original SP-patterns
that have been uni�ed to create that SP-pattern. Likewise for the frequency
of occurrence of any SP-symbol.

• Deriving absolute and relative probabilities from frequencies of occurrence. In
general, absolute and relative probabilities in the SP System may be derived
from the frequencies of occurrence of SP-patterns ([63, Section 4.4], [61,
Section 3.7]).

• Inference and conditional probability. Inference may be achieved via partial
matching as, for example, in the way that seeing black clouds allows us to
make the inference that rain is likely, via a partial match between `black
clouds' and the pre-established SP-pattern `black clouds rain'. This is
sometimes called prediction by partial matching (see, for example, [55]).

The justi�cation for this kind of inductive reasoning is itself the subject of
much debate. There is a contribution to that debate in Appendix B.

Thus, the prominence of ICMUP in mathematics, and logic and computing, as
described in this paper, suggests that some aspects of mathematics, and perhaps
some aspects of logic and computing, are somehow probabilistic. But that seems to
con�ict with the familiar, all-or-nothing, clockwork nature of much of mathematics
and logic, where 2 + 2 = 4 and where Socrates is mortal (because he is human,
and all humans are mortal), without uncertainties of any kind.

This apparent contradiction may, perhaps, be resolved in some such manner as
the following:

• Uncertainties associated with Gödel's incompleteness theorems. Gregory
Chaitin writes:
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�I have recently been able to take a further step along the path laid
out by Gödel and Turing. By translating a particular computer
program into an algebraic equation of a type that was familiar even
to the ancient Greeks, I have shown that there is randomness in the
branch of pure mathematics known as number theory. My work
indicates that�to borrow Einstein's metaphor�God sometimes
plays dice with whole numbers.� [14, p. 80].

As indicated in this quotation, randomness in number theory is closely re-
lated to Gödel's incompleteness theorems (see, for example, [36]). Gödel's
theorems depend on the phenomenon of recursion, a feature of many formal
systems, several of Escher's pictures, and much of Bach's music, as described
in some detail by Douglas Hofstadter in Gödel, Escher, Bach: An Eternal
Golden Braid [24].

If �God sometimes plays dice with whole numbers� as suggested by Chaitin
in the quote above, then at least one part of number theory is probabilistic.
But it seems reasonable to assume that other parts of number theory (and
thus mathematics), which probably include the parts where 2 + 2 = 4, are
not probabilistic. And we may guess that similar things apply to logic and
computing.

• Uncertainties associated with frequencies. By contrast with the kinds of un-
certainties just described, there are other uncertainties in the SP System,
and associated probabilities, arising from the values for frequency of occur-
rence of SP-patterns and SP-symbols. These may serve in the calculations
of probabilities that are made by the SP Computer Model (Section 3.4).

But although the SP System is well suited to probabilistic applications, it
seems likely that, with appropriate data, there will be other kinds of appli-
cation where all values for probability are 0 or 1, so that the SP System will
behave in the all-or-thing clockwork manner of conventional computing.

Although there is a very close relation between IC and concepts of probability,
this does not mean that they are equivalent or inter-changeable. It appears that, in
research in AI, cognitive science, and concepts of probability, there are advantages
in putting one's main focus on IC. Arguments for that view are summarised in
Section 8.2, below.

8.1 Classical, Frequentist, and Bayesian views of probability

Perhaps because of the prominence of uncertainties in the way people perceive
things and think, much research in AI and cognitive science is based on concepts
of probability such as those in Bayes' Theorem.

42



In brief, Bayes' Theorem may summarized with the equation P (h|D) =
P (D|h)P (h)

P (D)
, where P (h) = prior probability of hypothesis h, P (D) = prior prob-

ability of training data D, P (h|D) = probability of h given D, and P (D|h) =
probability of D given h.

To be clear, the concept of probability in the SP System (Section 3.4) di�ers
sharply from the concept of probability in Bayesian theory because it depends
directly on the frequencies of occurrence of entities or events�derived from fre-
quencies of occurrence of SP-patterns and SP-symbols�whereas Bayesian theory
adopts the view that probability is a degree of belief in the probability of an entity
or event, and includes the concept of prior probability, meaning the degree of belief
in the probability of an entity or event prior to the receipt of new data.

Of course, the SP Theory, like any theory of probabilities that emphasises
the importance of frequencies of occurrence of entities or events, may recognise
probabilities that are prior to the receipt of new data, but such probabilities do
not have the kind of special theoretical status that they do in Bayesian theory.

8.2 Asymmetry in the relationships between ICMUP and

concepts of probability

The very close connection between IC and concepts of probability in both ordinary
computing and in the SP System may suggest that there is nothing to choose
between IC and concepts of probability as a foundation for theorising in AI, in
cognitive science, and in research about probability. But for reasons outlined
in the following subsections, there are advantages in approaching probability via
ICMUP�in AI, in cognitive science, and in other areas where values for probability
are needed.

8.2.1 Loss of information in the derivation of probabilities

As may be seen from points made above, absolute and conditional probabilities
may be derived via ICMUP, but the reverse is not true. This is partly because,
arguably, the matching and uni�cation of patterns is more primitive than concepts
of probability. But more to the point, values for probability, in themselves, have
lost information about the matches and uni�cations that led to their creation.

Because probabilities may be derived from ICMUP but not the other way
round, and because ICMUP is prominent in HLPC [71], any arti�cial system that
aspires to the generality of human intelligence should be founded on ICMUP, not
concepts of probability. In a similar way, it seems appropriate that ICMUP should
be the basis for probability in theories of human cognition, and other areas where
values for probability are needed.
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8.2.2 Potential for creating new structures via ICMUP

Much can be done with Bayesian and other probabilistic approach to AI, but some-
thing is missing: it is assumed that all of the conceptual entities in a probabilistic
analysis have been created already, and there is nothing about how they may be
formed. By contrast, ICMUP in the SP System opens up the possibility of isolat-
ing words as discrete entities in speech [71, Section 15.1], and likewise for phrases
[71, Section 15.2]. And it can provide a basis for the building of three-dimensional
models of entities, as outlined in [64, Sections 6.1 and 6.2].

8.2.3 The scope of frequency information may be extended via ICMUP

It is often assumed that, when the frequency of occurrence of entities or events is
used as the basis of probability measures, high frequencies are needed to ensure
that results are statistically signi�cant. Thus, for example:

�There is a de�nition of probability in terms of frequency that is some-
times usable. It tells us that a good estimate of the probability of an
event is the frequency with which it has occurred in the past. This
simple de�nition is �ne in many situations, but breaks down when we
need it most; i.e., its precision decreases markedly as the number of
events in the past (the `sample size') decreases. For sample sizes of
1 or 2 or none, the method is essentially useless.� ([54, pp. 74�75],
emphasis added).

By contrast, in searching for repeating patterns that may be uni�ed to yield
compression of information, the sizes of repeating patterns are as important as
their frequency. Maximising the amount of redundancy found means maximising
R where:

R =
i=n∑
i=1

(fi − 1) · si, (1)

and where fi is the frequency of the ith member of a set of n patterns and s is its
size in bits. In brief, patterns that are both big and frequent are best.

But there is a trade-o� between the sizes of patterns and the minimum frequency
that is needed for IC. With small patterns, high frequencies are required. But with
large patterns, useful compression can be achieved with frequencies that are as low
as 2 or 3 [61, Sections 2.2.8.3 and 2.2.8.4].

As an example, a song (or other piece of music) that we have heard only once
may be recognised from hearing, only once, a smallish sample of that song. Ac-
cordingly, we assign a mental probability of 1.0 to the identi�cation we have made,
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a probability which corresponds to a frequency of 2, because the �rst learning-by-
hearing of the song yields a frequency of 1, and the second recognition-by-hearing
of the song yields a frequency of 2. Of course, these arguments do not apply if
either or both of the song, or the later-heard sample from the song, are very short.

8.2.4 Probability, causation, and structure

Another apparent shortcoming of relying too much on concepts of probability arises
if we wish to know about causation. For example:

�The answer [to di�culties in solving causal problems with statistics
...] has to do with the o�cial language of statistics�namely the lan-
guage of probability. This may come as a surprise to some [people]
but the word cause is not in the vocabulary of probability theory; we
cannot express in the language of probabilities the sentence mud does
not cause rain�all we can say is that the two are mutually correlated
or dependent�meaning that if we �nd one, we can expect the other.
Naturally, if we lack a language to express a certain concept explicitly,
we can't expect to develop scienti�c activity around that concept.� [43,
p. 342].

�[An engineering diagram] is, in fact, one of the greatest marvels of
science. It is capable of conveying more information than millions
of algebraic equations or probability functions or logical expressions.
What makes [such a diagram] so much more powerful is the ability to
predict not merely how the [system] behaves under normal conditions
but also how [it] will behave under millions of abnormal conditions.�
[43, p. 344].

To summarise what Pearl says here: any satisfactory account of causation
requires a description of relevant structures, not merely numbers and equations.

Although no serious attempt has yet been made to examine issues in causality
in terms of the SP Theory (but see [63, Section 10.5] and [61, Section 7.9]), there
are reasons to think that it may be more successful than classical statistics. This
is because, in accordance with the second quote above, the SP System has the
potential to represent and to learn the kinds of structures that are needed for a
comprehensive causal analysis (Section 8.2.2).

9 So what?

While it may be accepted that mathematics may be understood as ICMUP, readers
may wonder what advantages, if any, may be derived from MICMUP and related
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ideas. Here, in the following three subsections, are three possibilities.

9.1 An improved ratio of Simplicity to Power for ICMUP

and the SP System

The discovery that the explanatory range of ICMUP may, without any in-
crease in complexity, be extended from AI-related areas to mathematics and the
mathematics-related areas of logic and computing, can mean an improvement in
its ratio of Simplicity to descriptive and explanatory Power.

Since SP-multiple-alignment may be seen to be a generalisation of six variants
of ICMUP (Section 5.7), and since it is a large part of the SP System (Section 3.3),
the improved ratio of Simplicity to Power for ICMUP means a similar improvement
for the SP System.

9.2 Potential for the development of a New Mathematics

In view of the demonstration in this paper of the interpretation of concepts in math-
ematics and related disciplines in terms of ICMUP and related concepts (Sections 6
and 7), there is potential for the augmentation and adaptation of mathematics with
concepts and mechanisms from the SP System, especially SP-multiple-alignment
and unsupervised learning via the building of SP-grammars. Those concepts, with
associated ideas, may provide the basis of a New Mathematics.

The next subsection summarises some potential bene�ts of an NM, and the one
after that expands on one possibility in how an NM may facilitate the development
of scienti�c theories.

9.2.1 Potential bene�ts of a New Mathematics

Some of the potentially useful things that an NM may do are summarised here:

• Extending the range of applications for mathematics. In [66, Section III], it is
is argued that the SP System has potential to be developed into a universal
framework for the representation and processing of diverse kinds of knowledge
(UFK). Those arguments apply a fortiori to an NM, drawing as it would on
the resources of both the SP System and mathematics.

• Facilitating the integration of scienti�c theories. By providing a UFK for
the description and processing of related but incompatible theories such as
quantum mechanics and relativity, an NM has the potential to help iron out
inconsistencies between such theories and to facilitate their integration.
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• Several kinds of reasoning. Since the SP System already demonstrates
strengths and potential in several di�erent kinds of reasoning ([63, Section
10], [61, Chapter 7]), an NM may provide a means of drawing inferences from
observations and concepts in science and elsewhere, across a much wider area
than is usual now. Potential bene�ts here include a softening of the boundary
between `exact', all-or-nothing styles of reasoning, and probabilistic kinds of
reasoning.

• Development of scienti�c theories. By exploiting strengths of the SP System
in unsupervised learning (which, in the future, are likely to be much more
fully developed than they are now), an NM may facilitate the automatic
or semi-automatic development of scienti�c theories from data [67, Section
6.10.7]. There is more in Section 9.2.2, below.

• Quantitative evaluation of scienti�c theories. An NM may provide a means
of quantifying the Simplicity of any scienti�c theory, and its descriptive or
explanatory Power, and thus, via the ratio of those two measures, facilitating
quantitative comparisons amongst rival scienti�c theories.

• The study of complex systems. There seems to be potential for the NM in
the study of complex systems, meaning systems which �... are characterized
by interactions between their components that produce new information�
present in neither the initial nor boundary conditions�which limit their
predictability.�8

• The integration of mathematics, logic, and computing. In an NM, the dis-
tinction between mathematics, logic, and computing would largely disappear
in, for example, the SP Machine (Section 3.8).

• A new perspective on statistics. Because of the intimate relation between
IC and concepts of probability (Section 8), and the apparent advantages in
approaching probability via ICMUP (Section 8.2), an NM has the potential
to provide a whole new perspective on statistics, with potential advantages
over established ideas.

• Facilitating the learning and use of mathematics. There seems to be potential
to make mathematics more transparent in the representation of fundamentals
such as ICMUP and its workings. There is a corresponding potential for
mathematics to be easier to learn, to understand, and to use.

8In �About this Journal� of the journal Complexity, bit.ly/2DZ1t3A, retrieved 2019-08-16.
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• New approaches to concepts of `proof', `theorem', and related ideas. There
appears to be potential for improved concepts of `proof', `theorem', and re-
lated ideas, incorporating measures of IC. And there appears to be potential
for the automatic or semi-automatic discovery of new theorems and other
results in mathematics, and for their automatic or semi-automatic applica-
tion.

• Quanti�cation of con�dence in inferences. By contrast with mathematics,
where inferences can be, and often are, made without any measure of the con-
�dence that may attach to those inferences, the SP System provides measures
of con�dence for all its inferences. Thus, for example, inferences of singular-
ities far into the past may be made with much less con�dence with the SP
System than they are sometimes made with mathematics.

• Mathematical study of the SP System. Some parts of the SP System, the
concept of SP-multiple-alignment in particular, may prove to be of interest
from a mathematical perspective.

9.2.2 An additional potential bene�t of an NM in science

Apart from the potential bene�ts to scienti�c research that are implicit in the more
general potential bene�ts of an NM summarised in Section 9.2.1, there is another
kind of potential bene�t for science, outlined here.

It appears that, on occasion, leading scientists have developed concepts which
they have found di�cult to express with the mathematics that was available to
them. Here are three putative examples:

• It appears that Michael Faraday developed his ideas about electricity and
magnetism with little or no knowledge of mathematics and that James Clerk
Maxwell translated them into mathematical form:

�Without knowing mathematics, [Faraday] writes one of the best
books of physics ever written, virtually devoid of equations. He
sees physics with his mind's eye, and with his mind's eye creates
worlds.� [48, Location 623].

and

�Maxwell quickly realizes that gold has been struck with [Fara-
day's] idea. He translates Faraday's insight, which Faraday ex-
plains only in words, into a page of equations. These are now
known as Maxwell's equations. They describe the behaviour of
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the electric and the magnetic �elds: the mathematical version of
the `Faraday lines'.� [48, Location 677].

• Charles Darwin described his theory of evolution by natural selection with
words and pictures. To this day, it is still normally described in that way
(but see Gregory Chaitin's proposals for creating �a general, abstract mathe-
matical theory of evolution that captures the essence of Darwin's theory and
develops it mathematically.� [16, Location 189]).

• It seems that Albert Einstein's ideas were generally developed �rst in non-
mathematical form and only later cast into mathematics:

�Einstein had a unique capacity to imagine how the world might
be constructed, to `see' it in his mind. The equations, for him,
came afterwards; ... For Einstein, the theory of general relativity
is not a collection of equations: it is a mental image of the world
arduously translated into equations.� [48, Location 1025].

Judging by the quotes above, much of the thinking of at least some leading
scientists is visual, and not expressible directly in terms of equations (although
mainstream mathematics includes visual structures such as 2D and 3D charts,
geometrical �gures, and topological structures). However, an NM may, in addition,
provide a means of representing two-dimensional structures via 2D SP-patterns,
and three-dimensional structures via SP-patterns as described in [64, Sections 6.1
and 6.2].

The provision of cognitive structures like those may help scientists to think
and communicate directly with NM concepts, without the need to translate their
ideas into some less congenial form. It seems possible that an NM may provide the
means of representing and processing scienti�c concepts in forms that are more in
accord with the intuitions of scientists like Michael Faraday, Charles Darwin, and
Albert Einstein than is conventional mathematics.

There is relevant discussion in José Luis Bermúdez's book on Thinking Without
Words [8] and Hans Furth's book on Thinking Without Language: Psychological
Implications of Deafness [21].

9.3 The `Big Picture'

In view of the wide scope of IC, ICMUP, and SP-multiple-alignment (described in
Section 3.7, in [63, 61], and in [71]), there is potential for fruitful research exploring
their applicability in at least seven areas where the inter-related principles of IC,
ICMUP, and SP-multiple-alignment may, with advantage, be applied. This Big
Picture currently comprises:
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• IC as a unifying principle in AI. The strengths and potential of the SP
System in aspects of human intelligence (Section 3.7) and the central role
in the SP System of SP-multiple-alignments (Section 3.3), is evidence for
ICMUP as a unifying principle in AI.

• IC as a unifying principle in HLPC. A companion to the present paper
describes relatively direct empirical evidence for ICMUP as a unifying prin-
ciple in HLPC [71, Sections 4 to 20]. The strengths and potential of the
SP System in modelling aspects of HLPC (Section 3.7), and the central role
of SP-multiple-alignment in the SP System, provides further evidence for
importance of ICMUP in HLPC [71, Section 21].

• IC in neuroscience. Because of its central role in SP-Neural (Section 3.6),
ICMUP has clear potential in neuroscience, as described in [68].

• IC, concepts of probability, and statistics. It is known that there is an inti-
mate relation between IC and concepts of probability (Section 8). But there
is an asymmetry between ICMUP and concepts of probability, and there are
apparent advantages in approaching probability via ICMUP, as outlined in
Section 8.2.

For those kinds of reasons, there is potential for useful new thinking of meth-
ods for statistical analysis in experimental science, epidemiology, social sci-
ence, and so on.

• Causation. Although, in the SP programme of research, little has yet been
done on the concept of the causation, it seems likely that useful things can
be said about causation in terms of the SP concepts(Section 8.2.4.

• IC as a foundation for mathematics, logic, and computing. This paper ar-
gues that much of mathematics, perhaps all of it, and much of logic and
computing, may be understood as ICMUP. There is potential for the cre-
ation of a New Mathematics via the adoption of the SP System as a part of
mathematics (Section 9.2). And there are many potential bene�ts of such a
New Mathematics, as outlined in Section 9.2.1.

• IC as a unifying principle in science. The importance of Ockham's razor
and related ideas is widely recognised by respected scientists. Thus: Isaac
Newton writes that �Nature is pleased with simplicity� [37, p. 320]; Ernst
Mach [3] and Karl Pearson [44] suggest independently of each other that
scienti�c laws promote �economy of thought�; Albert Einstein writes that �A
theory is more impressive the greater the simplicity of its premises, the more
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di�erent things it relates, and the more expanded its area of application.�;9

John Barrow writes that: �Science is, at root, just the search for compression
in the world� [7, p. 247]; and Ming Li and Paul Vitányi write that: �Science
may be regarded as the art of data compression� [32, Section 8.9.2].

As noted in Section 9.2.1, there is potential with the SP System for the the
automatic or semi-automatic development of scienti�c theories from data,
and for the quantitative evaluation of scienti�c theories. The SP System
may also serve as a UFK (ibid.), perhaps facilitating the encoding of scienti�c
data in a form that accommodates the way in which some leading scientists
think (Section 9.2.2).

As with �Strengthening evidence for the SP System� at the beginning of Section
9, the observation that the explanatory range of IC (and ICMUP and SP-multiple-
alignment) may, potentially, be extended from AI to �ve other areas, means that
there is potential for an improvement in the ratio of the Simplicity of IC, ICMUP,
and SP-multiple-alignment, to their descriptive and explanatory Power. Hence,
there is potential for the credibility of these IC-related concepts, in terms of Ock-
ham's razor, to be substantially increased.

Another way of looking at this is to say that the six components of the Big
Picture are mutually supportive in the sense that the credibility of any one of
them, including the main thesis of this paper, is strengthened via empirical and
analytical evidence in support of any and all of the other �ve of its components.

More speci�cally, insights or developments in one component may prove useful
in one or more of the other components. Here are some examples:

• The ICMUP perspective, SP-multiple-alignment, and unsupervised learning,
which are, together, central in the SP System, may prove useful in varied
areas of science, perhaps as part of the proposed New Mathematics, with
potential bene�ts outlined in Section 9.2.1.

• The �varied areas of science� just mentioned would of course include neuro-
science, another of the six components of the big picture. In that connec-
tion, SP-Neural, the `neural' version of the SP Theory [68], has potential as
a source of hypotheses because it draws on the several insights into HLPC,
developed in the non-neural version of the SP Theory.

• Further study of the applicability or otherwise of ICMUP concepts (per-
haps including SP-multiple-alignment) would be welcome in diverse areas of
mathematics.

9Quoted in [29, p. 512].
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10 Conclusion

This paper describes a novel perspective on the foundations of mathematics: how
much of mathematics, perhaps all of it, may be seen as ICMUP.

ICMUP is itself a novel approach to IC, couched in terms of non-mathematical
primitives, as is necessary in any investigation of the foundations of mathematics.

This new perspective on the foundations of mathematics has grown out of: 1)
an accumulation of evidence for the importance of IC in HLPC; and 2) a long-
term programme of research developing the SP System, meaning the SP Theory
of Intelligence and its realisation in the SP Computer Model.

Seven variants of ICMUP are described in Section 5.
In arguing for MICMUP, Section 6 shows �rst how mathematics may achieve

compression of information. Then it shows how variants of ICMUP may be seen
in widely-used structures and operations in mathematics.

Section 7, argues, in a similar way, that much of the mathematics-related dis-
ciplines of logic and computing may be seen to be founded on ICMUP.

Section 8 describes �rst how the intimate relation between IC and concepts of
probability makes sense in terms of ICMUP, how it relates to the established view
that at least one part of mathematics is probabilistic, and how that latter view
may be reconciled with the all-or-nothing, `exact', forms of calculation or inference
that are familiar in mathematics, logic, and computing.

Although IC and concepts of probability are closely-related, there is an asym-
metry between them: there are advantages in approaching probability via ICMUP
and not the other way round (Section 8.2).

Section 9 outlines some of the potential bene�ts and applications of the ICMUP
perspective, in strengthening support for the SP System, as the basis for a pro-
posed New Mathematics (Section 9.2), and as of a `Big Picture' across AI, HLPC,
neuroscience, concepts of probability, mathematics and related disciplines, and as
a unifying principle in science.

There are many potential bene�ts and applications arising from these new
perspectives.
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A Apparent contradictions of the idea that IC is

fundamental in mathematics, AI, and related

disciplines

There are two apparent contradictions of the idea that mathematics, AI, and
related disciplines may be understood in terms of IC. Those two apparent contra-
dictions and how they may be resolved are described brie�y in the following two
subsections.

A.1 The apparent paradox of `decompression by compres-

sion'

The idea that mathematics and related disciplines are largely, perhaps entirely,
about compression of information seems to con�ict with the undoubted fact that,
with some simple mathematics or a simple computer program, it is possible to
create data containing large amounts of repetition or redundancy.

This apparent inconsistency may be resolved via the concept of decompression
by compression, described in [71, Appendix C.1]. In brief, any relatively large
`chunk' of information, such as the expression �Treaty on the Functioning of the
European Union� may, in some kind of dictionary, be assigned a relatively short
name or `code' such as �TFEU�. Then, in accordance with the chunking-with-
codes technique for IC (Section 5.2), compression of the original document may be
achieved by replacing each instance of �Treaty on the Functioning of the European
Union� with the relatively short code �TFEU�.

After that, the original document may be recreated by retrieving each instance
of �Treaty on the Functioning of the European Union� via its short code, �TFEU�.
In that process of retrieval, each instance of �TFEU� in the compressed document
must be matched and uni�ed with a copy of that code in the dictionary. Each
such case of matching and uni�cation may be seen as a process of compressing
information. Hence, decompression of the encoded document has been achieved
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via the uni�cation of codes within the document with codes in the dictionary, with
a corresponding compression of the information in the codes.

There is a rather loose analogy with the way that, in an old-fashion refrigerator
that is powered by gas, it is the heat of a gas �ame that, paradoxically, achieves
the cooling of the refrigerator.

A.2 Redundancy is often useful in the storage and process-

ing of information

There is no doubt that informational redundancy�repetition of information�is
often useful. For example, it is standard practice in computing to maintain two or
more copies of important software and data as a safeguard against the corruption
or loss of those things.

With any website that is likely to be viewed by many people, it is normal
practice to maintain multiple copies of the website, each with one or more servers,
to avoid bottlenecks when many people try to access the website at the same time.

These kinds of uses of redundancy may seem to con�ict with the idea that IC�
which means reducing redundancy�is fundamental in mathematics and related
disciplines.

This issue and how it may be resolved is discussed in [71, Appendix C.2]. In
brief, a given body of informationXmay be a highly compressed version of another
body of information Y. But to ensure that that valuable nugget of information, X,
is safeguarded against loss or corruption, any prudent manager of an information
system would ensure that there were multiple copies of X, preferably in two or
more di�erent locations. Thus he or she would create the apparent contradiction
that the multiple copies of X would be compressed and redundant at the same
time.

B Why should we assume that the future will be

like the past?

With regard to inductive reasoning and its justi�cation mentioned Section 8:

�We can, of course, ... ask, as philosophers have done for many years:
`What is the rational basis for inductive reasoning?' Why do most
people have this strong intuition that because the sun has always risen
every morning it will do it again tomorrow, or because every paving
stone in a path has held our weight so far, the next one will too? None
of these conclusions can be proved logically.
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�It is no good arguing that inductive reasoning is rational because it has
always worked in the past. This argument eats its own tail. Here is an
argument why inductive reasoning is rational which does not depend
on the principle which it is trying to justify:

�If we assume that the world, in the future, will contain re-
dundancy in the form of recurring patterns of events, then
brains and computers which store information and make in-
ductive inferences will be useful in enabling us to anticipate
events. If it turns out that the world, in the future, does in-
deed contain redundancy, then our investment in the means
of storing and processing information will pay o�. If it turns
out that the world, in the future, does not contain redun-
dancy then we are dead anyway�reduced to a pulp of total
chaos!

�This kind of reasoning made fortunes for speculators after World War
II: it was rational to buy up London bomb sites during the war be-
cause, if the war were won, they would become valuable. If the war
were to be lost, the money saved by not making the investment would,
in an uncomfortable and uncertain future, probably not be much use
anyway.� [60, pp. 28�29].
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