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0. !!
    We review classical class field theory in the section 1.  The result is that there  ex-
ists a class field K/k over an ideal group Hm in k and it is  an  abelian  extension.   We 

will consider our example such that k = Q. 

    We may say that the classical class field theory is abelian class  field  theory.   Our 
next problem is that  “how  about  non-abelian  class  field  theory?”,  namely  “how 
about the case of non-abelian extensions?”.   However,  we  have  known  that  non-
abelian theory can’t be constructed based on ideal groups  H.   We  have  to  pursue 
our plan from a different direction.  This is Langlands program.   We  will  reform  the 
abelian class field theory according to Langlands program in the section 2.  Similarly 
we will consider our example such that k = Q. 

    We will describe the local Langlands program in the section  3.   Let  k  be  a  finite  
extension of Qp.  We will call it a local field.  Let Irr(GLn(k)) be the set  of  irreducible 

smooth representations of GLn(k) and let Gn,,(k)  be  the  set  of  ,-adic  representa-

tions of Weil group Wk.  The local Langlands program is to show the existence of the 
isomorphism !

reck: Irr(GLn(k))  Gn,,(k). 

!
We try to define reck which is consistent with Zelevinsky’s classification.  Therefore, 
our aim is to show 
  

                            reck: Irr
sc(GLn(k))  Gn,,

Irr(k). 

!
Here, Irrsc(GLn(k)) is the subset of Irr(GLn(k)) which consists  of  irreducible  super-
cuspidal representations and Gn,,

Irr(k) is the subset of Gn,,(k) which consists of ,-adic 

irreducible representations of Wk.  In the section 4, we give the definition of  reck.  In 

order to define reck, we will use H 
i
LT that is the ,-adic étale  cohomology  of  “Lubin-

Tate tower”. 
    Basically we will take the strategy to show the local Langlands program  from  the  
“local-global compatibility”.  Namely, we  need  the  global  arguments  to  show  the 
local Langlands correspondence.  Currently there is no purely local proof of the local 
Langlands correspondence.  The global arguments are used at the  following  points.  
On the one hand, it is very hard to understand the action of the inertia group on  the 

!⎯ →⎯

!⎯ →⎯
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cohomology H 
i
LT .  We will  think  of  an  ,-adic  n-dimensional  representation  (t, V ) 

where V is an n-dimensional , - vector space.  Then there exists an  open  subgroup 
I1 of the inertia group Ik  such that, for all v ! I1, t(v) is unipotent.  However it is very  
hard to show the same thing of cohomology groups.  On the other hand, we need the  
Jacquet-Langlands correspondence.  In the section 5, we shall think  of  these  prob-
lems.  It must be possible for us to solve these problems in a local manner.   Strauch 
shows Jacquet-Langlands correspondence in a purely local manner. 
    We will think of the global Langlands  correspondence  in  the  section  6.   A  local 
field k is the completion of a number field K/Q, i.e., there exists  a  place  v  and  k = 

Kv.  Put rec K = Pv rec  Kv.  It realizes the global Langlands correspondence.   In  order 

to show that local Langlands correspondence we need a totally real or a  CM-field  L.  
Thus we see that rec K is obtained via such a field L.  It must become our problem to 
show the global Langlands correspondence independently of the field L.  We will see 
that the local Langlands correspondence is  shown  purely  locally  in  the  section  5.  
This means that the global Langlands correspondence is obtained  independently  of 
the field L. 
  
   

!
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1. !!
����Let k be an algebraic number field.  Denote the places of k by pv and put 

!
m = . 

!
A k-modulus is such a formal product m = m0 m3,  where  m0  (the finite part)  con-

sists of pv (v ! 3) and m3 consists of infinite places.  A fractional ideal of k is called 

relatively prime to m when it is relatively prime to m0.  Set 

!
Sm = {(a0) | a0 / 1 (mod. m)} 

and 

Am = {all fractional ideal of k which are relatively prime to m}. 

!
We can define ideal classes as the elements of Am/Sm.  When 

!
Sm 1 H 1 Am, 

!
we will call H “ideal group modulo m”�and denote it by Hm.  We can also define  ideal 

classes as the elements of Am/Hm, and the index h = (Am : Hm) is its class number. 

    Let K/k be a Galois field of the degree n, 
!
            Nm(K/k) =def {a in k | a = NK/k (A) for a fractional ideal A in K, 

 a is relatively prime to m} 

and 
Hm(K/k) =def Sm Nm(K/k). 

!
It turns out that 

h = (Am : Hm(K/k)) # n. 

!
Thus, when a Galois field K/k of the degree n is given then an ideal group Hm(K/k) in  

k whose index h # n is obtained.  If p! Hm(K/k) then p = NK/k (P).   So,  we  can  say 

that p = P1P2 g Pn where P1 = P, Pi ! Pj and Pi = Pv
 v ! Gal(K/k). 

!!
Definition 1.1.         Suppose that a Galois field K/k of the degree n corresponds to 
an ideal group Hm in k of the index h.  When h = n then K is called a class  field  over 
Hm.  !!
According to this definition, when K/k is a class field then it must be  reasonable  to 

say that the ideal group Hm(K/k) is determined associated with a given field K/k. 

 pv
  ev

v=1

u
∏
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!
    We will think of the case k = Q.  Let gN be a primitive Nth root of  unity  and  con-

sider the Nth cyclotomatic field Q(gN)/Q.  Its degree is n = {(N), where { is  Euler’s 

totient function.  The field of rational numbers has the unique  p3,  so  a  Q-modulus 

= Np3 is given.  We will see that Q(gN)/Q corresponds to the ideal group 

!
H (Q(gN)/Q) = S  = {(a0) | a0 / 1 (mod. )}	

and that 
Q(gN)/Q is a class field over S . 

!
Here, Q(gN)/Q is an abelian extension.  In general, the following is satisfied. 

!!
Theorem 1.1.       There exists a class field K/k over an ideal group Hm in k and it is 
an abelian extension. !!
    We know that the maximal abelian extension Qab of Q is given by the  union  of  all  

cyclotomatic fields Q(gN)/Q and that it is also a class field.  Now, it turns out that 

!
Gal(Q(gN)/Q) , (Z/NZ)*. !

So !
Gal(Qab/Q) , ,  = . 

!
We may say that the class field theory of the case k = Q boils  down  to  the  above 

formulae. !

!N

!N !N !N

!N

!̂* !̂ lim
←
(! / N!)
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!!
!

2. !!
    We may say that the above theory is abelian class field theory.  Our next  problem  
is that “how about non-abelian class field theory?”, namely “how about the case of  
non-abelian extensions?”.  However, according to  Theorem 1.1,  we  will  know  that 

non-abelian theory can’t be constructed based on ideal groups H.  We have to  pur-
sue our plan from a different direction.  This is Langlands program.  We  will  use  the 
following notations. !
K/k              A Galois extension over a number field k.  Denote prime ideals in k and K                                       
                   by v and w respectively.               

�                  The algebraic closure of k. 

Frw               The Frobenius elements corresponding to v.  Here suppose that  K/k  is 
                  unramified at v.  The prime ideal splits as a product of prime ideals  of  K. 
                  Pick one of them and denote it by w.  It holds that 

                   xNk(v) / xFrw (mod. w)    x !OK 

Frobv           The geometric Frobenius element.  Denote the conjugacy class  of  Frw      
                  by Frv.  Then Frobv =def Frv

-1.   

Ak                The ring of adeles.  Let A = A3
 # R where A3 = 7Z Q. Then 

 Ak = A 7Q k. 
                  Here, k3 = R 7Q k.  !
    According to Langlands program, our  problem  becomes  to  establish  the  corre-
spondence between n-dimensional representations 
!

 t: Gal(! /k) $ GLn 

and 
irreducible automorphic representations r of GLn(k)=GLn(Ak). !

From the Galois group side, we will think of t(Frobv).  From  the  automorphic  repre-

sentation side, we will think of the infinite tensor product  r = ! .   Our  task 

is to establish the correspondence between t(Frobv) = (v1, g, vn) and  the  parame-
ter (Satake parameter) (z1, g, zn) of rv. !

k

!̂

k

⊗
v
π v⊗π  ∞
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    Take the Langlands program’s view, the abelian class  field  theory  becomes  the 
case of GL1.  Consider our example such that k = Q. 

��  Let K/Q be a finite Galois extension.  We see that the element of Gal(K/Q) is  ex-

tended to the element of Gal( /Q).  For  example,  the  Frobenius  element  Frw  of 

Gal(K/Q) is extended to Fr  of Gal( /Q).  Thus a one-dimensional representation 

!
: Gal(K/Q) $ C* 

!
can be naturally extended to a one-dimensional representation of Gal(! /Q) 

!
t: Gal( /Q) $ C*. 

!
It is also satisfied that a representation !

: (Z/NZ)* $ C*, for some N  

!
can be naturally extended to a one-dimensional representation of �  !

|:  $ C*. 

!
We will call such a representations as  or  “a finite image representation”. 

    Let’s start on a one-dimensional representation of ! .  It turns out  that  there  is 

no finite image one-dimensional representation of  except : (Z/NZ)* $ C*  for 

some N since ! =! .  Suppose that there  is  no  finite  image  one-dimen-

sional representation of Gal( /Q) except : Gal(Q(nN)/Q) $ C*.  Here,  nN is  the  

group of Nth-roots-of-unity.  We have shown that 
  

Gal(Q(nN)/Q) , (Z/NZ)*. 

!
Since Frobp ! Gal(Q(nN)/Q) ( pAN ) corresponds to ( p mod N)

-1
! (Z/NZ)*, we can ob-

tain a certain map which sends Frobp to ( p mod N).  It enables us to introduce a one-
dimensional representation  of Gal(Q(nN)/Q) like 

!
(Frobp) = (( p mod N)). 

!
Then it holds that !

  . !
We can say that 
  

�         !    !  

!

w !

!ρ

!

!

!χ

!̂*

!̂*

!ρ !χ

!̂*

!̂* !χ

!̂ lim
←
(! / N!)

! !ρ

!ρ

!ρ !χ

!ρ 1 : 1← →⎯⎯ !χ

 finite image 1- dimensional
representation of Gal(!/!)

⎧
⎨
⎩

⎫
⎬
⎭

1 : 1← →⎯⎯
 finite image 1- dimensional

representation of !̂*

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
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                                                                               = { character of (Z/NZ)* |  N ! Z }. 

!
The abelian class field theory of Q boils down to this correspondence.  We shall con-
firm the above supposition.  It is clear that !

t: Gal( /Q) $ Gal( /Q)ab$ C* 

!
since C* is abelian.  Namely, t has to be an extension of : Gal( /Q)ab$ C*.  Here    

Gal( /Q)ab = Gal(Qab/Q).  We know that Qab of Q is given by the union of all cyclo-

tomatic fields Q(nN)/Q.  Thus there is no finite  image  one-dimensional  representa-

tion of Gal( /Q) except : Gal(Q(nN)/Q) $ C*. 

    This formulation is somewhat primitive.  A sophisticated one is given by using  the 
ring of adeles A.��On automorphic representations side, we will  expand  a  character 

(1- dimensional representation) of  into a character of  Q*=A*.   This  character  is  

called a Hecke character 

!
r: Q*=A* $ C*. 

!
Here A* = (A3)*

 # R* and (A3)* = Q>0
* # .  It turns out that  Q*=A* , R>0

*
  since 

Q*R>0
* 
=A* , .  When a Hecke character r: A* $ C* is given, let rp: Qp

* $ C*  be 

the restriction of r to Qp
* 1 A*.  Then a Hecke  character  gives  rise  to  the  infinite 

product: !
 r(x) = �  

!
where x = (g, x,, g ) # (x3) ! Q*=A* ( , ).  When r3(x3) = 1 then r is a char-

acter of .  We have seen that such a character is a  character  of  (Z/NZ)*.   More-

over, the absolute value | . |:  Q*=A*
  $ R >0

* is also a Hecke character.  On Galois rep-

resentations side, we will prepare an ,-adic representation !
t,: Gal( /Q) $ ,

*. 

!
Take the Hecke character r which coincides with a character of .  Now, there is  a 

natural homomorphism; !
                                  Qp

*      $      (A3)*        $     Q>0
*=(A3)* ,  

                            h             h                 h    

      p-1   8   ( g,1, p-1,1,g )   8  ( g, p, 1, p,g )        . 

!
Recall Gal(Qab/Q) , .  We can identify  ( g, p, 1, p,g )  with  Frp = Frobp

-1.   Thus 

we obtain a certain map 

! !

!ρ !

!

! !ρ

!̂*

!̂* !̂*

!̂*

π ,(x, )×π∞(x∞ )
,
∏

!̂* !,
*

,
∏

!̂*

! !

!̂*

!̂*

!̂*
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!!
ArtQp: Qp

*       $   Gal(Qab/Q) 
                                                h              h    

                                 p        8      Frobp        . !
Put ArtQ = Pp ArtQp and k: ,

*
 , C*.  We can introduce an ,-adic representation  t,: 

Gal( /Q) $ ,
*
 as follows; 

!
t, = k-1%r%ArtQ

-1. 

!
Then !

t,(Frobp) = k-1%rp(p). 

!
We have seen that | . | is also a Hecke character.  On ,-adic representations side, !

|
,: Gal( /Q) $ Gal(Qab/Q) , $ Z,

* 1 ,
*  

!
coincides with such a character as | . |.  Namely, we can obtain the one-to-one  corre-

spondence between |, and  | . |. 

    We will summarize the above discussion.  Consider a Hecke character r  as  an  al-
gebraic Hecke character of weight -m where r3: z 8 zm (z ! R >0

*).  Thus a  charac-

ter of gives rise to an algebraic Heceke  character  of  weight  0.   Put  k: ,
*
 , C*.  

We can obtain an ,-adic Hecke character rk !
                            rk: Q*=A*  $ ,

*,   x 8 k-1(r(x)/x3m) $ x,
m. 

!
On the other hand, we can obtain an ,-adic representation of Gal( ! /Q) 

!
t,: Gal( /Q) $ Gal(Qab/Q) , ,

*. 

!
We will call it “an algebraic ,-adic character”. !!
Theorem 2.1.             Let  r: Q*=A*  $  C*  be an  algebraic  Hecke  character  and  

t,: Gal( /Q) $ ,
* be an algebraic ,-adic character.  It is satisfied that ! rp(p) = k%t, (Frobp) !for almost all prime numbers p.  !!

Therefore, there exists a one-to-one correspondence between an ,-adic representa-

tion t,: Gal( /Q) $ ,
* and a Hecke character of Q*=A*. 

!

! !

! !̂* !

!̂* !

!

!

! !̂* π k⎯ →⎯ !

! !

! !

�8



!
    In general, there exists a one-to-one correspondence between an ,-adic represen-

tation t,: Gal( /k) $ ,
* and a Hecke character of k*=Ak

*.  Including  this  general 

one, we will reform.  First, we shall give some comment about Weil group.  Let  K  be  
a local field i.e. a finite extension of Qp, let Fq be the residue field of  K  and  Frobq ! 

Gal ( /Fq) be the geometric Frobenius element.  There is a surjective map; 

!
f : Gal( /K) $ Gal ( /Fq). !

Put Ui = {  f -1(Frobq 
i)}.  Then 

!
WK = W( /K) =def &i ! Z Ui. !!!

Theorem 2.2.   
(Local theory)        Let K be a local field with uniformizer v.  WK is the Weil group of K 

and WK
ab = W( /K)ab = W(Kab/K).  There exists a unique isomorphism !

ArtK: K 
*  WK

ab 1 Gal(Kab/K). !
(Global theory)      Let k be an algebraic number field.  Denote its completion at  v  by 

kv.  Put ! Artv = Artkv and Wv = Wkv.  !
When v | 3 then Artv: kv 

*/ kv 
*0  Wv where kv 

*0 = R >0
* 
or C*.  There exists a group 

homomorphism !
Artk: Ak

* $ Gal( /k)ab !which satisfies Artk |kv* = Artv.  It gives rise to !
Artk: =Ak

*  Gal( /k)ab. !!
We will review the Theorem 2.2 (Local theory) in the case K = Qp.  Put 

!                                 Qp
cyc = Qp

ur
 : Qp

ram;   Qp
ur = ,pAN Qp(nN), Qp

ram = ,m Qp(npm). 

!
:     Gal(Qp(np f-1)/Qp) , Gal(Fp f/Fp)    f $1.  Thus 

Gal(Qp
ur/Qp) , Gal( /Fp) , . 

!
:                                          Gal(Qp

ram/Qp) , Zp
*. !

Then, !
Gal(Qp

cyc/Qp) , Gal(Qp
ram/Qp) # Gal(Qp

ur/Qp). 

k !

Fq

K Fq

K

K
!⎯ →⎯

!⎯ →⎯

k

k*k∞* 0 !⎯ →⎯ k

Fp !̂

�9



!
Since Qp

cyc = Qp
ab, we obtain 

!
                             ArtQp: Qp

*        WQp
ab                 1      Gal(Qp

ab/Qp) 

                                                                , Zp
*
 # Z                , Zp

*
 #         . !In the case of R ! ArtR: R*  $   WR = Gal(C/R). 

!
It turns out that ! WR = Gal(C/R) , R 

*/R >0
*. 

!
We will also review the Theorem 2.2 (Global theory) in the case k = Q.  Put 

!                     Qcyc = Qcyc
p-ur

 : Qcyc
p-ram;   Qcyc

p-ur = ,pAN Q(nN), Qcyc
p-ram = ,m Q(npm). 

!Since Q:Qp, 

    Qcyc 
: Qp

cyc  and  Gal(Qp
cyc/Qp) : Gal(Qcyc

/Q). 

!We can say that Qcyc = Qab.  Let R = Q3.  We have 

!
                          ArtQv: Qv

* $ Gal(Qv
ab/Qv) 1 Gal(Qab/Q);   v = p, 3. 

!
Taking the product of the maps ArtQv, we can define a surjective map; 

!
         Pv ArtQv: A

* $ Gal(Qab/Q). 

!
Put ArtQ = Pv ArtQv.  Since Gal(Qab/Q) = Gal(Q(nN)/Q), it is  necessary  for  us 

to confirm the validity of the following map; !
              ArtQ: A* $ Gal(Q(nN)/Q);  N $1. 

!
Recall x = ( g, xp, g ) ! A* if and only if xp ! Zp

* for all but finitely  many  primes  p. 

So we see that ArtQp(xp) = id ! Gal(Q(nN)/Q) for all but finite many  xp.  Therefore, 

we can say that ArtQ(x) ! Gal(Q(nN)/Q) is given by the product of finite  many  ele-

ments ArtQp(xp) ! Gal(Q(nN)/Q).  Moreover, taking xp ! Qp
* into account, the above  

map is consistent with .  The kernel of the map ArtQ is Q 
*
 R >0

*. 

!
Theorem 2.3.             Let  r: k*=Ak

*  $  C*  be an  algebraic  Hecke  character  and  

t,: Gal( /k) $ ,
* be an algebraic ,-adic character.  It is satisfied that ! rv = k%t,v%Artv !for all v A , (v ! 3).  Here t,v = t, |Wv. !

!⎯ →⎯

!̂

lim
←

lim
←

k !
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3. !!
    Let k be a finite extension of Qp.  We will call it a local field.  Think of the L param-

eter of GLn(k) 
!

homomorphism z: Wk # SL2(C) $ GLn(C). 

!
We will think of the equivalence class of a given L parameter.  Let U(GLn(k))  be  the  
set of all the equivalence classes.  When z ! U(GLn(k)) then z  is  decomposed  as  a 
representation of Wk # SL2(C) into direct sums as follows; 

!
z = !  

!
where z1, g, zk are irreducible smooth representations of Wk,  Symmi-1Std  is  the  u-

nique irreducible mi-dimensional algebraic  representation  of  SL2(C)  and  m1, g, mk 

are positive integers such that n = ! .  When z ! U(GLn(k)) is  irreducible  

as a representation of Wk # SL2(C) then we call it “a discrete L parameter”.   In  gen-

eral, a given L parameter is the direct sum of discrete L parameters. 
!
    The n-dimensional Weil-Deligne representation (r, V, N) is defied as follows; 
!
: (r, V ) is an n-dimensional smooth representation of Wk, 
: N ! EndC(V) 

N r(v) = qd(v)
 r(v) N  (v ! Wk). !

There is a surjective map Gal( /k) $ Gal( /l) (l = Ok /v , Fq).  Let  Ik (the iner-

tia group) be the kernel of the map.  Fix z !  Wk,  which  satisfies  Im(z) = Frobv.   We 
call it a “Frobenius lift”.  Then v = z 

d(v)i !  Wk ; i ! Ik, d(v) ! Z. 

!!
    If a Weil-Deligne representation (r, V, N) satisfies the following three conditions; 
!
: (r, V) is semi-simple, 
: r(z) is a semi-simple linear map for a lift z, 
: r(z) is a semi-simple linear map for any lift z,  
!
then we call (r, V, N)  a “Frobenius  semi-simple  Weil-Deligne  representation”.  It  is 
known that a Frobenius semi-simple Weil-Deligne representation is obtained  from  a 
given Weil-Deligne representation (r , V, N).  Let r(z) = T U where T is  a  semi-simple 
matrix and U is an unipotent matrix.  Define 
!

rss(v) = rss(z 
d(v)i) = Td(v)r(i). 

⊕
i=1

k

 zi  XSymmi−1Std

midim!zii=1

k∑

k l
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Then (r 
ss, V, N) is a Frobenius semi-simple Weil-Deligne representation.  Denote it by 

(r, V, N)Frob-ss.  On the other hand, we denote  (r 
ss, V, 0)  by  (r, V, N)ss.   It  turns  out 

that !
                  U(GLn(k))ez     (r, V, N) ! {Frobenius semi-simple Weil- 
                                                                              Deligne representations} /  +          - (3.1). 
!
We shall denote the Weil-Deligne representation corresponding to 1X Symn-1

 Std ! 

U(GLn(k)) by Spn. !
    We will think of an ,-adic (, ! p = char l, l is the residue field of k) n-dimensional 

representation of Wk !
t: Wk $ GL(V) 

!
where V is an n-dimensional , - vector space. 

    Let (r, V ) be a smooth n-dimensional representation of Wk over C.  Fix k: ,  

C.  By the isomorphism k, we can obtain an  ,-adic  n-dimensional  representation  of 

Wk.  In general, an ,-adic representation isn’t always  smooth,  so  we  can’t  always 

say that all ,-adic representations of Wk are obtained by this method.  However, if , 

! p, we can show that all ,-adic n-dimensional representations are obtained from  n-

dimensional Weil-Deligne representations.  We call such an ,-adic  representation  as 
relates to a Frobenius semi-simple Weil-Deligne  representation  a  “Frobenius  semi-
simple ,-adic representation”.  We think of the equivalence  class  of  the  Frobenius  

semi-simple ,-adic n-dimensional representations of Wk.  Denote the class by Gn,,(k).  

According to the above (3.1), we can say that !
U(GLn(k))ez     t ! Gn,,(k). !

for p ! ,. 
!
   �We will think of irreducible smooth representations of GLn(k).  As  usual,  think  of 
the equivalence class of an irreducible smooth representation, and let Irr(GLn(k)) be 
the set of all equivalence classes.  We have seen that !

U(GLn(k))   Gn,,(k). 

!
When !

                    Irr(GLn(k)) $ U(GLn(k));  r $ zr  !
is given then we can obtain !

reck: Irr(GLn(k)) $ U(GLn(k))   Gn,,(k). 

1 : 1← →⎯⎯

!

! !⎯ →⎯

1 : 1← →⎯⎯

!⎯ →⎯

!⎯ →⎯
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!
Our aim is to show that reck is  a  bijection,  i.e.,  reck(r)   tr.   We  call  it  “local  
Langlands correspondence”.  We will start with  summarizing  the  theory  of  types.  
Put n = n1 + g + nt.  For any irreducible smooth representation r  of  GLn(k),  it  will 

be a subquotient of the normalized parabolic induction of  the  irreducible  represen-
tation r1 X g X rt of GLn1(k) #  g # GLnt (k).  We will denote such r by the Langlands  
quotient r1 Z g Z rt.  What we have to do is 

!
(i)    to define reck for all n $ 1; 
(ii)   to show that reck(r) = reck(r1) 5 g 5 reck(rt) for r = r1 Z g Z rt ; 

(iii)  to show that reck is a bijection. 
!
Let Irrsc(GLn(k)) be the subset of Irr(GLn(k))  which  consists  of  irreducible  super-
cuspidal representations and Gn,,

Irr(k) be the subset of  Gn,,(k)  which  consists  of  ,-

adic irreducible representations of Wk.  We try to show 
  

                            reck: Irr
sc(GLn(k))  Gn,,

Irr(k)          - (3.2). 

!
Let r be an irreducible smooth representation of GLn(k).  It turns out that r is an ir-
reducible representation with supercuspidal support, i.e., r = r1 Z g Z rt where ri is 

supercuspidal.  Consider the above property (ii).  If we can show  (3.2)  then  we  can 

extend it to reck: Irr(GLn(k))  Gn,,(k). 

!

1 : 1← →⎯⎯

!⎯ →⎯

!⎯ →⎯
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4. !!
    We try to show 
  

rec n, k: Irr
sc(GLn(k))  Gn,,

Irr(k). 

!
We shall look back according to M. Harris’s view. !
    Think of maps for certain global fields L: 
!

rec n, L : Agood
 (n, L)  : G (n, L). 

!
Here, 

:    L is supposed to have a place w such that Lw
  k, 

:    Agood
 (n, L) is a class of cuspidal automorphic representations of GLn(AL) chosen 

 to fit some circumstances, 
:   G (n, L) can be taken to be the set of equivalence classes  of  compatible  families 
 of n-dimensional semi-simple ,-adic representation of Gal( ! /L). 

Fix an automorphic representation P = 7v Pv  of  GLn(AL).   The  ,-adic  representa-

tion rec n, L(P) of Gal( /L), when it exists, should have the property that 
!

rec n, L(P) | WLv = rec n, Lv(Pv) !
for almost all v such that Pv ! Aunr(n, Lv).  Here, Aunr(n, Lv) is the class of unramified 

representations of GLn(Lv).  Denote the unramified subset of G (n, Lv) by G 
unr(n, Lv). 

We can define a bijection, a special case of Satake parametrization, !
recn, Lv : Aunr(n, Lv)

  G 
unr

 (n, Lv). !
Let w be a finite place of L where Lw , k.  We will think of the Weil-Deligne represen-

tation  which  corresponds  to  a  given  ,-adic  representation  of  Gal( v /Lv).   Let 

(rec n, Lw)
ss be the semisimplification of rec n, Lw and set  

!
(rec n, k)

ss = (rec n, Lw)
ss. 

!
We will show that !P4.1.  for any r ! Irrsc(GLn(k)) there exists P ! Agood

 (n, L), for some L, with Pw , r; 

!
P4.2.  for P ! Agood

 (n, L), P’ ! Agood
 (n’, L), the completed L-function 

K(s, rec n, L(P) 7 rec n’, L(P’)) 

satisfies the functional equation 

                      K(s, rec n, L(P) 7 rec n’, L(P’)) 

!⎯ →⎯

!⎯ →⎯

L

L

!⎯ →⎯

L
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 = f(s, rec n, L(P) 7 rec n’, L(P’)) K(1-s, n, L (P) 7 n’, L (P’)); 

f(s, rec n, L(P) 7 rec n’, L(P’)) = Pv fv(s, rec n, L(P) 7 rec n’, L(P’), }v) is  the  product  of 

local Deligne-Langlands f factors,  {  denotes contragredient and  the  local  additive 
characters }v are assumed to be the local components of a continuous character of 

AL/L. 

!
Our task is that 
:     the construction of a class Agood

 (n, L) where the ,-adic representation rec n, L(P) 

  for P ! Agood
 (n, L) exists, 

:     to make the class Agood
 (n, L) large enough to satisfy P4.1 and P4.2. 

!
    Let’s begin our work with looking back ,-adic representations.  We shall  take  ex-
ample by elliptic curves.  Let E/Q be an elliptic curve.  Denote the kernel of  multipli-

cation map by ,m by E[,m].  Set 

!
T,(E) = E[,m],    V,(E) = T,(E) 7Z, Q,. 

!
Since G = Gal( /Q) acts on V,(E) and it leads Aut(V,(E)) , GL2(Q,), we can  iden-

tify the act of G on V,(E) with the act of GL2(Q,) on V,(E) as the act of Aut(V,(E)).  

It means that a homomophism !
               t: G $ Aut(V,(E)) , GL2(Q,) !

is given.  There exists a commutative module End(E), which is called  endomorphism 
ring of E.  Set 
!

J = End(E) 7Z Q,. !
J acts on V,(E).  We may say that J 

* = Aut(E) 7Z Q,
  since Aut(E) is formed  by  the  

invertible elements of End(E).  We will understand that j ! J 
* realizes  Aut(V,(E))  al-

though the element of J does not always realize Aut(V,(E)).  We see that V,(E)  has 

actions of important groups GL2(Q,) and J.  In  order  to  think  of  our  problem,  we 

take a strategy to find the space like V,(E) which has  actions  of  important  groups 

GL2 and J. 
    Let L be an algebraic field and let B be a central simple algebra over  L  of  dimen-
sion n2.  There exists a certain division ring D containing L and 
!

B , Mm(D). 
!
We call a field F a splitting field for B if 
  

B 7L F , Mn(F). 
!

r
⌣
ec r

⌣
ec

lim
←

!
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Set G = ResL/Q B*, which is an algebraic group over Q.  Here 

!
G(Q) = B* , GLm(D). 

!
It turns out that !

G(Qp) = (B 7 Qp)* = ( )*. 

!
If Lv is a splitting field for B then B 7L Lv , Mn(Lv).  Otherwise we call B ramified at v.  
So when B is ramified at v then (B 7L Lv)* is not isomorphic to GLn(Lv).  Think of 
!

G(A) = (B 7 A)* = . 

!
This group B 7 A corresponds to J appearing in the above example.  Denote a  class 

of automorphic representations of G(A) chosen to fit proper conditions by AG(n, L).  

We can construct Agood
 (n, L) via AG(n, L).  Let P  be  automorphic  representations 

of G(A).  Set 

!
  (CH)B:      P is a cuspidal representation of G(A) satisfying certain conditions. 

    
When P is the automorphic representation of G(A) which  satisfies  (CH)B  then  we 

can obtain an ,-adic n-dimensional representation R,’(P) of Gal( /L).  On the oth-

er hand, let P be automorphic representations of GLn(AL).  Set 

!
  (CH):       P is a cuspidal representation satisfying certain conditions, 

  DS(P):    the set of finite places v where Pv becomes a discrete series of  
               representations. !
Let ram(B) be the set of places where  B  is  ramified.   We  have  Jacquet-Langlands 
correspondence !

JL:  {cuspidal representations of G(A)}  {cuspidal representations of GLn(AL)}’ 
                                  h                                 h 

                                         P                          *                P 
                                                                             which satisfies ram(B)fDS(P) 
  
Set the ,-adic representation rec n, L(P) of Gal( /L) as follows; 

!
rec n, L(P) = R,’(LJ(P)). 

!
Here LJ = JL

-1. 
!
    More precisely, M. Harris and R. Taylor prove that  reck = recLw  can  be  calculated 

explicitly in the vanishing cycles of certain formal deformation  spaces.   In  order  to  

B⊗L Lv
v|p
∏

G(Q p)
p
∏

L

1−1← →⎯

L

�16



define reck, we will  use  H 
i
LT  that  is  the  ,-adic  étale  cohomology  of  “Lubin-Tate 

tower”.   
    Let R be a commutative ring.  An n-dimensional commutative formal group G  over 
R is a power series 
!

  F(Y, Z ) = ( Fi (Y1, g , Yn; Z1, g , Zn) )1 # i # n ! A = R gX1, g , Xn k 

!
satisfying the properties !
  : F(X, Y ) = X + Y + higher order terms 

 :    F(F(X, Y ), Z ) = F(X, F(Y, Z )) 
 :  F(X, Y ) = F(Y, X ). !
Write F(X, Y ) = X +F Y and we call it the formal group law of G.  Let  the  multiplica-
tion by p be [p]: X $ X +F g +F X  ( p times).  It is clear that [p]  is  a  homomorph-
ism G  to G.  We see that G  is made into an additive group, so it  has  the  additive  i-
dentity.  Denote it by O.  The G  is said to be divisible if [p] is an isogeny, i.e., [p]  has 

the finite kernel.  Here  #Ker [p] = ph.  This h is called the height of G .  We assume R 

complete, noetherian, local, with residue field l of characteristic p > 0.  Let  G   be  an 
n-dimensional commutative formal group over R.  Suppose  that  G   is  divisible.   We 
can form an associated p-divisible group of height h  over  R,  which  is  an  inductive 
system !!

G ( p) = (G ( p)u, iu)    u $ 0. 
!
(i)  G ( p)u = SpecAu; where Au = A/Ju and Ju = [pu](I )A is the ideal in  A  generated  

by the elements [pu](Xi), 1 # i # n. ( Here, I = J0 denotes the ideal generated  by the 

variables Xi ).  It turns out that (Au) is isomorphic to A. 

(ii)  For each u $ 0 

 0 $ G ( p)u  G ( p)u+1  G ( p)u+1 $ 0 

is exact. !
It follows that  G (p) = G ( p)u .   

!!
Proposition 4.1.    Let R be a complete noetherian local ring whose residue field l is 

of characteristic p > 0.  Then the association G  8 G (p) is  an  equivalence  between 
the category of divisible commutative formal Lie groups over R and the category of 
connected p-divisible groups over R. !!

lim
←

iu⎯ →⎯ [ pu ]⎯ →⎯⎯

lim
→
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    Let k/Qp be a finite extension of Qp with uniformizer v and let l = Ok /p , Fq  (p = 

(v)).  Let R be an Ok-algebra with structure map k: Ok $ R, i.e., R has  the  structure 

of Ok-module via the map k: Ok $ R.  A formal Ok-module G  over R is a formal  divisi-

ble group G  over R together with a family of power series  [a]  for  a ! Ok  which  to-

gether represent a homomorphism k: Ok $ End(G ).  Here it is required that [a](X) = 

k(a)X + O(X2).  Let O  be the completion of the maximal unramified extension of  Ok 

and  be the field of fractions of O .  The residue field of  is  which is an algebra-

ic closure of l.   !
[Remark]      In other words,	

= k 7W(l)W( ).	!Let W(l) be the ring of Witt vectors over l.  It is the unramified extension of degree n (q = pn) of 
the ring of p-adic integers.  The ring of integers of is O .  It holds that O = Ok 7W(l)W( ).	!
We will think of moduli spaces of formal groups.  Fix  h $1.   There  is  a  unique  one-
dimensional formal p-divisible Ok-module Gh 0 over  of height h (the  degree  of  the  

multiplication by v is qh) up to isomorphism.  Let J = EndOk(Gh 0) 7Ok k.  J is a  central  

division algebra over k of invariant 1/h.  Let R be a complete local noetherian  O -al-

gebra with the structure map k: O  $ R which induces isomorphisms between 

R/mR (mR is the maxima ideal of R).  Choose a lift  G   of  Gh 0,  which  is  a  one-dimen-

sional formal p-divisible Ok-module over R.  Assign to R the set of pairs (G, t), where 

t: Gh 0  $ G 7R  is an isomorphism.  Let C be the category of  such  O -algebras  R.  

Let M0 be the functor 
!

                        C  $  Sets ;   R 8 {(G, t)} /  + . 

!
Fix h $1 and n $1.  There exists up to isomorphism a unique  one-dimensional  formal 
p-divisible Ok-module over  of height h with Drinfeld pn-structure  atriv over  .  We 

will denote it by Gh n = (Gh 0, atriv ).  Assign to R the set of pairs (G, t, a) consisting of 
a formal p-divisible Ok-module G  over R, of a Drinfeld pn-structure a of G over R  and 

t: Gh n  
 (G 7R , a over ).  Let Mn be the functor 

!
                        C  $  Sets ;   R 8 {(G, t, a)} /  +  . 

!
Drinfeld defined a tower of rings !

         M0 $ M1 $ M2 $ g  . 

!
Mn is a covering of M0 with Galois group GLh(Ok/pn).  The functor M0 is  represent-

ed by a (h-1)-dimensional regular local O -algebra  Rh 0,  which  is  a  complete  local 

noetherian ring.  Rh 0 is isomorphic to the power series ring O  gX1, g, Xh-1k.  For ev-

⌣
k

⌣
k ⌣

k

⌣
k l

⌣
k l

⌣
k ⌣

k
⌣
k l

l

⌣
k

⌣
k l

!⎯ →⎯

l ⌣
k

l l

!⎯ →⎯ l l

⌣
k

⌣
k
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ery integer n $1, the deformation functor Mn is represented by a h-dimensional reg-

ular local O -algebra Rh n.  It turns out that 

!
                     Mn , Spf(Rh n),     n $ 0.  

!
Let M0 be the rigid generic fiber of M0.  Correspondingly, we obtain Mn  and  it  is an 

étale covering of M0.  We will have a projective system {Mn}n $ 0, and call  it  “Lubin-

Tate tower”.  We will produce the space M which is the  inverse  limit  of  the  Mn.  M 

has right actions of three important groups. !
 : G = GLh(k).    An element g ! G sends a triple (G, t, a) to (G, t, a%g). 
!
 : J 

*.    An element j ! J 
* acts on Gh 0, then we will see that 

t%j: (Gh 0, atriv )  (Gh 0, atriv )  
 (G 7R , a over ). 

Thus we can say that an element  j ! J 
* sends a triple (G, t, a) to (G, t%j, a). 

!
 : Wk (the Weil group).     Let v ! Wk then  v  induces  Frobv

d(v) (d(v) ! Z)  on  /l (=

/Fq).  The pair (G, a) consists of a formal p-divisible Ok-module  over  R  and  of  a  

Drinfeld pn-structure a of G  over R.  Thus, applying v to them, we can obtain G v and  

the level structure av on G v.  Recall t: Gh n  
 (G 7R , a over ).  Since Gh n is  a  for-

mal group over , tv will be the map Gh n 

(qd(v))
  (G v7R , av over ).   Here  Gh n $ 

Gh n 

(qd(v)) is the qd(v)-power Frobenius map.  We will denote it by F 
d(v).  We can obtain 

!
tv%F 

d(v): Gh n $ Gh n 

(qd(v))
  

 (G v7R , av over ). 

!We can say that the element v sends a triple (G, t, a) to (G v, tv%F 
d(v), av). 

!!
    Set H 

i
LT that is the ,-adic étale cohomology of “Lubin-Tate tower”; 

!
H 

i
LT = Hc

i(Mn7 , ,). 

!
Here  is the completion of an algebraic closure of k.  The three groups  GLh(k),  J 

* 

and Wk act on H 
i
LT.  It gives a representation of GLh(k) #  J 

*
 # Wk: !

                                  x( g #  j  # v ) = r(g) 7 j( j ) 7 t(v);  g ! GLh(k), j ! J 
*, v ! Wk. !

Here !
HomJ *(H 

i
LT, LJ(r)) , (H 

i
LT

* 7 LJ(r))
J

 

*

, 

!
where H 

i
LT

* is the dual space of H 
i
LT.  We will denote the dual by “*”. 

!!

⌣
k

j⎯ →⎯ !⎯ →⎯ l l

l

Fq

!⎯ →⎯ l l

l !⎯ →⎯ l l

!⎯ →⎯ l l

lim
→

⌣
k k ^ !

k ^
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[remark] !    Let Irr(2)(G) be the set of equivalence classes  of  irreducible  admissible  essentially  square  inte-
grable representation of G.  There exists a bijection, which is  called  Jacquet-Langlands  correspon-	!dence,	!   JL : Irr(2)(J 

*) * Irr(2)(GLh(k)).	!Here LJ = JL
-1.	!!!

Therefore, HomJ *(H 
i
LT, LJ(r)) where r ! Irrsc(GLh(k)) gives a representation: 

!
(x*( g #  j  # v ) 7 LJ(r))

J
 

*

 = (r*(g) 7 j*( j ) 7 t*(v) 7 LJ(r)( j ))
J

 

*

 
   = r*(g) 7 t*(v). 

!
If we use the contragredient of  HomJ *(H 

i
LT, LJ(r))  then  it  gives  a representation 

r(g) 7 t(v).  We can define reck. !!
Theorem 4.2.     For r ! Irrsc(GLh(k)), 

r 7 reck(r)( ) = ! [(HomJ *(Hc(M), LJ(r)))0] 

                                 =def ! (-1)
i 
(HomJ *(H 

i
LT, LJ(r)))0. 

In general reck(r) isn’t always irreducible for r ! Irr(GLh(k)).  Since r ! Irrsc(GLh(k)), 
reck(r) is irreducible.  So reck(r) is twisted.  Denote  the  one-dimensional  represen-
tation of Wk  

Wk $ C*;  v 8  q-(1-h)/2.d(v) 

by C( ).  Fix k: ,  C,  so  we  will  identify  C  with  ,.  Then  reck(r)( ) = 

reck(r) 7 C( ). !!
We can show that the reck has the expected properties. 

1−h
2

Σ
i

1−h
2 ! !⎯ →⎯ ! 1−h

2
1−h
2
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5. !!
    We will give a overview of the validity of the theorem 4.2.  It is related  to  what  is 

called “local-global arguments”.  We shall carry out this  according  to  M.  Strauch’s 
view (see Introduction in [18]).  We have produced a space M, which is  the  inverse 
limit of the Mn.  He points out “whereas the spaces Mn are defined purely locally, the 
analysis of the inductive limit above is carried out in by  embedding  the  local  situa-
tion into a global one”.  He says “it is very hard to understand the action of the iner-

tia group on H 
n-1”.  Why do we need global arguments?  Because it is  very  hard  to  

understand the action of Ik on cohomology groups.  We will think  of  an  ,-adic  n-di-

mensional representation (t, V ) of Wk where V is an n-dimensional , - vector space.  
Then there exists an open subgroup I1 of Ik  such that, for all v ! I1, t(v) is unipotent.  
However it is very hard to show the same thing of cohomology  groups.  It  must  be  
caused by the fact that modules are to rings what vector spaces are  to  fields.   Our  
aim is to show the statement: there exists an open subgroup I1 of Ik  such  that,  for 

all v ! I1 and all i ! Z, v acts unipotently on H 
i
LT. 

!
    We will think of this problem in more general setting.   Consider  a  regular,  proper 
and flat scheme X over (S, s, h).  We shall think that there exists a morphism  f : X $ 

Spec(S).  Here s is a closed point and h is a generic point.  Let !   be  the  fixed  alge-

braic closure of h and let X  = X #S  (= X  #Spec(S) Spec( )).  We will show  the  fol-

lowing proposition. !!
Proposition 5.1.    There exists an open subgroup I1 of the inertia group I such that, 

for all v ! I1 and all i ! Z, v acts unipotently on Hc 
i
 (X , K). !!

Its proof is very  difficult.   We  shall  think  of  a  special  case.   Assume  that  S  is  a  
smooth curve over C, i.e., there exists a morphism h: S $ C.  Here 
!

C = Ker( (n1, …, nr) :  Z 
r $ Z  ), 

!
and gcd(ni) = dpm, with (d, p) = 1 ( p = char s).  Denote a X such that there exists  a 
morphism h: S $ C by X/C.  Now the tame inertia group It; !

 It  , (Z/dZ)(1) , Z,(1). 

!
Thus !

I  I  It  I  (Z/dZ)(1). 

!

η
h h h

h

lim
    ←
(d , p)=1

Π
ℓ≠p
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!
Therefore the inertia group I acts on (Z/dZ)(1).  Here 

!
(Z/dZ)(1)  , nd , a cyclic group of order d. 

!
Especially, (Z/(qh-1)Z)(1)  , Fqh

* (q = pn).  The inertia group I acts on C via its  ac-

tion on (Z/dZ)(1).  Grothendieck shows the following for X/C. 

!!
Proposition 5.2.    There exists an open subgroup I1 of the inertia group I such that, 

for all v ! I1 and all i ! Z, (v-1)
i+1 = 0 on Hc 

i
 (X , K) (resp. H 

i
 (X , K)). !!

    T. Yoshida gives a purely local approach to the  non-abelian  Lubin-Tate  theory  in 
the special case of depth 0 or level p.  We may relate his success to the above  Prop-

osition 5.2.  Let 

!
X , M1 , Spec(Rh 1), !

which will be a scheme over (O , , ).  Here l = Fq.  He shows that  its  special  fi-

ber Xs = X #Spec(O ) Spec( ) contains a smooth affine variety over  which is isomor-

phic to DLh.  DLh is the Deligne-Lustzig variety for GLh(Fq) associated to a non  split 

torus T with T (Fq) , Fqh
*.  Here (Fq

 )h
 , Fqh.  We will identify T with C, so we may con-

sider the X as such a X/C.  Therefore, there exists an open subgroup I1 of the inertia  

group Ik such that, for all v ! I1 and all i ! Z, (v-1)
i+1 = 0 on H 

i
 (X , ,). 

    It turns out that !
H 

i
(X , , )  , Hc

i (DLh, , )                          - (5.1).    

!
Fix a character | : Fqh

* $ C
* of Fqh

* and suppose that | is in  general  position.   Here, 

when |, |q
, g, |qh-1

 are distinct then | is called  “in general position”.  If there exists 

i $ 1 and |’ = |qi   
then denote | +

 |’.  Put 

!
   DL(|) = HomFqh

* (|, Hc
h-1(DLh, ,)) 

                , (|* 7 Hc
h-1(DLh, ,))

Fqh*

. 

!
DL(|) gives a representation: 
!

                     ( |*(h) 7 r(g) 7 h(h) )Fqh*

 = r(g);  h !  Fqh
*, g ! GLh(Fq). 

!
So, DL(|) is a representation of GLh(Fq).  It turns out  that  DL(|)  is  an  irreducible  

cuspidal representation of GLh(Fq)  and  any  irreducible  cuspidal  representation  of 

GLh(Fq) is given by DL(|). 

!

h h

⌣
k l

⌣
k

⌣
k

l l

h !

h ! !

!
!
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!
           {irreducible cuspidal represen-            {characters | of Fqh

*  
                  tations DL(|) of GLh(Fq)} / ,              in general position} / +   - (5.2). !
We consider | as an inertia character of Ik from the canonical surjection 
!

  Ik  I  It  I  Fqh
* . 

!
Then !

                  { DL(|) } / ,     {generic inertia characters | of Ik} /  + 
- (5.2)’ 

!
Here “generic” corresponds with “in general position”.  From (5.1), we can show  the 
above correspondence in a purely local manner. !
    For the proof of the Langlands correspondence in a purely local manner,  it  is  im-
portant to think of automorphic inductions.  Let E/k be a finite extension of the  de-
gree n.  Let i : E 

* $ C* be a character of E 

*.  We see that 

  
                            recE: Irr(GL1(E))  G1,,

 (E);   i  8  ti . !
When the representation ti !G1,,(E) is obtained then the n-dimensional  representa-

tion IndWkWE
 ti of Wk is obtained from IndWkWE : G1,, (E) $ Gn,, (k) (WEfWk ).   On  the 

other hand, if the automorphic induction AIE/k (i) ! Irr(GLn(k)) is  obtained  then  we 

define !
reck(AIE/k (i)) = IndWkWE ti . 

  
Consider the Langlands correspondence, then it is conjectured  that  we  can  obtain 
the automorphic induction AIE/k (i) for any finite extension E/k.   However,  without 

the assumption of the Langlands correspondence, we can concretely  construct  au-
tomorphic inductions for special cases, e.g., E being a cyclic extension of k.  The fol-
lowing is an instance.  Let E/k be an unramified extension of the degree  n  with  uni-
formizer w.  The E/k will be a cyclic extension of k.  The residue field of E is  OE /P , 

Fqn  (P = (w)).   A  regular  tamely  ramified  character   : E 

* $ C*,  which  satisfies 

StabGal(E/k)( ) = {1} and | 1+wOE = {1} is given.  Here |OE
* is via a character |: Fqn

* 
$ C

* of Fqn
*.  The representation t  ! G1,,(E) is obtained, and the n-dimensional rep-

resentation IndWkWE
 t  of Wk is obtained  from  IndWkWE : G1,, (E) $ Gn,, (k) (WEfWk ).   

The supercuspidal representation r( ) of GLn (k) is obtained as an induction  of  the  

representation t( ) of H = E*$ GLn (Ok) given through the lift of DL(|) to  the  rep-

resentation of GLn (Ok).  Define 

!
reck(r( )) = IndWkWE

 t  . 

1 : 1← →⎯⎯

1 : 1← →⎯⎯

!⎯ →⎯

χ

χ χ χ

χ

χ

χ
χ

χ χ
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!
    From the canonical surjection Ik I Fqh

*, we shall consider | as the generic tame in-

ertia character.  By extending | from Ik to WE, a 1-dimensional representation of WE 

is obtained.  We can say that it is t .  Use IndWkWE and consider (5.2)’,  the  n-dimen-

sional representation IndWkWE
 t  of Wk is obtained and it corresponds to DL(|).  We 

have !
        {irreducible cuspidal repressiontations of GLh(Fq)}   $     Gn,, (k)	!
                                  h                                                         h 
                                 DL(|)                                                 8    IndWkWE

 t   . 

!
We may say that this correspondence is obtained in a local manner.  We will also see 
that it is compatible with the above automorphic inductions.  So we can show !

Irrsc(GLn(k))    $      Gn,, (k)	!                                                 h                      h 
                                              r( )          8    IndWkWE

 t  

!
in a purely local manner. !
    If we take the Proposition 5.1 into account then what  we  have  to  do  will  be  to 

prove the Jacquet-Langlands correspondence in a purely local  manner.   M.  Strauch 
shows it.  
����Recall Mn , Spf(Rh n) where Rh n is an O -algebra.  The generic fiber of Mn,  (Mn)h 

= Mn #Spec(O ) Spec( ), is a formal scheme  over  Spec( ).   Denote  the  blow-up  of  

Mn by (Mn)’.  We have a morphism p: Z = (Mn)’ $ Mn over O  and we denote the  

inverse image x ! Mn by Y = p-1(x).   Let  iZ,  jZ   be  the  inclusion  Y  (Mn)’  and 

(Mn)h  (Mn)’.  We obtain the following diagram: 

!
 Y        (Mn)’    (Mn)h 

                                           .                  . p                ; 

                                           x      $    Mn      (Mn)h   . 

!
By the base change under Spec(O ) $ Spec(O ), we have 

!
 Y           (Mn)  

                            .            .                    ; 

                                                   x     $          (Mn)    . 

!
Here  = Mn #Spec(O ) Spec(O ),  = (Mn)’ #Spec(O ) Spec(O ) and  (Mn)  =  

Mn #Spec(O ) Spec( ).  Y = -1(x) will be a subscheme of the special  fiber  (Mn)’s = 

χ

χ

χ

χ χ

⌣
k

⌣
k

⌣
k

⌣
k

⌣
k

iZ⎯ →⎯

jZ⎯ →⎯

iZ⎯ →⎯ jZ← ⎯⎯

j← ⎯⎯

k ^
⌣
k

iZ⎯ →⎯ (M  n ′) jZ← ⎯⎯ η
p

M  n
j← ⎯⎯ η

M  n ⌣
k k ^ (M  n ′) ⌣

k k ^ η

⌣
k k ^ p
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(Mn)’ #Spec(O ) Spec( ) of (Mn)’.  If we denote by R}K the nearby cycle sheaves,  we 

may say that !
H 

i ((Mn) , K )  ,  H 
i (Y, R}K). 

!
    We will give brief references concerning the construction of Mn in the  sense of  R. 
Huber.  He associates to a locally noetherian formal scheme X an adic space t(X);  

!
                t(X) = Spa(R, R) 

                 = {| $ | | | $ | is a continuous valuation of R with | a | # 1 for every a ! R} !
where X = Spf(R) is affine.  Here 

!
spX (| $ |) = {a ! R | | a | < 1} 

!
is an open prime ideal of R, so a point in X = Spf(R).  We can obtain the map 

!
               spX  : t(X ) $ X ;  | $ |  8 spX (| $ |). !

In our case Mn , Spf(Rh n) where Rh n is an O -algebra.  Let 

!
= t(Mn)a = Spa(Rh n, Rh n)a. !・ A point x of an adic space X is called analytic if there exists an open  neighborhood 

U of x in X such that Ox(U) has a topologically nilpotent  unit.   Put  Xa = { x ! X | x 
is analytic }. !

The generic fiber (Mn)h is a formal scheme over spec( ), so we may say that  (Mn)h 

, Spf(R’h n) where R’h n is an -algebra.  Denote the associated adic space to (Mn)h, 

which we can identify with the rigid generic fiber of Mn, by Mn.  Since an adic  space 

is consist with the base change, we can obtain such an adic space. 
   Now Mn 7  will be the adic space associated to (Mn) .  Thus we can say that 

!
H 

i (Mn 7 , K )  ,  H 
i (Y, R}K). 

!
Put c = (g, b-1) ! GLh(k) #  J 

*, both regular elliptic elements.  It acts on Mn 7 and 
induces a morphism !

c: Mn 7  $ Mn 7 . 
!
We shall compute the trace of c, tr((g, b-1)| H 

i (Mn 7 , K )).  It turns out that 

!
tr((g, b-1)| H 

i (Mn 7 , K )) = tr((g, b-1)| H 
i (Y, R}K)). 

!
We will compute tr((g, b-1)| H 

i (Y, R}K)).   Consider  sp(Mn)’: t((Mn)’) $ (Mn)’.   We 

can say that  = t((Mn)’), thus it deduces 

⌣
k

l

η

⌣
k

Mn

⌣
k

⌣
k

⌣
k k ^ η

⌣
k k ^

⌣
k k ^

⌣
k k ^ ⌣

k k ^

⌣
k k ^

⌣
k k ^

Mn lim
←
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sp :  $ (Mn)’. 

!
We have a morphism Y   (Mn)’.  Let 2Mn =  - Mn .  From 2Mn 3 ,  sp(2Mn) 

3 (Mn)’.  We define 

!
2Y = iZ

-1
(sp(2Mn)). !

Put Y = 2Y ,(Y - 2Y ).  Here Y - 2Y is open in (Mn)’s .  We can use Lefschetz-Verdier 

trace formula: !
(-1)i tr((g, b-1)| H 

i (Y, R}K)) = #Fixc + the remainder. 

!
If c has no fixed points on 2Y then the remainder = 0.  The fact that c  has  no  fixed 
points on 2Mn shows that c has no fixed points on 2Y. 
!!!
Theorem 5.1.      Let g ! GLh(k), b ! J 

* be both regular elliptic elements.  

tr((g, b-1)| Hc
* (Mn )) = (-1)i tr((g, b-1)| Hc

i (Mn 7 , Q,)) 

is equal to the number of fixed points of (g, b-1) on Mn 7 , which is finite. !!!
    Let r be an irreducible supercuspidal representation of G = GLh(k).   The  charac-
ter of r, which is denoted by |r, is a locally constant function on  the  set  of  elliptic 
regular elements in G.  Put the representation j = JL(r) of J 

* that corresponds to r 
via the Jacquet-Langlands correspondence.  Let g ! GLh(k) and b ! J 

* be the regular 
elliptic elements with the same characteristic polynomial.  Then the  following  char-
acter relation !

|j(b) = (-1)h-1 $ |r(g) !
holds.  We will show the character relation in a purely local manner. 
    Now, HomG  (H 

i
LT, r) gives a representation: 

!
       ( r*(g) 7 j*( b ) 7 t*(v) 7 r(g) )G = j*( b ) 7 t*(v); g ! GLh(k), b ! J 

*, v ! Wk. !
We may say that HomG  (H 

i
LT, r) is a finite-dimensional smooth representation j*( b ) 

of J 
*.  We can say that j*( b-1

 ) = j( b ).  We will consider 
!

HomG  (H 
*
LT, r) = (-1)i HomG  (H 

i
LT, r). 

We will compute tr(HomG  (H 
*
LT, r)).  Unless i = h-1, no  supercuspidal  representa-

tion of G appears in H 
i
LT as a sub-quotient.  Thus we may  say  that  tr(HomG  (H 

*
LT, 

Mn

iZ⎯ →⎯ Mn Mn

Σ
i

Σ
i

⌣
k k ^

⌣
k k ^

Σ
i
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r)) = tr((-1)h-1HomG  (H 
h-1

LT, r)).  Let f be a compact supported function on J 
* and 

let gb be the regular elliptic element of G whose characteristic polynomial is same as 

that of b.  Now suppose that supp( f ) is contained in the set  of  regular  elliptic  ele-
ments of J 

*.  We can use the above Theorem 5.1 and we can show that 

!
tr( f | HomG  (H 

*
LT, r)) = h $ . 

!
We replace f by a sequence of compactly supported functions on J 

*  whose  support 
converges to {b} and whose integral is 1, for example a sequence of 
  

,
 

!
then we can say that  !

tr(b | HomG  (H 
*
LT, r)) = h $ |r(gb). 

!
On the other hand, if we consider that b = (b-1) -1, we may say that 
!
tr(b | HomG  (H 

*
LT, r)) = tr(b | (-1)h-1HomG  (H 

h-1
LT, r)) = (-1)h-1|

HomG
 (H 

h-1
LT, r)

0(b). 

!
It turns out that !

|
HomG

 (H 
h-1

LT, r)
0(b) = (-1)h-1 h $ |r(gb). 

!
and put  |HomG

 (H 
h-1

LT, r)
0(b) = h $ |j(b).  We can obtain our desired character relation. 

!!

χπ (gb ) f (b)dbJ*∫

δb (t) =  ∞ ! t = b
0 ! t ≠ b

⎧
⎨
⎩
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6. !!
    Let L be a global field.  Here, 
!
:    A(n, L) is the class of automorphic representations of GLn(AL), 

:   G (n, L) is the set of equivalence classes of n-dimensional semi-simple ,-adic 
    representations of Gal( ! /L). !
The global Langlands program says that the following correspondence: !

A(n, L)   �    G (n, L) 
                                              h               h 

                                                       P          *     RP !
exists.  If the global field L is totally real or a CM-field  L0( )  for  some  totally  real 
number field L0 and some totally negative  r ! L0  then  the  above  correspondence 
exists.  Fix an automorphic  representation  P = 7v Pv  of  GLn(AL).   We  have  seen 

that the ,-adic representation rec n, L(P) of Gal( /L),  when  it  exists,  should  have 

the property that !
rec n, L(P) | WLv = rec n, Lv(Pv) !

for almost all v such that Pv ! Aunr(n, Lv).  Here, Aunr(n, Lv) is the class of unramified 

representations of GLn(Lv).  Denote the unramified subset of G (n, Lv) by G 
unr(n, Lv). 

We can define a bijection !
recn, Lv : Aunr(n, Lv)

  G 
unr

 (n, Lv). !
It enables us to state that !

recn, Lv : A(n, Lv)
  G (n, Lv). !

��� A local field k is the completion of a number field K/Q, i.e., there exists  a  place  v 

and k = Kv.  We will think of K = Q(i).  Let i = a + b (a, b ! R).  Denote its com-

plex conjugate by  = a - b .  Let r = (i - )2
 # 0.  Then L0 = Q(i + , r) is to-

tally real.  So L0( ) is totally real or a CM-field.  Since  (i + ) + (i - ) = 2i, i ! 

L0( ).  It turns out that Q(i) 3 L0( ).  We can say that there exists a totally  real 

or a CM-field L and there is a place w of L such that v | w. 

    We shall ignore some subtle problems in  the  following  discussion.  Now, we shall 
consider that Lw is an extension of k.  Namely, there exists  a  totally  real  or  a  CM-
field L such that Lw/k for an arbitrary given local field  k.   Let  d = [Lw : k].   It  holds 
that !

L

1−1← →⎯

r

L

!⎯ →⎯

!⎯ →⎯

−1

θ −1 θ θ
r θ θ

r r
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Lw = Lw 7k k. 
!
We have !

Resk
Lw : G (n, k) $ G (n, Lw);   tk 8 tLw 

!
since WLwfWk .  On the other hand, we have 

!
              ResLw/k : G (n, Lw) $ G (n, Lw 7k k);  tLw 8  (IndWkWE tLw )

d. 

!
We can say that ResLw/k is a bijection.  Let Ln = ResLw/k GLn.  The  automorphic  rep-

resentation Pw of GLn(Lw) is identified with  the  automorphic  representation  P  of 

Ln(Lw).  Thus, let P = (r )
d for r ! A(n, k) then (r )

d is identified with  Pw.   Since  it 

holds that A(n, Lw)  G (n, Lw ), !
(r )

d    tLw    (IndWkWE tLw )
d. 

!
So, we see that !

                A(n, k)er    IndWkWE tLw ! G (n, k). 

!
It enables us to state that !

A(n, k)er    tk ! G (n, k). 

!
    Put recn, K = Pv rec n, Kv.  It realizes the global Langlands correspondence.  We have 

seen that it is obtained via a totally real or a CM-field L.  Thus,  it  must  become  our 
problem to show the global Langlands correspondence independently of the field  L.  

We have seen that the local Langlands  correspondence  is  shown  in  a  purely  local 
manner.  This means that the global Langlands correspondence is obtained indepen-
dently of the field L. 

1 : 1← →⎯⎯

1 : 1← →⎯⎯ 1 : 1← →⎯⎯

1 : 1← →⎯⎯

1 : 1← →⎯⎯
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