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We review classical class field theory in the section 1. The result is that there ex-
ists a class field K/k over an ideal group Hwm in k and it is an abelian extension. We
will consider our example such that k£ = Q.

We may say that the classical class field theory is abelian class field theory. Our
next problem is that “how about non-—abelian class field theory?”, namely “how
about the case of non-abelian extensions?”. However, we have known that non-
abelian theory can’t be constructed based on ideal groups H. We have to pursue
our plan from a different direction. This is Langlands program. We will reform the
abelian class field theory according to Langlands program in the section 2. Similarly
we will consider our example such that k£ = Q.

We will describe the local Langlands program in the section 3. Let k be a finite
extension of Q,. We will call it a local field. Let Irr(GLn(k)) be the set of irreducible
smooth representations of GLn(k) and let G, (k) be the set of (-adic representa-
tions of Weil group Wi. The local Langlands program is to show the existence of the
isomorphism

reci: Irr(GLn(k)) —— Gui(k).

We try to define recy which is consistent with Zelevinsky’s classification. Therefore,
our aim is to show

reci: Irr*(GLn(k)) —— Gu.d™(k).

Here, Irr*(GLn(k)) is the subset of Irr(GLn(k)) which consists of irreducible super-
cuspidal representations and G,.(""(k) is the subset of G, (k) which consists of £-adic
irreducible representations of W;. In the section 4, we give the definition of reck. In
order to define rec, we will use H'i 1 that is the ¢-adic étale cohomology of “Lubin-
Tate tower”.

Basically we will take the strategy to show the local Langlands program from the
“local-global compatibility”. Namely, we need the global arguments to show the
local Langlands correspondence. Currently there is no purely local proof of the local
Langlands correspondence. The global arguments are used at the following points.
On the one hand, it is very hard to understand the action of the inertia group on the
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cohomology H'ir. We will think of an ¢-adic n-dimensional representation (p,V)

where Vis an n-dimensional Q (- vector space. Then there exists an open subgroup
I, of the inertia group I such that, for all 6 €1}, p(0) is unipotent. However it is very
hard to show the same thing of cohomology groups. On the other hand, we need the
Jacquet-Langlands correspondence. In the section 5, we shall think of these prob-
lems. It must be possible for us to solve these problems in a local manner. Strauch
shows Jacquet-Langlands correspondence in a purely local manner.

We will think of the global Langlands correspondence in the section 6. A local
field k is the completion of a number field K/Q, i.e., there exists a place v and k =
K,. Putrecx =II,reck,. Itrealizes the global Langlands correspondence. In order
to show that local Langlands correspondence we need a totally real or a CM-field L.
Thus we see that rec x is obtained via such a field L. It must become our problem to
show the global Langlands correspondence independently of the field L. We will see
that the local Langlands correspondence is shown purely locally in the section 5.

This means that the global Langlands correspondence is obtained independently of
the field L.



Let k be an algebraic number field. Denote the places of k by p, and put
m= H] P,

A k-modulus is such a formal product m = mym., where m, (the finite part) con-
sists of p, (v # o) and m consists of infinite places. A fractional ideal of k is called
relatively prime to m when it is relatively prime to my. Set

S = {(CZQ) lap =1 (mod m)}
and
Am = {all fractional ideal of £ which are relatively prime to m}.

We can define ideal classes as the elements of An/Sm. When
Sm C HC Am,

we will call H “ideal group modulo m” and denote it by Hwn. We can also define ideal
classes as the elements of Am/Hm, and the index 7 = (Am : Hw) is its class number.
Let K/k be a Galois field of the degree n,

Nm(K/k) =qer {a in k | @ = Ngi (U) for a fractional ideal U in K,
a is relatively prime to m}

and
Hm(K/k) —def Sm Nm(K/k)

It turns out that
h = (Am . Hm(K/k)) <n.

Thus, when a Galois field K/k of the degree n is given then an ideal group Hw(K/k) in
k whose index i < n is obtained. If pe Hn(K/k) then p = Nk (). So, we can say

that p = ByP, --- B, where By = B, B; # Bj and B; = P’ 0 e Gal(K/k).

Definition 1.1. Suppose that a Galois field K/k of the degree n corresponds to

an ideal group Hwm in k of the index . When h = n then K is called a class field over
Hm.

According to this definition, when K/k is a class field then it must be reasonable to
say that the ideal group Hw(K/k) is determined associated with a given field K/k.
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We will think of the case k = (). Let ¢ be a primitive Nth root of unity and con-
sider the Nth cyclotomatic field Q({n)/Q. Its degree is n = ¢(N), where ¢ is Euler’s

totient function. The field of rational numbers has the unique p., so a Q-modulus

N = Np.. is given. We will see that Q(¢x)/Q corresponds to the ideal group

Hy(QUmIQ) = Sx = {(ao) lao =1 (mod. N)}
and that
Q(¢n)/Qiis a class field over Si.

Here, Q(¢n)/Q is an abelian extension. In general, the following is satisfied.

Theorem 1.1.  There exists a class field K/k over an ideal group Hw in k and it is
an abelian extension.

We know that the maximal abelian extension Q* of Q is given by the union of all
cyclotomatic fields Q(¢n)/Q and that it is also a class field. Now, it turns out that

Gal(Q(¢w)/Q) = (ZINZ)".
So

Gal(Q®/Q) = Z*, Z= lim(Z/NZ).

We may say that the class field theory of the case k = ( boils down to the above
formulae.



We may say that the above theory is abelian class field theory. Our next problem
is that “how about non—abelian class field theory?”, namely “how about the case of
non-abelian extensions?”. However, according to Theorem 1.1, we will know that
non-abelian theory can’t be constructed based on ideal groups H. We have to pur-

sue our plan from a different direction. This is Langlands program. We will use the
following notations.

K/k A Galois extension over a number field k. Denote prime ideals in k and K
by v and w respectively.

k The algebraic closure of k.

Fr,, The Frobenius elements corresponding to v. Here suppose that K/k is
unramified at v. The prime ideal splits as a product of prime ideals of K.
Pick one of them and denote it by w. It holds that

xNv) = xFrv (mod. w)  xeOk

Frob, The geometric Frobenius element. Denote the conjugacy class of Fry,
by Fr,. Then Frob, =g Fr, "

Ay The ring of adeles. Let A = A*XR where A* = 7 ®:Q. Then

A = A®gk.
Here, ke = R®qk.

According to Langlands program, our problem becomes to establish the corre-
spondence between n-dimensional representations

p: Gal(k /k) — GLn
and
irreducible automorphic representations 7 of GLn(k)\GLn(Ay).
From the Galois group side, we will think of p(Frob,). From the automorphic repre-
sentation side, we will think of the infinite tensor product 7 = (?m@)nw. Our task

is to establish the correspondence between p(Frob,) = (v, -+, v,) and the parame-
ter (Satake parameter) (zi, -+, z,) of 7.



Take the Langlands program’s view, the abelian class field theory becomes the
case of GL1. Consider our example such that £ = Q.
Let K/Q be a finite Galois extension. We see that the element of Gal(K/Q) is ex-

tended to the element of Gal(Q /Q). For example, the Frobenius element Fr, of
Gal(K/Q) is extended to Fry of Gal(Q /Q). Thus a one-dimensional representation

p:Gal(K/Q) — C”

can be naturally extended to a one-dimensional representation of Gal(Q /Q)
p: Gal(Q/Q) — C".

It is also satisfied that a representation

7:(ZINZ)" — C, for some N

can be naturally extended to a one-dimensional representation of Z

A

x: 7 — C.

We will call such a representations as p or ¥ “afinite image representation”.
Let’s start on a one-dimensional representation of 7" . It turns out that there is
no finite image one-dimensional representation of Z* except 7: (Z/NZ)* — C* for

some N since AZzliln(Z/NZ). Suppose that there is no finite image one-dimen-

sional representation of Gal(Q /Q) except 5: Gal(Q(uy)/Q) — C*. Here, uyis the
group of Nth-roots-of-unity. We have shown that

Gal(Q(u)/Q) = (ZINZ)".

Since Frob, € Gal(Q(un)/Q) ( ptN) corresponds to (p mod N)'e(ZINZ)", we can ob-
tain a certain map which sends Frob, to (p mod N). It enables us to introduce a one-
dimensional representation p of Gal(Q(un)/Q) like

p (Frob,) = ¥ ((p mod N)).

Then it holds that

We can say that
finite image 1-dimensional . finite image 1-dimensional
representation of Gal(Q/Q) representation of A
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= { character of (Z/NZ)" |N€Z }.

The abelian class field theory of Q boils down to this correspondence. We shall con-
firm the above supposition. It is clear that

p: Gal(Q /Q) — Gal(Q /Q)*— C”

since C™ is abelian. Namely, p has to be an extension of 5: Gal(Q /Q)*— C". Here

Gal(Q /Q)*™ = Gal(Q™/Q). We know that Q* of Q is given by the union of all cyclo-
tomatic fields Q(un)/Q. Thus there is no finite image one-dimensional representa-

tion of Gal(Q /Q) except p: Gal(Q(uy)/Q) — C.

This formulation is somewhat primitive. A sophisticated one is given by using the
ring of adeles A. On automorphic representations side, we will expand a character

(1- dimensional representation) of 7' into a character of Q*\A". This character is
called a Hecke character

7w QA" — C.

Here A" = (A®)"xXR* and (A®)" = Q."XZ". It turns out that Q*\A" = R.," Z" since
Q"R."\A" = Z". When a Hecke character 7: A* — C"is given, let 7,: Q," — C* be
the restriction of 7 to Q," C A". Then a Hecke character gives rise to the infinite
product:

n(x) = [1m () x 7 (x.)

where x = (-, xg, ) % (xo0) € QA" (Z = [1Z¢ ). When Zo(xs)=1 then zis a char-
0

acter of 7. We have seen that such a character is a character of (ZINZ)*. More-

over, the absolute value |-|: Q"\A* — R, is also a Hecke character. On Galois rep-
resentations side, we will prepare an (-adic representation

P Gal(Q/Q) — Q..

Take the Hecke character 7z which coincides with a character of 7. Now, there is a
natural homomorphism;

Q" — (A — Qo \A®) =7

w W W

p_l — (.”719p_1’17-.-) i (“"p’ 17p)“')

Recall Gal(Q™/Q) = Z". We can identify (-, p, 1, p,~) with Fr,= Frob,”'. Thus
we obtain a certain map



Artg,: Q@ —  Gal(Q™/Q)
) )
p — Frob,
Put Artg = I, Artg, and «: Q¢ =C". We can introduce an (-adic representation py:
Gal(Q/Q) — Q¢ as follows;
0y = lemmeArtg .
Then
p(Froby) = " tezr,(p).
We have seen that |-| is also a Hecke character. On (-adic representations side,

Xe Gal(Q/Q) — Gal(Q®/Q) = Z'— Z/'c Q¢

coincides with such a character as |-|. Namely, we can obtain the one-to-one corre-

spondence between X, and |-|.

We will summarize the above discussion. Consider a Hecke character 7z as an al-
gebraic Hecke character of weight —m where 77.: z— 7" (z € R.o). Thus a charac-

ter of Z*gives rise to an algebraic Heceke character of weight 0. Put ¢ Q, =C".
We can obtain an ¢-adic Hecke character 7,

e QA" — Qo, x— 1zm(x)/xs™) - x0"
On the other hand, we can obtain an ¢-adic representation of Gal(Q /Q)

pe Gal(Q /Q) — Gal(Q®/Q) = Z' "> Q.

We will call it “an algebraic ¢-adic character”.

Theorem 2.1. Let 7: Q"\A® — C" be an algebraic Hecke character and
pi: Gal(Q/Q) — Q¢ be an algebraic ¢-adic character. It is satisfied that

7tp(p) = top;(Frob)
for almost all prime numbers p.

Therefore, there exists a one-to-one correspondence between an (-adic representa-
tion p;: Gal(Q /Q) — Q/ and a Hecke character of Q"\ A",
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In general, there exists a one-to-one correspondence between an (-adic represen-

tation p;: Gal(k /k) — @/ and a Hecke character of K"\ A;". Including this general

one, we will reform. First, we shall give some comment about Weil group. Let K be
a local field i.e. a finite extension of Q,, let I, be the residue field of K and Frob, e

Gal (Fq /IF,) be the geometric Frobenius element. There is a surjective map;
f: Gal(K /K) — Gal (Fq /F,).
Put U; = { f~'(Frob,/)}. Then

Wx = W(K /K) =t 11;c7 U..

Theorem 2.2.
(Local theory) Let K be a local field with uniformizer v. Wk is the Weil group of K
and W™ = W(K /K)™ = W(K*™/K). There exists a unique isomorphism

Artg: K —— Wi c Gal(K*/K).

(Global theory) Let k be an algebraic number field. Denote its completion at v by
ky. Put

Art, = Arty, and W, = Wy,

When v|oo then Art,: k,*/ k" —— W, where k," = R or C". There exists a group
homomorphism

Arti: Ay — Gal(]; /k)ab
which satisfies Artil;,- = Art,. It gives rise to

Arty: Kk VA —— Gal(k /k)™.

We will review the Theorem 2.2 (Local theory) in the case K = (,. Put

Qpcyc — qul‘. Qpram; qur — Up'(N Qp(,uN), Qpram — Um Qp(,upm)
Gal(Qu(ipr1)/ Q) = Gal(F,/F,)  f=1. Thus )
Gal(Q,"/Q,) = Gal(F, /F,) =Z.
Gal(Q,™/Qy) = Z, .
Then,

Gal(Q,%/Q,) = Gal(Q,™™/Q,) x Gal(Q,"/ Q).
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Since Q,%¢ = Q,", we obtain
Artg,: Q) —  Wg,® c  Gal(Q™/Q,)
=7, X7 =7, X7
In the case of R
Artg: R" — Wr= Gal(C/R).
It turns out that
Wr= Gal(C/R) = R*/R.¢".

We will also review the Theorem 2.2 (Global theory) in the case k = (. Put

0% = Qo™ Qo™ Qg™ = Ui Q), Q™™ = U Qazpm).
Since Q= Q),
Q7 - Q,7° and Gal(Q,”°/Q,) = Gal(Q¥*/Q).
We can say that Q%° = Q®. Let R = Q.. We have
Artg,: Q" — Gal(Q,*/Q,) ¢ Gal(Q™/Q); v =p, oo.
Taking the product of the maps Artg,, we can define a surjective map;

1, Artg,: A" — Gal(Q*®/Q).

Put Artg = I1, Artg,. Since Gal(Q™®/Q) = liin Gal(Q(un)/Q), it is necessary for us
to confirm the validity of the following map;

Artg: A" — Gal(Q(un)/Q); N=1.

Recall x = ( -, xp, -+ ) € A" if and only if x, € Z," for all but finitely many primes p.
So we see that Artg,(x,) = id € Gal(Q(un)/Q) for all but finite many x,. Therefore,
we can say that Arto(x) € Gal(Q(un)/Q) is given by the product of finite many ele-
ments Artg,(x,) € Gal(Q(un)/Q). Moreover, taking x, € Q, into account, the above

map is consistent with ligl . The kernel of the map Artgis Q"R .o

Theorem 2.3. Let 7z: k'\Ay" — C” be an algebraic Hecke character and

pe: Gal( k /k) — Q¢ be an algebraic ¢-adic character. It is satisfied that
Ty = lepgeArt,
forall v+ 0 (v # o). Here py, = pylw,-
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Let k be a finite extension of ,. We will call it a local field. Think of the L param-
eter of GLn(k)

homomorphism ¢: Wi x SL,(C) — GLn(C).

We will think of the equivalence class of a given L parameter. Let @(GLn(k)) be the
set of all the equivalence classes. When ¢ € ®(GLn(k)) then ¢ is decomposed as a
representation of Wy X SL,(C) into direct sums as follows;

k
¢ = (‘Pl ¢. XSym™'Std

where ¢, ---, ¢, are irreducible smooth representations of W, Sym’""_IStd is the u-
nique irreducible m;-dimensional algebraic representation of SL,(C) and my, ---, m,
are positive integers such that n = Z;midimc ¢.. When ¢ e ®(GLn(k)) is irreducible

as a representation of Wj X SL,(C) then we call it “a discrete L parameter”. In gen-
eral, a given L parameter is the direct sum of discrete L parameters.

The n-dimensional Weil-Deligne representation (r, V, N) is defied as follows;

« (r, V) is an n-dimensional smooth representation of W,
«Ne End@(V)
Nr(c) = g% r(c)N (c € Wy).

There is a surjective map Gal(k /k) — Gal(k /k) (k = O/v = Fy). Let I (the iner-
tia group) be the kernel of the map. Fix ¢ € Wy, which satisfies Im(¢)=Frob,. We
call it a “Frobenius lift”. Theno = ¢4 € Wy; 0y, d(o) € 7.

If a Weil-Deligne representation (r, V, N) satisfies the following three conditions;

. (r, V) is semi-simple,
- 1(¢) is a semi-simple linear map for a lift ¢,
- () is a semi-simple linear map for any lift ¢,

then we call (r, V, N) a “Frobenius semi-simple Weil-Deligne representation”. It is
known that a Frobenius semi-simple Weil-Deligne representation is obtained from a
given Weil-Deligne representation (r,V,N). Let r(¢) =T U where T is a semi-simple
matrix and U is an unipotent matrix. Define

(o) = (¢ 49)g) = T4)r(H).
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Then (r*,V,N) is a Frobenius semi-simple Weil-Deligne representation. Denote it by
(r, V, N)I™5_ On the other hand, we denote (r*°,V, 0) by (r, V, N)*. It turns out
that

O(GLn(k))> ¢ < (r,V, N)e {Frobenius semi-simple Weil-
Deligne representations}/ ~ — (3.1).

We shall denote the Weil-Deligne representation corresponding to 1X Sym" ' Std e
&(GLn(k)) by Spp.

We will think of an ¢-adic (£ # p = char k, k is the residue field of k) n-dimensional
representation of Wy

pP: Wk - GL(V)

where V is an n-dimensional Q (- vector space.

Let (r, V) be a smooth n-dimensional representation of W over C. Fix: Q, ——
C. By the isomorphism ¢, we can obtain an (-adic n-dimensional representation of
Wi. In general, an (-adic representation isn’t always smooth, so we can’t always
say that all ¢-adic representations of W; are obtained by this method. However, if {
# p, we can show that all ¢-adic n-dimensional representations are obtained from n-
dimensional Weil-Deligne representations. We call such an -adic representation as
relates to a Frobenius semi-simple Weil-Deligne representation a “Frobenius semi-
simple ¢-adic representation”. We think of the equivalence class of the Frobenius
semi-simple (-adic n-dimensional representations of W;. Denote the class by G, «(k).
According to the above (3.1), we can say that

O(GLn(k))=> ¢ = pe Gulk).
for p# 0.

We will think of irreducible smooth representations of GLn(k). As usual, think of
the equivalence class of an irreducible smooth representation, and let Irr(GLn(k)) be
the set of all equivalence classes. We have seen that

&(GLn(k)) — Gudk).
When

Irr(GLn(k)) — &(GLn(k)); ©— ¢x
is given then we can obtain

reci: Irr(GLn(k)) — &(GLn(k)) —— Guu(k).
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Our aim is to show that rec is a bijection, i.e., reck(7) <> pz. We call it “local
Langlands correspondence”. We will start with summarizing the theory of types.
Putn = n,+ --- + n.. For any irreducible smooth representation 7 of GLn(k), it will

be a subquotient of the normalized parabolic induction of the irreducible represen-
tation 71X --- K 7; of GLni(k) X --- x GLns (k). We will denote such 7 by the Langlands
quotient 7,8 ---B ;. What we have to dois

(i) to define reck foralln > 1;
(ii) to show that reci(7) = reci(m)® --- @ reci(n;) form = B ---B 7y,
(iii) to show that reck is a bijection.

Let Irr*“(GLn(k)) be the subset of Irr(GLn(k)) which consists of irreducible super-
cuspidal representations and G,(""(k) be the subset of G,«(k) which consists of (-
adic irreducible representations of W;. We try to show

reci: Irr*(GLn(k)) —— Gud™(k) — (3.2).

Let 7 be an irreducible smooth representation of GLn(k). It turns out that 7 is an ir-
reducible representation with supercuspidal support, i.e., 7 = 7,8 --- B 7; where 7; is
supercuspidal. Consider the above property (ii). If we can show (3.2) then we can

extend it to recy: Irr(GLn(k)) —— Gui(k).
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We try to show
rec i Irr*(GLn(k)) —— Gui™(k).

We shall look back according to M. Harris’s view.

Think of maps for certain global fields L:
recnr: A% (n, L) — G(n, L).

Here,

L is supposed to have a place w such that L,, — k,

A8°d(n, L) is a class of cuspidal automorphic representations of GLa(A) chosen
to fit some circumstances,
G(n, L) can be taken to be the set of equivalence classes of compatible families

of n-dimensional semi-simple ¢-adic representation of Gal( L /L).
Fix an automorphic representation IT = ®,II, of GLn(A;). The (-adic representa-

tion rec, (IT) of Gal( L /L), when it exists, should have the property that
rec,, () | w,, = rec,, ,(I1,)

for almost all v such that 17, € A“"(n, L,). Here, A“"(n, L,) is the class of unramified
representations of GLn(L,). Denote the unramified subset of G(n, L,) by G*"(n, L,).
We can define a bijection, a special case of Satake parametrization,

recn.z,: A (n, L)) — G“"(n, L,).

Let w be a finite place of L where L,,= k. We will think of the Weil-Deligne represen-
tation which corresponds to a given (-adic representation of Gal(L,/L,). Let
(recn.r,)” be the semisimplification of rec,, ;,, and set

(rec,,0)™ = (recn,r,)™
We will show that

P4.1. for any 7 € Irr*(GLn(k)) there exists IT € A%°°?(n, L), for some L, with IT,, = 7;
P4.2. for ITe A% (n, L), IT' € A%°°(n', L), the completed L-function
AC(s, rec, 1(IT)®rec, ((11'))

satisfies the functional equation
A(s, rec, [(IT)®rec,y ((IT"))
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= &(s, rec,. (I ®rec, ((IT") A(1—s, r€c ,, L (IT) ®1EC ;v L (IT'));

(s, rec, (I ®rec, ((IT")) = I1,&(s, rec, (I ®rec, (11", ¥,) is the product of
local Deligne-Langlands € factors, ~ denotes contragredient and the local additive

characters ¥, are assumed to be the local components of a continuous character of
Ar/L.

Our task is that
the construction of a class .4%°°? (n, L) where the (-adic representation rec, 1(IT)

for IT € A2 (n, L) exists,
to make the class .4%°°Y(n, L) large enough to satisfy P4.1 and P4.2.

Let’s begin our work with looking back £-adic representations. We shall take ex-
ample by elliptic curves. Let E/Q be an elliptic curve. Denote the kernel of multipli-
cation map by 0" by E[0™]. Set

TWE) = liinE[Qm], VUE) = TW(E) ®zy Qq.

Since G = Gal(Q /Q) acts on Vi(E) and it leads Aut(Vi(E)) = GL>(Qy), we can iden-
tify the act of G on Vu(E) with the act of GL(Qg) on Vi(E) as the act of Aut(Vu(E)).
It means that a homomophism

p: G — Aut(Vu(E)) = GL2(Qy)

is given. There exists a commutative module End(E), which is called endomorphism
ring of E. Set

J = End(E) ®; Qq.

J acts on Vo(E). We may say that /" = Aut(E) ®; Qe since Aut(E) is formed by the
invertible elements of End(E). We will understand that j€J" realizes Aut(Vu(E)) al-
though the element of J does not always realize Aut(Ve(E)). We see that Vo(E) has
actions of important groups GL>(Qg) and J. In order to think of our problem, we
take a strategy to find the space like Vi(E) which has actions of important groups
GL, and J.

Let L be an algebraic field and let B be a central simple algebra over L of dimen-
sion n?. There exists a certain division ring D containing L and

B = M,(D).
We call a field F' a splitting field for B if
B®LF = M,(F).
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Set G = Res/g B”, which is an algebraic group over Q. Here
G(Q) = B" = GLm(D).
It turns out that

G(Qp) = (B®Q,)" = ([[B®, Lv)".

vip

If L, is a splitting field for B then B&®; L, = M,(L,). Otherwise we call B ramified at v.
So when B is ramified at v then (B®; L,)" is not isomorphic to GLn(L,). Think of

G(A) = (B®A) = []GQ,).

This group B® A corresponds to J appearing in the above example. Denote a class
of automorphic representations of G(A) chosen to fit proper conditions by A%(n, L).
We can construct .A4%°°¢(n, L) via AS%(n, L). Let IT be automorphic representations
of G(A). Set

(CH)p: M is a cuspidal representation of G(A) satisfying certain conditions.

When IT is the automorphic representation of G(A) which satisfies (CH)p then we

can obtain an (-adic n-dimensional representation R¢'(IT) of Gal( L /L). On the oth-
er hand, let IT be automorphic representations of GLn(Ar). Set

(CH): M is a cuspidal representation satisfying certain conditions,

DS(T): the set of finite places v where IT, becomes a discrete series of
representations.

Let ram(B) be the set of places where B is ramified. We have Jacquet-Langlands
correspondence

JL: {cuspidal representations of G(A)} «~— {cuspidal representations of GLn(A)}'
w w

I — 11
which satisfies ram(B) € DS(IT)
Set the (-adic representation rec, ;(IT) of Gal( L /L) as follows;
rec,,.(IT) = Re'(LIU)).

Here L] = JL 7\,

More precisely, M. Harris and R. Taylor prove that recy = rec,, can be calculated
explicitly in the vanishing cycles of certain formal deformation spaces. In order to
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define recy, we will use H'ir that is the (-adic étale cohomology of “Lubin-Tate

tower”.
Let R be a commutative ring. An n-dimensional commutative formal group & over
R is a power series

F(Y,Z) = (Fi(Yls Tt Yl’l, Zla Tt Zn))lgignE&Z{ZRﬂX], T 9Xn]]

satisfying the properties

« F(X,Y) =X+ Y + higher order terms
- F(F(X,Y),Z) =FX, F(Y, Z))
- FX,Y)=F(, X).

Write F(X, Y) = X +r Y and we call it the formal group law of .. Let the multiplica-
tionby p be [p]: X — X+ --- +r X (p times). Itis clear that [p] is a homomorph-
ism ¢ to &. We see that .&" is made into an additive group, so it has the additive i-
dentity. Denote it by O. The S'is said to be divisible if [p] is an isogeny, i.e., [p] has
the finite kernel. Here #Ker[p] = p". This h s called the height of <. We assume R
complete, noetherian, local, with residue field k of characteristic p >0. Let & be an
n-dimensional commutative formal group over R. Suppose that . is divisible. We
can form an associated p-divisible group of height 4 over R, which is an inductive
system

S(p) = (P 1)  u=0.

(i) ¢(p)u = SpecA,; where A, = AlJ,and J, = [p*](I)A is the ideal in A generated
by the elements [p“](X)), 1 <i<n. ( Here, I = J, denotes the ideal generated by the

variables X;). It turns out that lim (A,) is isomorphic to A.
(ii) Foreachu>=0
0— 5(17)14 oy gj(p)u-i-l U, L(/)(p)u+1 — 0

is exact.

It follows that ¢(p) = lim S(p),.

Proposition 4.1. Let R be a complete noetherian local ring whose residue field k is

of characteristic p >0. Then the association & — &(p) is an equivalence between
the category of divisible commutative formal Lie groups over R and the category of
connected p-divisible groups over R.
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Let k/Q, be a finite extension of Q, with uniformizer vandletk = O /p = F,; (» =
(v)). Let R be an O-algebra with structure map : Or— R, i.e., R has the structure
of Or-module via the map : Or— R. A formal Or-module & over R is a formal divisi-
ble group & over R together with a family of power series [a] for a € O which to-
gether represent a homomorphism i: Oy — End(<). Here it is required that [a](X) =
a)X + O(X?). Let O; be the completion of the maximal unramified extension of O

and k be the field of fractions of O;. The residue field of & is & which is an algebra-
ic closure of k.

[Remark] In other words,
IE = k@W(,{)W(IZ )

Let W(k) be the ring of Witt vectors over k. It is the unramified extension of degree n (¢ = p") of
the ring of p-adic integers. The ring of integers of kis Of. It holds that O = Oy, W(K ).

We will think of moduli spaces of formal groups. Fix 2 >1. There is a unique one-
dimensional formal p-divisible Or--module 4,0 over K of height & (the degree of the
multiplication by v is ¢"*) up to isomorphism. LetJ = End,(%0) ®p, k. Jis a central
division algebra over k of invariant 1/h. Let R be a complete local noetherian Oy-al-
gebra with the structure map «: O — R which induces isomorphisms between K —
R/mpg (mgis the maxima ideal of R). Choose a lift .¢" of 450, which is a one-dimen-
sional formal p-divisible Or-module over R. Assign to R the set of pairs (4; p), where
p: Sho — S®gK is an isomorphism. Let C be the category of such Oj-algebras R.
Let My be the functor

C— Sets; R—{(%p)}/~.

Fix h>1 and n >1. There exists up to isomorphism a unique one-dimensional formal
p-divisible Or-module over kK of height 4 with Drinfeld p*-structure o over k. We
will denote it by .9, = (%0, &"). Assign to R the set of pairs (.4, p, ) consisting of
a formal p-divisible Or-module & over R, of a Drinfeld p"-structure o of <’'over R and

p: Ghn — (U®rK , a over K ). Let M, be the functor

C— Sets; R—{(4, p, )}/ ~ .

Drinfeld defined a tower of rings
M0—>Ml —>M2—> .

M, is a covering of My with Galois group GLy(Ox/p"). The functor My is represent-
ed by a (h—1)-dimensional regular local O¢-algebra Ry, which is a complete local
noetherian ring. Ry is isomorphic to the power series ring Oz [ X, -+, Xi-1]. For ev-
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ery integer n >1, the deformation functor M, is represented by a A-dimensional reg-
ular local Oy -algebra Ry,. It turns out that

Let M, be the rigid generic fiber of My. Correspondingly, we obtain M, and it is an
étale covering of My. We will have a projective system {M,},-, and call it “Lubin-

Tate tower”. We will produce the space M which is the inverse limit of the M,. M
has right actions of three important groups.

« G = GLy(k). Anelement g G sends a triple (4; p, o) to (4, p, a°g).
- J'. AnelementjeJ acts on .%o, then we will see that
poj: (Sho, &) —Ls (Gho, a™) —== (S®RK , a over K).
Thus we can say that an element j€J sends a triple (<, p, o) to (4, pej, o).

- Wi (the Weil group). Let o € Wi then ¢ induces Frob,4? (d(s) €Z) on K/k (=
Fq /F4). The pair (4, o) consists of a formal p-divisible Or-module over R and of a
Drinfeld p”-structure a of & over R. Thus, applying ¢ to them, we can obtain < and

the level structure o’ on 7. Recall p: 45, — (&'Q®rK , o over K ). Since 4, is a for-

— . (A0 = ) — — ~
mal group over kK, p° will be the map 4, — (¢°®gk , @’ over k). Here G, —

— 0)y . . . .
Shn@” is the g”-power Frobenius map. We will denote it by F“”. We can obtain
d(o)) =

P F“: Gy — G T =5 (G°QgK , a over K ).

We can say that the element ¢ sends a triple (4, p, @) to (&7, p?-F“?, a’).

Set H'ir that is the £-adic étale cohomology of “Lubin-Tate tower”;
HiLT = 1iin Hci(Mn®1€ l?, @0)

Here k" is the completion of an algebraic closure of k. The three groups GL(k), J°
and Wy act on H'i 1. It gives a representation of GLy(k) X J“ X Wy

T(gXjXo)=n(g) ® () ® plo); g€CGLu(k),jEJ", 6 € Wi
Here
Hom,.(H'ix, LI(m)) = (H'ir* ® LI(x))

where H'i1* is the dual space of H'.r. We will denote the dual by “x”.
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[remark]

Let Irr®(G) be the set of equivalence classes of irreducible admissible essentially square inte-
grable representation of G. There exists a bijection, which is called Jacquet-Langlands correspon-

dence,
JIL: Irr?(J") — Ir'?(GLu(k)).
Here L] = JL .

Therefore, Hom,.(H ‘v, LI(7)) where 7 € Trr(GLu(k)) gives a representation:

(T*(gx j X0 )®LI(n) = (a*(g) ® 9*(j) ® p*(0) ®LIm)(j))
= 7%(3) ® p*(0).

If we use the contragredient of Hom .(H ‘v, LI(7r)) then it gives arepresentation

7(g) ® p(o). We can define recy.

Theorem 4.2. For 7z € Irr’(GLu(k)),

a®recy(m)(F) =+ [(Hom,(H(M), LI (7)))"]
=def * Z (_1)l (Homj*(HlLT, LJ(ﬂ')))v
In general reci(7r) isn’ t always irreducible for 7z € Irr(GLy(k)). Since 7 € Irr®(GLy(k)),

reci(7) is irreducible. So reci(7) is twisted. Denote the one-dimensional represen-

tation of Wy
—(1—h)/2-d(0)

Wi— C*; 06— ¢
by C(5%). Fixt: Q¢ —— C, so we will identify C with @, Then recy(z)(5*) =
reci(m) ® C(52).

We can show that the reci has the expected properties.
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We will give a overview of the validity of the theorem 4.2. It is related to what is
called “local-global arguments”. We shall carry out this according to M. Strauch’s
view (see Introduction in [18]). We have produced a space M, which is the inverse
limit of the M,. He points out “whereas the spaces M, are defined purely locally, the

analysis of the inductive limit above is carried out in by embedding the local situa-
tion into a global one”. He says “it is very hard to understand the action of the iner-

tia group on H'™". Why do we need global arguments? Because itis very hard to
understand the action of I, on cohomology groups. We will think of an (-adic n-di-
mensional representation (p, V) of Wi where V is an n-dimensional Q ;- vector space.
Then there exists an open subgroup /; of I; such that, for all 6 €1}, p(0) is unipotent.
However it is very hard to show the same thing of cohomology groups. It must be

caused by the fact that modules are to rings what vector spaces are to fields. Our
aim is to show the statement: there exists an open subgroup I; of I; such that, for

alloel;and alli € Z, o acts unipotently on H'ir.

We will think of this problem in more general setting. Consider a regular, proper
and flat scheme X over (S, s,77). We shall think that there exists a morphism f: X —
Spec(S). Here s is a closed point and 7 is a generic point. Let 7 be the fixed alge-
braic closure of n and let X7 = X X577 (= X Xspec(s) Spec(77)). We will show the fol-
lowing proposition.

Proposition 5.1. There exists an open subgroup /; of the inertia group / such that,
foralloel, and alli € Z, o acts unipotently on Hci(Xﬁ, A).

Its proof is very difficult. We shall think of a special case. Assume that S is a
smooth curve over C, i.e., there exists a morphism h: S— C. Here

C=Ker((n, ...,n): Z2'—17 ),

and gcd(n;) = dp™, with (d, p) =1 ( p=chars). Denote a X such that there exists a
morphism h: S — C by X/C. Now the tame inertia group ;;

Iy = lim (Z/dZ)(1) = 11 Zy(1).
— l#p

(d,p)=1
Thus
I » I > (Z/dZ)(1).
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Therefore the inertia group / acts on (Z/dZ)(1). Here
(Z1d7)(1) = uq = a cyclic group of order d.

Especially, (Z/(¢"—1)Z)(1) = Fu" (g = p"). The inertia group I acts on C via its ac-
tion on (Z/dZ)(1). Grothendieck shows the following for X/C.

Proposition 5.2. There exists an open subgroup /; of the inertia group / such that,
foralloel,and alli e Z, (6—1)*" = 0 on Hci(Xﬁ, A) (resp. Hi(Xﬁ, A)).

T. Yoshida gives a purely local approach to the non-abelian Lubin-Tate theory in
the special case of depth 0 or level p. We may relate his success to the above Prop-

osition 5.2. Let
X = M; = Spec(Rn1),

which will be a scheme over (O, K, k). Here k = F,. He shows that its special fi-
ber Xy =X Xspeciop) Spec(K ) contains a smooth affine variety over £ which is isomor-
phic to DLs. DL, is the Deligne-Lustzig variety for GL;(IF,) associated to a non split
torus T with T(F,) = F,'. Here (F;)"=F We will identify 7' with C, so we may con-
sider the X as such a X/C. Therefore, there exists an open subgroup /; of the inertia
group Ii such that, forall o/, and all i € Z, (6—1)*' = 0 on H' (X7, Qo).

It turns out that

H'(X7, Q¢) = H. (DL, Q) — (5.1).

Fix a character X :F, — C of F,»" and suppose that X is in general position. Here,
when X, X9, -+, x?" are distinct then X is called “in general position”. If there exists
i>1and X' = X% then denote X ~X'. Put

DL(Y) = Homg,, (%, H"'(DLy, Q0))
=~ (X*Q@H, (DL, Qo).

DL(X) gives a representation:
(X*(W)®n(g)® n(h))'" = n(g); he Fy', g € GLi(Fy).

So, DL(X) is a representation of GLx(IF4). It turns out that DL(X) is an irreducible
cuspidal representation of GL;(IF;) and any irreducible cuspidal representation of
GLy(IFy) is given by DL(X).

22



{irreducible cuspidal represen- «>  {characters X of F’
tations DL(X) of GLy(IFg)}/ =~ in general position}/. — (5.2).

We consider X as an inertia character of I; from the canonical surjection
Then

{DL(X)}/~ < {generic inertia characters X of lx}/ ~
—(5.2)

Here “generic” corresponds with “in general position”. From (5.1), we can show the
above correspondence in a purely local manner.

For the proof of the Langlands correspondence in a purely local manner, it is im-
portant to think of automorphic inductions. Let E/k be a finite extension of the de-
gree n. Let 0: E-— C be a character of E". We see that

recg: Irr(GLI(E)) — Gii(E); 6 — po.

When the representation po €G «(E) is obtained then the n-dimensional representa-
tion Ind"y,. pe of Wy is obtained from Ind"ky,.: G1((E) — Guo(k) (We< Wi). On the

other hand, if the automorphic induction Alg, (6) €Irr(GL,(k)) is obtained then we
define

reci(Alg (6)) = Ind"ey, p.

Consider the Langlands correspondence, then it is conjectured that we can obtain
the automorphic induction Alg, (0) for any finite extension E/k. However, without

the assumption of the Langlands correspondence, we can concretely construct au-
tomorphic inductions for special cases, e.g., E being a cyclic extension of k. The fol-
lowing is an instance. Let E/k be an unramified extension of the degree n with uni-
formizer w. The E/k will be a cyclic extension of k. The residue field of E is Og/% =
Fgn (B=(w)). A regular tamely ramified character y: E"— C’, which satisfies
Stabcaiem(x) = {1} and Xl iwo, = {1} is given. Here Xlo. is via a character X: F .’
— C" of Fy". The representation p 3 € G «(E) is obtained, and the n-dimensional rep-
resentation Ind"xy,. p 7 of Wi is obtained from Indey,.: Gio(E) — Guo(k) (Wec Wy).
The supercuspidal representation 7z( ¥ ) of GL,(k) is obtained as an induction of the
representation p( ¥ ) of H = E™-GL,(O\) given through the lift of DL(X) to the rep-
resentation of GL,(O). Define

rec(7( %)) = IndVey, p 5 .
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From the canonical surjection Iy > F ', we shall consider X as the generic tame in-
ertia character. By extending X from [x to W, a 1-dimensional representation of Wr
is obtained. We can say thatitis pz. Use Ind"ky,. and consider (5.2)', the n-dimen-

sional representation Ind"ky, pz of Wy is obtained and it corresponds to DL(X). We
have

{irreducible cuspidal repressiontations of GL,(FFg)} —  Gui(k)
W W
DL(X) —  Ind"ky, 05 .

We may say that this correspondence is obtained in a local manner. We will also see
that it is compatible with the above automorphic inductions. So we can show

Ir*(GLn(k)) —  Gu(k)
W W

ﬂ( )_C ) — IndeWE p}?

in a purely local manner.

If we take the Proposition 5.1 into account then what we have to do will be to

prove the Jacquet-Langlands correspondence in a purely local manner. M. Strauch
shows it.
Recall M, = Spf(Rx.) where Ry, is an O;-algebra. The generic fiber of M, (M,),

= My Xspect0p) Spec(k ), is a formal scheme over Spec(k ). Denote the blow-up of
M, by (M,)'. We have a morphism p: Z = (M,)' — M, over Oy and we denote the
inverse image x € M, by Y = p~(x). Let iz, j; be the inclusion ¥ —“- (M,)" and
(My)y —2 (My)'. We obtain the following diagram:

Y (M) = (M),
| b

By the base change under Spec(Oz*) — Spec(Oy), we have

Y -5 (May < (M7
! T

Here ./\_/ln = MnXSpec(O,g)SpeC(OI?); (j\_/l”), - (MH)IXSPeC(O/E)SpeC(O/?) and (M”l)ﬁ =
My Xspeccopy Spec(k”). Y = p ~I(x) will be a subscheme of the special fiber (M,)’s =
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(M) Xspectop) Spec(K ) of (My)'. If we denote by Ry A the nearby cycle sheaves, we
may say that

H (Mg, A) = H(Y,RyA).

We will give brief references concerning the construction of M, in the sense of R.
Huber. He associates to a locally noetherian formal scheme X an adic space #(X);

(X)) = Spa(R, R)
={I-1]1-lis a continuous valuation of R with |[a|<1 for every a € R}

where X = Spf(R) is affine. Here
spx(I-1) ={aeR|lal<1}
is an open prime ideal of R, so a point in X = Spf(R). We can obtain the map
Spx: H(X) — X5 || — spa(l-]).
In our case M,, = Spf(R;,) where Ry, is an O¢-algebra. Let

M,= H(Mp)g= Spa(Rhn, Rhn)a-

. A point x of an adic space X is called analytic if there exists an open neighborhood
U of x in X such that Ox(U) has a topologically nilpotent unit. Put X, = {xeX|x
is analytic }.

The generic fiber (M,), is a formal scheme over spec(k ), so we may say that (M,),

=~ Spf(R'sn) where R'y, is an E—algebra. Denote the associated adic space to (M,),,
which we can identify with the rigid generic fiber of M,, by M,. Since an adic space
is consist with the base change, we can obtain such an adic space.

Now M, ®; k" will be the adic space associated to (M,)5. Thus we can say that

Hi (M,®; k", A) = H(Y,RyA).

Puty = (g, bHeGL(k)x J*, both regular elliptic elements. It acts on M, ®; k" and
induces a morphism

Y: M, Qi k" — M,®;k".
We shall compute the trace of y, tr((g, b)) H (M, ®; k", A)). It turns out that
tr((g, b I H (M, ®; k", A)) = tr((g, b H' (Y, Ry A)).

We will compute tr((g, b ) H (Y, Ry A)). Consider 5Dy ((Mn)') — (My)'. We
can say that M, = hin t(M,)"), thus it deduces
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sp: My — (M),

We have a morphism Y —“- (M,)'. Let oM, = M, — M, . From dM, € M., sp(dM,)
C (M,)'. We define

Y = iy ' (sp(aMy)).

Put Y=09YU(Y — 9Y). Here Y —aYis openin (M,)'s. We can use Lefschetz-Verdier
trace formula:

2 (—l)itr((g, b Y Hi (Y, Ry A)) = #Fixy + the remainder.

If v has no fixed points on 9Y then the remainder = 0. The fact that y has no fixed
points on oM, shows that y has no fixed points on Y.

Theorem 5.1.  Let g GLu(k), b€J" be both regular elliptic elements.
tr((g, b H (My)) = X (—1)'tr((g, b He (M, @ k", Qo))

i

is equal to the number of fixed points of (g, b~ on M,®; k", which is finite.

Let 7 be an irreducible supercuspidal representation of G = GL;(k). The charac-
ter of 7, which is denoted by X, is a locally constant function on the set of elliptic
regular elements in G. Put the representation & = JL(x) of J* that corresponds to 7

via the Jacquet-Langlands correspondence. Let g& GLuy(k) and beJ " be the regular
elliptic elements with the same characteristic polynomial. Then the following char-
acter relation

Xo(b) = (—1)""" Xalg)

holds. We will show the character relation in a purely local manner.
Now, Hom,, (H'ir, 7) gives a representation:

(75(g) ® 9*(b) ® p*(0) ®7(g) )¢ = 0" (b) ® p*(0); g€GLWk), be]’, 6 € Wh.

We may say that Hom, (H'\r, 7) is a finite-dimensional smooth representation 9*(b)
of J*. We can say that 9*(b™") = 9(b). We will consider

HOHIG (H*LT, 72') = Z (—1)iHomG (HiLT, 7[)

We will compute tr(Hom,, (H i1, 7)). Unless i = h—1, no supercuspidal representa-
tion of G appears in H'irasa sub-quotient. Thus we may say that tr(Hom, (H i,
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m)) = tr((—l)h_lHomG (H" 1, 7). Let £ be a compact supported function onJ" and
let g, be the regular elliptic element of G whose characteristic polynomial is same as

that of . Now suppose that supp( f) is contained in the set of regular elliptic ele-
ments of /. We can use the above Theorem 5.1 and we can show that

tr(f | Homg (H i, 1) = h- [ 2:(8,)f (b)db .

We replace f by a sequence of compactly supported functions onJ* whose support
converges to {b} and whose integral is 1, for example a sequence of

o-{572,
then we can say that
tr(b | Hom (H 11, 7)) = h - Xx(gp).
On the other hand, if we consider that » = (b™") !, we may say that
tr(b| Homg, (H'1x, 7)) = tr(b | (=1)""Homg (H" ™11, 1)) = (=1)" Xpgopm, a1, 2 (D)
It turns out that
Xtiom(#h1,,, 2y (D) = (D" 1 Xa(gy).

and put Xyom i1, 2)'(b) = h-2Xs(b). We can obtain our desired character relation.
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Let L be a global field. Here,

A(n, L) is the class of automorphic representations of GLn(A}),

G(n, L) is the set of equivalence classes of n-dimensional semi-simple 0-adic
representations of Gal( L /L).

The global Langlands program says that the following correspondence:

An, L) > G, L)
W W

11 — Ry

exists. If the global field L is totally real or a CM-field Lo(~/r) for some totally real
number field Lo and some totally negative r € Ly then the above correspondence
exists. Fix an automorphic representation IT= ®,II, of GLa(A;). We have seen

that the £-adic representation rec, ;(IT) of Gal( L /L), when it exists, should have
the property that

reCn,L(H) | Wi, — rec n,Lv(HV)

for almost all v such that 17, € A“"(n, L,). Here, A“"(n, L,) is the class of unramified
representations of GLn(L,). Denote the unramified subset of G(n, L,) by G*"(n, L,).
We can define a bijection

recn.r,: A (n, L)) — G“"(n, L,).

It enables us to state that

recnr,: An, L,) — G(n, L,).

A local field & is the completion of a number field K/(Q, i.e., there exists a place v
and k = K,. We will think of K = Q(6). Let 6 = a+b~—-1(a, b R). Denote its com-
plex conjugateby § = a—b+-1. Letr=(60—9)*<0. Then Lo = Q(6+8, r) is to-
tally real. So Lo(+/r ) is totally real or a CM-field. Since (6+8)+ (06— 8)=126,60¢
Lo(\/r). It turns out that Q(6) C Lo(~/r ). We can say that there exists a totally real

or a CM-field L and there is a place w of L such that v|w.

We shall ignore some subtle problems in the following discussion. Now, we shall
consider that L, is an extension of k. Namely, there exists a totally real or a CM-
field L such that L,,/k for an arbitrary given local field k. Let d =[L,: k]. It holds
that
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Ly= L, ®k.
We have
Res,,: G(n, k) — G(n, Lv); px — pp,
since Wr,, € Wk. On the other hand, we have
Resr,i: G(n, Lw) — G(n, L, ®r k); pr,, — (IndWky, PL, ),

We can say that Res;, /. is a bijection. Let L, = Res;, ;s GLn. The automorphic rep-
resentation I1,, of GLn(L,) is identified with the automorphic representation IT of
La(Ly). Thus, let IT = (7)% for 7 € A(n, k) then (x )% is identified with 7. Since it
holds that A(n, L,) <~ G(n, L),

() 5 pp, < (Indey, pp, )

So, we see that

An, k)2 <« Ind%y, p,, € G(n, k).
It enables us to state that

An, k)2n <> p.€ G(n, k).

Put rec, x = I 1, rec, k,. It realizes the global Langlands correspondence. We have
seen that it is obtained via a totally real or a CM-field L. Thus, it must become our
problem to show the global Langlands correspondence independently of the field L.
We have seen that the local Langlands correspondence is shown in a purely local

manner. This means that the global Langlands correspondence is obtained indepen-
dently of the field L.
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