On the Ramanujan's equations applied to various sectors of Particle Physics and Cosmology: new possible mathematical connections. IX

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further Ramanujan formulas and described new possible mathematical connections with some sectors of Particle Physics and Cosmology

[^0]
https://www.scientificamerican.com/article/one-of-srinivasa-ramanujans-neglected-manuscripts-has-helped-solve-long-standing-mathematical-mysteries/

Summary

In this research thesis, we have analyzed further Ramanujan formulas and described new mathematical connections with some sectors of Particle Physics and Cosmology. We have described, as in previous papers, the possible and new connections between different formulas of Ramanujan's mathematics and some formulas concerning particle physics and cosmology. In the course of the discussion we describe and highlight the connections between some developments of Ramanujan equations and particles type solutions such as the mass of the Higgs boson, those in the range of the mass of candidates" glueball ", the scalar meson $f_{0}(1710)$ and the hypothetical mass of Gluino ("glueball" = $1760 \pm 15 \mathrm{MeV}$; gluino $=1785.16 \mathrm{GeV}$) and the masses of proton (or neutron), and other baryons and mesons. Moreover solutions of Ramanujan equations, connected with the masses of the π mesons (139.576 and 134.9766 MeV) have been described and highlighted. We have showed also the mathematical connections between some Ramanujan equations, the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $\mathbf{u} \rightarrow \infty$, the ratio concerning the general asymptotically flat solution of the equations of motion of the \mathbf{p}-brane and the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.

Further, we have described the connections between the mathematics of Ramanujan and different equations concerning some areas of theoretical physics such as the topics covered in the following book: " Chandrasekhar, S. (1998) [1983]. The Mathematical Theory of Black Holes". Is our opinion, that the possible connections between the mathematical developments of some RogersRamanujan continued fractions, the value of the dilaton and that of "the dilaton mass calculated as a type of Higgs boson that is equal about to $125 \mathrm{GeV}^{\prime}$, and the Higgs boson mass itself, are fundamental.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

From:

MANUSCRIPT BOOK 2 OF SRINIVASA RAMANUJAN

Page 155

$1+2 / 3+2^{\wedge} 2 /(1 * 3 * 5)+2^{\wedge} 3 /(1 * 3 * 5 * 7)+2 \wedge 4 /(1 * 3 * 5 * 7 * 9)$

Input:

$$
1+\frac{2}{3}+\frac{2^{2}}{3 \times 5}+\frac{2^{3}}{3 \times 5 \times 7}+\frac{2^{4}}{3 \times 5 \times 7 \times 9}
$$

Exact result:

$\frac{383}{189}$

Decimal approximation:

2.026455026455026455026455026455026455026455026455026455026...
2.026455026455...

Repeating decimal:

2.026455 (period 6)
2.026455
$\operatorname{sqrt}\left(\operatorname{Pi} / 4 * \mathrm{e}^{\wedge} 2\right)$

Input:

$\sqrt{\frac{\pi}{4} e^{2}}$

Exact result:

$\frac{e \sqrt{\pi}}{2}$

Decimal approximation:

2.409014547349361028560765545623059407106512855599299265966
2.409014547...

All 2nd roots of $\left(\mathrm{e}^{\wedge} \mathbf{2} \boldsymbol{\pi}\right) / 4$:

$\frac{1}{2} e \sqrt{\pi} e^{0} \approx 2.4090$ (real, principal root)
$\frac{1}{2} e \sqrt{\pi} e^{i \pi} \approx-2.4090$ (real root)

Series representations:

$\sqrt{\frac{e^{2} \pi}{4}}=\sqrt{-1+\frac{e^{2} \pi}{4}} \sum_{k=0}^{\infty}\left(-1+\frac{e^{2} \pi}{4}\right)^{-k}\binom{\frac{1}{2}}{k}$
$\sqrt{\frac{e^{2} \pi}{4}}=\sqrt{-1+\frac{e^{2} \pi}{4}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\frac{e^{2} \pi}{4}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}$
$\sqrt{\frac{e^{2} \pi}{4}}=\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{e^{2} \pi}{4}-z_{0}\right)^{k} z_{0}^{-k}}{k!}$ for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

Now:

From the two results, we obtain:
$2.026455026455=2.409014547-\mathrm{x}$

Input interpretation:

$2.026455026455=2.409014547-x$

Plot:

Alternate forms:
$x-0.38256=0$
$2.026455026455=2.40901-x$

Solution:

$x \approx 0.38256$
0.38256

Or:
$-2.026455026455026455+\operatorname{sqrt}\left(\mathrm{Pi} / 4 * \mathrm{e}^{\wedge} 2\right)$

Input interpretation:

$-2.026455026455026455+\sqrt{\frac{\pi}{4} e^{2}}$
Result:
0.382559520894334574 ...
$0.38255952 \ldots=\mathrm{x}$

$$
\begin{aligned}
& -2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}= \\
& -2.0264550264550264550000+\sqrt{-1+\frac{e^{2} \pi}{4}} \sum_{k=0}^{\infty}\left(-1+\frac{e^{2} \pi}{4}\right)^{-k}\binom{\frac{1}{2}}{k}
\end{aligned}
$$

$$
-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}=
$$

$$
-2.0264550264550264550000+\sqrt{-1+\frac{e^{2} \pi}{4}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\frac{e^{2} \pi}{4}\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

$$
-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}=
$$

$$
-2.0264550264550264550000+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\frac{e^{2} \pi}{4}-z_{0}\right)^{k} z_{0}^{-k}}{k!}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$-\ln \left(\left(\left(-2.026455026455026455+\operatorname{sqrt}\left(\operatorname{Pi} / 4 * \mathrm{e}^{\wedge} 2\right)\right)\right)\right)$

Input interpretation:

$$
-\log \left(-2.026455026455026455+\sqrt{\frac{\pi}{4} e^{2}}\right)
$$

$\log (x)$ is the natural logarithm

Result:

0.960871027640288059...
$0.960871027 \ldots$. result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.

We know that α ' is the Regge slope (string tension). With regard the Omega mesons, the values are:

$$
\begin{array}{r|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
\omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
$$

Alternative representations:

$$
\begin{aligned}
& -\log \left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)= \\
& -\log _{e}\left(-2.0264550264550264550000+\sqrt{\frac{\pi e^{2}}{4}}\right) \\
& -\log \left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)= \\
& -\log (a) \log _{a}\left(-2.0264550264550264550000+\sqrt{\frac{\pi e^{2}}{4}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\log \left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)= \\
& \mathrm{Li}_{1}\left(3.0264550264550264550000-\sqrt{\frac{\pi e^{2}}{4}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -\log \left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)= \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)^{k}}{k}
\end{aligned}
$$

$$
-\log \left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)=
$$

$$
-\log \left(-2.0264550264550264550000+\sqrt{-1+\frac{e^{2} \pi}{4}} \sum_{k=0}^{\infty}\left(-1+\frac{e^{2} \pi}{4}\right)^{-k}\binom{\frac{1}{2}}{k}\right)
$$

$$
-\log \left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)=
$$

$$
-2 i \pi \left\lvert\, \frac{1}{2 \pi} \arg (-2.0264550264550264550000-\right.
$$

$$
\left.\left.1.0000000000000000000000 x+\sqrt{\frac{e^{2} \pi}{4}}\right)\right]-
$$

$$
\log (x)+\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k} x^{-k}(-2.0264550264550264550000-
$$

$$
\left.1.0000000000000000000000 x+\sqrt{\frac{e^{2} \pi}{4}}\right)^{k} \text { for } x<0
$$

Integral representation:

$-\log \left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)=$

$-1 /\left(\left(\left(-\ln \left(\left(\left(-2.026455026455026455+\operatorname{sqrt}\left(\mathrm{Pi} / 4 * \mathrm{e}^{\wedge} 2\right)\right)\right)\right)^{\wedge} 128\right)\right)\right)-29+$ golden ratio ${ }^{\wedge} 2$

Input interpretation:

$\frac{-1}{-\log ^{128}\left(-2.026455026455026455+\sqrt{\frac{\pi}{4} e^{2}}\right)}-29+\phi^{2}$
$\log (x)$ is the natural logarithm
ϕ is the golden ratio

Result:

139.1444730653342...
$139.1444730653342 \ldots$ result very near to the rest mass of Pion meson 139.57

Alternative representations:

$-\log ^{128}\left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)$
$\left.-29+\phi^{2}--\frac{1}{\log _{e}^{128}\left(-2.0264550264550264550000+\sqrt{\frac{\pi e^{2}}{4}}\right.}\right)$
$\left.\frac{-1}{-\log ^{128}\left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right.}\right)-29+\phi^{2}=$
$-29+\phi^{2}--\frac{1}{\left(\log (a) \log _{a}\left(-2.0264550264550264550000+\sqrt{\frac{\pi e^{2}}{4}}\right)\right)^{128}}$

$$
\begin{aligned}
& \left.\frac{-1}{-\log ^{128}\left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right.}\right)-29+\phi^{2}= \\
& -29+\phi^{2}--\frac{1}{\left(-\mathrm{Li}_{1}\left(3.0264550264550264550000-\sqrt{\frac{\pi e^{2}}{4}}\right)\right)^{128}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{-1}{-\log ^{128}\left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)}-29+\phi^{2}= \\
& -29+\phi^{2}+\frac{1}{\left(\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-3.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)^{k}}{k}\right)^{128}} \\
& \frac{-1}{-\log ^{128}\left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)}-29+\phi^{2}=-29+\phi^{2}+ \\
& \log ^{128}\left(-2.0264550264550264550000+\sqrt{-1+\frac{e^{2} \pi}{4}} \sum_{k=0}^{\infty}\left(-1+\frac{e^{2} \pi}{4}\right)^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \frac{-1}{-\log ^{128}\left(-2.0264550264550264550000+\sqrt{\frac{e^{2} \pi}{4}}\right)}-29+\phi^{2}= \\
& \begin{array}{r}
-29+\phi^{2}+1 /\left(2 i \pi \left[\frac{1}{2 \pi} \arg (-2.0264550264550264550000-\right.\right. \\
\left.\left.1.0000000000000000000000 x+\sqrt{\frac{e^{2} \pi}{4}}\right)\right\rfloor+
\end{array} \\
& \log (x)-\sum_{k=1}^{\infty} \frac{1}{k}(-1)^{k} x^{-k}(-2.0264550264550264550000- \\
& 1.0000000000000000000000 x+ \\
& \left.\sqrt{\frac{e^{2} \pi}{4}}\right)^{k} \text { for } x<0
\end{aligned}
$$

Integral representation:

Page 158

From:

We have, developing the right-hand side
$2 / 3 * \operatorname{sqrt}(\mathrm{Pi})$

Input:

$\frac{2}{3} \sqrt{\pi}$

Exact result:

$\frac{2 \sqrt{\pi}}{3}$

Decimal approximation:

1.181635900603677351532111655560763455198366304081591418809...
1.1816359006...

Property:

$\frac{2 \sqrt{\pi}}{3}$ is a transcendental number

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\pi} 2}{3}=\frac{2}{3} \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k} \\
& \frac{\sqrt{\pi} 2}{3}=\frac{2}{3} \sqrt{-1+\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+\pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{\sqrt{\pi} 2}{3}=\frac{2}{3} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!} \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$1 / 10^{\wedge} 27^{*}\left(\left(\left(\left(2 / 3^{*} \operatorname{sqrt}(\mathrm{Pi})\right)\right)^{\wedge} 3+(18+4) / 10^{\wedge} 3\right)\right)$

Input:

$\frac{1}{10^{27}}\left(\left(\frac{2}{3} \sqrt{\pi}\right)^{3}+\frac{18+4}{10^{3}}\right)$

Exact result:

$\frac{11}{500}+\frac{8 \pi^{3 / 2}}{27}$
$\overline{1000000000000000000000000000}$

Decimal approximation:

$1.6718749620242097319362423650722476154114442637876278 \ldots \times 10^{-27}$
$1.671874962 \ldots * 10^{-27}$

Property:

$\frac{11}{500}+\frac{8 \pi^{3 / 2}}{27}$

Alternate forms:

$\frac{297+4000 \pi^{3 / 2}}{13500000000000000000000000000000}$
$\frac{11}{500000000000000000000000000000}+\frac{\pi^{3 / 2}}{3375000000000000000000000000}$

Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{2 \sqrt{\pi}}{3}\right)^{3}+\frac{18+4}{10^{3}}}{10^{27}}= \\
& \frac{11}{500000000000000000000000000000}+\frac{\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3 / 2}}{421875000000000000000000000} \\
& \frac{\left(\frac{2 \sqrt{\pi}}{3}\right)^{3}+\frac{18+4}{10^{3}}}{10^{27}}=\frac{\frac{11}{500}+\frac{64}{27}\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{\left.1+2 k-4 \times 239^{1+2 k}\right)}\right)^{3 / 2}}{1000000000000000000000000000}\right.}{1+2 k} \\
& \frac{\left(\frac{2 \sqrt{\pi}}{3}\right)^{3}+\frac{18+4}{10^{3}}}{10^{27}}= \\
& \frac{11}{500000000000000000000000000000}+\frac{\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{3 / 2}}{3375000000000000000000000}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\left(\frac{2 \sqrt{\pi}}{3}\right)^{3}+\frac{18+4}{10^{3}}}{10^{27}}= \\
& \frac{11}{500000000000000000000000000000}+\frac{\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{3 / 2}}{421875000000000000000000000}
\end{aligned}
$$

$$
\frac{\left(\frac{2 \sqrt{\pi}}{3}\right)^{3}+\frac{18+4}{10^{3}}}{10^{27}}=\frac{\frac{11}{500}+\frac{8}{27}\left(\frac{3 \sqrt{3}}{4}+24 \int_{0}^{\frac{1}{4}} \sqrt{t-t^{2}} d t\right)^{3 / 2}}{100000000000000000000000000}
$$

$$
\frac{\left(\frac{2 \sqrt{\pi}}{3}\right)^{3}+\frac{18+4}{10^{3}}}{10^{27}}=\frac{11}{500000000000000000000000000000}+
$$

$$
\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{3 / 2}
$$

$843750000000000000000000000 \sqrt{2}$

Page 160

Now, we have that, for $\mathrm{x}=4096$ and $\mathrm{n}=6$:
$\operatorname{sqrt}\left(\left(\mathrm{Pi}^{*} 4096\right) /(2)^{\wedge} 6\right)+1 /(3)^{\wedge} 6$

Input:

$\sqrt{\frac{\pi \times 4096}{2^{6}}+\frac{1}{3^{6}}}$

Exact result:

$\frac{1}{729}+8 \sqrt{\pi}$

Decimal approximation:

14.18100254935661107160893383106386653782621183553602432337...
14.18100254935...

Property:
$\frac{1}{729}+8 \sqrt{\pi}$ is a transcendental number

Alternate form:

$\frac{1}{729}(1+5832 \sqrt{\pi})$

Series representations:

$\sqrt{\frac{\pi 4096}{2^{6}}}+\frac{1}{3^{6}}=\frac{1}{729}+\sqrt{-1+64 \pi} \sum_{k=0}^{\infty}(-1+64 \pi)^{-k}\binom{\frac{1}{2}}{k}$
$\sqrt{\frac{\pi 4096}{2^{6}}}+\frac{1}{3^{6}}=\frac{1}{729}+\sqrt{-1+64 \pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+64 \pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}$

$$
\begin{aligned}
& \sqrt{\frac{\pi 4096}{2^{6}}}+\frac{1}{3^{6}}=\frac{1}{729}+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(64 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

From the exact result:

$$
\frac{1}{729}+8 \sqrt{\pi}
$$

we can to obtain:
$1 / x+8 \operatorname{sqrt}(\pi)=14.181002549356611$

Input interpretation:

$\frac{1}{x}+8 \sqrt{\pi}=14.181002549356611$

Result:

$\frac{1}{x}+8 \sqrt{\pi}=14.181002549356611$
Plot:

Alternate form assuming x is real:
$\frac{729.00000000}{x}=1.00000000000$
Alternate form:
$\frac{8 \sqrt{\pi} x+1}{x}=14.181002549356611$
Alternate form assuming x is positive:

Solution:

$x=729$
729

From:
$\frac{1}{729}+8 \sqrt{\pi}$
We obtain also the following expression:
Input:
$729+\frac{729}{\frac{1}{729}+8 \sqrt{\pi}}+\phi$

Decimal approximation:

$782.0248366786679336609595668963925494098803975079518256470 \ldots$
$782.0248366786 \ldots$. result practically equal to the rest mass of Omega meson 782.65

Property:

$729+\phi+\frac{729}{\frac{1}{729}+8 \sqrt{\pi}}$ is a transcendental number
Alternate forms:
$\phi+729+\frac{531441}{1+5832 \sqrt{\pi}}$
$\frac{1}{2}(1459+\sqrt{5})+\frac{531441}{1+5832 \sqrt{\pi}}$
$\frac{1459}{2}+\frac{\sqrt{5}}{2}+\frac{729}{\frac{1}{729}+8 \sqrt{\pi}}$

Series representations:

$729+\frac{729}{\frac{1}{729}+8 \sqrt{\pi}}+\phi=729+\phi+\frac{729}{\frac{1}{729}+8 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}}$

$$
\begin{aligned}
& 729+\frac{729}{\frac{1}{729}+8 \sqrt{\pi}}+\phi=729+\phi+\frac{729}{\frac{1}{729}+8 \sqrt{-1+\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+\pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& 729+\frac{729}{\frac{1}{729}+8 \sqrt{\pi}}+\phi=729+\phi+\frac{729}{\frac{1}{729}+8 \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-z_{0}\right)^{k} z_{0}^{-k}}{k!}} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

And:
$1729 /((1 / 729+8 \operatorname{sqrt}(\pi)))+\mathrm{Pi}+1 /$ golden ratio

Input:

$$
\frac{1729}{\frac{1}{729}+8 \sqrt{\pi}}+\pi+\frac{1}{\phi}
$$

Decimal approximation:

125.6833054501151189608145011740848249856551915001198845338...
$125.68330545 \ldots$. result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Property:

$\frac{1}{\phi}+\frac{1729}{\frac{1}{729}+8 \sqrt{\pi}}+\pi$ is a transcendental number

Alternate forms:

$\frac{2}{1+\sqrt{5}}+\frac{1260441}{1+5832 \sqrt{\pi}}+\pi$
$\frac{1}{2}(\sqrt{5}-1)+\frac{1729}{\frac{1}{729}+8 \sqrt{\pi}}+\pi$
$\frac{\left(1260441+\pi+5832 \pi^{3 / 2}\right) \phi+1+5832 \sqrt{\pi}}{(1+5832 \sqrt{\pi}) \phi}$

Series representations:

$$
\begin{aligned}
& \frac{1729}{\frac{1}{729}+8 \sqrt{\pi}}+\pi+\frac{1}{\phi}=\frac{1}{\phi}+\pi+\frac{1729}{\frac{1}{729}+8 \sqrt{-1+\pi} \sum_{k=0}^{\infty}(-1+\pi)^{-k}\binom{\frac{1}{2}}{k}} \\
& \frac{1729}{\frac{1}{729}+8 \sqrt{\pi}}+\pi+\frac{1}{\phi}=\frac{1}{\phi}+\pi+\frac{1729}{\frac{1}{729}+8 \sqrt{-1+\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+\pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
& \frac{1729}{\frac{1}{729}+8 \sqrt{\pi}}+\pi+\frac{1}{\phi}=\frac{1}{\phi}+\pi+\frac{1260441 \sqrt{\pi}}{\sqrt{\pi}+2916 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j}(-1+\pi)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}
\end{aligned}
$$

we have that, for $\mathrm{x}=8$ and $\mathrm{n}=2$:
$\left(\left(\left(\exp \left(8 * 2+3 / 24\left(1 /(2 * 8)+1 /\left(2 * 2^{\wedge} 2^{*} 8 \wedge 2\right)\right)\right)\right)\right)\right)^{*} 1 /\left(\left(\left((\operatorname{sqrt} 2) *(8 * 2 \mathrm{Pi})^{\wedge} 1 / 2\right)\right)\right)$

Input:

$\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right) \times \frac{1}{\sqrt{2} \sqrt{8 \times 2 \pi}}$

Exact result:

$\frac{e^{65569 / 4096}}{4 \sqrt{2 \pi}}$

Decimal approximation:

893430.4282929778502834255292078124731495527874892046099486...
893430.42829...

Series representations:

$$
\begin{aligned}
& \frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}=\frac{\exp \left(\frac{65569}{4096}\right)}{4 \sqrt{\pi} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}} \\
& \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right) \\
& \frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}=\frac{\exp \left(\frac{65569}{4096}\right)}{4 \sqrt{\pi} \exp \left(i \pi\left[\frac{\arg (2-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}}
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}= \\
& \quad \frac{\exp \left(\frac{65569}{4096}\right)\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{-1 / 2-1 / 2\left\lfloor\arg \left(2-z_{0}\right) /(2 \pi)\right\rfloor}}{}
\end{aligned}
$$

$$
4 \sqrt{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k!}
$$

$\operatorname{sqrt}\left(\left(\left(\left(\left(\left(\exp \left(8^{*} 2+3 / 24\left(1 /(2 * 8)+1 /\left(2 * 2^{\wedge} 2^{*} 8^{\wedge} 2\right)\right)\right)\right)\right)\right)^{*} 1 /\left(\left(\left((\operatorname{sqrt} 2)^{*}\left(8^{*} 2 \mathrm{Pi}\right)^{\wedge} 1 / 2\right)\right)\right)\right)\right)\right)+11$ + golden ratio

Input:

$\sqrt{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right) \times \frac{1}{\sqrt{2} \sqrt{8 \times 2 \pi}}}+11+\phi$

Exact result:

$\phi+11+\frac{e^{65569 / 8192}}{2 \sqrt[4]{2 \pi}}$

Decimal approximation:

957.8325219717567709992273391166316468458115434081669558688...
$957.83252197 \ldots$ result practically equal to the rest mass of Eta prime meson 957.78

Alternate forms:

$$
\frac{23}{2}+\frac{\sqrt{5}}{2}+\frac{e^{65560 / 8192}}{2 \sqrt[4]{2 \pi}}
$$

$11+\frac{1}{2}(1+\sqrt{5})+\frac{e^{65569 / 8192}}{2 \sqrt[4]{2 \pi}}$
$\frac{2 \sqrt[4]{2 \pi}(\phi+11)+e^{65560 / 8192}}{2 \sqrt[4]{2 \pi}}$

Series representations:

$\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}+11+\phi=\frac{23}{2}+\frac{\sqrt{5}}{2}+\frac{e^{65560 / 8192}}{2 \times 2^{3 / 4} \sqrt[4]{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}}$
$\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}}+11+\phi=\frac{23}{2}+\frac{\sqrt{5}}{2}+\frac{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{65569 / 8192}}{2 \sqrt[4]{2 \pi}}$
$\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}+11+\phi=\frac{23}{2}+\frac{\sqrt{5}}{2}+\frac{\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{65560 / 8192}}{2 \sqrt[4]{2 \pi}}}$

Integral representations:

$$
\begin{aligned}
& \sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}+11+\phi=\frac{23}{2}+\frac{\sqrt{5}}{2}+\frac{e^{65560 / 8192}}{2 \sqrt{2} \sqrt[4]{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}}} \\
& \sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right.}{\sqrt{2} \sqrt{8 \times 2 \pi}}+11+\phi=\frac{23}{2}+\frac{\sqrt{5}}{2}+\frac{e^{65560 / 8192}}{2 \times 2^{3 / 4} \sqrt[4]{\int_{0}^{1} \sqrt{1-t^{2}} d t}}} \\
& \sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}+11+\phi=\frac{23}{2}+\frac{\sqrt{5}}{2}+\frac{e^{65560 / 8192}}{2 \sqrt{2} \sqrt[4]{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}}}
\end{aligned}
$$

Or:
$\operatorname{sqrt}\left(\left(\left(\left(\left(\left(\exp \left(8^{*} 2+3 / 24(1 /(2 * 8)+1 /(2 * 2 \wedge 2 * 8 \wedge 2))\right)\right)\right)\right)^{*} 1 /\left(\left(\left((\operatorname{sqrt} 2) *\left(8^{*} 2 \mathrm{Pi}\right)^{\wedge} 1 / 2\right)\right)\right)\right)\right)\right)-7$

Input:
$\sqrt{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right) \times \frac{1}{\sqrt{2} \sqrt{8 \times 2 \pi}}}-7$

Exact result:

$\frac{e^{65569 / 8192}}{2 \sqrt[4]{2 \pi}}-7$

Decimal approximation:

938.2144879830068761510227522822660087280912342283611930066...
938.214487983.... result practically equal to the rest mass of the proton 938.272

Alternate forms:

$\frac{e^{65560 / 8192}-14 \sqrt[4]{2 \pi}}{2 \sqrt[4]{2 \pi}}$
$\frac{2^{3 / 4} e^{65569 / 8192}-28 \sqrt[4]{\pi}}{4 \sqrt[4]{\pi}}$
$-\frac{28 \sqrt[4]{\pi}-2^{3 / 4} e^{65569 / 8192}}{4 \sqrt[4]{\pi}}$

Series representations:

$$
\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}}-7=-7+\frac{e^{65560 / 8192}}{2 \times 2^{3 / 4} \sqrt[4]{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}}
$$

$$
\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}}-7=-7+\frac{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{65560 / 8192}}{2 \sqrt[4]{2 \pi}}
$$

$$
\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{28}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}}-7=-7+\frac{\left(\frac{1}{\sum_{k=0}^{\infty}\left(\frac{1-1)^{k}}{k!}\right.}\right)^{65569 / 8192}}{2 \sqrt[4]{2 \pi}}
$$

Integral representations:

$\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}}-7=-7+\frac{e^{65569 / 8192}}{2 \sqrt{2} \sqrt[4]{\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t}}$
$\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}}-7=-7+\frac{e^{65569 / 8192}}{2 \times 2^{3 / 4} \sqrt[4]{\int_{0}^{1} \sqrt{1-t^{2}} d t}}$
$\sqrt{\frac{\exp \left(8 \times 2+\frac{3}{24}\left(\frac{1}{2 \times 8}+\frac{1}{2 \times 2^{2} \times 8^{2}}\right)\right)}{\sqrt{2} \sqrt{8 \times 2 \pi}}}-7=-7+\frac{e^{65569 / 8192}}{2 \sqrt{2} \sqrt[4]{\int_{0}^{\infty} \frac{1}{1+t^{2}} d t}}$

For $\mathrm{x}=4096$ and $\mathrm{n}=6$, we obtain:
$\left(\left(\left(\left(\left(\left((\exp)\left(\left(\left(\left(4096^{*} 6+35 / 24\left(1 /\left(6^{*} 4096\right)+1 /\left(\left(\left(2^{*} 4096^{\wedge} 2^{*} 6^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{*}\left(\left(1 /\left((\text { sqrt } 6)^{*}\right.\right.\right.\right.$ (4096*2Pi)^(5/2))))))

Input:

$\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right) \times \frac{1}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}$

Exact result:

$e^{712483536519203 / 28991029248}$
$8589934592 \sqrt{3} \pi^{5 / 2}$

Decimal approximation:

$6.39422419897815548029682219690699624285707761066657 \ldots \times 10^{10661}$
6.394224198978 ...*10 0^{10661}

Series representations:

$$
\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}=\frac{\exp \left(\frac{712483536519203}{28991029248}\right)}{4294967296 \sqrt{2} \pi^{5 / 2} \sqrt{5} \sum_{k=0}^{\infty} 5^{-k}\binom{\frac{1}{2}}{k}}
$$

$$
\begin{aligned}
& \frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}} \begin{array}{l}
\frac{\exp \left(\frac{712483536519203}{28991029248}\right)}{4294967296 \sqrt{2} \pi^{5 / 2} \sqrt{5} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}} \\
\begin{array}{r}
\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}} \\
\quad \exp \left(\frac{712483536519203}{28991029248}\right) \sqrt{\pi}
\end{array} \\
\frac{\operatorname{Res}_{s=-\frac{1}{2}+j} 5^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2147483648 \sqrt{2} \pi^{5 / 2} \sum_{j=0}^{\infty}}
\end{array} .
\end{aligned}
$$

$3 \ln \left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\exp \left(\left(\left(\left(\left(4096^{*} 6+35 / 24\left(1 /\left(6^{*} 4096\right)+1 /\left(\left(\left(2^{*} 4096^{\wedge} 2^{*} 6^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{*}((1 /((\mathrm{s}\right.\right.\right.\right.\right.$ qrt6)*(4096*2Pi)^(5/2))))))))))-144-13

Where 144 and 13 are Lucas numbers

$$
\begin{aligned}
& \text { Input: } \\
& 3 \log \left(\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right) \times \frac{1}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}\right)-144-13
\end{aligned}
$$

Exact result:

$3 \log \left(\frac{e^{712483536519203 / 28991029248}}{8589934592 \sqrt{3} \pi^{5 / 2}}\right)-157$

Decimal approximation:

73492.14521457052028770358564121253934642175509532029132443.
73492.14521457....

Alternate forms:

$\frac{710966339321891}{9663676416}-3 \log \left(8589934592 \sqrt{3} \pi^{5 / 2}\right)$

$$
3\left(\frac{712483536519203}{28991029248}-\frac{\log (3)}{2}-\log (8589934592)-\frac{5 \log (\pi)}{2}\right)-157
$$

$$
\begin{aligned}
& 3 \log \left(\text { Factor }\left[\frac{e^{712483536519203 / 28991029248}}{\sqrt{3}}, \text { Extension } \rightarrow \text { Automatic, Trig } \rightarrow \text { True }\right]\right)- \\
& 157-\frac{15 \log (\pi)}{2}-99 \log (2)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& 3 \log \left(\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}\right)-144-13= \\
& -157+3 \log _{e}\left(\frac{\exp \left(24576+\frac{35}{24}\left(\frac{1}{24576}+\frac{1}{2 \times 6^{2} \times 4096^{2}}\right)\right)}{(8192 \pi)^{5 / 2} \sqrt{6}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 3 \log \left(\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}\right)-144-13= \\
& -157+3 \log (a) \log _{a}\left(\frac{\exp \left(24576+\frac{35}{24}\left(\frac{1}{24576}+\frac{1}{2 \times 6^{2} \times 4096^{2}}\right)\right)}{(8192 \pi)^{5 / 2} \sqrt{6}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 3 \log \left(\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}\right)-144-13=-157+ \\
& \left.3 \log \left(-1+\frac{e^{712483536519203 / 28991029248}}{8589934592 \sqrt{3} \pi^{5 / 2}}\right)-3 \sum_{k=1}^{\infty} \frac{\left(\frac{1}{1-\frac{7^{712483536519203 / 28991029248}}{8589934592 \sqrt{3} \pi^{5 / 2}}}\right)^{k}}{k}\right) \\
& 3 \log \left(\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}\right)-144-13= \\
& -157+6 i \pi\left|\frac{\arg \left(\frac{e^{712483536519203 / 28991029} 248}{8589934592 \sqrt{3} \pi^{5 / 2}}-x\right)}{2 \pi}\right|+3 \log (x)- \\
& 3 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{e^{712483536519203 / 28991029248}}{8589934592 \sqrt{3} \pi^{5 / 2}}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$$
\begin{aligned}
& 3 \log \left(\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}\right)-144-13= \\
& -157+6 i \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|+3 \log \left(z_{0}\right)- \\
& 3 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{e^{712483536519} 203 / 28991029248}{8589934592 \sqrt{3} \pi^{5 / 2}}-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 3 \log \left(\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}\right)-144-13= \\
& -157+3 \int_{1}^{\frac{e^{712483536519203 / 28991029248}}{8589934592 \sqrt{3} \pi^{5 / 2}} \frac{1}{t} d t} \\
& 3 \log \left(\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}\right)-144-13= \\
& -157-\frac{3 i}{2 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(-1+\frac{e^{712483536519203 / 28991029248}}{8589934592 \sqrt{3} \pi^{5 / 2}}\right)^{-5} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }
\end{aligned}
$$

$$
-1<\gamma<0
$$

Thence we obtain the following mathematical connections:

$$
\begin{aligned}
& \left(\begin{array}{l}
3 \log \left(\frac{e^{712483536519203 / 28991029248}}{8589934592 \sqrt{3} \pi^{5 / 2}}\right)-157
\end{array}\right)=73492.1452 \Rightarrow \\
& \Rightarrow-3927+2\left(\begin{array}{c}
13\left(\begin{array}{l}
N \exp \left[\int \hat{\sigma}\left(-\frac{1}{4 u^{2}} \mathbf{P}_{i} D \mathbf{P}_{i}\right)\right]|B p\rangle_{\mathrm{NS}}+ \\
\int\left[d \mathrm{X}^{\mu}\right] \exp \left\{\int d \hat{\sigma}\left(-\frac{1}{4 v^{2}} D \mathrm{X}^{\mu} D^{2} \mathrm{X}^{\mu}\right)\right\}\left|\mathrm{X}^{\mu}, \mathrm{X}^{i}=0\right\rangle_{\mathrm{NS}}
\end{array}\right.
\end{array}\right)= \\
& -3927+2 \sqrt[13]{2.2983717437 \times 10^{59}+2.0823329825883 \times 10^{59}} \\
& =73490.8437525 \ldots \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left(A(r) \times \frac{1}{B(r)}\left(-\frac{1}{\phi(r)}\right) \times \frac{1}{e^{\Lambda(r)}}\right) \Rightarrow \\
& \Rightarrow\left(-0.000029211892 \times \frac{1}{0.0003644621}\left(-\frac{1}{0.0005946833}\right) \times \frac{1}{0.00183393}\right)= \\
& =73491.78832548118710549159572042220548025195726563413398700 \ldots \\
& =73491.7883254 \ldots \Rightarrow \\
& \binom{I_{21} \leqslant \int_{-\infty}^{+\infty} \exp \left(-\left(\frac{l}{H}\right)^{2}\right)\left|\sum_{\lambda \leqslant P^{1-\varepsilon_{4}}} \frac{a(\lambda)}{V^{-\lambda}} B(\lambda) \lambda^{-i(T+t)}\right|^{2} d t \leqslant}{<H\left\{\left(\frac{4}{\varepsilon_{2} \log T}\right)^{2 r}(\log T)(\log X)^{-2 \beta}+\left(\varepsilon_{2}^{-2 r}(\log T)^{-2 r}+\varepsilon_{2}^{-r} h_{1}^{r}(\log T)^{-r}\right) T^{-\varepsilon_{1}}\right\}} / \\
& /(26 \times 4)^{2}-24=\left(\frac{7.9313976505275 \times 10^{8}}{(26 \times 4)^{2}-24}\right)=73493.30662 \ldots
\end{aligned}
$$

Mathematical connections with the boundary state corresponding to the NSNS-sector of N Dp-branes in the limit of $u \rightarrow \infty$, with the ratio concerning the general asymptotically flat solution of the equations of motion of the p-brane and with the Karatsuba's equation concerning the zeros of a special type of function connected with Dirichlet series.
$\left(\left(\left(\left(\left(\left(\left(\left(\left(\exp \left(\left(\left(\left(\left(4096^{*} 6+35 / 24\left(1 /\left(6^{*} 4096\right)+1 /\left(\left(\left(2^{*} 4096^{\wedge} 2^{*} 6^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{*}((1 /((\right.\right.\right.\right.$ sqrt6) * $\left.\left.\left.\left.\left.\left.\left.\left.(4096 * 2 \operatorname{Pi})^{\wedge}(5 / 2)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 3571-29$

Where 3571 and 29 are Lucas numbers

Input:

$$
\sqrt[3571]{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right) \times \frac{1}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}}-29
$$

Exact result:

$e^{712483536519203 / 103526965444608}$
$2^{33 / 3571} \sqrt[7142]{3} \pi^{5 / 7142}$

Decimal approximation:

938.5287976262261246747833953452380177412775621880477333652...
$938.528797626 \ldots$ result practically equal to the rest mass of the proton 938.272

Alternate form:

$e^{712483536519203 / 103526965444608}-29 \times 2 \sqrt[33 / 3571]{7142} \sqrt{3} \pi^{5 / 7142}$ $2^{33 / 3571} \sqrt[7142]{3} \pi^{5 / 7142}$

Series representations:

$$
\begin{aligned}
& \sqrt[3577]{\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}}-29= \\
& -29+\frac{e^{712483536519203 / 103526965444608}}{2^{38 / 3571} \sqrt[7142]{3}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{5 / 7142}}
\end{aligned}
$$

$$
\sqrt[3571]{\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}}-29=
$$

$$
-29+\frac{\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{712483536519203 / 103526965444608}}{2^{33 / 3571} \sqrt[7142]{3} \pi^{5 / 7142}}
$$

$$
\sqrt[3571]{\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}}-29=
$$

$$
-29+\frac{\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{712483536519203 / 103526965444608}}{2^{33 / 3571} \sqrt[7142]{3} \pi^{5 / 7142}}
$$

$$
\begin{aligned}
& \sqrt[3571]{\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right.}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}}-29= \\
& \frac{1}{6\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{5 / 7142}\left(-174\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{5 / 7142}+\right.} \\
& \left.2^{3533 / 3571} \times 3^{7141 / 7142}\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{712483536519203 / 103526965444608}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \sqrt[3571]{\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}}-29= \\
& -29+\frac{e^{712483536519203 / 103526965444608}}{2^{38 / 3571} \sqrt[7142]{3}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{5 / 7142}} \\
& \sqrt[3571]{\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}}-29= \\
& -29+\frac{e^{712483536519203 / 103526965444608}}{2^{71 / 7142} \sqrt[7142]{3}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{5 / 7142}}
\end{aligned}
$$

$$
\sqrt[3571]{\frac{\exp \left(4096 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 4096}+\frac{1}{2 \times 4096^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(4096 \times 2 \pi)^{5 / 2}}}-29=
$$

$$
-29+\frac{e^{712483536519203 / 103526965444608}}{2^{71 / 7142} \sqrt[7142]{3}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{5 / 7142}}
$$

Now, we have, from the formula for the coefficients of the '5th order' mock theta function $\psi_{1}(\mathrm{q})$, for $\mathrm{n}=199.596$:
$\operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(199.596 / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(199.596)\right)$

Input interpretation:

$$
\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{109.596}{15}}\right)}{2 \sqrt[4]{5} \sqrt{199.596}}
$$

Result:

2855.02...
2855.02...

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{199.596}{15}}\right)}{2 \sqrt[4]{5} \sqrt{199.596}}= \\
& \quad \exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(13.3064-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \quad 2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(199.596-z_{0}\right)^{k} z_{0}^{-k}}{k!} \\
& \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{199.596}{15}}\right)}{2 \sqrt[4]{5} \sqrt{199.596}}=\left(\exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right)\right. \\
& \quad \exp \left(\pi \exp \left(i \pi\left[\frac{\arg (13.3064-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}(13.3064-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right) \\
& \left.\quad \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left.\quad\left(2 \sqrt[4]{5} \exp \left(i \pi \left\lvert\, \frac{\arg (199.596-x)}{2 \pi}\right.\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(199.596-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for $(x \in \mathbb{R}$ and $x<0)$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{199.596}{15}}\right.}{2 \sqrt[4]{5} \sqrt{199.596}}=\left(\operatorname { e x p } \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(13.3064-z_{0}\right)(2 \pi)\right\rfloor}\right.\right. \\
& \left.z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(13.3064-z_{0}\right) /(2 \pi)\right\rfloor\right.} \sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)_{k}\right)\left(13.3064-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \quad\left(\frac{1}{z_{0}}\right)^{\left.-1 / 2 \arg \left(199.596-z_{0}\right) /(2 \pi)\right)+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \\
& \left.z_{0}^{-1 / 2 \arg \left(109.596-z_{0}\right) /(2 \pi)+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(199.596-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

Now, we have the following interesting expression:
$1 /\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\exp \left(\left(\left(\left(\left(2855.02 * 6+35 / 24\left(1 /\left(6^{*} 2855.02\right)+1 /\left(\left(\left(2^{*} 2855.02^{\wedge} 2^{*} 6^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.*\left(\left(1 /\left((\operatorname{sqrt6}) *(2855.02 * 2 \mathrm{Pi})^{\wedge}(5 / 2)\right)\right)\right)\right)\right)\right)\right)\right)\right)^{*} 0.9895305^{\wedge} 64$
where 2855.02 is the result of previous equation, while 0.9895305 is a number very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}$

Input interpretation:
$\frac{1}{\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{1}{2 \times 2855.02^{2} \times 6^{2}}\right)\right) \times \frac{1}{\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2}}} \times 0.9895305^{64}$

Result:

$1.63828 \ldots \times 10^{-7429}$
$1.63828 \ldots * 10^{-7429}$

Series representations:

$\frac{0.989531^{64}}{\frac{\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{1}{2 \times 2855.02^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2}}}=\frac{1.25622 \times 10^{9} \pi^{5 / 2} \sqrt{5} \sum_{k=0}^{\infty} 5^{-k}\binom{\frac{1}{2}}{k}}{\exp (17130.1)}$
$\frac{0.989531^{64}}{\frac{\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{2 \times 2855.02^{2} \times 6^{2}}{2}\right)\right)}{\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2}}}=\frac{1.25622 \times 10^{9} \pi^{5 / 2} \sqrt{5} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{\exp (17130.1)}$
$\frac{0.989531^{64}}{\frac{\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{1}{2 \times 2855.02^{2} \times 6^{2}}\right)\right)}{\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2}}}=$
$6.2811 \times 10^{8} \pi^{5 / 2} \sum_{j=0}^{\infty}$ Res $_{s=-\frac{1}{2}+j} 5^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)$
$\exp (17130.1) \sqrt{\pi}$

Or:
$1 /\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\exp \left(\left(\left(\left(\left(2855.02 * 6+35 / 24\left(1 /(6 * 2855.02)+1 /\left(\left(\left(2 * 2855.02^{\wedge} 2^{*} 6^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right.\right.\right.\right.\right.$ *((1/((sqrt6)*(2855.02*2Pi)^(5/2))))))))))*((sqrt10-3)Pi

Input interpretation:

$\frac{1}{\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{1}{2 \times 2855.02^{2} \times 6^{2}}\right)\right) \times \frac{1}{\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2}}}(\sqrt{10}-3) \pi$

Result:

$1.63806 \ldots \times 10^{-7429}$
$1.63806 \ldots * 10^{-7429}$

Series representations:

$\frac{(\sqrt{10}-3) \pi}{\frac{\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{1}{2 \times 2855.02^{2} 6^{2}}\right)\right)}{\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2}}}=\frac{1}{\exp (17130.1)} 2.46376 \times 10^{\circ}$

$$
\pi^{7 / 2}\left(-3 \sqrt{5} \sum_{k=0}^{\infty} 5^{-k}\binom{\frac{1}{2}}{k}+\sqrt{5} \sqrt{9} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} 5^{-k_{1}} \times 9^{-k_{2}}\binom{\frac{1}{2}}{k_{1}}\binom{\frac{1}{2}}{k_{2}}\right)
$$

$$
\left.\begin{array}{l}
\frac{(\sqrt{10}-3) \pi}{\frac{\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{1}{2 \times 2855.02^{2} 6^{2}}\right)\right)}{\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2}}}= \\
-\frac{1}{\exp (17130.1) \sqrt{\pi}^{2}} 3.69564 \times 10^{9} \pi^{7 / 2}\left(\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 5^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
\left(\sqrt{\pi}-0.166667 \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 9^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) \\
\frac{(\sqrt{10}-3) \pi}{\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{1}{2 \times 2855.02^{2} \times 6^{2}}\right)\right)} \\
\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2}
\end{array} \frac{1}{\exp (17130.1)} 2.46376 \times 10^{9} \pi^{7 / 2}\right)
$$

We note that the results $1.63828 \ldots * 10^{-7429}$ and $1.63806 \ldots * 10^{-7429}$ are connected with the following expression concerning the Ramanujan's formula to obtain a highly precise golden ratio:

$$
\begin{aligned}
& \left(\left(\left(\left(1 /\left(\left(\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\mathrm{sqrt}(5) * \mathrm{Pi}))^{\wedge} 5\right)\right)\right)-(-\right.\right.\right.\right.\right. \\
& \left.\left.\left.1.6382898797095665677239458827012056245798314722584 \times 10^{\wedge}-7429\right)\right)\right)^{\wedge} 1 / 5
\end{aligned}
$$

Input interpretation:

$\sqrt[5]{\frac{1}{\left(\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}\right)--\frac{1.6382898797095665677239458827012056245798314722584}{10^{7429}}}}$

Result:

1.618033988749894848204586834365638117720309179805762862135

The result, thence, is:

Indeed, from the previous formula, we obtain:
$\left[\left(\left(1 /\left(1 / 32(-1+\operatorname{sqrt}(5))^{\wedge} 5+5^{*}\left(\mathrm{e}^{\wedge}((-\operatorname{sqrt}(5) * \operatorname{Pi}))^{\wedge} 5\right)\right)\right)+\right.\right.$
$1 /\left(\left(\left(\left(\left(\left(\left(\left(\left(\left(\exp \left(\left(\left(\left(\left(2855.02 * 6+35 / 24\left(1 /(6 * 2855.02)+1 /\left(\left(\left(2 * 2855.02^{\wedge} 2^{*} 6^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right.\right.\right.\right.\right.$

* $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(1 /\left((\operatorname{sqrt6})^{*}(2855.02 * 2 \mathrm{Pi})^{\wedge}(5 / 2)^{*} 0.9895305^{\wedge} 64\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right]^{\wedge} 1 / 5$

Input interpretation:

$\left(\frac{1}{\frac{1}{32}(-1+\sqrt{5})^{5}+5 e^{(-\sqrt{5} \pi)^{5}}}+\right.$

$$
\frac{1}{\left.\exp \left(2855.02 \times 6+\frac{35}{24}\left(\frac{1}{6 \times 2855.02}+\frac{1}{2 \times 2855.02^{2} \times 6^{2}}\right)\right) \times \frac{1}{\sqrt{6}(2855.02 \times 2 \pi)^{5 / 2} \times 0.9895305^{64}}\right)}
$$

(1/5)

Result:

1.618033988749894848204586834365638117720309179805762862135...
$1.6180339887 \ldots=$ golden ratio
Thence, we have the following mathematical connection:


```
= 1.6180339887...
```

Now, we have that:

$4096-1 /\left(24^{*} 4096\right)-1 /\left(48^{*} 4096^{\wedge} 2\right)-(1 / 36+1 / 5760)^{*} 1 / 4096^{\wedge} 3$

Input:

$4096-\frac{1}{24 \times 4096}-\frac{1}{48 \times 4096^{2}}-\left(\frac{1}{36}+\frac{1}{5760}\right) \times \frac{1}{4096^{3}}$

Exact result:

1621295861826355039
395824185999360

Decimal approximation:

4095.9999898262317881542710690862602657741970486111111111111...
$4095.999989826231788154271 \ldots . . \approx 4096=64^{2}$
We have also that:
$\operatorname{sqrt}\left(2 \mathrm{Pi}^{*} 4095.999989826231788154271\right) * \mathrm{e}^{\wedge}(4095.999989826231788154271)$

Input interpretation:

$\sqrt{2 \pi \times 4095.999989826231788154271} e^{4095.999989826231788154271}$

Result:

$1.18977096136644293478 \ldots \times 10^{1781}$
$1.1897709613664 \ldots * 10^{1781}$
Series representations:

```
\(\sqrt{2 \pi 4095.9999898262317881542710000} e^{4095.9999898262317881542710000}=\)
    \(e^{4095.9999898262317881542710000} \sqrt{-1+8191.9999796524635763085420000 \pi}\)
        \(\sum_{k=0}^{\infty}(-1+8191.9999796524635763085420000 \pi)^{-k}\binom{\frac{1}{2}}{k}\)
\(\sqrt{2 \pi 4095.9999898262317881542710000} e^{4095.9999898262317881542710000}=\)
    \(e^{4095.9999898262317881542710000} \sqrt{-1+8191.9999796524635763085420000 \pi}\)
        \(\sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+8191.9999796524635763085420000 \pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\)
\(\sqrt{2 \pi 4095.9999898262317881542710000} e^{4095.9999898262317881542710000}=\)
    \(e^{4095.9999898262317881542710000} \sqrt{z_{0}}\)
        \(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(8191.9999796524635763085420000 \pi-z_{0}\right)^{k} z_{0}^{k}}{k!}\)
    for \(\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.\) and \(\left.\left.-\infty<z_{0} \leq 0\right)\right)\)
```

$\log \left(\left(\left(\left(\operatorname{sqrt}\left(2 \mathrm{Pi}^{*} 4095.999989826\right) * \mathrm{e}^{\wedge}(4095.999989826)\right)\right)\right)\right.$

Input interpretation:

$\log \left(\sqrt{2 \pi \times 4095.999989826} e^{4095.999989826}\right)$

Result:

4101.077811441...
$4101.077811441 \ldots$ (about equal to $64^{2}+5$, where 5 is a Fibonacci number)

Alternative representations:

$$
\begin{array}{r}
\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)= \\
\log _{e}\left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)
\end{array}
$$

```
\(\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)=\)
    \(\log (a) \log _{a}\left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)\)
```

$$
\begin{aligned}
& \log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)= \\
& \quad-\mathrm{Li}_{1}\left(1-e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)= \\
& \log \left(e^{4095.9999898260000} \sqrt{-1+8191.9999796520000 \pi}\right. \\
& \left.\sum_{k=0}^{\infty}(-1+8191.9999796520000 \pi)^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)= \\
& \log \left(-1+e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)- \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)^{-k}}{k} \\
& \log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)= \\
& \log \left(e^{4005.9999898260000} \sqrt{-1+8191.9999796520000 \pi}\right. \\
& \left.\sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+8191.9999796520000 \pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{gathered}
\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)= \\
\int_{1}^{e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}} \frac{1}{t} d t
\end{gathered}
$$

$$
\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)=\frac{1}{2 i \pi}
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)^{-s}}{\Gamma(1-s)} d s
$$

$$
\text { for }-1<\gamma<0
$$

And:
$2 * \operatorname{sqrt}\left(\left(\left(\log \left(\left(\left(\left(\operatorname{sqrt}\left(2 \mathrm{Pi}^{*} 4095.999989826\right) * \mathrm{e}^{\wedge}(4095.999989826)\right)\right)\right)\right)\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$2 \sqrt{\log \left(\sqrt{2 \pi \times 4095.999989826} e^{4095.999989826}\right)}-\pi+\frac{1}{\phi}$
$\log (x)$ is the natural logarithm

Result:

125.5557575645
$125.5557575645 \ldots$. result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representations:

$$
\begin{gathered}
2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+\frac{1}{\phi}= \\
-\pi+\frac{1}{\phi}+2 \sqrt{\log _{e}\left(e^{4005.9999898260000} \sqrt{8191.9999796520000 \pi}\right)}
\end{gathered}
$$

$2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+\frac{1}{\phi}=$ $-\pi+\frac{1}{\phi}+2 \sqrt{\log (a) \log _{a}\left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)}$
$2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+\frac{1}{\phi}=$
$-\pi+\frac{1}{\phi}+2 \sqrt{-\mathrm{Li}_{1}\left(1-e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)}$

Series representations:

$$
\begin{aligned}
& 2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi+2 \sqrt{\left(\log \left(-1+e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)-\right.} \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)^{-k}}{k}\right) \\
& 2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4005.9999898260000}\right)}-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi+2 \sqrt{-1+\log \left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)} \\
& \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\log \left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)\right)^{-k} \\
& 2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)-\pi+\frac{1}{\phi}=} \\
& \frac{1}{\phi}-\pi+2 \sqrt{-1+\log \left(e^{4095.9099898260000} \sqrt{8191.9999796520000 \pi}\right)} \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\log \left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi+2 \sqrt{\int_{1}^{e^{4095.9999898260000} \sqrt{8191.0999796520000 \pi}} \frac{1}{t} d t} \\
& 2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi+2 \sqrt{\left(\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma}\right.} \\
& \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)^{-s}}{\Gamma(1-s)} \\
& d s) \text { for }-1<\gamma<0
\end{aligned}
$$

And:
$2 * \operatorname{sqrt}\left(\left(\left(\log \left(\left(\left(\left(\operatorname{sqrt}\left(2 \mathrm{Pi}^{*} 4095.999989826\right) * \mathrm{e}^{\wedge}(4095.999989826)\right)\right)\right)\right)\right)\right)\right)-$
$\mathrm{Pi}+11+$ golden ratio

Input interpretation:

$2 \sqrt{\log \left(\sqrt{2 \pi \times 4095.999989826} e^{4095.999989826}\right)}-\pi+11+\phi$
$\log (x)$ is the natural logarithm

Result:

137.5557575645...
$137.5557575645 \ldots$. result very near to the rest mass of Pion meson 139.57

Alternative representations:

$2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+11+\phi=$
$11+\phi-\pi+2 \sqrt{\log _{e}\left(e^{4095.0999898260000} \sqrt{8191.9999796520000 \pi}\right)}$
$2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+11+\phi=$
$11+\phi-\pi+2 \sqrt{\log (a) \log _{a}\left(e^{4095.9990898260000} \sqrt{8191.9999796520000 \pi}\right)}$
$2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+11+\phi=$
$11+\phi-\pi+2 \sqrt{-\mathrm{Li}_{1}\left(1-e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)}$

Series representations:

$$
\begin{aligned}
& 2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9099898260000}\right)}-\pi+11+\phi= \\
& 11+\phi-\pi+2 \sqrt{\left(\log \left(-1+e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)-\right.} \\
& \left.\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)^{-k}}{k}\right)
\end{aligned}
$$

$2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+11+\phi=$

$$
11+\phi-\pi+2 \sqrt{-1+\log \left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)}
$$

$$
\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(-1+\log \left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)\right)^{-k}
$$

$$
2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+11+\phi=
$$

$$
11+\phi-\pi+2 \sqrt{-1+\log \left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)}
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-1+\log \left(e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}\right)\right)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
$$

$\binom{n}{m}$ is the binomial coefficient

Integral representations:

$2 \sqrt{\log \left(\sqrt{2 \pi 4095.9999898260000} e^{4095.9999898260000}\right)}-\pi+11+\phi=$

$$
11+\phi-\pi+2 \sqrt{\int_{1}^{e^{4095.9999898260000} \sqrt{8191.9999796520000 \pi}} \frac{1}{t} d t}
$$

$\left.2 \sqrt{\log (\sqrt{2 \pi 4095.9999898260000}} e^{4095.9999898260000}\right)-\pi+11+\phi=$

$$
\begin{aligned}
11+\phi-\pi+2 & \sqrt{ } \frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \\
& \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-1+e^{4095.9099898260000} \sqrt{8191.9999796520000 \pi}\right)^{-s}}{\Gamma(1-s)} \\
& d s) \text { for }-1<\gamma<0
\end{aligned}
$$

Example of Ramanujan mathematics applied to the physics

From:

THE
 MATHEMATICAL THEORY OF BLACK HOLES

S. CHANDRASEKHAR

University of Chicago
Clarendon Press - Oxford
Oxford University Press - New York 1983

20. The geodesics in the Schwarzschild space-time:

 the null geodesics(c) The geodesics of the first kind

We now consider the case when all the roots of the cubic equation $f(u)=0$ are real and the two positive roots are distinct. Let the roots be

$$
\begin{equation*}
u_{1}=\frac{P-2 M-Q}{4 M P}(<0), \quad u_{2}=\frac{1}{P}, \quad \text { and } \quad u_{3}=\frac{P-2 M+Q}{4 M P}, \tag{246}
\end{equation*}
$$

where P denotes the perihelion distance and Q is a constant to be specified presently. The sum of the roots has been arranged to be equal to $1 / 2 \mathrm{M}$ as required (cf. equation (226)). Also, it should be noted that the ordering of the roots, $u_{1}<u_{2}<u_{3}$, requires that

$$
\begin{equation*}
Q+P-6 M>0 . \tag{247}
\end{equation*}
$$

Inserting these various relations in equation (261), we find that

$$
\begin{equation*}
\varphi_{\infty}=\frac{1}{2} \lg \left[\frac{6^{4} \sqrt{ } 3}{2} \frac{(\sqrt{ } 3-1)^{2}}{(\sqrt{3+1})^{2}}\right]-\frac{1}{2} \lg \frac{\delta D}{M}, \tag{265}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\delta D}{M} \rightarrow \frac{6^{4} \sqrt{ } 3}{2} \frac{(\sqrt{ } 3-1)^{2}}{(\sqrt{3}+1)^{2}} e^{-2 \varphi_{x}} . \tag{266}
\end{equation*}
$$

Letting

$$
\begin{equation*}
\varphi_{\infty}=\frac{1}{2}(\pi+\Theta), \tag{267}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{\delta D}{M}=648 \sqrt{ } 3 \frac{(\sqrt{ } 3-1)^{2}}{(\sqrt{3}+1)^{2}} e^{-\pi} e^{-\Theta}=3.4823 e^{-\Theta} \tag{268}
\end{equation*}
$$

and this is the required relation.

Now, we have that:
$\left(\left(\left(648 *\right.\right.\right.$ sqrt $\left.\left.\left.(3)(\mathrm{sqrt3}-1)^{\wedge} 2 /(\mathrm{sqrt3}+1)^{\wedge} 2\right)\right)\right) * \exp (-\mathrm{Pi})$
Input:

$$
\left(648 \sqrt{3} \times \frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right) \exp (-\pi)
$$

Exact result:

$$
\frac{648 \sqrt{3}(\sqrt{3}-1)^{2} e^{-\pi}}{(1+\sqrt{3})^{2}}
$$

Decimal approximation:

3.482283975298158546034987960269648388256072002340790092133
$3.482283975 \ldots$

Property:

$\frac{648 \sqrt{3}(-1+\sqrt{3})^{2} e^{-\pi}}{(1+\sqrt{3})^{2}}$ is a transcendental number

Alternate forms:

$(4536 \sqrt{3}-7776) e^{-\pi}$
$648(7 \sqrt{3}-12) e^{-\pi}$
$\frac{648(2 \sqrt{3}-3) e^{-\pi}}{2+\sqrt{3}}$

Series representations:

$$
\begin{aligned}
& \frac{\exp (-\pi) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}= \\
& \frac{648 \exp (-\pi) \sqrt{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\left(-1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}}{\left(1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}} \\
& \frac{\exp (-\pi) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}= \\
& \frac{648 \exp (-\pi) \sqrt{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(-1+\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}}{\left(1+\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\exp (-\pi) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}=(324 \exp (-\pi) \\
& \left.\left(2 \sqrt{\pi}-\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right) / \\
& \left(\sqrt{\pi}\left(2 \sqrt{\pi}+\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}\right)
\end{aligned}
$$

For $\Theta=\pi / 2$, we have:
$\left(\left(\left(648 * \operatorname{sqrt}(3)(\operatorname{sqrt} 3-1)^{\wedge} 2 /(\operatorname{sqrt} 3+1)^{\wedge} 2\right)\right)\right) * \exp (-\mathrm{Pi}) * \exp (-1 / 2 \mathrm{Pi})$

Input:

$\left(648 \sqrt{3} \times \frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right) \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)$

Exact result:

$$
\frac{648 \sqrt{3}(\sqrt{3}-1)^{2} e^{-(3 \pi) / 2}}{(1+\sqrt{3})^{2}}
$$

Decimal approximation:

0.723895717518028245408591528990315772030811596958014750221...
0.7238957175...

Property:

$\frac{648 \sqrt{3}(-1+\sqrt{3})^{2} e^{-(3 \pi) / 2}}{(1+\sqrt{3})^{2}}$ is a transcendental number

Alternate forms:

$(4536 \sqrt{3}-7776) e^{-(3 \pi) / 2}$
$\frac{648(2 \sqrt{3}-3) e^{-(3 \pi) / 2}}{2+\sqrt{3}}$
$\frac{2592 \sqrt{3} e^{-(3 \pi) / 2}}{(1+\sqrt{3})^{2}}-\frac{3888 e^{-(3 \pi) / 2}}{(1+\sqrt{3})^{2}}$

Series representations:

$$
\begin{aligned}
& \frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}= \\
& \frac{648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right) \sqrt{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\left(-1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}}{\left(1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}}
\end{aligned}
$$

$$
\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}=
$$

$$
\frac{648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right) \sqrt{2}\left(\sum_{k=0}^{\infty} \frac{\left.\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}\right)}{k!}\right)\left(-1+\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}}{\left(1+\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}}
$$

$$
\begin{aligned}
& \frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}= \\
& \left(324 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\left(2 \sqrt{\pi}-\sum_{j=0}^{\infty} \text { Res }_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}\right.
\end{aligned}
$$

$$
\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s) /
$$

$$
\left(\sqrt{\pi}\left(2 \sqrt{\pi}+\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}\right)
$$

For $\Theta=-2 \pi$, we have:
$\left(\left(\left(648 * \operatorname{sqrt}(3)(\operatorname{sqrt} 3-1)^{\wedge} 2 /(\operatorname{sqrt} 3+1)^{\wedge} 2\right)\right)\right) * e^{\wedge}(-\mathrm{Pi}) \mathrm{e}^{\wedge}-(-2 \mathrm{Pi})$

Input:

$\left(648 \sqrt{3} \times \frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right) e^{-\pi} e^{-(-2 \pi)}$

Exact result:

$$
\frac{648 \sqrt{3}(\sqrt{3}-1)^{2} e^{\pi}}{(1+\sqrt{3})^{2}}
$$

Decimal approximation:

1864.734010939769870994798700658483357702632787876859524663...
$1864.73401093 \ldots$ result practically equal to the rest mass of D meson 1864.84

Property:

$\frac{648 \sqrt{3}(-1+\sqrt{3})^{2} e^{\pi}}{(1+\sqrt{3})^{2}}$ is a transcendental number

Alternate forms:

$(4536 \sqrt{3}-7776) e^{\pi}$
$648(7 \sqrt{3}-12) e^{\pi}$
$-\frac{648 \sqrt{3}(\sqrt{3}-2) e^{\pi}}{2+\sqrt{3}}$

Series representations:

$$
\begin{aligned}
& \frac{\left(e^{-\pi} e^{-(-2 \pi)}\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}= \\
& \frac{648 e^{\pi} \sqrt{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\left(-1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}}{\left(1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}} \\
& \frac{\left(e^{-\pi} e^{-(-2 \pi)}\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}= \\
& \frac{648 e^{\pi} \sqrt{2}\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)\left(-1+\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}}{\left(1+\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(e^{-\pi} e^{-(-2 \pi)}\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}= \\
& \frac{324 e^{\pi}\left(2 \sqrt{\pi}-\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}\left(2 \sqrt{\pi}+\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)\right)^{2}}
\end{aligned}
$$

Now, we have, from the formula for the coefficients of the '5th order' mock theta function $\psi_{1}(\mathrm{q})$, for $\mathrm{n}=183.638$:
$\mathrm{a}(\mathrm{n}) \sim \operatorname{sqrt}(\mathrm{phi}) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(\mathrm{n} / 15)\right) /\left(2 * 5^{\wedge}(1 / 4) * \operatorname{sqrt}(\mathrm{n})\right)$
$\operatorname{sqrt}($ golden ratio $) * \exp \left(\mathrm{Pi}^{*} \operatorname{sqrt}(183.638 / 15)\right) /\left(2^{*} 5^{\wedge}(1 / 4) * \operatorname{sqrt}(183.638)\right)$

Input interpretation:

$\sqrt{\phi} \times \frac{\exp \left(\pi \sqrt{\frac{183.638}{15}}\right)}{2 \sqrt[4]{5} \sqrt{183.638}}$

Result:

1864.67.
1864.67.... result practically equal to the rest mass of D meson 1864.84

Series representations:

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{183.638}{15}}\right)}{2 \sqrt[4]{5} \sqrt{183.638}}= \\
& \quad \frac{\exp \left(\pi \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(12.2425-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}}{2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(183.638-z_{0}\right)^{k} z_{0}^{-k}}{k!}} \\
& \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{183.638}{15}}\right)}{2 \sqrt[4]{5} \sqrt{183.638}}=\left(\exp \left(i \pi\left[\frac{\arg (\phi-x)}{2 \pi}\right]\right)\right. \\
& \quad \exp \left(\pi \exp \left(i \pi\left[\frac{\arg (12.2425-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(12.2425-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \left.\quad \sum_{k=0}^{\infty} \frac{(-1)^{k}(\phi-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) / \\
& \left(2 \sqrt[4]{5} \exp \left(i \pi\left[\frac{\arg (183.638-x)}{2 \pi}\right]\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}(183.638-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
\end{aligned}
$$

for ($x \in \mathbb{R}$ and $x<0$)

$$
\begin{aligned}
& \frac{\sqrt{\phi} \exp \left(\pi \sqrt{\frac{183.638}{15}}\right.}{2 \sqrt[4]{5} \sqrt{183.638}}=\left(\operatorname { e x p } \left(\pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(12.2425-z_{0}\right) /(2 \pi)\right\rfloor}\right.\right. \\
& \left.z_{0}^{\left.1 / 2\left(1+\arg \left(12.2425-z_{0}\right) /(2 \pi)\right\rfloor\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(12.2425-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) \\
& \left.\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(183.638-z_{0}\right) /(2 \pi)\right\rfloor+1 / 2\left\lfloor\arg \left(\phi-z_{0}\right) /(2 \pi)\right\rfloor}\right) \\
& \left.z_{0}^{-1 / 2\left\lfloor\arg \left(183.638-z_{0}\right) /(2 \pi)\right]+1 / 2\left\lfloor\operatorname{agg}\left(\phi-z_{0}\right) /(2 \pi)\right\rfloor} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\phi-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right) / \\
& \left(2 \sqrt[4]{5} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(183.638-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)
\end{aligned}
$$

From the previous expression
$\left(\left(\left(648 * \operatorname{sqrt}(3)(\mathrm{sqrt3}-1)^{\wedge} 2 /(\mathrm{sqrt} 3+1)^{\wedge} 2\right)\right)\right) * \exp (-\mathrm{Pi}) * \exp (-1 / 2 \mathrm{Pi})$
We obtain:
$\left(\left(\left(\left(\left(\left(\left(648 * \operatorname{sqrt}(3)(\operatorname{sqrt} 3-1)^{\wedge} 2 /(\operatorname{sqrt} 3+1)^{\wedge} 2\right)\right)\right) * \exp (-\mathrm{Pi}) * \exp (-1 / 2 \mathrm{Pi})\right)\right)\right)\right)^{\wedge} 1 / 32$

Input:

$\sqrt[32]{ }\left(648 \sqrt{3} \times \frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right) \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)$

Exact result:

$2^{3 / 32} \times 3^{9 / 64} \sqrt[16]{\frac{\sqrt{3}-1}{1+\sqrt{3}}} e^{-(3 \pi) / 64}$

Decimal approximation:

0.989953681884378275892102729399204991201740784216401186604...
$0.9899536818 \ldots$. result practically equal to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=$ $\boldsymbol{\phi}$ (see Appendix)

Property:

$2^{3 / 32} \times 3^{9 / 64} \sqrt[16]{\frac{-1+\sqrt{3}}{1+\sqrt{3}}} e^{-(3 \pi) / 64}$ is a transcendental number

Alternate forms:

$2^{3 / 32} \times 3^{9 / 64} \sqrt[16]{2-\sqrt{3}} e^{-(3 \pi) / 64}$
$2^{3 / 32} \sqrt[8]{3} \sqrt[32]{7 \sqrt{3}-12} e^{-(3 \pi) / 64}$

And:
$4 \log$ base $0.989953681884378\left(\left(\left(\left(\left(\left((648 * \operatorname{sqrt}(3))(\operatorname{sqrt} 3-1)^{\wedge} 2 /(\operatorname{sqrt} 3+1)^{\wedge} 2\right)\right)\right) * \exp (-\right.\right.\right.$ $\mathrm{Pi}) * \exp (-1 / 2 \mathrm{Pi})))))-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$4 \log _{0.089953681884378}\left(\left(648 \sqrt{3} \times \frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right) \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right)-\pi+\frac{1}{\phi}$
$\log _{b}(x)$ is the base- b logarithm

Result:

125.4764413352...
$125.4764413 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representation:

$4 \log _{0.9899536818843780000}\left(\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}\right)-\pi+\frac{1}{\phi}=$

$$
-\pi+\frac{1}{\phi}+\frac{4 \log \left(\frac{648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)}{\log (0.9899536818843780000)}
$$

Series representations:

$$
\begin{aligned}
& 4 \log _{0.9899536818843780000}\left(\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{4 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)^{k}}{\log (0.9899536818843780000)}}{}
\end{aligned}
$$

$$
4 \log _{0.9899536818843780000}\left(\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}\right)-\pi+\frac{1}{\phi}=
$$

$$
-\frac{1}{\phi}\left(-1+\phi \pi-4 \phi \log _{0.9899536818843780000} \int\left(648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right.\right.
$$

$$
\exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right]\right) \sqrt{x}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
$$

$$
\left.\left(-1+\exp \left(i \pi\left[\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}\right) /
$$

$$
\left.\left.\left(1+\exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}\right)\right)
$$

$4 \log _{0.9899536818843780000}\left(\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}\right)-\pi+\frac{1}{\phi}=$

$$
\begin{aligned}
& -\frac{1}{\phi}\left(-1+\phi \pi-4 \phi \log _{0.9899536818843780000}\left(\begin{array}{l}
648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)\left(-1+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}\right. \\
\left(1+\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)}\right. \\
\left.\left.z_{0}^{\left.1 / 2\left(1+\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}\right) /
\end{array} \sum_{k=0}^{\infty} \frac{\left.\left.\left.(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}\right)^{2}\right)\right)}{k!}\right)\right.
\end{aligned}
$$

$4 \log$ base $0.989953681884378\left(\left(\left(\left(\left(\left((648 * \operatorname{sqrt}(3))(s q r t 3-1)^{\wedge} 2 /(\operatorname{sqrt} 3+1)^{\wedge} 2\right)\right)\right) * \exp (-\right.\right.\right.$ $\mathrm{Pi}) * \exp (-1 / 2 \mathrm{Pi})))))+11+1 /$ golden ratio

Where 11 is a Lucas number

Input interpretation:

$4 \log _{0.989953681884378}\left(\left(648 \sqrt{3} \times \frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right) \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right)+11+\frac{1}{\phi}$
$\log _{b}(x)$ is the base $-b$ logarithm
ϕ is the golden ratio

Result:

139.6180339887...
139.61803398... result practically equal to the rest mass of Pion meson 139.57

Alternative representation:

$4 \log _{0.9899536818843780000}\left(\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}\right)+11+\frac{1}{\phi}=$
$11+\frac{1}{\phi}+\frac{4 \log \left(\frac{648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)}{\log (0.9899536818843780000)}$

Series representations:

$$
\begin{aligned}
& 4 \log _{0.9899536818843780000}\left(\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}-\frac{4 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)^{k}}{k}}{\log (0.9899536818843780000)}
\end{aligned}
$$

$$
4 \log _{0.9899536818843780000}\left(\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}\right)+11+\frac{1}{\phi}=
$$

$$
\frac{1}{\phi}\left(1+11 \phi+4 \phi \log _{0.9899536818843780000}\left(\left(648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right.\right.\right.
$$

$$
\exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)
$$

$$
\left.\left(-1+\exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}\right) /
$$

$$
\left.\left.\left(1+\exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)^{2}\right)\right)
$$

for $(x \in \mathbb{R}$ and $x<0)$
$4 \log _{0.9899536818843780000}\left(\frac{\left(\exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\right) 648\left(\sqrt{3}(\sqrt{3}-1)^{2}\right)}{(\sqrt{3}+1)^{2}}\right)+11+\frac{1}{\phi}=$ $\frac{1}{\phi}\left(1+11 \phi+4 \phi \log _{0.9899536818843780000}(\right.$

$$
\left(648 \exp (-\pi) \exp \left(-\frac{\pi}{2}\right)\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right]\right)}\right.
$$

$$
\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)\left(-1+\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor}\right.
$$

$$
\left.\left.z_{0}^{1 / 2\left(1+\left\lfloor\operatorname{agg}\left(3-z_{0}\right) /(2 \pi)\right]\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{k}}{k!}\right)^{2}\right) /
$$

$$
\left(1+\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\arg \left(3-z_{0}\right)((2 \pi))\right)}\right.
$$

$$
\left.\left.\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0}\right)^{k} z_{0}^{-k}}{k!}\right)^{2}\right)\right)
$$

Now, from

$$
\varphi_{\infty}=\frac{1}{2} \lg \left[\frac{6^{4} \sqrt{ } 3}{2} \frac{(\sqrt{ } 3-1)^{2}}{(\sqrt{3}+1)^{2}}\right]-\frac{1}{2} \lg \frac{\delta D}{M}
$$

We obtain:
$1 / 2 \ln \left(\left(\left(648 * \operatorname{sqrt}(3)(\operatorname{sqrt} 3-1)^{\wedge} 2 /(\operatorname{sqrt} 3+1)^{\wedge} 2\right)\right)\right)-1 / 2 \ln 1864.7340109397$

Input interpretation:

$\frac{1}{2} \log \left(648 \sqrt{3} \times \frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{1}{2} \log (1864.7340109397)$

Result:

-1.5707963267949...
$-1.5707963267949 \ldots$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}= \\
& -\frac{1}{2} \log (a) \log _{a}(1864.73401093970000)+\frac{1}{2} \log (a) \log _{a}\left(\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right) \\
& \frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}= \\
& -\frac{\log _{e}(1864.73401093970000)}{2}+\frac{1}{2} \log _{e}\left(\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right) \\
& \frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}= \\
& \frac{\mathrm{Li}_{1}(-1863.73401093970000)}{2}-\frac{1}{2} \mathrm{Li}_{1}\left(1-\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}= \\
& -\frac{\log (1863.73401093970000)}{2}+\frac{1}{2} \log \left(-1+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)+ \\
& \quad \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(e^{-7.53033728706948593 k}-\left(-1+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)^{-k}\right)}{2 k}
\end{aligned}
$$

$$
\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}=
$$

$$
\frac{1}{2}(-\log (1864.73401093970000)+
$$

$$
\left.\log \left(\frac{648 \sqrt{2}\left(\sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)\left(-1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}}{\left(1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}\right)^{2}}\right)\right)
$$

$$
\begin{aligned}
& \frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}= \\
& \left.-i\left(\pi \left\lvert\, \frac{\arg (1864.73401093970000-x)}{2 \pi}\right.\right]\right)+i \pi\left[\frac{\arg \left(-x+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)}{2 \pi}\right)+ \\
& \quad \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}\left((1864.73401093970000-x)^{k}-\left(-x+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)^{k}\right)}{2 k} \text { for } x<0
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}= \\
& \int_{1}^{1864.73401093970000}((-1.4388379714040895-2.3776759428081790 \sqrt{3}- \\
& \left.2.4388379714040895 \sqrt{3}^{2}+0.50000000000000000 \sqrt{3}^{3}\right) / \\
& (t(2.87767594280817901+4.75535188561635802 \sqrt{3}+ \\
& 4.87767594280817901 \sqrt{3}^{2}-1.00000000000000000 \sqrt{3}^{3}+ \\
& t(-0.00154320987654320988+0.99691358024691358 \sqrt{3}- \\
& \left.\left.\left.\left.2.00154320987654321 \sqrt{3}^{2}+\sqrt{3}^{3}\right)\right)\right)\right) d t
\end{aligned}
$$

$$
\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}=
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)\left(-e^{-7.53033728706948593 s}+\left(-1+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)^{-s}\right)}{4 i \pi \Gamma(1-s)} d s \text { for }
$$

$$
-1<\gamma<0
$$

$1 / 10^{\wedge} 27\left(\left(\left(\left((29+7) / 10^{\wedge} 3+1-1 /\left(\left(\left(1 / 2 \ln \left(\left(\left(648 * \operatorname{sqrt}(3)(s q r t 3-1)^{\wedge} 2 /(s q r t 3+1)^{\wedge} 2\right)\right)\right)-1 / 2 \ln \right.\right.\right.\right.\right.\right.\right.$ 1864.7340109397)))))))

Input interpretation:

$$
\frac{1}{10^{27}}\left(\frac{29+7}{10^{3}}+1-\frac{1}{\frac{1}{2} \log \left(648 \sqrt{3} \times \frac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{1}{2} \log (1864.7340109397)}\right)
$$

$\log (x)$ is the natural logarithm

Result:

$1.67261977236759 \ldots \times 10^{-27}$
$1.672619772367 \ldots * 10^{-27}$ result practically equal to the proton mass

Alternative representations:

$$
\begin{aligned}
& \left.\frac{\frac{29+7}{10^{3}}+1-\frac{1}{\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}}}{1-\frac{10^{27}}{1}-\frac{\log _{e}(1864.73401093970000)}{2}+\frac{1}{2} \log _{e}\left(\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)}+\frac{36}{10^{3}}\right)= \\
& \frac{\frac{29+7}{10^{3}}+1-\frac{1}{\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}}}{10^{27}}= \\
& \frac{\left.1-\frac{1}{-\frac{1}{2} \log (a) \log _{a}(1864.73401093970000)+\frac{1}{2} \log (a) \log _{a}\left(\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)}+\frac{36}{10^{3}}\right)}{10^{27}} \\
& \frac{\frac{29+7}{10^{3}}+1-\frac{1}{\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}}}{1-\frac{10^{27}}{1} \frac{1}{\frac{L_{1}(-1863.73401093970000)}{2}-\frac{1}{2} \operatorname{Li}\left(1-\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)}+\frac{36}{10^{3}}}=
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\frac{29+7}{10^{3}}+1-\frac{1}{\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}}}{10^{27}}= \\
& 500+259 \log (1863.73401093970000)-259 \log \left(-1+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)- \\
& 259 \sum_{k=1}^{\infty} \frac{(-0.000536557252338705323)^{k}}{k}+ \\
& \left.259 \sum_{k=1}^{\infty} \frac{\left.(-1)^{k}\left(-1+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)^{-k}\right)}{k}\right) /
\end{aligned}
$$

250000000000000000000000000000

$$
\left(\begin{array}{l}
\log (1863.73401093970000)-\log \left(-1+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)- \\
\left.\left.\quad \sum_{k=1}^{\infty} \frac{(-0.000536557252338705323)^{k}}{k}+\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)^{-k}}{k}\right)\right)
\end{array}\right.
$$

$$
\begin{aligned}
& \begin{array}{c}
\frac{\frac{29+7}{10^{3}}+1-\frac{1}{\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}}}{\frac{250^{27}}{250000000000000000000000000000}+}= \\
1 / 5500000000000000000000000000
\end{array} \\
& \left(2 i \pi\left\lfloor\frac{\arg (1864.73401093970000-x)}{2 \pi}\right\rfloor-\right. \\
& 2 i \pi\left[\frac{\arg \left(-x+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)}{2 \pi}\right\rfloor+ \\
& \sum_{k=1}^{\infty} \frac{1}{k}(-1)^{1+k} x^{-k}(1864.73401093970000-x)^{k}- \\
& \left.\left.\left(-x+\frac{648(-1+\sqrt{3})^{2} \sqrt{3}}{(1+\sqrt{3})^{2}}\right)^{k}\right)\right) \text { for } x<0
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{29+7}{10^{3}}+1-\frac{1}{\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}} \\
& \frac{259^{27}}{250000000000000000000000000000}+ \\
& 1 /(500000000000000000000000000 \\
& \int_{1}^{1864.73401093970000}\left(\left(2.877675942808179+4.755351885616358 \sqrt{3}^{27}+\right.\right. \\
& \left.4.877675942808179 \sqrt{3}^{2}-1.0000000000000000 \sqrt{3}^{3}\right) / \\
& (t(2.87767594280817901+4.75535188561635802 \sqrt{3}+ \\
& 4.87767594280817901 \sqrt{3}^{2}- \\
& 1.00000000000000000 \sqrt{3}^{3}+ \\
& t(-0.00154320987654320988+0.99691358024691358 \\
& \left.\left.\left.\left.\left.\sqrt{3}-2.00154320987654321 \sqrt{3}^{2}+\sqrt{3}^{3}\right)\right)\right)\right) d t\right)
\end{aligned}
$$

$$
\frac{\frac{29+7}{10^{3}}+1-\frac{1}{\frac{1}{2} \log \left(\frac{648 \sqrt{3}(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)^{2}}\right)-\frac{\log (1864.73401093970000)}{2}}}{\frac{10^{27}}{250000000000000000000000000000}-}=
$$

Now, we have:

$$
\frac{1}{128 M^{7}}\left(\frac{1}{168} p^{4}-\frac{53}{1386} p^{3}+\frac{263}{2772} p^{2}-\frac{147}{1430} p+\frac{444}{10010}\right)
$$

where $p=2(n+1)$.
For $\mathrm{M}=0.13957 \mathrm{GeV}$ (Pion mass) and $\mathrm{p}=4$, where 4 is a Lucas number, we obtain:
$1 /\left(128^{*}(0.13957)^{\wedge} 7\right)^{*}\left(4^{\wedge} 4 / 168-53 * 4^{\wedge} 3 / 1386+263^{*} 4^{\wedge} 2 / 2772-\right.$
$147 * 4 / 1430+444 / 10010)$
Input:
$\frac{1}{128 \times 0.13957^{7}}\left(\frac{4^{4}}{168}-53 \times \frac{4^{3}}{1386}+263 \times \frac{4^{2}}{2772}-147 \times \frac{4}{1430}+\frac{444}{10010}\right)$

Result:

1724.157365562245382561686714534246669305286397683490981174...
$1724.1573655 \ldots$ result in the range of the mass of candidate "glueball" $\mathrm{f}_{0}(1710)$ ("glueball" $=1760 \pm 15 \mathrm{MeV}$).

$$
\begin{aligned}
& \frac{1}{512 M^{9}}\left(\frac{14}{6435} p^{5}-\frac{41}{2574} p^{4}+\frac{56}{1155} p^{3}-\frac{2557}{34320} p^{2}\right. \\
& \left.+\frac{1203}{19448} p-\frac{723}{38896}\right)
\end{aligned}
$$

Input:

```
1
\(512 \times 0.13957^{\circ}\)
\(\left(14 \times \frac{4^{5}}{6435}-41 \times \frac{4^{4}}{2574}+56 \times \frac{4^{3}}{1155}-2557 \times \frac{4^{2}}{34320}+1203 \times \frac{4}{19448}-\frac{723}{38896}\right)\)
```


Result:

28175.35725739714570160608172516757966479932666003693955317... 28175.357257...

$$
\frac{1}{26880 M^{5}}\left(16 p^{3}-83 p^{2}+150 p-87\right)
$$

$1 /(26880 * 0.13957 \wedge 5) *\left(16 * 4 \wedge 3-83 * 4^{\wedge} 2+150 * 4-87\right)$

Input:

$\frac{1}{26880 \times 0.13957^{5}}\left(16 \times 4^{3}-83 \times 4^{2}+150 \times 4-87\right)$

Result:

146.8103348570025593709961340149769825068745992538251518366...

$$
146.810334857 \ldots
$$

$$
\frac{1}{480 M^{3}}\left(5 p^{2}-18 p+18\right)
$$

$1 /(480 * 0.13957 \wedge 3) *(5 * 4 \wedge 2-18 * 4+18)$

Input:

$\frac{1}{480 \times 0.13957^{3}}\left(5 \times 4^{2}-18 \times 4+18\right)$

Result:

19.92305230347450889890756310279368993602550635721933135762
19.9230523....

$$
\frac{1}{4 M}(2 p-3) ;
$$

$1 /(4 * 0.13957) *(2 * 4-3)$

Input:

$\frac{1}{4 \times 0.13957}(2 \times 4-3)$

Result:

8.956079386687683599627427097513792362255499032743426237730
8.956079386...

The results are:
1724.1573655... 28175.357257... 146.810334857... 19.9230523... 8.956079386.....

From the sum, we obtained:
$1724.1573655+28175.357257+146.810334857+19.9230523+8.956079386$

Input interpretation:

$1724.1573655+28175.357257+146.810334857+19.9230523+8.956079386$

Result:

30075.204089043
30075.204....

From the following division, we obtain:

Input interpretation:

$28175.357257 \times \frac{1}{1724.1573655} \times \frac{1}{146.810334857} \times \frac{1}{19.9230523} \times \frac{1}{8.956079386}$

Result:

0.000623824017094414600450836799330692289699942035432340809 ...
$0.000623824 \ldots$.
From the inversion, we obtain:
$1 /(28175.357257 * 1 / 1724.1573655 * 1 / 146.810334857 * 1 / 19.9230523 * 1 /$
8.956079386)

Input interpretation:

$\frac{1}{28175.357257 \times \frac{1}{1724.1573655} \times \frac{1}{146.810334857} \times \frac{1}{19.9230523} \times \frac{1}{8.956079386}}$

Result:

1603.016191421581427780632032179166025518481680347482665461...
1603.0161914...

From the previous expression, we obtain also:
$(28175.357257 * 1 / 1724.1573655 * 1 / 146.810334857 * 1 / 19.9230523 * 1 /$ $8.956079386)^{\wedge} 1 / 4096$

Input interpretation:

$(28175.357257$
$\quad(1 / 4096)$

Result:

$0.9981999515620 \ldots$
$0.9981999515620 \ldots$. result very near to the value of the following RogersRamanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5 \sqrt[4]{5^{3}}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)
$1 / 32 \log$ base $0.998199915620((() 28175.357257 * 1 / 1724.1573655 * 1 /$ $146.810334857 * 1 / 19.9230523 * 1 / 8.956079386))))-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$$
\begin{aligned}
& \frac{1}{32} \log _{0.998199915620}\left(28175.357257 \times \frac{1}{1724.1573655} \times\right. \\
& \left.\quad \frac{1}{146.810334857} \times \frac{1}{19.9230523} \times \frac{1}{8.956079386}\right)-\pi+\frac{1}{\phi}
\end{aligned}
$$

$\log _{b}(x)$ is the base- b logarithm

Result:

125.473883..
125.473883... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representation:

$\frac{1}{32} \log _{0.9981999156200000}($
$\left.\frac{28175.3572570000}{1724.15736550000 \times 146.8103348570000(19.9231 \times 8.95608)}\right)-\pi+\frac{1}{\phi}=$
$-\pi+\frac{1}{\phi}+\frac{\log \left(\frac{28175.3572570000}{8.95608 \times 19.9231 \times 146.8103345570000 \times 1724.15736550000}\right)}{32 \log (0.998199915620000)}$

Series representations:

$\frac{1}{32} \log _{0.0981999156200000}$ (

$$
\begin{aligned}
& \left.\frac{28175.3572570000}{1724.15736550000 \times 146.8103348570000(19.9231 \times 8.95608)}\right)- \\
& \pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.999376)^{k}}{k}}{32 \log (0.9981999156200000)}
\end{aligned}
$$

$\frac{1}{32} \log _{0.9981999156200000}($

$$
\left.\frac{28175.3572570000}{1724.15736550000 \times 146.8103348570000(19.9231 \times 8.95608)}\right)-\pi+\frac{1}{\phi}=
$$

$$
\frac{1}{\phi}-\pi-17.344672298952 \log (0.000623824)-
$$

$$
\frac{1}{32} \log (0.000623824) \sum_{k=0}^{\infty}(-0.0018000843800000)^{k} G(k)
$$

$$
\text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

Now, we have that:

$$
\begin{equation*}
u=\frac{3 M}{4 Q_{*}^{2}}\left[1-\left(1-\frac{8 Q_{*}^{2}}{9 M^{2}}\right)^{1 / 2}\right]=u_{c} \quad(\mathrm{say}) \tag{76}
\end{equation*}
$$

The corresponding value of r is

$$
\begin{equation*}
r_{c}=1.5 M\left[1+\left(1-8 Q_{*}^{2} / 9 M^{2}\right)^{1 / 2}\right] . \tag{77}
\end{equation*}
$$

It is clear that at this radius r_{c}, the geodesic equations allow an unstable circular orbit.

For $\mathrm{M}=0.13957$ and $\mathrm{Q}=0.8$

$$
1.5^{*} 0.13957\left(\left(\left(1+\left(1-\left(8^{*} 0.8^{\wedge} 2\right) /\left(9^{*} 0.13957^{\wedge} 2\right)\right)^{\wedge} 1 / 2\right)\right)\right)
$$

Input:

$1.5 \times 0.13957\left(1+\sqrt{1-\frac{8 \times 0.8^{2}}{9 \times 0.13957^{2}}}\right)$

Result:

0.209355...
1.11183... i

Polar coordinates:

$r=1.13137$ (radius), $\theta=79.3362^{\circ}$ (angle)
$1.13137=\mathrm{r}_{\mathrm{c}}$
$\left(3^{*} 0.13957\right) /\left(4^{*} 0.8^{\wedge} 2\right)^{*}\left(\left(\left(1-\left(1-\left(8^{*} 0.8^{\wedge} 2\right) /\left(9^{*} 0.13957 \wedge 2\right)\right)^{\wedge} 1 / 2\right)\right)\right)$

Input:

$\frac{3 \times 0.13957}{4 \times 0.8^{2}}\left(1-\sqrt{1-\frac{8 \times 0.8^{2}}{9 \times 0.13957^{2}}}\right)$

Result:

0.163559...
0.868619... i

Polar coordinates:
$r=0.883883$ (radius), $\theta=-79.3362^{\circ}$ (angle)
$0.883883=u_{c}$
$(((1 /(0.883883 / 1.131370))))^{\wedge} 2$

Input interpretation:

$\left(\frac{1}{\frac{0.883883}{1.131370}}\right)^{2}$

Result:

1.638399304885448828630129014108928003974727623624703210172...
$1.638399304885448 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$
$((((0.883883 / 1.131370))))^{\wedge} 1 / 24$
Input interpretation:
$\sqrt[24]{\frac{0.883883}{1.131370}}$

Result:
0.9897669 ..
$0.9897669 \ldots$ result practically equal to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)
$5 \log$ base $0.9897669((((0.883883 / 1.131370))))+\mathrm{Pi}+$ golden ratio ${ }^{\wedge} 2$

Input interpretation:

$5 \log _{0.9897669}\left(\frac{0.883883}{1.131370}\right)+\pi+\phi^{2}$

Result:

125.760...
$125.760 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representation:

$5 \log _{0.989767}\left(\frac{0.883883}{1.13137}\right)+\pi+\phi^{2}=\pi+\phi^{2}+\frac{5 \log \left(\frac{0.883883}{1.13137}\right)}{\log (0.989767)}$

Series representations:

$5 \log _{0.089767}\left(\frac{0.883883}{1.13137}\right)+\pi+\phi^{2}=\phi^{2}+\pi-\frac{5 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.21875)^{k}}{k}}{\log (0.989767)}$

$$
\begin{aligned}
& 5 \log _{0.089767}\left(\frac{0.883883}{1.13137}\right)+\pi+\phi^{2}= \\
& \quad \phi^{2}+\pi-486.11 \log (0.78125)-5 \log (0.78125) \sum_{k=0}^{\infty}(-0.0102331)^{k} G(k) \\
& \quad \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

$5 \log$ base $0.9897669((((0.883883 / 1.131370))))+11+7+$ golden ratio
Where 11 and 7 are Lucas numbers

Input interpretation:

$5 \log _{0.9897669}\left(\frac{0.883883}{1.131370}\right)+11+7+\phi$
$\log _{b}(x)$ is the base- b logarithm

Result:

139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57

Alternative representation:

$5 \log _{0.989767}\left(\frac{0.883883}{1.13137}\right)+11+7+\phi=18+\phi+\frac{5 \log \left(\frac{0.883883}{1.13137}\right)}{\log (0.989767)}$

Series representations:

$5 \log _{0.989767}\left(\frac{0.883883}{1.13137}\right)+11+7+\phi=18+\phi-\frac{5 \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.21875)^{k}}{k}}{\log (0.989767)}$

$$
\begin{aligned}
& 5 \log _{0.989767}\left(\frac{0.883883}{1.13137}\right)+11+7+\phi= \\
& \quad 18+\phi-486.11 \log (0.78125)-5 \log (0.78125) \sum_{k=0}^{\infty}(-0.0102331)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Now, we have that:

From these equations, it follows that the energy E and the angular momentum L of a circular orbit of radius $r_{c}=1 / u_{c}$ is given by

$$
\begin{equation*}
E^{2}=\frac{\left(1-2 M u_{c}+Q_{*}^{2} u_{c}^{2}\right)^{2}}{1-3 M u_{c}+2 Q_{*}^{2} u_{c}^{2}} \tag{91}
\end{equation*}
$$

and

$$
\begin{equation*}
L^{2}=\frac{M-Q_{*}^{2} u_{c}}{u_{c}\left(1-3 M u_{c}+\frac{2 Q_{*}^{2}}{} u_{c}^{2}\right)} \tag{92}
\end{equation*}
$$

For $\mathrm{M}=0.13957 ; \mathrm{Q}=0.8$ and $\mathrm{u}_{\mathrm{c}}=0.883883$, we obtain:
$\left(1-2 * 0.13957 * 0.883883+0.8^{\wedge} 2^{*} 0.883883^{\wedge} 2\right)^{\wedge} 2 /(1-$
$3 * 0.13957 * 0.883883+2 * 0.8 \wedge 2 * 0.883883 \wedge 2$)

Input interpretation:

$$
\frac{\left(1+2 \times 0.13957 \times(-0.883883)+0.8^{2} \times 0.883883^{2}\right)^{2}}{1+3 \times 0.13957 \times(-0.883883)+2 \times 0.8^{2} \times 0.883883^{2}}
$$

Result:

$0.963668715059376025121236262437911446119369523816714264442 \ldots$
$0.963668715059376 \ldots . .=E^{2}$ result very near to the spectral index n_{s} and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.

Thence:
sqrt(((((1-2*0.13957*0.883883+0.8^2*0.883883^2)^2 / (13*0.13957*0.883883+2*0.8^2*0.883883^2)))))

Input interpretation:

$\sqrt{\frac{\left(1+2 \times 0.13957 \times(-0.883883)+0.8^{2} \times 0.883883^{2}\right)^{2}}{1+3 \times 0.13957 \times(-0.883883)+2 \times 0.8^{2} \times 0.883883^{2}}}$

Result:

0.981666
$0.981666 \ldots$... result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ (see Appendix)

Appendix

From:

Rotating strings confronting PDG mesons

Jacob Sonnenschein and Dorin Weissman - arXiv:1402.5603v1 [hep-ph] 23 Feb 2014
$c \bar{c}$. The Ψ trajectory: The left side of figure (15) depicts the Ψ trajectory. Here we use the states $J / \Psi(1 S)(3097) 1^{--}, \chi_{c 1}(1 P)(3510) 1^{++}$, and $\Psi(3770) 1^{--}$. Since no $J=3$ state has been observed, we use three states with $J=1$, but with increasing orbital angular momentum ($L=0,1,2$) and do the fit to L instead of J. To give an idea of the shifts in mass involved, the $J^{P C}=2^{++}$state $\chi_{c 2}$ has a mass of 3556 MeV , and the $J^{P C}=3^{--}$state is expected to lie $30-60 \mathrm{MeV}$ above the $\Psi(3770)$ [23].

The best linear fit is

$$
\alpha^{\prime}=0.418, a=-4.04
$$

with $\chi_{l}^{2}=3.41 \times 10^{-4}$, but the optimal fit is far from the linear, with endpoint masses in the range of the constituent c quark mass:

$$
m_{c}=1500, \alpha^{\prime}=0.979, a=-0.09
$$

with $\chi_{m}^{2}=5 \times 10^{-7}\left(\chi_{m}^{2} / \chi_{l}^{2}=0.002\right)$. Aside from the improvement in χ^{2}, by adding the mass we also get a value for the slope (and to a lesser extent, the intercept) that is much closer to that obtained in fits for the light meson trajectories.
where α^{\prime} is the Regge slope (string tension)

We know also that:

$$
\begin{array}{r|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
\omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
$$

The average of the various Regge slope of Omega mesons are:
$1 / 7 *(0.979+0.910+0.918+0.988+0.937+1.18+1)=0.987428571$
result very near to the value of dilaton and to the solution $0.987516007 \ldots$ of the above expression.

From:

Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.
from:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan
Quarterly Journal of Mathematics, XLV, 1914, 350-372
We have that:

Hence

$$
\begin{array}{rlrl}
64 g_{22}^{24} & =e^{\pi \sqrt{22}} \quad 24 \quad 276 e^{-\pi \sqrt{22}} & \cdots \\
64 g_{22}^{-24} & = & & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{array}
$$

so that

$$
64\left(g_{22}^{24}+g_{22}^{-24}\right)-e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots-64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
$$

Hence

$$
e^{\pi \sqrt{22}}=2508951.9982 \ldots
$$

Again

$$
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{\tau}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots \\
64 G_{37}^{-24}= & 1096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
$$

so that

$$
64\left(G_{37}^{24}+G_{37}^{24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\} .
$$

Hence

$$
e^{\pi \sqrt{37}}=199148647.999978
$$

Similarly, from

$$
g_{58}-\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
$$

we obtain

$$
64\left(g_{58}^{24} \mid g_{58}^{-24}\right)=e^{\pi \sqrt{58}} \quad 24\left|4372 e^{-\pi \sqrt{58}}\right| \cdots=64\left\{\left.\left(\frac{5+\sqrt{29}}{2}\right)^{12} \right\rvert\,\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\} .
$$

Нене

$$
e^{\pi \sqrt{58}}=24591257751.09909982 \ldots
$$

From:

An Update on Brane Supersymmetry Breaking

J. Mourad and A. Sagnotti - arXiv:1711.11494v1 [hep-th] 30 Nov 2017

From the following vacuum equations:

$$
\begin{aligned}
& T e^{\gamma_{E} \phi}=-\frac{\beta_{E}^{(p)} h^{2}}{\gamma_{E}} e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi} \\
& 16 k^{\prime} e^{2 C}=\frac{h^{2}\left(p+1-\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}}{(7-p)} \\
&\left(A^{\prime}\right)^{2}-k e^{-2 A}+\frac{h^{2}}{16(p+1)}\left(7-p+\frac{2 \beta_{E}^{(p)}}{\gamma_{E}}\right) e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
\end{aligned}
$$

we have obtained, from the results almost equals of the equations, putting
$4096 e^{-\pi \sqrt{18}}$ instead of

$$
e^{-2(8-p) C+2 \beta_{E}^{(p)} \phi}
$$

a new possible mathematical connection between the two exponentials. Thence, also the values concerning p, C, β_{E} and ϕ correspond to the exponents of e (i.e. of exp). Thence we obtain for $\mathrm{p}=5$ and $\beta_{E}=1 / 2$:

$$
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}}
$$

Therefore, with respect to the exponentials of the vacuum equations, the Ramanujan's exponential has a coefficient of 4096 which is equal to 64^{2}, while $-6 \mathrm{C}+\phi$ is equal to $\pi \sqrt{18}$. From this it follows that it is possible to establish mathematically, the dilaton value.

For
$\exp \left(\left(-\mathrm{Pi}^{*} \mathrm{sqrt}(18)\right)\right.$ we obtain:

Input:

$$
\exp (-\pi \sqrt{18})
$$

Exact result:

$e^{-3 \sqrt{2} \pi}$

Decimal approximation:

Property:

$e^{-3 \sqrt{2} \pi}$ is a transcendental number

Series representations:

$\boldsymbol{e}^{-\pi \sqrt{18}}=e^{-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{1 / 2}{k}}$
$e^{-\pi \sqrt{18}}=\exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)$
$e^{-\pi \sqrt{18}}=\exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)$

Now, we have the following calculations:

$$
\begin{gathered}
e^{-6 C+\phi}=4096 e^{-\pi \sqrt{18}} \\
e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}
\end{gathered}
$$

from which:

$$
\begin{gathered}
\frac{1}{4096} e^{-6 C+\phi}=1.6272016 \ldots * 10^{-6} \\
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}=1.6272016 \ldots * 10^{-6}
\end{gathered}
$$

Now:

$$
\ln \left(e^{-\pi \sqrt{18}}\right)=-13.328648814475=-\pi \sqrt{18}
$$

And:

$\left(1.6272016 * 10^{\wedge}-6\right) * 1 /(0.000244140625)$

Input interpretation:

$$
\frac{1.6272016}{10^{6}} \times \frac{1}{0.000244140625}
$$

Result:

0.0066650177536
0.006665017...

Thence:

$$
0.000244140625 e^{-6 C+\phi}=e^{-\pi \sqrt{18}}
$$

Dividing both sides by 0.000244140625 , we obtain:

$$
\begin{aligned}
& \frac{0.000244140625}{0.000244140625} e^{-6 C+\phi}=\frac{1}{0.000244140625} e^{-\pi \sqrt{18}} \\
& e^{-6 C+\phi}=0.0066650177536
\end{aligned}
$$

$\left(\left(\left(\left(\exp \left(\left(-\mathrm{Pi}^{*} \operatorname{sqrt}(18)\right)\right)\right)\right)\right)\right) * 1 / 0.000244140625$

Input interpretation:

$\exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}$

Result:

0.00666501785...
$0.00666501785 \ldots$

Series representations:

$$
\begin{aligned}
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} 17^{-k}\binom{\frac{1}{2}}{k}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\pi \sqrt{17} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{17}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
& \frac{\exp (-\pi \sqrt{18})}{0.000244141}=4096 \exp \left(-\frac{\pi \sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 17^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)
\end{aligned}
$$

Now:

$$
\begin{aligned}
& e^{-6 C+\phi}=0.0066650177536 \\
& \exp (-\pi \sqrt{18}) \times \frac{1}{0.000244140625}= \\
& e^{-\pi \sqrt{18}} \times \frac{1}{0.000244140625} \\
& =0.00666501785 \ldots
\end{aligned}
$$

From:
$\ln (0.00666501784619)$

Input interpretation:

$\log (0.00666501784619)$

Result:

-5.010882647757...
$-5.010882647757 .$.

Alternative representations:

$\log (0.006665017846190000)=\log _{e}(0.006665017846190000)$
$\log (0.006665017846190000)=\log (a) \log _{a}(0.006665017846190000)$
$\log (0.006665017846190000)=-\mathrm{Li}_{1}(0.993334982153810000)$

Series representations:

$$
\begin{aligned}
& \log (0.006665017846190000)=-\sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.993334982153810000)^{k}}{k} \\
& \log (0.006665017846190000)=2 i \pi\left|\frac{\arg (0.006665017846190000-x)}{2 \pi}\right|+ \\
& \log (x)-\sum_{k=1}^{\infty} \frac{(-1)^{k}(0.006665017846190000-x)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$\log (0.006665017846190000)=\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+$

$$
\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(0.006665017846190000-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(0.006665017846190000-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representation:

$$
\log (0.006665017846190000)=\int_{1}^{0.006665017846190000} \frac{1}{t} d t
$$

In conclusion:

$$
-6 C+\phi=-5.010882647757 \ldots
$$

and for $\mathrm{C}=1$, we obtain:

Note that the values of n_{s} (spectral index) 0.965 , of the average of the Omega mesons Regge slope 0.987428571 and of the dilaton 0.989117352243 , are also connected to the following two Rogers-Ramanujan continued fractions:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

(http://www.bitman.name/math/article/102/109/)

Also performing the $512^{\text {th }}$ root of the inverse value of the Pion meson rest mass 139.57, we obtain:
$((1 /(139.57)))^{\wedge} 1 / 512$

Input interpretation:

$\sqrt[512]{\frac{1}{139.57}}$

Result:

$0.99040073 \ldots$. result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$ and to the value of the following Rogers-Ramanujan continued fraction:

From:

Eur. Phys. J. C (2019) 79:713 - https://doi.org/10.1140/epjc/s10052-019-7225-2-Regular Article - Theoretical Physics
Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity
Yermek Aldabergenov, Auttakit Chatrabhuti, Sergei V. Ketov

Table 1 The predictions for the inflationary parameters ($\left.n_{s}, r\right)$, and the values of φ at the horizon crossing $\left(\varphi_{i}\right)$ and at the end of inflation $\left(\varphi_{f}\right)$, in the case $3 \leq \alpha \leq \alpha_{*}$ with both signs of ω_{1}. The α parameter is taken to be integer, except of the upper limit $\alpha_{*} \equiv(7+\sqrt{33}) / 2$

α	3	4		5	6	α_{*}	
$\operatorname{sgn}\left(\omega_{1}\right)$	-	+	-	$+/-$	+	-	-
n_{s}	0.9650	0.9649	0.9640	0.9639	0.9634	0.9637	0.9632
r	0.0035	0.0010	0.0013	0.0007	0.0005	0.0004	0.0003
$-\kappa \varphi_{i}$	5.3529	3.5542	3.9899	3.2657	3.0215	2.7427	2.5674
$-\kappa \varphi_{f}$	0.9402	0.7426	0.8067	0.7163	0.6935	0.6488	0.6276

Received: April 10, 2019 - Revised: July 9, 2019 - Accepted: October 1, 2019
Published: October 18, 2019
Gravitational waves from walking technicolor
Kohtaroh Miura, Hiroshi Ohki, Saeko Otani and Koichi Yamawaki

The phase transition dynamics is modified via the shift of $\left(2 f_{2} / N_{j}\right)\left(s^{0}\right)^{2} \rightarrow\left(\Delta m_{s}\right)^{2}+$ $\left(2 f_{2} / N_{f}\right)\left(s^{0}\right)^{2}$ in $m_{s^{i}}^{2}$ with finite Δm_{s}. The details of the mass spectra at one loop with $\left(\Delta m_{s}\right)^{2}$ are summarized in appendix A. Using eq. (4.18), the total effective potential becomes,

$$
\begin{align*}
V_{\text {eff }}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)= & \frac{N_{f}^{2}-1}{64 \pi^{2}} \mathcal{M}_{s^{i}}^{4}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)\left(\ln \frac{\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)}{\mu_{\mathrm{GW}}^{2}}-\frac{3}{2}\right) \\
& +\frac{T^{4}}{2 \pi^{2}}\left(N_{f}^{2}-1\right) J_{B}\left(\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right) / T^{2}\right)+C(T), \tag{4.19}
\end{align*}
$$

with,

$$
\begin{equation*}
\mathcal{M}_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}, T\right)-m_{s^{i}}^{2}\left(s^{0}, \Delta m_{p}, \Delta m_{s}\right)+\Pi(T) \tag{1.20}
\end{equation*}
$$

where the thermal mass $\Pi(T)$ is given in eq. (3.3). We require that the following properties remain intact for arbitrary Δm_{s}; (1) the vev $\left\langle s^{0}\right\rangle(T=0)$ determined by the minimum of the potential eq. (4.19) is identified with the dilaton decay constant favored by the walking technicolor model, $F_{\phi}=1.25 \mathrm{TeV}$ or 1 TeV , (2) the dilaton mass given by the potential curvature at the vacuum is identified with the observed SM Higgs mass, $m_{s^{0}}=125 \mathrm{GeV}$.

Thence $\quad F_{\phi}=1.25 \mathrm{TeV}$

Acknowledgments

I would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

References

Manuscript Book Of Srinivasa Ramanujan Volume 2

Andrews, G.E.: Some formulae for the Fibonacci sequence with generalizations. Fibonacci Q. 7, 113-130 (1969) zbMATH Google Scholar

Andrews, G.E.: A polynomial identity which implies the Rogers-Ramanujan identities. Scr. Math. 28, 297-305 (1970) Google Scholar

The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks (Memoirs of the American Mathematical Society), by Bruce C. Berndt, L. Jacobsen, R. L. Lamphere, George E. Andrews (Editor), Srinivasa Ramanujan Aiyangar (Editor) (American Mathematical Society, 1993, ISBN 0-8218-2538-0)

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

