On the Ramanujan's equations: new mathematical connections with various parameters of Particle Physics and Cosmology

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further Ramanujan formulas and described new possible mathematical connections with some parameters of Particle Physics and Cosmology

[^0]
https://www.msn.com/en-in/entertainment/themanwhoknewinfinity/10-facts-you-probably-didnt-know-about-srinivasa-ramanujan/ar-BBshdqi - https://school.eckovation.com/1729-magic-number-known-ramanujan-number/

Summary

In this research thesis, we have analyzed further Ramanujan formulas and described new mathematical connections with some sectors of Particle Physics and Cosmology. We have described, as in previous papers, the possible and new connections between different formulas of Ramanujan's mathematics and some formulas concerning particle physics and cosmology. In the course of the discussion we describe and highlight the connections between some
developments of Ramanujan equations and particles type solutions such as the mass of the Higgs boson, those in the range of the mass of candidates" glueball ", the scalar meson $f_{0}(1710)$ and the masses of other baryons and mesons. Moreover solutions of Ramanujan equations, connected with the masses of the π mesons (139.576 and 134.9766 MeV) have been described and highlighted. Furthermore, we have obtained also the values of some black hole entropies and the value of the Cosmological Constant

Is our opinion, that the possible connections between the mathematical developments of some Rogers-Ramanujan continued fractions, the value of the dilaton and that of "the dilaton mass calculated as a type of Higgs boson that is equal about to $125 \mathrm{GeV}^{\prime}$, the Higgs boson mass itself and the like-particle solutions (masses), are fundamental.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

From:

MANUSCRIPT BOOK 2 OF SRINIVASA RAMANUJAN

Page 181

For $\mathrm{x}=2, \mathrm{y}=3$ and $\mathrm{n}=5$

$\mathrm{n}=5$
$\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3^{*} \mathrm{e}^{\wedge}\left(-9^{*} 5\right)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /$ ((co sh(5Pi)/(2)))

Input:

$\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}$

Exact result:

$\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}$

Decimal approximation:

0.002685319938934361487411127436572073777859991728225228673...
0.0026853199...

Alternate forms:

```
\(e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)\)
\(e^{125}\)
\(\frac{e^{40} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\)
\(\frac{2 \cosh \left(\frac{\pi}{2}\right)}{e^{5}(1+\cosh (\pi))}-\frac{12 \cosh (3 \pi)}{e^{45}(1+\cosh (6 \pi))}+\frac{20 \cosh (5 \pi)}{e^{125}(1+\cosh (10 \pi))}\)
```


Alternative representations:

$$
\begin{aligned}
& \frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}= \\
& \frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (3 i \pi)}+\frac{5}{\frac{1}{2} e^{125} \cos (5 i \pi)} \\
& \frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}= \\
& \frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (-3 i \pi)}+\frac{5}{\frac{1}{2} e^{125} \cos (-5 i \pi)} \\
& \frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}=\frac{1}{\frac{e^{5}}{\operatorname{scc}\left(\frac{i \pi}{2}\right)}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}= \\
& \sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right) \\
& \frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}= \\
& \sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right) \\
& \frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}= \\
& \sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}_{-k}\left(-i e^{z_{0}}\right)-\mathrm{Li}_{-k}\left(i e^{z_{0}}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0}\right)^{k}\right)}{e^{125} k!} \\
& \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representation:

$$
\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}=\int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)} d t
$$

$4 \mathrm{Pi}^{*}\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3 * \mathrm{e}^{\wedge}(-9 * 5)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18-3+1 /$ golden ratio $\left.\left.\left.)\right)\right)\right)$

Input:

$4 \pi\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9.5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18-3+\frac{1}{\phi}\right)$
$\cosh (x)$ is the hyperbolic cosine function ϕ is the golden ratio

Exact result:

$4 \pi\left(\frac{1}{\phi}+15+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$

Decimal approximation:

1756.146970540594121164210566402490547854201958667646661626...
$1756.1469705 \ldots$ result in the range of the mass of candidate "glueball" $\mathrm{f}_{0}(1710)$
("glueball" $=1760 \pm 15 \mathrm{MeV}$).

Alternate forms:
$4 \pi\left(\frac{1}{\phi}+15+\frac{e^{125}}{3 e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-18 e^{80} \operatorname{sech}(3 \pi)+30 \operatorname{sech}(5 \pi)}\right)$
$4 \pi\left(\frac{1}{2}(29+\sqrt{5})+\frac{1}{3\left(\frac{\operatorname{scch}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$

$$
4 \pi\left(15+\frac{2}{1+\sqrt{5}}+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)
$$

Alternative representations:

$4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18-3+\frac{1}{\phi}\right)=$

$$
4 \pi\left(15+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{(\pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (3 i \pi)}+\frac{5}{\frac{1}{2} e^{125} \cos (5 i \pi)}\right)}\right)
$$

$4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{1} \cosh (3 \pi)}{2}+\frac{5 e^{-25} \times 5}{1_{2} \cosh (5 \pi)}\right) 3}+18-3+\frac{1}{\phi}\right)=$

$$
4 \pi\left(15+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (-3 i \pi)}+\frac{5}{\frac{1}{2} e^{125} \cos (-5 i \pi)}\right)}\right)
$$

$\left.4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{{ }_{2} \cosh (5 \pi)}\right.}\right) 3 \quad+18-3+\frac{1}{\phi}\right)=$

$$
4 \pi\left(15+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& 4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+18-3+\frac{1}{\phi}\right)= \\
& 60 \pi+\frac{4 \pi}{\phi}+\frac{4 \pi}{3 \times \sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)} \\
& 4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18-3+\frac{1}{\phi}\right)= \\
& 60 \pi+\frac{4 \pi}{\phi}+ \\
& 3 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right) \\
& 4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+18-3+\frac{1}{\phi}\right)= \\
& 60 \pi+\frac{4 \pi}{\phi}+\frac{4 \pi}{3 \sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}_{\star}-\left(-i e^{z_{0}}\right)-\mathrm{Li}_{-}\left(i e^{z_{0} 0}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0}\right)^{k}\right)}{e^{125} k!}} \\
& \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representation:

$$
\left.\begin{array}{l}
4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{1} \cosh (3 \pi)\right.}+\frac{5 e^{-25 \times 5}}{1 \cosh (5 \pi)}\right) 3
\end{array}+18-3+\frac{1}{\phi}\right)=
$$

$4 \mathrm{Pi}^{*}\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3 * \mathrm{e}^{\wedge}(-9 * 5)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18-3+1 /$ golden ratio $\left.\left.\left.)\right)\right)\right)-29+2$

Input:

$4 \pi\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18-3+\frac{1}{\phi}\right)-29+2$

Exact result:

$4 \pi\left(\frac{1}{\phi}+15+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)-27$
$\operatorname{sech}(x)$ is the hyperbolic secant function

Decimal approximation:

1729.146970540594121164210566402490547854201958667646661626...
1729.1469705...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternate forms:

$4 \pi\left(\frac{1}{\phi}+15+\frac{e^{125}}{3 e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-18 e^{80} \operatorname{sech}(3 \pi)+30 \operatorname{sech}(5 \pi)}\right)-27$
$4 \pi\left(\frac{1}{2}(29+\sqrt{5})+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)-27$
$4 \pi\left(15+\frac{2}{1+\sqrt{5}}+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)-27$

Expanded form:

$$
\frac{4 \pi}{\phi}-27+60 \pi+\frac{4 \pi}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}
$$

Alternative representations:

$$
\begin{aligned}
& 4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18-3+\frac{1}{\phi}\right)-29+2= \\
& -27+4 \pi\left(15+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{1 e^{45} \cos (3 i \pi)}+\frac{5}{1} e^{125} \cos (5 i \pi)\right.}\right)
\end{aligned}
$$

$$
4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18-3+\frac{1}{\phi}\right)-29+2=
$$

$$
\left.-27+4 \pi\left(15+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{1 e^{45} \cos (-3 i \pi)}+\frac{5}{{ }_{2}^{2} e^{125} \cos (-5 i \pi)}\right.}\right)\right)
$$

$$
4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{2} \cosh (3 \pi)}{2}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18-3+\frac{1}{\phi}\right)-29+2=
$$

$$
-27+4 \pi\left(15+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}\right)
$$

$$
\text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representation:

$$
\begin{aligned}
& 4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18-3+\frac{1}{\phi}\right)-29+2= \\
& -27+60 \pi+\frac{4 \pi}{\phi}+\frac{4 \pi}{3 \int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)}} d t
\end{aligned}
$$

$3 \mathrm{Pi}^{*}\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3 * \mathrm{e}^{\wedge}(-9 * 5)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18\right)\right)\right)\right)-29+$ golden ratio ${ }^{\wedge} 3$

Input:

$$
\begin{aligned}
& 4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{12 \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{1_{2} \cosh (5 \pi)}\right)}+18-3+\frac{1}{\phi}\right)-29+2= \\
& -27+60 \pi+\frac{4 \pi}{\phi}+\frac{4 \pi}{3 \times \sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)} \\
& 4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{2} \frac{5 \cosh (3 \pi)}{1} \frac{5 e^{-25 \times 5}}{\left.e^{\cosh (5 \pi)}\right)}\right) 3}+18-3+\frac{1}{\phi}\right)-29+2=-27+60 \pi+ \\
& \frac{4 \pi}{\phi}+\frac{4 \pi}{3 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)} \\
& 4 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{1 e^{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+18-3+\frac{1}{\phi}\right)-29+2= \\
& -27+60 \pi+\frac{4 \pi}{\phi}+\frac{2 \pi}{3 \sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}+k\left(-i e^{z_{0}}\right)-\mathrm{Li}-k\left(i e^{z_{0}}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0}\right)^{k}\right)}{e^{125} k!}}
\end{aligned}
$$

$3 \pi\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)-29+\phi^{3}$
$\cosh (x)$ is the hyperbolic cosine function ϕ is the golden ratio

Exact result:

$\phi^{3}-29+3 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$\operatorname{sech}(x)$ is the hyperbolic secant function

Decimal approximation:

1314.795796649077119983690292030226625210962602273184329434...
1314.79579... result practically equal to the rest mass of Xi baryon 1314.86

Alternate forms:

$-27+\sqrt{5}+\pi\left(54+\frac{e^{125}}{e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)}\right)$
$-27+\sqrt{5}+3 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$-29+\frac{1}{8}(1+\sqrt{5})^{3}+3 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$

Expanded form:

$\phi^{3}-29+54 \pi+\frac{\pi}{\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}}$

Alternative representations:

$$
\begin{aligned}
& \left.\left.3 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{1} \cosh (3 \pi)\right.}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3\right)+18\right)-29+\phi^{3}= \\
& -29+\phi^{3}+3 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{(\pi \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (3 i \pi)}+\frac{5}{\frac{1}{2} e^{225} \cos (5 i \pi)}\right)}\right) \\
& 3 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{1} \cosh (3 \pi)}{2}+\frac{5 e^{-25} \times 5}{1_{2} \cosh (5 \pi)}\right) 3}+18\right)-29+\phi^{3}= \\
& -29+\phi^{3}+3 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (-3 i \pi)}+\frac{5}{\frac{1}{2} e^{125} \cos (-5 i \pi)}\right)}\right) \\
& 3 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-29+\phi^{3}= \\
& -29+\phi^{3}+3 \pi\left(18+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}\right)
\end{aligned}
$$

Series representations:

$$
\left.\begin{array}{l}
3 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{2} \cosh (3 \pi)\right.}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3
\end{array}+18\right)-29+\phi^{3}={ }^{-29+\phi^{3}+54 \pi+\frac{\pi}{\sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)}}
$$

$$
\begin{aligned}
& 3 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{2 \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{{ }_{2} \cosh (5 \pi)}\right)}+18\right)-29+\phi^{3}= \\
& -29+\phi^{3}+54 \pi+\frac{\sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)}{3 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{1_{2} \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{{ }_{2} \cosh (5 \pi)}\right)}+18\right)-29+\phi^{3}=-29+\phi^{3}+54 \pi+} \\
& \frac{\pi}{\sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}_{-k}\left(-i e^{z_{0}}\right)-\mathrm{Li} i_{-k}\left(i e^{z_{0}}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0} k^{k}\right)\right.}{e^{125} k!}} \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& 3 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{2} \cosh (3 \pi)}{2}+\frac{5 e^{-25} 5}{{ }_{2} \cosh (5 \pi)}\right) 3}+18\right)-29+\phi^{3}= \\
& -29+\phi^{3}+54 \pi+\frac{\pi}{\int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)}} d t
\end{aligned}
$$

$$
\begin{aligned}
& 3^{\wedge} 2^{*}\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3^{*} \mathrm{e}^{\wedge}\left(-9^{*} 5\right)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18\right)\right)\right)\right)-47
\end{aligned}
$$

Input:

$3^{2}\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)-47$
$\cosh (x)$ is the hyperbolic cosine function

Exact result:

$9\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)-47$

Decimal approximation:

$1232.185314 \ldots$ result practically equal to the rest mass of Delta baryon 1232

Alternate forms:

$115+\frac{3 e^{125}}{e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)}$
$115+\frac{3}{\frac{2 \cosh \left(\frac{\pi}{2}\right)}{e^{5}(1+\cosh (\pi))}-\frac{12 \cosh (3 \pi)}{e^{45}(1+\cosh (6 \pi))}+\frac{20 \cosh (5 \pi)}{e^{125}(1+\cosh (10 \pi))}}$
$\underline{e^{125}+115 e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-690 e^{80} \operatorname{sech}(3 \pi)+1150 \operatorname{sech}(5 \pi)}$ $e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)$

Expanded form:

$$
115+\frac{3}{\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}}
$$

Alternative representations:

$$
\begin{aligned}
& 3^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{12 \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-47= \\
& -47+9\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{1 e^{45} \cos (3 i \pi)}+\frac{5}{{ }_{2} e^{125} \cos (5 i \pi)}\right)}\right)
\end{aligned}
$$

$$
3^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-47=
$$

$$
\left.-47+9\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (-3 i \pi)}+\frac{5}{\frac{1}{2} e^{125} \cos (-5 i \pi)}\right.}\right)\right)
$$

$$
\begin{aligned}
& 3^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{1} \frac{\cosh (3 \pi)}{2}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-47= \\
& \\
& -47+9\left(18+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{\frac{5}{125}}{2 \sec (5 i \pi)}\right)}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 3^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{1_{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-47= \\
& 115+\frac{3}{\sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)}
\end{aligned}
$$

$$
3^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{12 \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{12 \cosh (5 \pi)}\right) 3}+18\right)-47=
$$

$$
115+\frac{2}{\sum_{k=0}^{\infty} \frac{2(-1)^{k}(1+2 k)\left(\frac{e^{120}}{1+2 k+2 k^{2}}-\frac{12 e^{80}}{e^{125} \pi} \pi\right.}{\left.\frac{2 k+4 k^{2}}{101+4 k+4 k^{2}}\right)}}
$$

$$
\left.3^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{1_{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{1} \cosh (5 \pi)\right.}\right) 3318\right)-47=115+
$$

Integral representation:

$$
\left.\begin{array}{c}
3^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{{ }_{2}^{2} \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{{ }_{2} \cosh (5 \pi)}\right.}\right) 3
\end{array}+18\right)-47=
$$

$4^{\wedge} 2\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3^{*} \mathrm{e}^{\wedge}(-9 * 5)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18\right)\right)\right)\right)+11+$ golden ratio

Input:

$4^{2}\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9.5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)+11+\phi$
$\cosh (x)$ is the hyperbolic cosine function ϕ is the golden ratio

Exact result:

$\phi+11+16\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$\operatorname{sech}(x)$ is the hyperbolic secant function

Decimal approximation:

2286.725259427892793735818765034066937977919175190774858650...
$2286.72525942 \ldots$ result practically equal to the rest mass of charmed Lambda baryon 2286.46

Alternate forms:

$\phi+11+\frac{16}{3}\left(54+\frac{e^{125}}{e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)}\right)$
$11+\frac{1}{2}(1+\sqrt{5})+16\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{scch}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$\phi+299+\frac{16}{3\left(\frac{2 \cosh \left(\frac{\pi}{2}\right)}{e^{5}(1+\cosh (\pi))}-\frac{12 \cosh (3 \pi)}{e^{45}(1+\cosh (6 \pi))}+\frac{20 \cosh (5 \pi)}{e^{125}(1+\cosh (10 \pi))}\right)}$

Expanded form:

$$
\phi+299+\frac{16}{3\left(\frac{\left(\operatorname{sech}\left(\frac{\pi}{2}\right)\right.}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}
$$

Alternative representations:

$4^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{12 \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+\phi=$

$$
11+\phi+4^{2}\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (-3 i \pi)}+\frac{5}{\frac{1}{2} e^{125} \cos (-5 i \pi)}\right)}\right)
$$

$$
4^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{2} \cosh (3 \pi)}{1}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+\phi=
$$

$$
11+\phi+4^{2}\left(18+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}\right)
$$

Series representations:
$\left.\left.4^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{1} \cosh (3 \pi)\right.}+\frac{5 e^{-25} \times 5}{\frac{1}{2} \cosh (5 \pi)}\right) 3\right)+18\right)+11+\phi=$

$$
299+\phi+\frac{16}{3 \times \sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)}
$$

$$
4^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{2} \cosh (3 \pi)}{1}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+\phi=
$$

$$
299+\phi+\frac{16}{3 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)}
$$

$$
4^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+\phi=
$$

$$
299+\phi+\frac{16}{3 \sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}_{-k}\left(-i e^{z_{0}}\right)-\mathrm{Li}_{-k}\left(i e^{z_{0}}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0}\right)^{k}\right)}{e^{125} k!}}
$$

$$
\text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representation:

$$
\begin{aligned}
& 4^{2}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{2} \cosh (3 \pi)}{2}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+\phi= \\
& 299+\phi+\frac{16}{3 \int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)} d t}
\end{aligned}
$$

$12 \operatorname{Pi}\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3^{*} \mathrm{e}^{\wedge}(-9 * 5)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}(-25 * 5)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18\right)\right)\right)\right)+11+47-2 *$ golden ratio

Input:

$$
12 \pi\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)+11+47-2 \phi
$$

$\cosh (x)$ is the hyperbolic cosine function
ϕ is the golden ratio

Exact result:

$-2 \phi+58+12 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$\operatorname{sech}(x)$ is the hyperbolic secant function

Decimal approximation:

5413.002846708809531452715299777250119666647317294679689117...
5413.002846... result very near to the rest mass of strange B meson 5415.4

Alternate forms:

$-2 \phi+58+4 \pi\left(54+\frac{e^{125}}{e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)}\right)$
$57-\sqrt{5}+12 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$-2 \phi+58+216 \pi+\frac{4 \pi}{\frac{2 \cosh \left(\frac{\pi}{2}\right)}{e^{5}(1+\cosh (\pi))}-\frac{12 \cosh (3 \pi)}{e^{45}(1+\cosh (6 \pi))}+\frac{20 \cosh (5 \pi)}{e^{125}(1+\cosh (10 \pi))}}$

Expanded form:

$-2 \phi+58+216 \pi+\frac{4 \pi}{\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}}$

Alternative representations:

$$
12 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{1} \cosh (3 \pi)}{2}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+47-2 \phi=
$$

$$
58-2 \phi+12 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (3 i \pi)}+\frac{5}{1_{2} e^{125} \cos (5 i \pi)}\right)}\right)
$$

$$
\begin{aligned}
& 12 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25} 5}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+47-2 \phi= \\
& 58-2 \phi+12 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{1 e^{45} \cos (-3 i \pi)}+\frac{5}{1 e^{125} \cos (-5 i \pi)}\right)}\right)
\end{aligned}
$$

$$
12 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+47-2 \phi=
$$

$$
58-2 \phi+12 \pi\left(18+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& 12 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+47-2 \phi= \\
& 58-2 \phi+216 \pi+\frac{4 \pi}{\sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)} \\
& 12 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{12 \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{1 \cosh (5 \pi)}\right)}+18\right)+11+47-2 \phi= \\
& 58-2 \phi+216 \pi+\frac{4 \pi}{\sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)}
\end{aligned}
$$

$$
12 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{2_{2} \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{{ }_{2} \cosh (5 \pi)}\right)}+18\right)+11+47-2 \phi=58-2 \phi+216 \pi+
$$

Integral representation:

$$
\begin{aligned}
& 12 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{2} \cosh (3 \pi)}{2}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+47-2 \phi= \\
& 58-2 \phi+216 \pi+\frac{4 \pi}{\int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)}} d t
\end{aligned}
$$

$21 \mathrm{Pi}\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3^{*} \mathrm{e}^{\wedge}(-9 * 5)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18\right)\right)\right)\right)+11+76-2 *$ golden ratio

Input:

$21 \pi\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)+11+76-2 \phi$

Exact result:

$-2 \phi+87+21 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$9460.6820327 \ldots$ result practically equal to the rest mass of Upsilon meson 9460.30

Alternate forms:

$-2 \phi+87+7 \pi\left(54+\frac{e^{125}}{e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)}\right)$
$86-\sqrt{5}+21 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$-2 \phi+87+378 \pi+\frac{7 \pi}{\frac{2 \cosh \left(\frac{\pi}{2}\right)}{e^{5}(1+\cosh (\pi))}-\frac{12 \cosh (3 \pi)}{e^{45}(1+\cosh (6 \pi))}+\frac{20 \cosh (5 \pi)}{e^{125}(1+\cosh (10 \pi))}}$

Expanded form:

$$
-2 \phi+87+378 \pi+\frac{7 \pi}{\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}}
$$

Alternative representations:

$$
\left.\begin{array}{l}
21 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{1 e^{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+76-2 \phi= \\
87-2 \phi+21 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{{ }_{2} e^{45} \cos (3 i \pi)}\right.}+\frac{5}{{ }_{2} e^{125} \cos (5 i \pi)}\right)
\end{array}\right)
$$

$$
21 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+11+76-2 \phi=
$$

$$
87-2 \phi+21 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (-3 i \pi)}+\frac{5}{\frac{1}{2} e^{125} \cos (-5 i \pi)}\right)}\right)
$$

$21 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{1} \frac{\cosh (3 \pi)}{2}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+18\right)+11+76-2 \phi=$

$$
87-2 \phi+21 \pi\left(18+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& 21 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{{ }_{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{{ }_{2} \cosh (5 \pi)}\right)}+18\right)+11+76-2 \phi= \\
& 87-2 \phi+378 \pi+\frac{7 \pi}{\sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)} \\
& \left.\left.21 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{1} \cosh (5 \pi)\right.}\right) 3\right)+18\right)+11+76-2 \phi= \\
& 87-2 \phi+378 \pi+\frac{7 \pi}{\sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)} \\
& 21 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)_{7 \pi}}+18\right)+11+76-2 \phi=87-2 \phi+378 \pi+ \\
& \frac{7 \pi}{\sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}_{-k}\left(-i e^{z_{0}}\right)-\mathrm{Li}_{-k}\left(i e^{z_{0}}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0}\right)^{k}\right)}{e^{125} k!}} \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representation:

$$
\left.\begin{array}{l}
21 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{2} \cosh (3 \pi)\right.}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3
\end{array}+18\right)+11+76-2 \phi=
$$

$13 \mathrm{Pi}\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3^{*} \mathrm{e}^{\wedge}(-9 * 5)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18\right)\right)\right)\right)+322+123+29$-golden ratio ${ }^{\wedge} 2$

Input:

$13 \pi\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)+322+123+29-\phi^{2}$
$\cosh (x)$ is the hyperbolic cosine function ϕ is the golden ratio

Exact result:

$-\phi^{2}+474+13 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$\operatorname{sech}(x)$ is the hyperbolic secant function

Decimal approximation:

6276.140790254751869730013592732114207442874954445676386549...
$6276.14079025 \ldots$ result very near to the rest mass of charmed B meson 6275.6

Alternate forms:

$-\phi^{2}+474+13 \pi\left(18+\frac{e^{125}}{3 e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-18 e^{80} \operatorname{sech}(3 \pi)+30 \operatorname{sech}(5 \pi)}\right)$
$\frac{1}{2}(945-\sqrt{5})+13 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$474-\frac{1}{4}(1+\sqrt{5})^{2}+13 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$

Expanded form:

$$
-\phi^{2}+474+234 \pi+\frac{13 \pi}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}
$$

Alternative representations:

$$
\begin{aligned}
& 13 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25} 5}{\frac{1}{2} \cosh (5 \pi)}\right)}+18\right)+322+123+29-\phi^{2}= \\
& 474-\phi^{2}+13 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (3 i \pi)}+\frac{5}{1_{2} e^{125} \cos (5 i \pi)}\right)}\right)
\end{aligned}
$$

$$
13 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+322+123+29-\phi^{2}=
$$

$$
474-\phi^{2}+13 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{1_{2} e^{45} \cos (-3 i \pi)}+\frac{5}{1_{2} e^{125} \cos (-5 i \pi)}\right)}\right)
$$

$$
\left.\left.13 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{{ }_{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{{ }_{2}^{2} \cosh (5 \pi)}\right.}\right) 3\right)+18\right)+322+123+29-\phi^{2}=
$$

$$
474-\phi^{2}+13 \pi\left(18+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& 13 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+322+123+29-\phi^{2}= \\
& 474-\phi^{2}+234 \pi+\frac{13 \pi}{3 \times \sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)} \\
& 13 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+322+123+29-\phi^{2}=474-\phi^{2}+ \\
& 234 \pi+\frac{13 \pi}{3 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)} \\
& 13 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+322+123+29-\phi^{2}= \\
& 474-\phi^{2}+234 \pi+\frac{3 \pi}{3 \sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}_{-k}\left(-i e^{z_{0}}\right)-\mathrm{Li}-k\left(i e^{z_{0} 0}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0}\right)^{k}\right)}{e^{125} k!}}
\end{aligned}
$$

$$
\text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representation:

$13 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+322+123+29-\phi^{2}=$
$474-\phi^{2}+234 \pi+\frac{13 \pi}{3 \int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)} d t}$
$2 \operatorname{Pi}\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3^{*} \mathrm{e}^{\wedge}\left(-9^{*} 5\right)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18\right)\right)\right)\right)-123+\mathrm{Pi}^{*}$ golden ratio

Input:

$2 \pi\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)-123+\pi \phi$
$\cosh (x)$ is the hyperbolic cosine function ϕ is the golden ratio

Exact result:

$\pi \phi-123+2 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$

Decimal approximation:

$775.1230228067001466739969212542390981588464952356030232607 \ldots$
$775.123022806 \ldots$ result practically equal to the rest mass of Charmed rho meson 775.11

Alternate forms:

$\pi \phi-123+2 \pi\left(18+\frac{e^{125}}{3 e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-18 e^{80} \operatorname{sech}(3 \pi)+30 \operatorname{sech}(5 \pi)}\right)$
$-123+\frac{1}{2}(1+\sqrt{5}) \pi+2 \pi\left(18+\frac{1}{3\left(\frac{\operatorname{scch}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$\pi \phi-123+36 \pi+\frac{2 \pi}{3\left(\frac{2 \cosh \left(\frac{\pi}{2}\right)}{e^{5}(1+\cosh (\pi))}-\frac{12 \cosh (3 \pi)}{e^{45}(1+\cosh (6 \pi))}+\frac{20 \cosh (5 \pi)}{e^{125}(1+\cosh (10 \pi))}\right)}$

Expanded form:

$\pi \phi-123+36 \pi+\frac{2 \pi}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}$

Alternative representations:

$$
\left.\begin{array}{l}
2 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25} 5}{\frac{1}{2} \cosh (5 \pi)}\right)}+18\right)-123+\pi \phi= \\
-123+\phi \pi+2 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{1} e^{45} \cos (3 i \pi)\right.}+\frac{5}{1_{2} e^{125} \cos (5 i \pi)}\right)
\end{array}\right)
$$

$$
2 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{2} \cosh (3 \pi)}{2}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-123+\pi \phi=
$$

$$
-123+\phi \pi+2 \pi\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{1_{2} e^{45} \cos (-3 i \pi)}+\frac{5}{1_{2} e^{125} \cos (-5 i \pi)}\right)}\right)
$$

$$
2 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{12 \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+18\right)-123+\pi \phi=
$$

$$
-123+\phi \pi+2 \pi\left(18+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}\right)
$$

Series representations:

$$
\begin{aligned}
& 2 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{2}{2} \cosh (5 \pi)}\right) 3}+18\right)-123+\pi \phi= \\
& -123+36 \pi+\phi \pi+\frac{2 \pi}{3 \times \sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left.2 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+3\right)_{2 \pi}+18\right)-123+\pi \phi=-123+36 \pi+ \\
& \phi \pi+\frac{3 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)}{2 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{1_{2} \cosh (5 \pi)}\right)}+18\right)-123+\pi \phi=} \\
& -123+36 \pi+\phi \pi+\frac{2 \pi}{3 \sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}-k\left(-i e^{z_{0}}\right)-\mathrm{Li}-k\left(i e^{z_{0}}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0}\right)^{k}\right)}{e^{125} k!}}
\end{aligned}
$$

$$
\text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representation:

$2 \pi\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{12 \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-123+\pi \phi=$

$$
-123+36 \pi+\phi \pi+\frac{2 \pi}{3 \int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)} d t}
$$

$\left(\left(\left(\left(1 / 3^{*} 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3 * \mathrm{e}^{\wedge}\left(-9^{*} 5\right)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\left(\left(5 \mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $25 * 5))) /(((\cosh (5 \mathrm{Pi}) /(2)))))))+18))))-\mathrm{Pi}+1 /$ golden ratio

Input:

$$
\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)-\pi+\frac{1}{\phi}
$$

$\cosh (x)$ is the hyperbolic cosine function ϕ is the golden ratio

Exact result:

$\frac{1}{\phi}+18-\pi+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}$
$\operatorname{sech}(x)$ is the hyperbolic secant function

Decimal approximation:

139.6081429251065327902178295885674664747855689061162255279...
$139.6081429 \ldots$ result practically equal to the rest mass of Pion meson 139.57

Alternate forms:

$\frac{1}{\phi}+18-\pi+\frac{e^{125}}{3 e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-18 e^{80} \operatorname{sech}(3 \pi)+30 \operatorname{sech}(5 \pi)}$

$$
18+\frac{2}{1+\sqrt{5}}-\pi+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}
$$

$$
\frac{1}{\phi}+18-\pi+\frac{1}{3\left(\frac{2 \cosh \left(\frac{\pi}{2}\right)}{e^{5}(1+\cosh (\pi))}-\frac{12 \cosh (3 \pi)}{e^{45}(1+\cosh (6 \pi))}+\frac{20 \cosh (5 \pi)}{e^{125}(1+\cosh (10 \pi))}\right)}
$$

Alternative representations:

$\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{2} \cosh (3 \pi)}{2}+\frac{5 e^{-25} \times 5}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-\pi+\frac{1}{\phi}=$

$$
\left.18-\pi+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{1} e^{45} \cos (3 i \pi)\right.}+\frac{5}{1} e^{125} \cos (5 i \pi)\right) ~\left(\frac{1}{2}\right)
$$

$$
\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-\pi+\frac{1}{\phi}=
$$

$$
\left.18-\pi+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{1 e^{45} \cos (-3 i \pi)}+\frac{5}{1} e^{125} \cos (-5 i \pi)\right.}\right)
$$

$$
\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25} \times 5}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-\pi+\frac{1}{\phi}=
$$

$$
18-\pi+\frac{1}{\phi}+\frac{1}{3\left(\frac{1}{\frac{e^{5}}{\sec \left(\frac{i \pi}{2}\right)}}-\frac{3}{\frac{e^{45}}{2 \sec (3 i \pi)}}+\frac{5}{\frac{e^{125}}{2 \sec (5 i \pi)}}\right)}
$$

Series representations:

$\left.\left(\begin{array}{l}\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{1} \cosh (3 \pi)\right.}+\frac{5 e^{-25 \times 5}}{12 \cosh (5 \pi)}\right)\end{array}\right)^{2}+18\right)-\pi+\frac{1}{\phi}=$
$18+\frac{1}{\phi}-\pi+\frac{1}{3 \times \sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)}$ $\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-\pi+\frac{1}{\phi}=$
$18+\frac{1}{\phi}-\pi+\frac{1}{3 \sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)}$
$\left.\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{1} \cosh (3 \pi)\right.}+\frac{5 e^{-25 \times 5}}{{ }_{2} \cosh (5 \pi)}\right) 3-18\right)-\pi+\frac{1}{\phi}=$
$18+\frac{1}{\phi}-\pi+\frac{1}{3 \sum_{k=0}^{\infty} \frac{i\left(\mathrm{Li}_{-}+\left(-i e^{z_{0}}\right)-\mathrm{Li}_{-}\left(i e^{z_{0}}\right)\right)\left(e^{120}\left(\frac{\pi}{2}-z_{0}\right)^{k}-6 e^{80}\left(3 \pi-z_{0}\right)^{k}+10\left(5 \pi-z_{0}\right)^{k}\right)}{e^{125} k!}}$
for $\frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}$

Integral representation:

$$
\left(\begin{array}{l}
\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)-\pi+\frac{1}{\phi}= \\
18+\frac{1}{\phi}-\pi+\frac{1}{3 \int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)} d t}
\end{array}\right.
$$

$21 *\left(\left(\left(\left(1 / 3 * 1 /\left(\left(\left(\left(\left(\left(\mathrm{e}^{\wedge}(-5)\right)\right) /((\cosh (\mathrm{Pi} / 2)))-\left(\left(3^{*} \mathrm{e}^{\wedge}(-9 * 5)\right)\right) /((\cosh (3 \mathrm{Pi}) /(2)))+\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left(\left(5 \mathrm{e}^{\wedge}\left(-25^{*} 5\right)\right)\right) /((\cosh (5 \mathrm{Pi}) /(2)))\right)\right)\right)\right)+18\right)\right)\right)\right)+123-11$

Input:

$21\left(\frac{1}{3} \times \frac{1}{\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}}+18\right)+123-11$
$\cosh (x)$ is the hyperbolic cosine function

Exact result:

$112+21\left(18+\frac{1}{3\left(\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}\right)}\right)$
$\operatorname{sech}(x)$ is the hyperbolic secant function

Decimal approximation:

3096.765733388875054789993608887107956066511011639396938221...
3096.76573... result practically equal to the rest mass of J/Psi meson 3096.916

Alternate forms:

$490+\frac{7 e^{125}}{e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)}$
$490+\frac{7}{\frac{2 \cosh \left(\frac{\pi}{2}\right)}{e^{5}(1+\cosh (\pi))}-\frac{12 \cosh (3 \pi)}{e^{45}(1+\cosh (6 \pi))}+\frac{20 \cosh (5 \pi)}{e^{125}(1+\cosh (10 \pi))}}$
$\frac{7\left(e^{125}+70 e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-420 e^{80} \operatorname{sech}(3 \pi)+700 \operatorname{sech}(5 \pi)\right)}{e^{120} \operatorname{sech}\left(\frac{\pi}{2}\right)-6 e^{80} \operatorname{sech}(3 \pi)+10 \operatorname{sech}(5 \pi)}$

Expanded form:

$490+\frac{7}{\frac{\operatorname{sech}\left(\frac{\pi}{2}\right)}{e^{5}}-\frac{6 \operatorname{sech}(3 \pi)}{e^{45}}+\frac{10 \operatorname{sech}(5 \pi)}{e^{125}}}$

Alternative representations:

$21\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{12 \cosh (3 \pi)}+\frac{5 e^{-25} 5}{12 \cosh (5 \pi)}\right) 3}+18\right)+123-11=$
$112+21\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(\frac{i \pi}{2}\right)}-\frac{3}{\frac{1}{2} e^{45} \cos (3 i \pi)}+\frac{5}{1 e_{2}^{125} \cos (5 i \pi)}\right)}\right)$
$21\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right) 3}+18\right)+123-11=$
$112+21\left(18+\frac{1}{3\left(\frac{1}{e^{5} \cos \left(-\frac{i \pi}{2}\right)}-\frac{3}{2_{2} e^{45} \cos (-3 i \pi)}+\frac{5}{1_{2} e^{125} \cos (-5 i \pi)}\right)}\right)$
$21\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{{ }_{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+18\right)+123-11=$

Series representations:

$$
\begin{aligned}
& \left.21\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} 5}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+3\right)+18\right)+123-11= \\
& 490+\frac{7}{\sum_{k=0}^{\infty} 2(-1)^{k} e^{-5(25+\pi+2 k \pi)}\left(10-6 e^{80+2 \pi+4 k \pi}+e^{120+(9 \pi) / 2+9 k \pi}\right)} \\
& 21\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9 \times 5}}{1_{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{1_{2} \cosh (5 \pi)}\right) 3}+18\right)+123-11= \\
& 490+\frac{7}{\sum_{k=0}^{\infty}\left(\frac{(-1)^{k}(1+2 k) \pi}{e^{5}\left(\frac{\pi^{2}}{4}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}-\frac{6(-1)^{k}(1+2 k) \pi}{e^{45}\left(9 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}+\frac{10(-1)^{k}(1+2 k) \pi}{e^{125}\left(25 \pi^{2}+\left(\frac{1}{2}+k\right)^{2} \pi^{2}\right)}\right)}
\end{aligned}
$$

$$
21\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \times 5}{\frac{1}{2} \cosh (3 \pi)}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)_{7}^{7}}+18\right)+123-11=490+
$$

Integral representation:

$21\left(\frac{1}{\left(\frac{1}{e^{5} \cosh \left(\frac{\pi}{2}\right)}-\frac{3 e^{-9} \frac{5}{1} \cosh (3 \pi)}{\mathbf{n}^{-9}}+\frac{5 e^{-25 \times 5}}{\frac{1}{2} \cosh (5 \pi)}\right)}+18\right)+123-11=$
$490+\frac{7}{\int_{0}^{\infty} \frac{2\left(e^{120}-6 e^{80} t^{5 i}+10 t^{9 i}\right) t^{i}}{e^{125} \pi\left(1+t^{2}\right)}} d t$

Now, we have that:

For $\mathrm{x}=2, \mathrm{y}=3$ and $\mathrm{n}=5$
$1+2 \mathrm{Pi}^{*} 2^{\wedge} 3 * 3\left(\left(((\operatorname{coth}(3 \mathrm{Pi} / 2))) /\left(1^{\wedge} 4+2^{\wedge} 4\right)+(2 \operatorname{coth}(6 \mathrm{Pi} / 2)) /\left(2^{\wedge} 4+2^{\wedge} 4\right)+(3 \operatorname{coth}\right.\right.$ $\left.\left.(9 \mathrm{Pi} / 2)) /\left(3^{\wedge} 4+2 \wedge 4\right)\right)\right)$

Input:

$1+2 \pi \times 2^{3} \times 3\left(\frac{\operatorname{coth}\left(3 \times \frac{\pi}{2}\right)}{1^{4}+2^{4}}+\frac{2 \operatorname{coth}\left(6 \times \frac{\pi}{2}\right)}{2^{4}+2^{4}}+\frac{3 \operatorname{coth}\left(9 \times \frac{\pi}{2}\right)}{3^{4}+2^{4}}\right)$

Exact result:

$1+48 \pi\left(\frac{1}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+\frac{1}{16} \operatorname{coth}(3 \pi)+\frac{3}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)$

Decimal approximation:

Alternate forms:

$1+\frac{48}{17} \pi \operatorname{coth}\left(\frac{3 \pi}{2}\right)+3 \pi \operatorname{coth}(3 \pi)+\frac{144}{97} \pi \operatorname{coth}\left(\frac{9 \pi}{2}\right)$
$\underline{1649+4656 \pi \operatorname{coth}\left(\frac{3 \pi}{2}\right)+4947 \pi \operatorname{coth}(3 \pi)+2448 \pi \operatorname{coth}\left(\frac{9 \pi}{2}\right)}$
1649
$1+\pi\left(\frac{48}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+3 \operatorname{coth}(3 \pi)+\frac{144}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)$

Alternative representations:

$$
\begin{aligned}
& 1+2 \pi 2^{3} \times 3\left(\frac{\operatorname{coth}\left(\frac{3 \pi}{2}\right)}{1^{4}+2^{4}}+\frac{2 \operatorname{coth}\left(\frac{6 \pi}{2}\right)}{2^{4}+2^{4}}+\frac{3 \operatorname{coth}\left(\frac{9 \pi}{2}\right)}{3^{4}+2^{4}}\right)= \\
& 1+48 \pi\left(\frac{1+\frac{2}{-1+e^{3 \pi}}}{1^{4}+2^{4}}+\frac{2\left(1+\frac{2}{-1+e^{6 \pi}}\right)}{2 \times 2^{4}}+\frac{3\left(1+\frac{2}{-1+e^{9 \pi}}\right)}{2^{4}+3^{4}}\right) \\
& 1+2 \pi 2^{3} \times 3\left(\frac{\operatorname{coth}\left(\frac{3 \pi}{2}\right)}{1^{4}+2^{4}}+\frac{2 \operatorname{coth}\left(\frac{6 \pi}{2}\right)}{2^{4}+2^{4}}+\frac{3 \operatorname{coth}\left(\frac{9 \pi}{2}\right)}{3^{4}+2^{4}}\right)= \\
& 1+48 \pi\left(\frac{2 i \cot (3 i \pi)}{2 \times 2^{4}}+\frac{i \cot \left(\frac{3 i \pi}{2}\right)}{1^{4}+2^{4}}+\frac{3 i \cot \left(\frac{9 \cdot \pi}{2}\right)}{2^{4}+3^{4}}\right) \\
& 1+2 \pi 2^{3} \times 3\left(\frac{\operatorname{coth}\left(\frac{3 \pi}{2}\right)}{1^{4}+2^{4}}+\frac{2 \operatorname{coth}\left(\frac{6 \pi}{2}\right)}{2^{4}+2^{4}}+\frac{3 \operatorname{coth}\left(\frac{9 \pi}{2}\right)}{3^{4}+2^{4}}\right)= \\
& 1+48 \pi\left(-\frac{2 i \cot (-3 i \pi)}{2 \times 2^{4}}-\frac{i \cot \left(-\frac{3 i \pi}{2}\right)}{1^{4}+2^{4}}-\frac{3 i \cot \left(-\frac{9 i \pi}{2}\right)}{2^{4}+3^{4}}\right)
\end{aligned}
$$

Series representations:

$1+2 \pi 2^{3} \times 3\left(\frac{\operatorname{coth}\left(\frac{3 \pi}{2}\right)}{1^{4}+2^{4}}+\frac{2 \operatorname{coth}\left(\frac{6 \pi}{2}\right)}{2^{4}+2^{4}}+\frac{3 \operatorname{coth}\left(\frac{9 \pi}{2}\right)}{3^{4}+2^{4}}\right)=$
$1+\sum_{k=-\infty}^{\infty}\left(\frac{9}{9+k^{2}}+\frac{2592}{97\left(81+4 k^{2}\right)}+\frac{288}{153+68 k^{2}}\right)$

$$
\begin{aligned}
& 1+2 \pi 2^{3} \times 3\left(\frac{\operatorname{coth}\left(\frac{3 \pi}{2}\right)}{1^{4}+2^{4}}+\frac{2 \operatorname{coth}\left(\frac{6 \pi}{2}\right)}{2^{4}+2^{4}}+\frac{3 \operatorname{coth}\left(\frac{9 \pi}{2}\right)}{3^{4}+2^{4}}\right)= \\
& \frac{6946}{1649}+\sum_{k=1}^{\infty}\left(\frac{18}{9+k^{2}}+\frac{576}{17\left(9+4 k^{2}\right)}+\frac{5184}{97\left(81+4 k^{2}\right)}\right) \\
& 1+2 \pi 2^{3} \times 3\left(\frac{\operatorname{coth}\left(\frac{3 \pi}{2}\right)}{1^{4}+2^{4}}+\frac{2 \operatorname{coth}\left(\frac{6 \pi}{2}\right)}{2^{4}+2^{4}}+\frac{3 \operatorname{coth}\left(\frac{9 \pi}{2}\right)}{3^{4}+2^{4}}\right)= \\
& 1+\frac{12051 \pi}{1649}+\sum_{k=0}^{\infty}\left(\frac{288}{97} e^{-9(1+k) \pi} \pi+6 e^{-6(1+k) \pi} \pi+\frac{96}{17} e^{-3(1+k) \pi} \pi\right)
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& 1+2 \pi 2^{3} \times 3\left(\frac{\operatorname{coth}\left(\frac{3 \pi}{2}\right)}{1^{4}+2^{4}}+\frac{2 \operatorname{coth}\left(\frac{6 \pi}{2}\right)}{2^{4}+2^{4}}+\frac{3 \operatorname{coth}\left(\frac{9 \pi}{2}\right)}{3^{4}+2^{4}}\right)= \\
& 1+\int_{\frac{i \pi}{2}}^{\frac{9 \pi}{2}}\left(-\frac{144}{97} \pi \operatorname{csch}^{2}(t)+\left(\frac{14}{41}-\frac{3 i}{41}\right)\right. \\
& \left(-\frac{48}{17} \pi \operatorname{csch}^{2}\left(\frac{\left(\frac{9}{41}+\frac{i}{41}\right)\left(-\frac{3 i \pi^{2}}{2}-\left(\frac{3}{2}-\frac{i}{2}\right) \pi t\right)}{\pi}\right)-\left(\frac{57}{10}+\frac{9 i}{10}\right) \pi\right. \\
& \left.\left.\operatorname{csch}^{2}\left(\frac{\left(\frac{3}{5}+\frac{i}{5}\right)\left(\frac{3 i \pi^{2}}{4}+\left(\frac{55}{82}-\frac{3 i}{82}\right)\left(-\frac{3 i \pi^{2}}{2}-\left(\frac{3}{2}-\frac{i}{2}\right) \pi t\right)\right)}{\pi}\right)\right)\right) d t
\end{aligned}
$$

$2 \mathrm{Pi} * 2^{*} 3^{\wedge} 3\left(\left(((\operatorname{coth}(2 \mathrm{Pi} / 3))) /\left(1^{\wedge} 4+3 \wedge 4\right)+(2 \operatorname{coth}(4 \mathrm{Pi} / 3)) /\left(2^{\wedge} 4+3 \wedge 4\right)+(3 \operatorname{coth}\right.\right.$ $\left.\left.(6 \mathrm{Pi} / 3)) /\left(3^{\wedge} 4+3^{\wedge} 4\right)\right)\right)$

Input:

$2 \pi \times 2 \times 3^{3}\left(\frac{\operatorname{coth}\left(2 \times \frac{\pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 \operatorname{coth}\left(4 \times \frac{\pi}{3}\right)}{2^{4}+3^{4}}+\frac{3 \operatorname{coth}\left(6 \times \frac{\pi}{3}\right)}{3^{4}+3^{4}}\right)$

Exact result:

$108 \pi\left(\frac{1}{82} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{2}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)+\frac{1}{54} \operatorname{coth}(2 \pi)\right)$

Decimal approximation:

17.54729217610978930790694218327425046876377737032244751033...
$17.54729217610 \ldots$. result practically equal to the black hole entropy 17.5764

Alternate forms:

$\pi\left(\tanh (\pi)+\frac{54}{41} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\operatorname{coth}(\pi)+\frac{216}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)\right)$
$\frac{54}{41} \pi \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{216}{97} \pi \operatorname{coth}\left(\frac{4 \pi}{3}\right)+2 \pi \operatorname{coth}(2 \pi)$
$\frac{2 \pi\left(2619 \operatorname{coth}\left(\frac{2 \pi}{3}\right)+4428 \operatorname{coth}\left(\frac{4 \pi}{3}\right)+3977 \operatorname{coth}(2 \pi)\right)}{3977}$

Alternative representations:

$$
\begin{aligned}
& 2 \pi 2 \times 3^{3}\left(\frac{\operatorname{coth}\left(\frac{2 \pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 \operatorname{coth}\left(\frac{4 \pi}{3}\right)}{2^{4}+3^{4}}+\frac{3 \operatorname{coth}\left(\frac{6 \pi}{3}\right)}{3^{4}+3^{4}}\right)= \\
& 108 \pi\left(\frac{3 i \cot (2 i \pi)}{2 \times 3^{4}}+\frac{i \cot \left(\frac{2 i \pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 i \cot \left(\frac{4 i \pi}{3}\right)}{2^{4}+3^{4}}\right) \\
& 2 \pi 2 \times 3^{3}\left(\frac{\operatorname{coth}\left(\frac{2 \pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 \operatorname{coth}\left(\frac{4 \pi}{3}\right)}{2^{4}+3^{4}}+\frac{3 \operatorname{coth}\left(\frac{6 \pi}{3}\right)}{3^{4}+3^{4}}\right)= \\
& 108 \pi\left(\frac{1+\frac{2}{-1+e^{(4 \pi) / 3}}}{1^{4}+3^{4}}+\frac{2\left(1+\frac{2}{\left.-1+e^{(8 \pi) / 3}\right)}\right.}{2^{4}+3^{4}}+\frac{3\left(1+\frac{2}{-1+e^{4 \pi}}\right)}{2 \times 3^{4}}\right) \\
& 2 \pi 2 \times 3^{3}\left(\frac{\operatorname{coth}\left(\frac{2 \pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 \operatorname{coth}\left(\frac{4 \pi}{3}\right)}{2^{4}+3^{4}}+\frac{3 \operatorname{coth}\left(\frac{6 \pi}{3}\right)}{3^{4}+3^{4}}\right)= \\
& 108 \pi\left(-\frac{3 i \cot (-2 i \pi)}{2 \times 3^{4}}-\frac{i \cot \left(-\frac{2 i \pi}{3}\right)}{1^{4}+3^{4}}-\frac{2 i \cot \left(-\frac{4 i \pi}{3}\right)}{2^{4}+3^{4}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
2 \pi 2 \times 3^{3}\left(\frac{\operatorname{coth}\left(\frac{2 \pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 \operatorname{coth}\left(\frac{4 \pi}{3}\right)}{2^{4}+3^{4}}+\frac{3 \operatorname{coth}\left(\frac{6 \pi}{3}\right)}{3^{4}+3^{4}}\right)= \\
\sum_{k=-\infty}^{\infty}\left(\frac{4}{4+k^{2}}+\frac{324}{41\left(4+9 k^{2}\right)}+\frac{2592}{97\left(16+9 k^{2}\right)}\right)
\end{gathered}
$$

$$
\begin{aligned}
& 2 \pi 2 \times 3^{3}\left(\frac{\operatorname{coth}\left(\frac{2 \pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 \operatorname{coth}\left(\frac{4 \pi}{3}\right)}{2^{4}+3^{4}}+\frac{3 \operatorname{coth}\left(\frac{6 \pi}{3}\right)}{3^{4}+3^{4}}\right)= \\
& \frac{18476}{3977}+\sum_{k=1}^{\infty}\left(\frac{8}{4+k^{2}}+\frac{648}{41\left(4+9 k^{2}\right)}+\frac{5184}{97\left(16+9 k^{2}\right)}\right) \\
& 2 \pi 2 \times 3^{3}\left(\frac{\operatorname{coth}\left(\frac{2 \pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 \operatorname{coth}\left(\frac{4 \pi}{3}\right)}{2^{4}+3^{4}}+\frac{3 \operatorname{coth}\left(\frac{6 \pi}{3}\right)}{3^{4}+3^{4}}\right)= \\
& \frac{22048 \pi}{3977}+\sum_{k=0}^{\infty}\left(4 e^{-4(1+k) \pi} \pi+\frac{432}{97} e^{-8 / 3(1+k) \pi} \pi+\frac{108}{41} e^{-4 / 3(1+k) \pi} \pi\right)
\end{aligned}
$$

Integral representation:

$$
\begin{gathered}
2 \pi 2 \times 3^{3}\left(\frac{\operatorname{coth}\left(\frac{2 \pi}{3}\right)}{1^{4}+3^{4}}+\frac{2 \operatorname{coth}\left(\frac{4 \pi}{3}\right)}{2^{4}+3^{4}}+\frac{3 \operatorname{coth}\left(\frac{6 \pi}{3}\right)}{3^{4}+3^{4}}\right)=\int_{\frac{i \pi}{2}}^{2 \pi}\left(-2 \pi \operatorname{csch}^{2}(t)+\right. \\
\left(\frac{19}{51}-\frac{8 i}{51}\right)\left(-\frac{54}{41} \pi \operatorname{csch}^{2}\left(\frac{\left(\frac{8}{17}+\frac{2 i}{17}\right)\left(-\frac{2 i \pi^{2}}{3}-\left(\frac{2}{3}-\frac{i}{2}\right) \pi t\right)}{\pi}\right)-\left(\frac{8856}{2425}+\frac{2592 i}{2425}\right)\right. \\
\left.\pi \operatorname{csch}^{2}\left(\frac{\left(\frac{24}{25}+\frac{18 i}{25}\right)\left(\frac{i \pi^{2}}{3}+\left(\frac{35}{51}-\frac{4 i}{51}\right)\left(-\frac{2 i \pi^{2}}{3}-\left(\frac{2}{3}-\frac{i}{2}\right) \pi t\right)\right)}{\pi}\right)\right) d t
\end{gathered}
$$

$(((1+48 \pi(1 / 17 \operatorname{coth}((3 \pi) / 2)+1 / 16 \operatorname{coth}(3 \pi)+3 / 97 \operatorname{coth}((9 \pi) / 2)))))+((((108 \pi$ $(1 / 82 \operatorname{coth}((2 \pi) / 3)+2 / 97 \operatorname{coth}((4 \pi) / 3)+1 / 54 \operatorname{coth}(2 \pi))))))$

Input:

$$
\begin{gathered}
\left(1+48 \pi\left(\frac{1}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+\frac{1}{16} \operatorname{coth}(3 \pi)+\frac{3}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)\right)+ \\
\quad 108 \pi\left(\frac{1}{82} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{2}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)+\frac{1}{54} \operatorname{coth}(2 \pi)\right)
\end{gathered}
$$

Exact result:

$1+108 \pi\left(\frac{1}{82} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{2}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)+\frac{1}{54} \operatorname{coth}(2 \pi)\right)+$

$$
48 \pi\left(\frac{1}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+\frac{1}{16} \operatorname{coth}(3 \pi)+\frac{3}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)
$$

Decimal approximation:

$5(((1+48 \pi(1 / 17 \operatorname{coth}((3 \pi) / 2)+1 / 16 \operatorname{coth}(3 \pi)+3 / 97 \operatorname{coth}((9 \pi) / 2)))))+((((108 \pi$ $(1 / 82 \operatorname{coth}((2 \pi) / 3)+2 / 97 \operatorname{coth}((4 \pi) / 3)+1 / 54 \operatorname{coth}(2 \pi))))))+$ Pi-1/golden ratio

Input:

$$
\begin{aligned}
& 5\left(1+48 \pi\left(\frac{1}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+\frac{1}{16} \operatorname{coth}(3 \pi)+\frac{3}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)\right)+ \\
& \quad 108 \pi\left(\frac{1}{82} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{2}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)+\frac{1}{54} \operatorname{coth}(2 \pi)\right)+\pi-\frac{1}{\phi}
\end{aligned}
$$

Decimal approximation:

139.8728347290145374995326893663206080750771864481137182977...
$139.872934729 \ldots$ result practically equal to the rest mass of Pion meson 139.57

We have that:
$76(((1+48 \pi(1 / 17 \operatorname{coth}((3 \pi) / 2)+1 / 16 \operatorname{coth}(3 \pi)+3 / 97 \operatorname{coth}((9 \pi) / 2)))))+((((108 \pi$ $(1 / 82 \operatorname{coth}((2 \pi) / 3)+2 / 97 \operatorname{coth}((4 \pi) / 3)+1 / 54 \operatorname{coth}(2 \pi))))))+29+$ golden ratio

Input:

$$
\begin{aligned}
& 76\left(1+48 \pi\left(\frac{1}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+\frac{1}{16} \operatorname{coth}(3 \pi)+\frac{3}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)\right)+ \\
& 108 \pi\left(\frac{1}{82} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{2}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)+\frac{1}{54} \operatorname{coth}(2 \pi)\right)+29+\phi
\end{aligned}
$$

Decimal approximation:

1869.155481263445401136900426656453779751999629195101513367...
1869.15548... result practically equal to the rest mass of D meson 1869.61
$47(((1+48 \pi(1 / 17 \operatorname{coth}((3 \pi) / 2)+1 / 16 \operatorname{coth}(3 \pi)+3 / 97 \operatorname{coth}((9 \pi) / 2)))))+((((108 \pi$ $(1 / 82 \operatorname{coth}((2 \pi) / 3)+2 / 97 \operatorname{coth}((4 \pi) / 3)+1 / 54 \operatorname{coth}(2 \pi))))))+47+$ golden ratio

Input:

$$
\begin{aligned}
& 47\left(1+48 \pi\left(\frac{1}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+\frac{1}{16} \operatorname{coth}(3 \pi)+\frac{3}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)\right)+ \\
& 108 \pi\left(\frac{1}{82} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{2}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)+\frac{1}{54} \operatorname{coth}(2 \pi)\right)+47+\phi
\end{aligned}
$$

Decimal approximation:

1192.303974712669272288967820978485321280947645817414331961...
1192.3039747... result practically equal to the rest mass of Sigma baryon 1192.642
$76(((1+48 \pi(1 / 17 \operatorname{coth}((3 \pi) / 2)+1 / 16 \operatorname{coth}(3 \pi)+3 / 97 \operatorname{coth}((9 \pi) / 2)))))+((((108 \pi$ $(1 / 82 \operatorname{coth}((2 \pi) / 3)+2 / 97 \operatorname{coth}((4 \pi) / 3)+1 / 54 \operatorname{coth}(2 \pi))))))-123+11+$ golden ratio

Input:

$76\left(1+48 \pi\left(\frac{1}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+\frac{1}{16} \operatorname{coth}(3 \pi)+\frac{3}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)\right)+$
$108 \pi\left(\frac{1}{82} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{2}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)+\frac{1}{54} \operatorname{coth}(2 \pi)\right)-123+11+\phi$

Exact result:

$$
\begin{array}{r}
\phi-112+108 \pi\left(\frac{1}{82} \operatorname{coth}\left(\frac{2 \pi}{3}\right)+\frac{2}{97} \operatorname{coth}\left(\frac{4 \pi}{3}\right)+\frac{1}{54} \operatorname{coth}(2 \pi)\right)+ \\
76\left(1+48 \pi\left(\frac{1}{17} \operatorname{coth}\left(\frac{3 \pi}{2}\right)+\frac{1}{16} \operatorname{coth}(3 \pi)+\frac{3}{97} \operatorname{coth}\left(\frac{9 \pi}{2}\right)\right)\right)
\end{array}
$$

Decimal approximation:

1728.155481263445401136900426656453779751999629195101513367...
1728.155481263...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number $\underline{1729}$

Now, we have that:

For $\alpha=4 \pi^{3}$, we obtain:
$\left(7 * 4 \mathrm{Pi}^{\wedge} 3\right) / 720+\left(\left(\cos \left(\operatorname{sqrt}\left(4 \mathrm{Pi}^{\wedge} 3\right)\right)\right)\right) /\left(\left(1\left(\mathrm{e}^{\wedge}\left(\operatorname{sqrt}\left(4 \mathrm{Pi}^{\wedge} 3\right)\right)\right)\right)-2 \cos \left(\operatorname{sqrt}\left(4 \mathrm{Pi}^{\wedge} 3\right)\right)+\mathrm{e}^{\wedge}-\right.$ $\left.\left(\operatorname{sqrt}\left(4 \mathrm{Pi}^{\wedge} 3\right)\right)\right)+\left(\left(\cos \left(\operatorname{sqrt}\left(2 * 4 \mathrm{Pi}^{\wedge} 3\right)\right)\right)\right) /\left(\left(\left(\left(\left(2\left(\left(\left(\mathrm{e}^{\wedge}\left(\operatorname{sqrt}\left(2 * 4 \mathrm{Pi}^{\wedge} 3\right)\right)\right)\right)-2 \cos \right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left(\operatorname{sqrt}\left(2 * 4 \mathrm{Pi}^{\wedge} 3\right)\right)+\mathrm{e}^{\wedge}-\left(\operatorname{sqrt}\left(2 * 4 \mathrm{Pi}^{\wedge} 3\right)\right)\right)\right)\right)\right)\right)\right)$

Input:

$$
\begin{gathered}
\frac{1}{720}\left(7 \times 4 \pi^{3}\right)+\frac{\cos \left(\sqrt{4 \pi^{3}}\right)}{1 e^{\sqrt{4 \pi^{3}}}-2 \cos \left(\sqrt{4 \pi^{3}}\right)+e^{-\sqrt{4 \pi^{3}}}}+ \\
\frac{\cos \left(\sqrt{2 \times 4 \pi^{3}}\right)}{2\left(e^{\sqrt{2 \times 4 \pi^{3}}}-2 \cos \left(\sqrt{2 \times 4 \pi^{3}}\right)+e^{-\sqrt{2 \times 4 \pi^{3}}}\right)}
\end{gathered}
$$

Exact result:

$$
\frac{7 \pi^{3}}{180}+\frac{\cos \left(2 \pi^{3 / 2}\right)}{e^{-2 \pi^{3 / 2}}+e^{2 \pi^{3 / 2}}-2 \cos \left(2 \pi^{3 / 2}\right)}+\frac{\cos \left(2 \sqrt{2} \pi^{3 / 2}\right)}{2\left(e^{-2 \sqrt{2} \pi^{3 / 2}}+e^{2 \sqrt{2} \pi^{3 / 2}}-2 \cos \left(2 \sqrt{2} \pi^{3 / 2}\right)\right)}
$$

Decimal approximation:

1.205801624994993126045384839239801129207915546262193695221...
1.2058016249949...

Alternate forms:

$$
\frac{7 \pi^{3}}{180}+\frac{\cos \left(2 \pi^{3 / 2}\right)}{2 \cosh \left(2 \pi^{3 / 2}\right)-2 \cos \left(2 \pi^{3 / 2}\right)}+\frac{\cos \left(2 \sqrt{2} \pi^{3 / 2}\right)}{2\left(2 \cosh \left(2 \sqrt{2} \pi^{3 / 2}\right)-2 \cos \left(2 \sqrt{2} \pi^{3 / 2}\right)\right)}
$$

$$
\begin{aligned}
& \frac{7 \pi^{3}+7 e^{4 \pi^{3 / 2}} \pi^{3}+180 e^{2 \pi^{3 / 2}} \cos \left(2 \pi^{3 / 2}\right)-14 e^{2 \pi^{3 / 2}} \pi^{3} \cos \left(2 \pi^{3 / 2}\right)}{180\left(1+e^{4 \pi^{3 / 2}}-2 e^{2 \pi^{3 / 2}} \cos \left(2 \pi^{3 / 2}\right)\right)}+ \\
& \frac{e^{2 \sqrt{2} \pi^{3 / 2}} \cos \left(2 \sqrt{2} \pi^{3 / 2}\right)}{2\left(1+e^{4 \sqrt{2} \pi^{3 / 2}}-2 e^{\left.2 \sqrt{2} \pi^{3 / 2} \cos \left(2 \sqrt{2} \pi^{3 / 2}\right)\right)}\right.}+ \\
& \frac{e^{-2 i \pi^{3 / 2}}+e^{2 i \pi^{3 / 2}}}{2\left(e^{-2 \pi^{3 / 2}}-e^{-2 i \pi^{3 / 2}}-e^{2 i \pi^{3 / 2}}+e^{2 \pi^{3 / 2}}\right)}+ \\
& \frac{e^{-2 i \sqrt{2} \pi^{3 / 2}}+e^{2 i \sqrt{2} \pi^{3 / 2}}}{4\left(e^{-2 \sqrt{2}} \pi^{3 / 2}-e^{-2 i \sqrt{2} \pi^{3 / 2}}-e^{2 i \sqrt{2} \pi^{3 / 2}}+e^{2 \sqrt{2} \pi^{3 / 2}}\right)}+\frac{7 \pi^{3}}{180}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{7}{720}\left(4 \pi^{3}\right)+\frac{\cos \left(\sqrt{4 \pi^{3}}\right)}{1 e^{\sqrt{4 \pi^{3}}}-2 \cos \left(\sqrt{4 \pi^{3}}\right)+e^{-\sqrt{4 \pi^{3}}}}+ \\
& \frac{\cos \left(\sqrt{2 \times 4 \pi^{3}}\right)}{2\left(e^{\sqrt{2 \times 4 \pi^{3}}}-2 \cos \left(\sqrt{2 \times 4 \pi^{3}}\right)+e^{-\sqrt{2 \times 4 \pi^{3}}}\right)}=\frac{28 \pi^{3}}{720}+ \\
& \frac{\cosh \left(i \sqrt{4 \pi^{3}}\right)}{-2 \cosh \left(i \sqrt{4 \pi^{3}}\right)+e^{-\sqrt{4 \pi^{3}}}+e^{\sqrt{4 \pi^{3}}}+\frac{2\left(-2 \cosh \left(i \sqrt{8 \pi^{3}}\right)+e^{-\sqrt{8 \pi^{3}}}+e^{\sqrt{8 \pi^{3}}}\right)}{\cosh \left(i \sqrt{8 \pi^{3}}\right)}} \begin{array}{l}
\frac{7}{720}\left(4 \pi^{3}\right)+\frac{\cos \left(\sqrt{4 \pi^{3}}\right)}{1 e^{\sqrt{4 \pi^{3}}}-2 \cos \left(\sqrt{4 \pi^{3}}\right)+e^{-\sqrt{4 \pi^{3}}}}+ \\
\frac{\cos \left(\sqrt{2 \times 4 \pi^{3}}\right)}{2\left(e^{\sqrt{2 \times 4 \pi^{3}}}-2 \cos \left(\sqrt{2 \times 4 \pi^{3}}\right)+e^{-\sqrt{2 \times 4 \pi^{3}}}\right)}= \\
\frac{28 \pi^{3}}{720}+\frac{\cosh \left(-i \sqrt{4 \pi^{3}}\right)}{-2 \cosh \left(-i \sqrt{4 \pi^{3}}\right)+e^{-\sqrt{4 \pi^{3}}}+e^{\sqrt{4 \pi^{3}}}}+ \\
\frac{\cosh \left(-i \sqrt{8 \pi^{3}}\right)}{2\left(-2 \cosh \left(-i \sqrt{8 \pi^{3}}\right)+e^{-\sqrt{8 \pi^{3}}}+e^{\sqrt{8 \pi^{3}}}\right)}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\frac{7}{720}\left(4 \pi^{3}\right)+\frac{\cos \left(\sqrt{4 \pi^{3}}\right)}{1 e^{\sqrt{4 \pi^{3}}}-2 \cos \left(\sqrt{4 \pi^{3}}\right)+e^{-\sqrt{4 \pi^{3}}}}+ \\
\frac{\cos \left(\sqrt{2 \times 4 \pi^{3}}\right)}{2\left(e^{\sqrt{2 \times 4 \pi^{3}}}-2 \cos \left(\sqrt{2 \times 4 \pi^{3}}\right)+e^{-\sqrt{2 \times 4 \pi^{3}}}\right)}= \\
\frac{28 \pi^{3}}{720}+\frac{1}{\left(e^{-\sqrt{4 \pi^{3}}}+e^{\sqrt{4 \pi^{3}}}-\frac{2}{\sec \left(\sqrt{4 \pi^{3}}\right)}\right) \sec \left(\sqrt{4 \pi^{3}}\right)}+ \\
\frac{1}{\left(2\left(e^{-\sqrt{8 \pi^{3}}}+e^{\sqrt{8 \pi^{3}}}-\frac{2}{\sec \left(\sqrt{8 \pi^{3}}\right)}\right)\right) \sec \left(\sqrt{8 \pi^{3}}\right)}
\end{gathered}
$$

And:
$(((1 / 2(1.205801624994993126))))^{\wedge} 1 / 48$

Input interpretation:

$\sqrt[48]{\frac{1}{2} \times 1.205801624994993126}$

Result:

0.989513648664625591827...
0.989513648... result practically equal to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$
golden ratio $^{\wedge} 2 * \log$ base $0.989513648664(((1 / 2(1.205801624994993126))))$
Input interpretation:
$\phi^{2} \log _{0.989513648664}\left(\frac{1}{2} \times 1.205801624994993126\right)$

Result:

125.6656315...
$125.6656315 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representation:

$$
\begin{aligned}
\phi^{2} & \log _{0.9895136486640000}\left(\frac{1.2058016249949931260000}{2}\right)= \\
& \frac{\log (0.60290081249749656300000) \phi^{2}}{\log (0.9895136486640000)}
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
\phi^{2} \log _{0.9895136486640000}\left(\frac{1.2058016249949931260000}{2}\right)= \\
-\frac{\phi^{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}(-0.39709918750250343700000)^{k}}{k}}{\log (0.9895136486640000)}
\end{gathered}
$$

$$
\phi^{2} \log _{0.9895136486640000}\left(\frac{1.2058016249949931260000}{2}\right)=
$$

$$
-94.86205377432 \phi^{2} \log (0.60290081249749656300000)-1.00000000000000
$$

$$
\phi^{2} \log (0.60290081249749656300000) \sum_{k=0}^{\infty}(-0.0104863513360000)^{k} G(k)
$$

$$
\text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
$$

From the inverse of the sum of the three results obtained, we obtain:

$$
2(1 / 0.0026853199+1 / 41.507688953722+1 / 1.2058016249949)+29+7
$$

Where 2, 7 and 29 are Lucas numbers

Input interpretation:

$2\left(\frac{1}{0.0026853199}+\frac{1}{41.507688953722}+\frac{1}{1.2058016249949}\right)+29+7$

Result:

782.4970518058815246116365989092488909552620954218160414999
$782.4970518 \ldots$ result practically equal to the rest mass of Omega meson 782.65

We note that:
$\zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$
$1.644934^{\wedge}(12 \mathrm{x})+47-2=782.497$

Input interpretation:

$1.644934^{12 x}+47-2=782.497$

Result:
$1.64493^{12 x}+45=782.497$
Plot:

Alternate form:
$e^{5.9724 x}+45=782.497$

Alternate form assuming x is positive:
$e^{5.9724 x}=737.497$

Alternate form assuming x is real:
$1.64493^{12 x}+45=782.497$

Real solution:

$x \approx 1.10563$
1.10563

Solution:

$x \approx(0.167437 i)(6.28319 n+(-6.60326 i)), \quad n \in \mathbb{Z}$
Z is the set of integers
And that: $1.10563 * 10^{-52}$ is the value of Cosmological Constant
$4(1 / 0.0026853199+1 / 41.507688953722+1 / 1.2058016249949)+29+7+$ golden ratio^2

Where 4, 7 and 29 are Lucas numbers

Input interpretation:

$4\left(\frac{1}{0.0026853199}+\frac{1}{41.507688953722}+\frac{1}{1.2058016249949}\right)+29+7+\phi^{2}$

Result:

1531.6121..
$1531.6121 \ldots$ result practically equal to the rest mass of Xi baryon 1531.80

Alternative representations:

$$
\begin{aligned}
& 4\left(\frac{1}{0.00268532}+\frac{1}{41.5076889537220000}+\frac{1}{1.20580162499490000}\right)+29+7+\phi^{2}= \\
& 36+4\left(\frac{1}{0.00268532}+\frac{1}{1.20580162499490000}+\frac{1}{41.5076889537220000}\right)+ \\
& \quad\left(2 \sin \left(54^{\circ}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 4\left(\frac{1}{0.00268532}+\frac{1}{41.5076889537220000}+\frac{1}{1.20580162499490000}\right)+29+7+\phi^{2}= \\
& 36+4\left(\frac{1}{0.00268532}+\frac{1}{1.20580162499490000}+\frac{1}{41.5076889537220000}\right)+ \\
& \left(-2 \cos \left(216^{\circ}\right)\right)^{2}
\end{aligned}
$$

$$
4\left(\frac{1}{0.00268532}+\frac{1}{41.5076889537220000}+\frac{1}{1.20580162499490000}\right)+29+7+\phi^{2}=
$$

$$
36+4\left(\frac{1}{0.00268532}+\frac{1}{1.20580162499490000}+\frac{1}{41.5076889537220000}\right)+
$$

$$
\left(-2 \sin \left(666^{\circ}\right)\right)^{2}
$$

Now, we have that:
pag. 183

From:

$((\operatorname{coth}(9 \mathrm{Pi}) / 729+\operatorname{coth}(10 \mathrm{Pi}) / 1000$
$+\operatorname{coth}(11 \mathrm{Pi}) / 1331+\operatorname{coth}(12 \mathrm{Pi}) / 1728+\operatorname{coth}(13 \mathrm{Pi}) / 2197+\operatorname{coth}(14 \mathrm{Pi}) / 2744$
$+\operatorname{coth}(15 \mathrm{Pi}) / 3375+\operatorname{coth}(16 \mathrm{Pi}) / 4096)))$

Input:

$$
\begin{aligned}
& \frac{1}{729} \operatorname{coth}(9 \pi)+\frac{\operatorname{coth}(10 \pi)}{1000}+\frac{\operatorname{coth}(11 \pi)}{1331}+ \\
& \frac{\operatorname{coth}(12 \pi)}{1728}+\frac{\operatorname{coth}(13 \pi)}{2197}+\frac{\operatorname{coth}(14 \pi)}{2744}+\frac{\operatorname{coth}(15 \pi)}{3375}+\frac{\operatorname{coth}(16 \pi)}{4096}
\end{aligned}
$$

Decimal approximation:

0.005061795160904405877552574734780462375652437028944639527...
0.00506179516....

Alternate forms:

$(513537536512000 \operatorname{coth}(9 \pi)+$
$374368864117248 \operatorname{coth}(10 \pi)+281268868608000 \operatorname{coth}(11 \pi)+$
$216648648216000 \operatorname{coth}(12 \pi)+170400029184000 \operatorname{coth}(13 \pi)+$
$136431801792000 \operatorname{coth}(14 \pi)+110924107886592 \operatorname{coth}(15 \pi)+$
$91398648466125 \operatorname{coth}(16 \pi)) / 374368864117248000$
$(8024024008000 \operatorname{coth}(9 \pi)+5849513501832 \operatorname{coth}(10 \pi)+$
$4394826072000 \operatorname{coth}(11 \pi)+3385135128375 \operatorname{coth}(12 \pi)+$
$2662500456000 \operatorname{coth}(13 \pi)+2131746903000 \operatorname{coth}(14 \pi)+$
$1733189185728 \operatorname{coth}(15 \pi)) / 5849513501832000+\frac{\operatorname{coth}(16 \pi)}{4096}$
$\frac{\cosh (9 \pi)}{729 \sinh (9 \pi)}+\frac{\cosh (10 \pi)}{1000 \sinh (10 \pi)}+\frac{\cosh (11 \pi)}{1331 \sinh (11 \pi)}+\frac{\cosh (12 \pi)}{1728 \sinh (12 \pi)}+$
$\frac{\cosh (13 \pi)}{2197 \sinh (13 \pi)}+\frac{\cosh (14 \pi)}{2744 \sinh (14 \pi)}+\frac{\cosh (16 \pi)}{3375 \sinh (15 \pi)}+\frac{\cos }{4096 \sinh (16 \pi)}$
0.0050617951609044...

Partial result
$((\operatorname{coth}(\mathrm{Pi}) / 1+\operatorname{coth}$
$(2 \mathrm{Pi}) / 8+\operatorname{coth}(3 \mathrm{Pi}) / 27+\operatorname{coth}(4 \mathrm{Pi}) / 64+\operatorname{coth}(5 \mathrm{Pi}) / 125+\operatorname{coth}(6 \mathrm{Pi}) / 216+\operatorname{coth}(7 \mathrm{Pi}) / 343+\operatorname{coth}$ $(8 \mathrm{Pi}) / 512))+0.0050617951609044$

Input interpretation:

$$
\begin{aligned}
&\left(\frac{\operatorname{coth}(\pi)}{1}+\right. \frac{1}{8} \operatorname{coth}(2 \pi)+\frac{1}{27} \operatorname{coth}(3 \pi)+\frac{1}{64} \operatorname{coth}(4 \pi)+\frac{1}{125} \operatorname{coth}(5 \pi)+ \\
&\left.\frac{1}{216} \operatorname{coth}(6 \pi)+\frac{1}{343} \operatorname{coth}(7 \pi)+\frac{1}{512} \operatorname{coth}(8 \pi)\right)+0.0050617951609044
\end{aligned}
$$

Result:

1.203964784241347...
$1.2039647842 \ldots$. Final result

Alternative representations:

$$
\begin{aligned}
& \left(\operatorname{coth}(\pi) \frac{1}{1}+\frac{1}{8} \operatorname{coth}(2 \pi)+\frac{1}{27} \operatorname{coth}(3 \pi)+\frac{1}{64} \operatorname{coth}(4 \pi)+\frac{1}{125} \operatorname{coth}(5 \pi)+\frac{1}{216} \operatorname{coth}(6 \pi)+\right. \\
& \left.\frac{1}{343} \operatorname{coth}(7 \pi)+\frac{1}{512} \operatorname{coth}(8 \pi)\right)+0.00506179516090440000= \\
& 0.00506179516090440000+i \cot (i \pi)+\frac{1}{8} i \cot (2 i \pi)+\frac{1}{27} i \cot (3 i \pi)+ \\
& \frac{1}{64} i \cot (4 i \pi)+\frac{1}{125} i \cot (5 i \pi)+\frac{1}{216} i \cot (6 i \pi)+\frac{1}{343} i \cot (7 i \pi)+\frac{1}{512} i \cot (8 i \pi)
\end{aligned}
$$

$\left(\operatorname{coth}(\pi) \frac{1}{1}+\frac{1}{8} \operatorname{coth}(2 \pi)+\frac{1}{27} \operatorname{coth}(3 \pi)+\frac{1}{64} \operatorname{coth}(4 \pi)+\frac{1}{125} \operatorname{coth}(5 \pi)+\frac{1}{216} \operatorname{coth}(6 \pi)+\right.$ $\left.\frac{1}{343} \operatorname{coth}(7 \pi)+\frac{1}{512} \operatorname{coth}(8 \pi)\right)+0.00506179516090440000=$
$1.00506179516090440000+\frac{2}{-1+e^{2 \pi}}+\frac{1}{8}\left(1+\frac{2}{-1+e^{4 \pi}}\right)+$

$$
\begin{aligned}
& \frac{1}{27}\left(1+\frac{2}{-1+e^{6 \pi}}\right)+\frac{1}{64}\left(1+\frac{2}{-1+e^{8 \pi}}\right)+\frac{1}{125}\left(1+\frac{2}{-1+e^{10 \pi}}\right)+ \\
& \frac{1}{216}\left(1+\frac{2}{-1+e^{12 \pi}}\right)+\frac{1}{343}\left(1+\frac{2}{-1+e^{14 \pi}}\right)+\frac{1}{512}\left(1+\frac{2}{-1+e^{16 \pi}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\operatorname{coth}(\pi) \frac{1}{1}+\frac{1}{8} \operatorname{coth}(2 \pi)+\frac{1}{27} \operatorname{coth}(3 \pi)+\frac{1}{64} \operatorname{coth}(4 \pi)+\frac{1}{125} \operatorname{coth}(5 \pi)+\frac{1}{216} \operatorname{coth}(6 \pi)+\right. \\
& \left.\quad \frac{1}{343} \operatorname{coth}(7 \pi)+\frac{1}{512} \operatorname{coth}(8 \pi)\right)+0.00506179516090440000= \\
& 0.00506179516090440000-i \cot (-i \pi)-\frac{1}{8} i \cot (-2 i \pi)- \\
& \frac{1}{27} i \cot (-3 i \pi)-\frac{1}{64} i \cot (-4 i \pi)-\frac{1}{125} i \cot (-5 i \pi)- \\
& \frac{1}{216} i \cot (-6 i \pi)-\frac{1}{343} i \cot (-7 i \pi)-\frac{1}{512} i \cot (-8 i \pi)
\end{aligned}
$$

Series representations:

$\left(\operatorname{coth}(\pi) \frac{1}{1}+\frac{1}{8} \operatorname{coth}(2 \pi)+\frac{1}{27} \operatorname{coth}(3 \pi)+\frac{1}{64} \operatorname{coth}(4 \pi)+\frac{1}{125} \operatorname{coth}(5 \pi)+\frac{1}{216} \operatorname{coth}(6 \pi)+\right.$ $\left.\frac{1}{343} \operatorname{coth}(7 \pi)+\frac{1}{512} \operatorname{coth}(8 \pi)\right)+0.00506179516090440000=$ $-1.1900984484008059984-2.3903204871234207969 \sum_{k=1}^{\infty} q^{2 k}$
for $\left(q=e^{\pi}\right.$ and $q=e^{2 \pi}$ and $q=e^{3 \pi}$ and $q=e^{4 \pi}$ and $q=e^{5 \pi}$ and $q=e^{6 \pi}$ and $q=e^{7 \pi}$ and $\left.q=e^{8 \pi}\right)$
$\left(\operatorname{coth}(\pi) \frac{1}{1}+\frac{1}{8} \operatorname{coth}(2 \pi)+\frac{1}{27} \operatorname{coth}(3 \pi)+\frac{1}{64} \operatorname{coth}(4 \pi)+\right.$

$$
\begin{aligned}
& \left.\frac{1}{125} \operatorname{coth}(5 \pi)+\frac{1}{216} \operatorname{coth}(6 \pi)+\frac{1}{343} \operatorname{coth}(7 \pi)+\frac{1}{512} \operatorname{coth}(8 \pi)\right)+ \\
& 0.00506179516090440000=0.00506179516090440000+ \\
& \sum_{k=-\infty}^{\infty}\left(\frac{1}{\pi+k^{2} \pi}+\frac{1}{16 \pi+4 k^{2} \pi}+\frac{1}{81 \pi+9 k^{2} \pi}+\frac{1}{256 \pi+16 k^{2} \pi}+\right. \\
& \left.\frac{1}{625 \pi+25 k^{2} \pi}+\frac{1}{1296 \pi+36 k^{2} \pi}+\frac{1}{2401 \pi+49 k^{2} \pi}+\frac{1}{4096 \pi+64 k^{2} \pi}\right)
\end{aligned}
$$

$\left(\operatorname{coth}(\pi) \frac{1}{1}+\frac{1}{8} \operatorname{coth}(2 \pi)+\frac{1}{27} \operatorname{coth}(3 \pi)+\frac{1}{64} \operatorname{coth}(4 \pi)+\frac{1}{125} \operatorname{coth}(5 \pi)+\frac{1}{216} \operatorname{coth}(6 \pi)+\right.$

$$
\begin{aligned}
& \left.\frac{1}{343} \operatorname{coth}(7 \pi)+\frac{1}{512} \operatorname{coth}(8 \pi)\right)+0.00506179516090440000= \\
& 0.00506179516090440000+\sum_{k=0}^{\infty} \frac{1}{592704000 k!}\left(k!\delta_{k}+(-1)^{k} 2^{1+k} \mathrm{Li}_{-k}\left(e^{-2 z_{0}}\right)\right) \\
& \left(592704000\left(\pi-z_{0}\right)^{k}+74088000\left(2 \pi-z_{0}\right)^{k}+21952000\left(3 \pi-z_{0}\right)^{k}+\right. \\
& 9261000\left(4 \pi-z_{0}\right)^{k}+4741632\left(5 \pi-z_{0}\right)^{k}+2744000\left(6 \pi-z_{0}\right)^{k}+ \\
& \left.1728000\left(7 \pi-z_{0}\right)^{k}+1157625\left(8 \pi-z_{0}\right)^{k}\right) \text { for } \frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \left(\operatorname{coth}(\pi) \frac{1}{1}+\frac{1}{8} \operatorname{coth}(2 \pi)+\frac{1}{27} \operatorname{coth}(3 \pi)+\frac{1}{64} \operatorname{coth}(4 \pi)+\frac{1}{125} \operatorname{coth}(5 \pi)+\frac{1}{216} \operatorname{coth}(6 \pi)+\right. \\
& \left.\frac{1}{343} \operatorname{coth}(7 \pi)+\frac{1}{512} \operatorname{coth}(8 \pi)\right)+0.00506179516090440000= \\
& 0.00506179516090440000+\int_{\frac{i \pi}{2}}^{7 \pi}\left(-0.00291545189504373178 \operatorname{csch}^{2}(t)-\right. \\
& \frac{0.00195312500000000000\left(8 \pi-\frac{i \pi}{2}\right) \operatorname{csch}^{2}\left(\frac{\frac{i \pi^{2}}{2}-8 \pi t+\frac{i \pi t}{2}}{-7 \pi+\frac{i \pi}{2}}\right)}{7 \pi-\frac{i \pi}{2}}+\frac{1}{7 \pi-\frac{i \pi}{2}} \\
& \left(5 \pi-\frac{i \pi}{2}\right)\left(-0.00800000000000000000 \operatorname{csch}^{2}\left(\frac{-i \pi^{2}-5 \pi t+\frac{i \pi t}{2}}{-7 \pi+\frac{i \pi}{2}}\right)-\right. \\
& \frac{1}{5 \pi-\frac{i \pi}{2}} 0.00462962962962962963\left(6 \pi-\frac{i \pi}{2}\right) \\
& \left.\operatorname{csch}^{2}\left(\frac{\frac{i \pi^{2}}{2}-\frac{6 \pi\left(-i \pi^{2}-5 \pi t+\frac{i \pi t}{2}\right)}{-7 \pi+\frac{i \pi}{2}}+\frac{i \pi\left(-i \pi^{2}-5 \pi t+\frac{i \pi t}{2}\right)}{2\left(-7 \pi+\frac{i \pi}{2}\right)}}{-5 \pi+\frac{i \pi}{2}}\right)\right)+\frac{1}{7 \pi-\frac{i \pi}{2}} \\
& \begin{array}{c}
\left(3 \pi-\frac{i \pi}{2}\right)\left(-0.0370370370370370370 \operatorname{csch}^{2}\left(\frac{-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}}{-7 \pi+\frac{i \pi}{2}}\right)-\right. \\
\quad \frac{1}{3 \pi-\frac{i \pi}{2}} 0.0156250000000000000\left(4 \pi-\frac{i \pi}{2}\right)
\end{array} \\
& \operatorname{csch}^{2}\left(\frac{\frac{i \pi^{2}}{2}-\frac{4 \pi\left(-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}\right)}{-7 \pi+\frac{i \pi}{2}}+\frac{i \pi\left(-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}\right)}{2\left(-7 \pi+\frac{i \pi}{2}\right)}}{-3 \pi+\frac{i \pi}{2}}\right)+ \\
& \frac{1}{3 \pi-\frac{i \pi}{2}}\left(\pi-\frac{i \pi}{2}\right)\left(-1.00000000000000000 \operatorname{csch}^{2}(\right. \\
& \left.\frac{-i \pi^{2}-\frac{\pi\left(-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}\right)}{-7 \pi+\frac{i \pi}{2}}+\frac{i \pi\left(-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}\right)}{2\left(-7 \pi+\frac{i \pi}{2}\right)}}{-3 \pi+\frac{i \pi}{2}}\right)-\frac{1}{\pi-\frac{i \pi}{2}} \\
& 0.125000000000000000\left(2 \pi-\frac{i \pi}{2}\right) \operatorname{csch}^{2}\left(\frac { 1 } { - \pi + \frac { i \pi } { 2 } } \left(\frac{i \pi^{2}}{2}-\right.\right. \\
& \frac{2 \pi\left(-i \pi^{2}-\frac{\pi\left(-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}\right)}{-7 \pi+\frac{i \pi}{2}}+\frac{i \pi\left(-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}\right)}{2\left(-7 \pi+\frac{i \pi}{2}\right)}\right)}{-3 \pi+\frac{i \pi}{2}}+ \\
& \left.\left.\left.\frac{i \pi\left(-i \pi^{2}-\frac{\pi\left(-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}\right)}{-7 \pi+\frac{i \pi}{2}}+\frac{i \pi\left(-2 i \pi^{2}-3 \pi t+\frac{i \pi t}{2}\right)}{2\left(-7 \pi+\frac{i \pi}{2}\right)}\right)}{2\left(-3 \pi+\frac{i \pi}{2}\right)}\right)\right) \|\right)
\end{aligned}
$$

Result, that is very near to the following expression:
$7 \mathrm{Pi}^{\wedge} 3 / 180$

Input:

$7 \times \frac{\pi^{3}}{180}$

Exact result:

$\frac{7 \pi^{3}}{180}$
Decimal approximation:
1.205799648678326340157412252609498702308761222006643076994...
1.205799648678326....

Property:

$\frac{7 \pi^{3}}{180}$ is a transcendental number

Alternative representations:

$\frac{7 \pi^{3}}{180}=\frac{7}{180}\left(180^{\circ}\right)^{3}$
$\frac{7 \pi^{3}}{180}=\frac{7}{180}(-i \log (-1))^{3}$
$\frac{7 \pi^{3}}{180}=\frac{7}{180} \cos ^{-1}(-1)^{3}$
Series representations:
$\frac{7 \pi^{3}}{180}=-\frac{56}{45} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(-1+2 k)^{3}}$
$\frac{7 \pi^{3}}{180}=\frac{112}{45}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}$
$\frac{7 \pi^{3}}{180}=\frac{112}{45}\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{3}$

Integral representations:

$$
\begin{aligned}
& \frac{7 \pi^{3}}{180}=\frac{14}{45}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{3} \\
& \frac{7 \pi^{3}}{180}=\frac{112}{45}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{3} \\
& \frac{7 \pi^{3}}{180}=\frac{14}{45}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{3}
\end{aligned}
$$

$\operatorname{coth}(\mathrm{Pi}) / 1^{\wedge} 7+\operatorname{coth}(2 \mathrm{Pi}) / 2^{\wedge} 7+\operatorname{coth}(3 \mathrm{Pi}) / 3^{\wedge} 7$
Input:

$$
\frac{\operatorname{coth}(\pi)}{1^{7}}+\frac{\operatorname{coth}(2 \pi)}{2^{7}}+\frac{\operatorname{coth}(3 \pi)}{3^{7}}
$$

$\operatorname{coth}(x)$ is the hyperbolic cotangent function

Exact result:

$\operatorname{coth}(\pi)+\frac{1}{128} \operatorname{coth}(2 \pi)+\frac{\operatorname{coth}(3 \pi)}{2187}$

Decimal approximation:

1.012011675064018813387293855970735281415525507866514559451...
1.0120116750640....

Property:

$\operatorname{coth}(\pi)+\frac{1}{128} \operatorname{coth}(2 \pi)+\frac{\operatorname{coth}(3 \pi)}{2187}$ is a transcendental number

Alternate forms:

$\frac{279936 \operatorname{coth}(\pi)+2187 \operatorname{coth}(2 \pi)+128 \operatorname{coth}(3 \pi)}{279936}$
$\frac{1}{128}(128 \operatorname{coth}(\pi)+\operatorname{coth}(2 \pi))+\frac{\operatorname{coth}(3 \pi)}{2187}$
$(562059+842123 \cosh (2 \pi)+282251 \cosh (4 \pi)) \operatorname{csch}(\pi) \operatorname{sech}(\pi)$

$$
559872(1+2 \cosh (2 \pi))
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\operatorname{coth}(\pi)}{1^{7}}+\frac{\operatorname{coth}(2 \pi)}{2^{7}}+\frac{\operatorname{coth}(3 \pi)}{3^{7}}=\frac{i \cot (i \pi)}{1^{7}}+\frac{i \cot (2 i \pi)}{2^{7}}+\frac{i \cot (3 i \pi)}{3^{7}} \\
& \frac{\operatorname{coth}(\pi)}{1^{7}}+\frac{\operatorname{coth}(2 \pi)}{2^{7}}+\frac{\operatorname{coth}(3 \pi)}{3^{7}}=\frac{1+\frac{2}{-1+e^{2 \pi}}}{1^{7}}+\frac{1+\frac{2}{-1+e^{4 \pi}}}{2^{7}}+\frac{1+\frac{2}{-1+e^{6 \pi}}}{3^{7}} \\
& \frac{\operatorname{coth}(\pi)}{1^{7}}+\frac{\operatorname{coth}(2 \pi)}{2^{7}}+\frac{\operatorname{coth}(3 \pi)}{3^{7}}=-\frac{i \cot (-i \pi)}{1^{7}}-\frac{i \cot (-2 i \pi)}{2^{7}}-\frac{i \cot (-3 i \pi)}{3^{7}}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\operatorname{coth}(\pi)}{1^{7}}+\frac{\operatorname{coth}(2 \pi)}{2^{7}}+\frac{\operatorname{coth}(3 \pi)}{3^{7}}= \\
& \frac{282251}{279936}+\sum_{k=0}^{\infty}\left(\frac{2 e^{-6(1+k) \pi}}{2187}+\frac{1}{64} e^{-4(1+k) \pi}+2 e^{-2(1+k) \pi}\right)
\end{aligned}
$$

$$
\frac{\operatorname{coth}(\pi)}{1^{7}}+\frac{\operatorname{coth}(2 \pi)}{2^{7}}+\frac{\operatorname{coth}(3 \pi)}{3^{7}}=\sum_{k=-\infty}^{\infty}\left(\frac{1}{\pi+k^{2} \pi}+\frac{1}{256 \pi+64 k^{2} \pi}+\frac{1}{6561 \pi+729 k^{2} \pi}\right)
$$

$$
\frac{\operatorname{coth}(\pi)}{1^{7}}+\frac{\operatorname{coth}(2 \pi)}{2^{7}}+\frac{\operatorname{coth}(3 \pi)}{3^{7}}=
$$

$$
\frac{1686433}{1679616 \pi}+\sum_{k=1}^{\infty}\left(\frac{2}{729\left(9+k^{2}\right) \pi}+\frac{2}{\pi+k^{2} \pi}+\frac{1}{128 \pi+32 k^{2} \pi}\right)
$$

Integral representation:

$$
\begin{aligned}
& \frac{\operatorname{coth}(\pi)}{1^{7}}+\frac{\operatorname{coth}(2 \pi)}{2^{7}}+\frac{\operatorname{coth}(3 \pi)}{3^{7}}= \\
& \int_{\frac{i \pi}{2}}^{3 \pi}\left(-\frac{\operatorname{csch}^{2}(t)}{2187}+\left(\frac{13}{37}-\frac{4 i}{37}\right)\left(-\operatorname{csch}^{2}\left(\frac{\left(\frac{12}{37}+\frac{2 i}{37}\right)\left(-i \pi^{2}-\left(1-\frac{i}{2}\right) \pi t\right)}{\pi}\right)-\right.\right. \\
& \left.\left.\quad\left(\frac{9}{640}+\frac{i}{320}\right) \operatorname{csch}^{2}\left(\frac{\left(\frac{4}{5}+\frac{2 i}{5}\right)\left(\frac{i \pi^{2}}{2}+\left(\frac{25}{37}-\frac{2 i}{37}\right)\left(-i \pi^{2}-\left(1-\frac{i}{2}\right) \pi t\right)\right)}{\pi}\right)\right)\right) d t
\end{aligned}
$$

Result that is very near to the following expression:
$19 \mathrm{Pi}^{\wedge} 7 / 56700$

Input:

$19 \times \frac{\pi^{7}}{56700}$

Exact result:

$\frac{19 \pi^{7}}{56700}$

Decimal approximation:

1.012091205075115507632626514433312077714836279199517513092...
$1.0120912050751 \ldots$

Property:

$\frac{19 \pi^{7}}{56700}$ is a transcendental number

Alternative representations:

$\frac{19 \pi^{7}}{56700}=\frac{19\left(180^{\circ}\right)^{7}}{56700}$
$\frac{19 \pi^{7}}{56700}=\frac{19(-i \log (-1))^{7}}{56700}$
$\frac{19 \pi^{7}}{56700}=\frac{19 \cos ^{-1}(-1)^{7}}{56700}$

Series representations:

$\frac{19 \pi^{7}}{56700}=\frac{77824\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{7}}{14175}$
$\frac{19 \pi^{7}}{56700}=\frac{19\left(\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{7}}{56700}$
$\frac{19 \pi^{7}}{56700}=\frac{19\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{7}}{56700}$

Integral representations:

$\frac{19 \pi^{7}}{56700}=\frac{608\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{7}}{14175}$
$\frac{19 \pi^{7}}{56700}=\frac{77824\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{7}}{14175}$
$\frac{19 \pi^{7}}{56700}=\frac{608\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{7}}{14175}$

$\tanh (\mathrm{Pi} / 2) / 1^{\wedge} 3+\tanh (3 \mathrm{Pi} / 2) / 3^{\wedge} 3-\tanh (5 \mathrm{Pi} / 2) / 5^{\wedge} 3$

Input:

$\frac{\tanh \left(\frac{\pi}{2}\right)}{1^{3}}+\frac{\tanh \left(3 \times \frac{\pi}{2}\right)}{3^{3}}-\frac{\tanh \left(5 \times \frac{\pi}{2}\right)}{5^{3}}$

Exact result:

$\tanh \left(\frac{\pi}{2}\right)+\frac{1}{27} \tanh \left(\frac{3 \pi}{2}\right)-\frac{1}{125} \tanh \left(\frac{5 \pi}{2}\right)$

Decimal approximation:

$0.946183397855858388463387564942550238862188023168537825736 \ldots$
0.946183397855858...

Property:

$\tanh \left(\frac{\pi}{2}\right)+\frac{1}{27} \tanh \left(\frac{3 \pi}{2}\right)-\frac{1}{125} \tanh \left(\frac{5 \pi}{2}\right)$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{3375 \tanh \left(\frac{\pi}{2}\right)+125 \tanh \left(\frac{3 \pi}{2}\right)-27 \tanh \left(\frac{5 \pi}{2}\right)}{3375} \\
& \frac{\sinh (\pi)}{1+\cosh (\pi)}+\frac{\sinh (3 \pi)}{27(1+\cosh (3 \pi))}-\frac{\sinh (5 \pi)}{125(1+\cosh (5 \pi))} \\
& \frac{\sinh \left(\frac{\pi}{2}\right)}{\cosh \left(\frac{\pi}{2}\right)}+\frac{\sinh \left(\frac{3 \pi}{2}\right)}{27 \cosh \left(\frac{3 \pi}{2}\right)}-\frac{\sinh \left(\frac{5 \pi}{2}\right)}{125 \cosh \left(\frac{5 \pi}{2}\right)}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\tanh \left(\frac{\pi}{2}\right)}{1^{3}}+\frac{\tanh \left(\frac{3 \pi}{2}\right)}{3^{3}}-\frac{\tanh \left(\frac{5 \pi}{2}\right)}{5^{3}}= \\
& -\frac{-1+\frac{2}{1+e^{-5 \pi}}}{5^{3}}+\frac{1}{27}\left(-1+\frac{2}{1+e^{-3 \pi}}\right)+\frac{1}{1}\left(-1+\frac{2}{1+e^{-\pi}}\right)
\end{aligned}
$$

$\frac{\tanh \left(\frac{\pi}{2}\right)}{1^{3}}+\frac{\tanh \left(\frac{3 \pi}{2}\right)}{3^{3}}-\frac{\tanh \left(\frac{5 \pi}{2}\right)}{5^{3}}=\frac{1}{\operatorname{coth}\left(\frac{\pi}{2}\right)}+\frac{1}{27 \operatorname{coth}\left(\frac{3 \pi}{2}\right)}-\frac{1}{\operatorname{coth}\left(\frac{5 \pi}{2}\right) 5^{3}}$
$\frac{\tanh \left(\frac{\pi}{2}\right)}{1^{3}}+\frac{\tanh \left(\frac{3 \pi}{2}\right)}{3^{3}}-\frac{\tanh \left(\frac{5 \pi}{2}\right)}{5^{3}}=$
$\operatorname{coth}\left(\frac{\pi}{2}-\frac{i \pi}{2}\right) \frac{1}{1}+\frac{1}{27} \operatorname{coth}\left(\frac{3 \pi}{2}-\frac{i \pi}{2}\right)-\frac{\operatorname{coth}\left(\frac{5 \pi}{2}-\frac{i \pi}{2}\right)}{5^{3}}$

Series representations:

$$
\begin{aligned}
& \frac{\tanh \left(\frac{\pi}{2}\right)}{1^{3}}+\frac{\tanh \left(\frac{3 \pi}{2}\right)}{3^{3}}-\frac{\tanh \left(\frac{5 \pi}{2}\right)}{5^{3}}=\sum_{k=1}^{\infty} \frac{4\left(\frac{225}{1+(1-2 k)^{2}}+\frac{25}{9+(1-2 k)^{2}}-\frac{9}{25+(1-2 k)^{2}}\right)}{225 \pi} \\
& \frac{\tanh \left(\frac{\pi}{2}\right)}{1^{3}}+\frac{\tanh \left(\frac{3 \pi}{2}\right)}{3^{3}}-\frac{\tanh \left(\frac{5 \pi}{2}\right)}{5^{3}}= \\
& \frac{3473}{3375}+\sum_{k=0}^{\infty}\left(\frac{2}{125} e^{(-5-(5-i) k) \pi}-\frac{2}{27} e^{(-3-(3-i) k) \pi}-2 e^{(-1-(1-i) k) \pi}\right) \\
& \frac{\tanh \left(\frac{\pi}{2}\right)}{1^{3}}+\frac{\tanh \left(\frac{3 \pi}{2}\right)}{3^{3}}-\frac{\tanh \left(\frac{5 \pi}{2}\right)}{5^{3}}= \\
& \sum_{k=0}^{\infty}\left(-\left(\delta_{k}+\frac{2^{1+k} L_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(\frac{\pi}{2}-z_{0}\right)^{k}-\frac{1}{27}\left(\delta_{k}+\frac{2^{1+k} L i_{-k}\left(-e^{2} z_{0}\right)}{k!}\right)\left(\frac{3 \pi}{2}-z_{0}\right)^{k}+\right. \\
& \left.\quad \frac{1}{125}\left(\delta_{k}+\frac{2^{1+k} L_{-k}\left(-e^{2 z_{0}}\right)}{k!}\right)\left(\frac{5 \pi}{2}-z_{0}\right)^{k}\right) \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representation:

$\frac{\tanh \left(\frac{\pi}{2}\right)}{1^{3}}+\frac{\tanh \left(\frac{3 \pi}{2}\right)}{3^{3}}-\frac{\tanh \left(\frac{5 \pi}{2}\right)}{5^{3}}=\int_{0}^{\frac{5 \pi}{2}}\left(\frac{1}{5}\left(\operatorname{sech}^{2}\left(\frac{t}{5}\right)+\frac{1}{9} \operatorname{sech}^{2}\left(\frac{3 t}{5}\right)\right)-\frac{\operatorname{sech}^{2}(t)}{125}\right) d t$

Result that is very near to the expression:
Pi^3/32

Input:

$\frac{\pi^{3}}{32}$

Decimal approximation:

$0.968946146259369380483634845846918600069540267683909615442 \ldots$
0.96894614625936 . \qquad result very near to the spectral index n_{s}, to the mesonic Regge slope, to the inflaton value at the end of the inflation 0.9402 (see Appendix) and to the value of the following Rogers-Ramanujan continued fraction:

$$
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
$$

From:
Astronomy \& Astrophysics manuscript no. ms c ESO 2019 - September 24, 2019 Planck 2018 results. VI. Cosmological parameters

The primordial fluctuations are consistent with Gaussian purely adiabatic scalar perturbations characterized by a power spectrum with a spectral index $n_{s}=0.965 \pm$ 0.004, consistent with the predictions of slow-roll, single-field, inflation.

Property:

$\frac{\pi^{3}}{32}$ is a transcendental number

Alternative representations:
$\frac{\pi^{3}}{32}=\frac{1}{32}\left(180^{\circ}\right)^{3}$
$\frac{\pi^{3}}{32}=\frac{1}{32}(-i \log (-1))^{3}$
$\frac{\pi^{3}}{32}=\frac{1}{32} \cos ^{-1}(-1)^{3}$

Series representations:

$\frac{\pi^{3}}{32}=-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{(-1+2 k)^{3}}$
$\frac{\pi^{3}}{32}=2\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{3}$

$$
\frac{\pi^{3}}{32}=2\left(\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)^{3}
$$

Integral representations:

$\frac{\pi^{3}}{32}=2\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{3}$
$\frac{\pi^{3}}{32}=\frac{1}{4}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{3}$
$\frac{\pi^{3}}{32}=\frac{1}{4}\left(\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)^{3}$
and so on....

Now, we take the following formulas:

We obtain:
$\left(7 \mathrm{Pi}^{\wedge} 3 / 180+19 \mathrm{Pi}^{\wedge} 7 / 56700+\mathrm{Pi}^{\wedge} 3 / 32+7 \mathrm{Pi}^{\wedge} 7 / 23040+\mathrm{Pi}^{\wedge} 3 / 360+13 \mathrm{Pi}^{\wedge} 7 / 453600+\right.$ $\left.\mathrm{Pi} / 8+\mathrm{Pi}^{\wedge} 5 / 768+23 \mathrm{Pi}^{\wedge} 9 / 1720320\right)$

Input:

$$
\begin{aligned}
& 7 \times \frac{\pi^{3}}{180}+19 \times \frac{\pi^{7}}{56700}+\frac{\pi^{3}}{32}+7 \times \frac{\pi^{7}}{23040}+ \\
& \frac{\pi^{3}}{360}+13 \times \frac{\pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+23 \times \frac{\pi^{9}}{1720320}
\end{aligned}
$$

Result:

$\frac{\pi}{8}+\frac{7 \pi^{3}}{96}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}$

Decimal approximation:

5.466847904823804741099068879713819695762431008809037906255.
5.4668479048238....

Property:

$\frac{\pi}{8}+\frac{7 \pi^{3}}{96}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}$ is a transcendental number

Alternate form:

$\frac{\pi\left(1935360+1128960 \pi^{2}+20160 \pi^{4}+10336 \pi^{6}+207 \pi^{8}\right)}{15482880}$

Alternative representations:

$$
\begin{aligned}
& \frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}= \\
& \frac{1}{8} \cos ^{-1}(-1)+\frac{1}{32} \cos ^{-1}(-1)^{3}+\frac{7}{180} \cos ^{-1}(-1)^{3}+\frac{1}{360} \cos ^{-1}(-1)^{3}+ \\
& \frac{1}{768} \cos ^{-1}(-1)^{5}+\frac{7 \cos ^{-1}(-1)^{7}}{23040}+\frac{19 \cos ^{-1}(-1)^{7}}{56700}+\frac{13 \cos ^{-1}(-1)^{7}}{453600}+\frac{23 \cos ^{-1}(-1)^{9}}{1720320}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}= \\
& \frac{2 E(0)}{8}+\frac{1}{32}(2 E(0))^{3}+\frac{7}{180}(2 E(0))^{3}+\frac{1}{360}(2 E(0))^{3}+ \\
& \frac{1}{768}(2 E(0))^{5}+\frac{7(2 E(0))^{7}}{23040}+\frac{19(2 E(0))^{7}}{56700}+\frac{13(2 E(0))^{7}}{453600}+\frac{23(2 E(0))^{9}}{1720320} \\
& \frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}= \\
& \frac{2 K(0)}{8}+\frac{1}{32}(2 K(0))^{3}+\frac{7}{180}(2 K(0))^{3}+\frac{1}{360}(2 K(0))^{3}+ \\
& \frac{1}{768}(2 K(0))^{5}+\frac{7(2 K(0))^{7}}{23040}+\frac{19(2 K(0))^{7}}{56700}+\frac{13(2 K(0))^{7}}{453600}+\frac{23(2 K(0))^{9}}{1720320}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}= \\
& \frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}-\frac{7}{3} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{(-1+2 k)^{3}} \\
& \frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}= \\
& \frac{1}{1890}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)\left(945+8820\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{2}+\right. \\
& \left.\left.2520\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{4}+20672\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{6}+6624\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{8}\right)\right)^{2} \\
& \frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}= \\
& \frac{1}{15482880}\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{2} \\
& 1935360+1128960\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{2}+ \\
& 20160\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{4}+ \\
& 10336\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{6}+ \\
& \left.207\left(\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)^{8}\right)
\end{aligned}
$$

And adding

We obtain:
$\left(7 \mathrm{Pi}^{\wedge} 3 / 180+19 \mathrm{Pi}^{\wedge} 7 / 56700+\mathrm{Pi}^{\wedge} 3 / 32+7 \mathrm{Pi}^{\wedge} 7 / 23040+\mathrm{Pi}^{\wedge} 3 / 360+13 \mathrm{Pi}^{\wedge} 7 / 453600+\right.$ $\left.\mathrm{Pi} / 8+\mathrm{Pi}^{\wedge} 5 / 768+23 \mathrm{Pi}^{\wedge} 9 / 1720320\right)-\mathrm{Pi} / 8 \operatorname{coth} \wedge 2(5 \mathrm{Pi} / 2)-(4689 / 11890)$

Input:

$$
\begin{aligned}
& \left(7 \times \frac{\pi^{3}}{180}+19 \times \frac{\pi^{7}}{56700}+\frac{\pi^{3}}{32}+7 \times \frac{\pi^{7}}{23040}+\frac{\pi^{3}}{360}+\right. \\
& \left.\quad 13 \times \frac{\pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+23 \times \frac{\pi^{9}}{1720320}\right)-\frac{\pi}{8} \operatorname{coth}^{2}\left(5 \times \frac{\pi}{2}\right)-\frac{4689}{11890}
\end{aligned}
$$

Exact result:

$-\frac{4689}{11890}+\frac{\pi}{8}+\frac{7 \pi^{3}}{96}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}-\frac{1}{8} \pi \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right)$

Decimal approximation:

4.679783573787645779800838858616026684415914835818889278548...
4.6797835737876....

Alternate forms:

$$
\begin{aligned}
& \frac{1}{18409144320}\left(-7259922432+2301143040 \pi+1342333440 \pi^{3}+\right. \\
& \left.23970240 \pi^{5}+12289504 \pi^{7}+246123 \pi^{9}-2301143040 \pi \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right)\right) \\
& -\frac{4689}{11890}+\frac{7 \pi^{3}}{96}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}-\frac{1}{8} \pi \operatorname{csch}^{2}\left(\frac{5 \pi}{2}\right) \\
& \frac{1}{18409144320}\left(-7259922432+2301143040 \pi+1342333440 \pi^{3}+\right. \\
& \left.23970240 \pi^{5}+12289504 \pi^{7}+246123 \pi^{9}\right)-\frac{1}{8} \pi \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{gathered}
\left(\frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}\right)- \\
\frac{1}{8} \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right) \pi-\frac{4689}{11890}=\frac{\pi}{8}-\frac{4689}{11890}+\frac{\pi^{3}}{32}+\frac{7 \pi^{3}}{180}+\frac{\pi^{3}}{360}+\frac{\pi^{5}}{768}+ \\
\frac{7 \pi^{7}}{23040}+\frac{19 \pi^{7}}{56700}+\frac{13 \pi^{7}}{453600}+\frac{23 \pi^{8}}{1720320}-\frac{1}{8} \pi\left(1+\frac{2}{-1+e^{5 \pi}}\right)^{2}
\end{gathered}
$$

$$
\left(\frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}\right)-
$$

$$
\frac{1}{8} \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right) \pi-\frac{4689}{11890}=\frac{\pi}{8}-\frac{4689}{11890}+\frac{\pi^{3}}{32}+\frac{7 \pi^{3}}{180}+\frac{\pi^{3}}{360}+\frac{\pi^{5}}{768}+
$$

$$
\frac{7 \pi^{7}}{23040}+\frac{19 \pi^{7}}{56700}+\frac{13 \pi^{7}}{453600}+\frac{23 \pi^{9}}{1720320}-\frac{1}{8} \pi\left(i \cot \left(\frac{5 i \pi}{2}\right)\right)^{2}
$$

$$
\left(\frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}\right)-
$$

$$
\frac{1}{8} \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right) \pi-\frac{4689}{11890}=\frac{\pi}{8}-\frac{4689}{11890}+\frac{\pi^{3}}{32}+\frac{7 \pi^{3}}{180}+\frac{\pi^{3}}{360}+\frac{\pi^{5}}{768}+
$$

$$
\frac{7 \pi^{7}}{23040}+\frac{19 \pi^{7}}{56700}+\frac{13 \pi^{7}}{453600}+\frac{23 \pi^{9}}{1720320}-\frac{1}{8} \pi\left(-i \cot \left(-\frac{5 i \pi}{2}\right)\right)^{2}
$$

Series representations:

$$
\begin{aligned}
& \left(\frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}\right)- \\
& \frac{1}{8} \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right) \pi-\frac{4689}{11890}= \\
& -\frac{4689}{11890}+\frac{\pi}{8}+\frac{7 \pi^{3}}{96}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}-\frac{25}{2} \pi\left(\sum_{k=-\infty}^{\infty} \frac{1}{25 \pi+4 k^{2} \pi}\right)^{2} \\
& \left(\frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}\right)- \\
& \frac{1}{8} \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right) \pi-\frac{4689}{11890}=\frac{1}{18409144320} \\
& \left(-7259922432+1342333440 \pi^{3}+23970240 \pi^{5}+12289504 \pi^{7}+246123 \pi^{9}-\right. \\
& \left.\quad 9204572160 \pi \sum_{k=1}^{\infty} q^{2 k}-9204572160 \pi\left(\sum_{k=1}^{\infty} q^{2 k}\right)^{2}\right) \text { for } q=e^{(5 \pi / / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}\right)- \\
& \quad \frac{1}{8} \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right) \pi-\frac{4689}{11890}=\frac{1}{18409144320} \\
& \left(-7259922432+1342333440 \pi^{3}+23970240 \pi^{5}+12289504 \pi^{7}+\right. \\
& \left.\quad 246123 \pi^{9}-9204572160 \pi \sum_{k=0}^{\infty} e^{-5(1+k) \pi}-9204572160 \pi\left(\sum_{k=0}^{\infty} e^{-5(1+k) \pi}\right)^{2}\right)
\end{aligned}
$$

Integral representation:

$$
\begin{aligned}
& \left(\frac{7 \pi^{3}}{180}+\frac{19 \pi^{7}}{56700}+\frac{\pi^{3}}{32}+\frac{7 \pi^{7}}{23040}+\frac{\pi^{3}}{360}+\frac{13 \pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\frac{23 \pi^{9}}{1720320}\right)- \\
& \quad \frac{1}{8} \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right) \pi-\frac{4689}{11890}= \\
& -\frac{4689}{11890}+\frac{\pi}{8}+\frac{7 \pi^{3}}{96}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}-\frac{1}{8} \pi\left(\int_{\frac{i \pi}{2}}^{\frac{5 \pi}{2}} \operatorname{csch}^{2}(t) d t\right)^{2}
\end{aligned}
$$

From which, we obtain:
$\left[\left(\left(\left(() \mathrm{Pi}^{\wedge} 3 / 180+19 \mathrm{Pi}^{\wedge} 7 / 56700+\mathrm{Pi}^{\wedge} 3 / 32+7 \mathrm{Pi}^{\wedge} 7 / 23040+\mathrm{Pi}^{\wedge} 3 / 360+\right.\right.\right.\right.$ $\left.13 \mathrm{Pi}^{\wedge} 7 / 453600+\mathrm{Pi} / 8+\mathrm{Pi}^{\wedge} 5 / 768+23 \mathrm{Pi}^{\wedge} 9 / 1720320\right)-\mathrm{Pi} / 8 \operatorname{coth}^{\wedge} 2(5 \mathrm{Pi} / 2)-$ $(4689 / 11890))))$) $]^{\wedge} 5+29+11+$ golden ratio

Where 29 and 11 is a Lucas number

Input:

$$
\begin{gathered}
\left(\left(7 \times \frac{\pi^{3}}{180}+19 \times \frac{\pi^{7}}{56700}+\frac{\pi^{3}}{32}+7 \times \frac{\pi^{7}}{23040}+\frac{\pi^{3}}{360}+13 \times \frac{\pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\right.\right. \\
\left.\left.23 \times \frac{\pi^{9}}{1720320}\right)-\frac{\pi}{8} \operatorname{coth}^{2}\left(5 \times \frac{\pi}{2}\right)-\frac{4689}{11890}\right)^{5}+29+11+\phi
\end{gathered}
$$

$\operatorname{coth}(x)$ is the hyperbolic cotangent function ϕ is the golden ratio

Exact result:

$$
\phi+40+\left(-\frac{4689}{11890}+\frac{\pi}{8}+\frac{7 \pi^{3}}{96}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}-\frac{1}{8} \pi \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right)\right)^{5}
$$

Decimal approximation:

2286.16575591 \qquad result practically equal to the rest mass of charmed Lambda baryon 2286.46

And:
$\left[\left(\left(\left(\left(7 \mathrm{Pi}^{\wedge} 3 / 180+19 \mathrm{Pi}^{\wedge} 7 / 56700+\mathrm{Pi}^{\wedge} 3 / 32+7 \mathrm{Pi}^{\wedge} 7 / 23040+\mathrm{Pi}^{\wedge} 3 / 360+\right.\right.\right.\right.\right.$ $\left.13 \mathrm{Pi}^{\wedge} 7 / 453600+\mathrm{Pi} / 8+\mathrm{Pi}^{\wedge} 5 / 768+23 \mathrm{Pi}^{\wedge} 9 / 1720320\right)-\mathrm{Pi} / 8 \operatorname{coth}^{\wedge} 2(5 \mathrm{Pi} / 2)-$ $(4689 / 11890)))))]^{\wedge} 6-(843+199+47+18$-golden ratio $)$

Input:

$$
\begin{aligned}
& \left(\left(7 \times \frac{\pi^{3}}{180}+19 \times \frac{\pi^{7}}{56700}+\frac{\pi^{3}}{32}+7 \times \frac{\pi^{7}}{23040}+\frac{\pi^{3}}{360}+13 \times \frac{\pi^{7}}{453600}+\frac{\pi}{8}+\frac{\pi^{5}}{768}+\right.\right. \\
& \left.\left.23 \times \frac{\pi^{9}}{1720320}\right)-\frac{\pi}{8} \operatorname{coth}^{2}\left(5 \times \frac{\pi}{2}\right)-\frac{4689}{11890}\right)^{6}-(843+199+47+18-\phi)
\end{aligned}
$$

Exact result:

$\phi-1107+\left(-\frac{4689}{11890}+\frac{\pi}{8}+\frac{7 \pi^{3}}{96}+\frac{\pi^{5}}{768}+\frac{323 \pi^{7}}{483840}+\frac{23 \pi^{9}}{1720320}-\frac{1}{8} \pi \operatorname{coth}^{2}\left(\frac{5 \pi}{2}\right)\right)^{6}$

Decimal approximation:

9398.615593654659430798299466447167747576690558629421452847...
9398.61559365.....

Page 185

$(x-\ln (2)) / 2+2 / 12+2^{\wedge} 2 / 240+2^{\wedge} 3 / 1512+2^{\wedge} 4 / 5760+2^{\wedge} 5 / 15840=0$

Input:

$\frac{1}{2}(x-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}=0$

Exact result:

$\frac{1}{2}(x-\log (2))+\frac{3217}{16632}=0$

Root plot:

Alternate forms:
$\frac{8316 x+3217-8316 \log (2)}{16632}=0$
$\frac{x}{2}+\frac{3217}{16632}-\frac{\log (2)}{2}=0$
$\frac{8316 x+3217}{16632}-\frac{\log (2)}{2}=0$

Solution:

$x \approx 0.30630$
$\mathrm{x}=0.30630$
$(0.30630-\ln (2)) / 2+2 / 12+2^{\wedge} 2 / 240+2^{\wedge} 3 / 1512+2^{\wedge} 4 / 5760+2^{\wedge} 5 / 15840$

Input:

$\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}$
$\log (x)$ is the natural logarithm

Result:

$-1.27186 \ldots \times 10^{-6}$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}= \\
& \frac{1}{2}\left(0.3063-\log _{e}(2)\right)+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840} \\
& \frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}= \\
& \frac{1}{2}\left(0.3063-\log (a) \log _{a}(2)\right)+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840} \\
& \frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}= \\
& \frac{1}{2}\left(0.3063+\operatorname{Li}_{1}(-1)\right)+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}= \\
& \quad 0.346572-i\left(\pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor\right)-0.5 \log (x)+0.5 \sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k} \text { for } x<0 \\
& \frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}= \\
& 0.346572-\frac{1}{2}\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)-\frac{\log \left(z_{0}\right)}{2}- \\
& \quad \frac{1}{2}\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)+\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k} \\
& \frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}= \\
& 0.346572-i\left(\pi\left\lfloor-\frac{-\pi+\arg \left(\frac{2}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]\right)-0.5 \log \left(z_{0}\right)+0.5 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}=0.346572-0.5 \int_{1}^{2} \frac{1}{t} d t$

$$
\begin{aligned}
& \frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}= \\
& \quad 0.346572-\frac{0.25}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

And:
$-1 / 4 /\left(\left(\left(()(0.30630-\ln (2)) / 2+2 / 12+2^{\wedge} 2 / 240+2^{\wedge} 3 / 1512+2^{\wedge} 4 / 5760+\right.\right.\right.$ $\left.\left.\left.2^{\wedge} 5 / 15840\right)\right)\right)$)) $+322-1 /$ golden ratio

Where 322 is a Lucas number

Input:

$$
-\frac{1}{4\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right)}+322-\frac{1}{\phi}
$$

Result:

196884.2592408927635890066612381992381217796245487794663762.
196884.25924.... 196884 is a fundamental number of the following j-invariant

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

(In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for $\operatorname{SL}(2, Z)$ defined on the upper half plane of complex numbers. Several remarkable properties of j have to do with its q expansion (Fourier series expansion), written as a Laurent series in terms of $q=e^{2 \pi i i}$ (the square of the nome), which begins:

$$
j(\tau)=q^{-1}+744+196884 q+21493760 q^{2}+864299970 q^{3}+20245856256 q^{4}+\cdots
$$

Note that j has a simple pole at the cusp, so its q-expansion has no terms below q^{-1}.
All the Fourier coefficients are integers, which results in several almost integers, notably Ramanujan's constant:

$$
e^{\pi \sqrt{163}} \approx 640320^{3}+744 .
$$

The asymptotic formula for the coefficient of q^{n} is given by

$$
\frac{e^{4 \pi \sqrt{ } n}}{\sqrt{2} n^{3 / 4}}
$$

as can be proved by the Hardy-Littlewood circle method)

Alternative representations:

$$
\begin{aligned}
& -\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}= \\
& 322-\frac{1}{\phi}-\frac{1}{4\left(\frac{1}{2}\left(0.3063-\log _{e}(2)\right)+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right)} \\
& -\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}= \\
& 322-\frac{1}{\phi}-\frac{1}{4\left(\frac{1}{2}\left(0.3063+\operatorname{Li}_{1}(-1)\right)+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right)} \\
& -\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}= \\
& 322-\frac{1}{\phi}-\frac{1}{4\left(\frac{1}{2}\left(0.3063-2 \operatorname{coth}^{-1}(3)\right)+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{0.25}\right) 4}+322-\frac{1}{\phi}= \\
& 322-\frac{1}{\phi}+\frac{1}{-0.346572+i \pi\left\lfloor\frac{\arg (2-x)}{2 \pi}\right\rfloor+0.5 \log (x)-0.5 \sum_{k=1}^{\infty} \frac{(-1)^{k}(2-x)^{k} x^{-k}}{k}} \text { for } x<0 \\
& -\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{0.5}= \\
& 322-\frac{1}{\phi}+\frac{-0.693145+\log \left(z_{0}\right)+\left\lfloor\frac{\arg \left(2-z_{0}\right)}{2 \pi}\right\rfloor\left(\log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}}{-2}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}= \\
& 322-\frac{1}{\phi}+ \\
& -0.346572+i \pi\left[-\frac{-\pi+\arg \left(\frac{2}{z_{0}}\right)+\arg \left(z_{0}\right)}{2 \pi}\right]+0.5 \log \left(z_{0}\right)-0.5 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representation:

$$
\begin{gathered}
-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}= \\
322-\frac{1}{\phi}-\frac{{ }^{1} 2135 i \pi}{i \pi-0.72135 \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s} \text { for }-1<\gamma<0
\end{gathered}
$$

We have also:
$\ln \left(\left(\left(\left(-1 / 4 /\left(\left(()\left((0.30630-\ln (2)) / 2+2 / 12+2^{\wedge} 2 / 240+2^{\wedge} 3 / 1512+2^{\wedge} 4 / 5760+\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.2^{\wedge} 5 / 15840\right)\right)\right)\right)$) $+322-1 /$ golden ratio))))

Input:

$\log \left(-\frac{1}{4\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right)}+322-\frac{1}{\phi}\right)$
$\log (x)$ is the natural logarithm

Result:

$12.19037131852096083796367055439415562013454512074538871531 \ldots$

Result:

12.1904...
12.1904... result equal to the black hole entropy 12.1904

Alternative representations:

$$
\begin{aligned}
& \log \left(-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}\right)= \\
& \log _{e}\left(322-\frac{1}{\phi}-\frac{1}{4\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}\right)= \\
& \log (a) \log _{a}\left(322-\frac{1}{\phi}-\frac{1}{4\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right)}\right) \\
& \log \left(-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}\right)= \\
& -\operatorname{Li}_{1}\left(-321+\frac{1}{\phi}+\frac{1}{4\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{4}{240}+\frac{8}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right)}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \log \left(-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}\right)= \\
& \log \left(\frac{321(0.00215933+\phi(-0.691587+\log (2))-0.00311526 \log (2))}{\phi(-0.693145+\log (2))}\right)- \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-5.77144 k}\left(\frac{0.00215933+\phi(-0.601587+\log (2))-0.00311526 \log (2)}{\phi(-0.693145+\log (2))}\right)^{-k}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}\right)= \\
& \quad 2 i \pi\left[\frac{\arg \left(\frac{0.603145-\log (2)+\phi(-222.663+6063145 x+322 \log (2)-x \log (2))}{\phi(-0.693145+\log (2))}\right)}{2 \pi}\right)+\log (x)-
\end{aligned}
$$

$$
\sum_{k=1}^{\infty} \frac{(-1)^{k} x^{-k}\left(\frac{0.603145-\log (2)+\phi(-222.603+x(0.603145-\log (2))+322 \log (2))}{}\right)^{k}}{\phi(-0.603145+\log (2))} \text { for } x<0
$$

$$
\log \left(-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}\right)=
$$

$$
2 i \pi\left[-\frac{-\pi+\arg \left(\frac{322(0.00215262+\phi(-0.691592+\log (2))-0.00310559 \log (2))}{12}\right)+\arg \left(z_{0}\right)}{\phi(-0.693145+\log (2)) z_{0}}\right) 2 \pi+
$$

$$
\log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k} z_{0}^{k}\left(\frac{0.603145-\log (2)+\phi\left(-222.603+322 \log (2)+(0.603145-\log (2)) z_{0}\right)}{}\right)^{k}}{\phi(-0.693145+\log (2))} \underset{k}{k}
$$

Integral representations:

$$
\begin{aligned}
& \log \left(-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}\right)= \\
& \int_{1}^{\frac{322(0.00215262+\phi(-0.691592+\log (2)-0.00310559}{\log (2))}} \frac{1}{\phi(-0.693145+\log (2))} d t
\end{aligned}
$$

$$
\log \left(-\frac{1}{\left(\frac{1}{2}(0.3063-\log (2))+\frac{2}{12}+\frac{2^{2}}{240}+\frac{2^{3}}{1512}+\frac{2^{4}}{5760}+\frac{2^{5}}{15840}\right) 4}+322-\frac{1}{\phi}\right)=\frac{1}{2 i \pi}
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-5.77144 s} \Gamma(-s)^{2} \Gamma(1+s)\left(\frac{0.00215933+\phi(-0.6901587+\log (2))-0.00311526 \log (2)}{}\right)^{-s}}{\Gamma(-0.693145+\log (2))} d s
$$

$$
\text { for }-1<\gamma<0
$$

Now, we have that

For $\mathrm{x}=2$, we obtain:
$\mathrm{e}^{\wedge}-2+2 \mathrm{e}^{\wedge}-32+2 \mathrm{e}^{\wedge}-162+4 \mathrm{e}^{\wedge}-512+5 \mathrm{e}^{\wedge}-1250=1 / 4^{*} \operatorname{sqrt}(\mathrm{Pi} / 2)-1 / 12+2 / 252-$
$4 / 264+8 / 72$
$e^{\wedge}-2+2 e^{\wedge}-32+2 e^{\wedge}-162+4 e^{\wedge}-512+5 e^{\wedge}-1250$

Input:

$\frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{162}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}$

Decimal approximation:

$0.135335283236638020225097683323930645215943476102340153135 \ldots$
0.13533528323...

Property:

$\frac{5}{e^{1250}}+\frac{4}{e^{512}}+\frac{2}{e^{162}}+\frac{2}{e^{32}}+\frac{1}{e^{2}}$ is a transcendental number

Alternate form:

$\frac{5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}}{e^{1250}}$

Alternative representation:

$$
\begin{aligned}
& \frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{162}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}= \\
& \quad \frac{1}{\exp ^{2}(z)}+\frac{2}{\exp ^{32}(z)}+\frac{2}{\exp ^{162}(z)}+\frac{4}{\exp ^{512}(z)}+\frac{5}{\exp ^{1250}(z)} \text { for } z=1
\end{aligned}
$$

$1 / 4 * \operatorname{sqrt}(\mathrm{Pi} / 2)-1 / 12+2 / 252-4 / 264+8 / 72$

Input:

$\frac{1}{4} \sqrt{\frac{\pi}{2}}-\frac{1}{12}+\frac{2}{252}-\frac{4}{264}+\frac{8}{72}$

Exact result:

$\frac{19}{924}+\frac{\sqrt{\frac{\pi}{2}}}{4}$

Decimal approximation:

0.333891304891645625572533431164151219396436113139012852349
$0.33389130489 \ldots$
Property:
$\frac{19}{924}+\frac{\sqrt{\frac{\pi}{2}}}{4}$ is a transcendental number
Alternate forms:

$$
\begin{aligned}
& \frac{38+231 \sqrt{2 \pi}}{1848} \\
& \frac{19 \sqrt{2}+231 \sqrt{\pi}}{924 \sqrt{2}}
\end{aligned}
$$

Series representations:

$\frac{\sqrt{\frac{\pi}{2}}}{4}-\frac{1}{12}+\frac{2}{252}-\frac{4}{264}+\frac{8}{72}=\frac{19}{924}+\frac{1}{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}(-2+\pi)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}$
$\frac{\sqrt{\frac{\pi}{2}}}{4}-\frac{1}{12}+\frac{2}{252}-\frac{4}{264}+\frac{8}{72}=\frac{19}{924}+\frac{1}{4} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}\left(\pi-2 z_{0}\right)^{k} z_{0}^{k}}{k!}$ for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$\frac{\sqrt{\frac{\pi}{2}}}{4}-\frac{1}{12}+\frac{2}{252}-\frac{4}{264}+\frac{8}{72}=\frac{19}{924}-\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} 2^{s}(-2+\pi)^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{8 \sqrt{\pi}}$
$\left(\mathrm{e}^{\wedge}-2+2 \mathrm{e}^{\wedge}-32+2 \mathrm{e}^{\wedge}-162+4 \mathrm{e}^{\wedge}-512+5 \mathrm{e}^{\wedge}-1250\right) \mathrm{x}=\left(1 / 4^{*} \operatorname{sqrt}(\mathrm{Pi} / 2)-1 / 12+2 / 252-\right.$ $4 / 264+8 / 72$)

Input:
$\left(\frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{162}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}\right) x=\frac{1}{4} \sqrt{\frac{\pi}{2}}-\frac{1}{12}+\frac{2}{252}-\frac{4}{264}+\frac{8}{72}$

Exact result:

$\left(\frac{5}{e^{1250}}+\frac{4}{e^{512}}+\frac{2}{e^{162}}+\frac{2}{e^{32}}+\frac{1}{e^{2}}\right) x=\frac{19}{924}+\frac{\sqrt{\frac{\pi}{2}}}{4}$
Plot:

Alternate form:

$\frac{x}{e^{2}}+\frac{2 x}{e^{32}}+\frac{2 x}{e^{162}}+\frac{4 x}{e^{512}}+\frac{5 x}{e^{1250}}-\frac{\sqrt{\frac{\pi}{2}}}{4}-\frac{19}{924}=0$

Expanded form:

$\frac{x}{e^{2}}+\frac{2 x}{e^{32}}+\frac{2 x}{e^{162}}+\frac{4 x}{e^{512}}+\frac{5 x}{e^{1250}}=\frac{19}{924}+\frac{\sqrt{\frac{\pi}{2}}}{4}$

Alternate form assuming $\mathbf{x}>0$:

$\frac{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}{e^{1250}}=\frac{19}{924}+\frac{\sqrt{\frac{\pi}{2}}}{4}$

Solution:

$x \approx 2.4671$
2.4671
$\left(\mathrm{e}^{\wedge}-2+2 \mathrm{e}^{\wedge}-32+2 \mathrm{e}^{\wedge}-162+4 \mathrm{e}^{\wedge}-512+5 \mathrm{e}^{\wedge}-1250\right)^{*}\left(\left(\left(\left(\mathrm{e}^{\wedge} 1250(38+231 \operatorname{sqrt}(2\right.\right.\right.\right.$
$\pi))$)/(1848 (5 + $\left.\left.\left.\left.\left.4 \mathrm{e}^{\wedge} 738+2 \mathrm{e}^{\wedge} 1088+2 \mathrm{e}^{\wedge} 1218+\mathrm{e}^{\wedge} 1248\right)\right)\right)\right)\right)=(1 / 4 * \operatorname{sqrt}(\mathrm{Pi} / 2)-$ $1 / 12+2 / 252-4 / 264+8 / 72)$

Input:
$\left(\frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{162}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}\right) \times \frac{e^{1250}(38+231 \sqrt{2 \pi})}{1848\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}=$ $\frac{1}{4} \sqrt{\frac{\pi}{2}}-\frac{1}{12}+\frac{2}{252}-\frac{4}{264}+\frac{8}{72}$

Result:

True
$\left(\mathrm{e}^{\wedge}-2+2 \mathrm{e}^{\wedge}-32+2 \mathrm{e}^{\wedge}-162+4 \mathrm{e}^{\wedge}-512+5 \mathrm{e}^{\wedge}-1250\right) *\left(\left(\left(\left(\mathrm{e}^{\wedge} 1250(38+231 \operatorname{sqrt}(2\right.\right.\right.\right.$
$\left.\left.\left.\pi))) /\left(1848\left(5+4 e^{\wedge} 738+2 \mathrm{e}^{\wedge} 1088+2 \mathrm{e}^{\wedge} 1218+\mathrm{e}^{\wedge} 1248\right)\right)\right)\right)\right)$
Input:

$$
\left(\frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{162}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}\right) \times \frac{e^{1250}(38+231 \sqrt{2 \pi})}{1848\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}
$$

Exact result:

$$
\frac{\left(\frac{5}{e^{1250}}+\frac{4}{e^{512}}+\frac{2}{e^{162}}+\frac{2}{e^{32}}+\frac{1}{e^{2}}\right) e^{1250}(38+231 \sqrt{2 \pi})}{1848\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}
$$

Decimal approximation:

$0.333891304891645625572533431164151219396436113139012852349 \ldots$
$0.33389130489 \ldots$

Property:

$$
\frac{\left(\frac{5^{2}}{e^{1250}}+\frac{4}{e^{512}}+\frac{2}{e^{162}}+\frac{2}{e^{32}}+\frac{1}{e^{2}}\right) e^{1250}(38+231 \sqrt{2 \pi})}{1848\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)} \text { is a transcendental number }
$$

Alternate forms:

$\frac{38+231 \sqrt{2 \pi}}{1848}$
$\frac{19}{924}+\frac{\sqrt{\frac{\pi}{2}}}{4}$

$$
\begin{gathered}
\frac{95}{924\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}+\frac{19 e^{738}}{231\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}+ \\
\frac{19 e^{1088}}{462\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}+ \\
\frac{19 e^{1218}}{462\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}+ \\
\frac{19 e^{1248}}{924\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}+\frac{5 \sqrt{\frac{\pi}{2}}}{4\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}+ \\
e^{738 \sqrt{\frac{\pi}{2}}}+ \\
\frac{e^{1088} \sqrt{\frac{\pi}{2}}}{5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}}+\frac{2\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}{2}+ \\
\frac{e^{1218} \sqrt{\frac{\pi}{2}}}{2\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}+\frac{e^{1248} \sqrt{\frac{\pi}{2}}}{4\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}
\end{gathered}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{162}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}\right)\left(e^{1250}(38+231 \sqrt{2 \pi})\right)}{1848\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}= \\
& \frac{19}{924}+\frac{1}{8} \sqrt{-1+2 \pi} \sum_{k=0}^{\infty}(-1+2 \pi)^{-k}\binom{\frac{1}{2}}{k} \\
& \frac{\left(\frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{162}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}\right)\left(e^{1250}(38+231 \sqrt{2 \pi})\right)}{1848\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}= \\
& \frac{19}{924}+\frac{1}{8} \sqrt{-1+2 \pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}(-1+2 \pi)^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{\left(\frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{152}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}\right)\left(e^{1250}(38+231 \sqrt{2 \pi})\right)}{1848\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}= \\
& \frac{19}{924}+\frac{1}{8} \sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(2 \pi-z_{0}\right)^{k} z_{0}^{-k}}{k!} \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$$
\left(\left(\left((e ^ { \wedge } - 2 + 2 e ^ { \wedge } - 3 2 + 2 e ^ { \wedge } - 1 6 2 + 4 e ^ { \wedge } - 5 1 2 + 5 e ^ { \wedge } - 1 2 5 0) * \left(\left(\left(\left(e^{\wedge} 1250(38+231 \operatorname{sqrt}(2\right.\right.\right.\right.\right.\right.\right.
$$

$$
\left.\left.\left.\left.\left.\left.\left.\pi))) /\left(\mathrm{x}^{*}\left(5+4 \mathrm{e}^{\wedge} 738+2 \mathrm{e}^{\wedge} 1088+2 \mathrm{e}^{\wedge} 1218+\mathrm{e}^{\wedge} 1248\right)\right)\right)\right)\right)=0.33389130489\right)\right)\right)\right)
$$

Input interpretation:

$$
\left(\frac{1}{e^{2}}+\frac{2}{e^{32}}+\frac{2}{e^{162}}+\frac{4}{e^{512}}+\frac{5}{e^{1250}}\right) \times \frac{e^{1250}(38+231 \sqrt{2 \pi})}{x\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right)}=
$$

0.33389130489

Result:

$$
\frac{\left(\frac{5}{e^{1250}}+\frac{4}{e^{512}}+\frac{2}{e^{162}}+\frac{2}{e^{32}}+\frac{1}{e^{2}}\right) e^{1250}(38+231 \sqrt{2 \pi})}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}=0.33389130489
$$

Plot:

Alternate form:

$$
\frac{38+231 \sqrt{2 \pi}}{x}=0.33389130489
$$

Alternate form assuming \mathbf{x} is positive:

$1.000000000 x=1848.000000$ (for $x \neq 0$)

Expanded form:

$$
\begin{aligned}
& \frac{231 e^{1248} \sqrt{2 \pi}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+ \\
& \frac{462 e^{1218} \sqrt{2 \pi}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+\frac{462 e^{1088} \sqrt{2 \pi}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+ \\
& \frac{924 e^{738} \sqrt{2 \pi}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+\frac{1155 \sqrt{2 \pi}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+ \\
& \frac{38 e^{1248}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+\frac{76 e^{1218}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+ \\
& \frac{76 e^{1088}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+\frac{152 e^{738}}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}+ \\
& \frac{190}{\left(5+4 e^{738}+2 e^{1088}+2 e^{1218}+e^{1248}\right) x}=0.33389130489
\end{aligned}
$$

Alternate forms assuming \mathbf{x} is real:

$$
\frac{231 \sqrt{2 \pi}}{x}+\frac{38}{x}=0.33389130489
$$

$\frac{1848.000000}{x}=1.000000000$

Solution:

$x=1848$
1848
$1848+16+1 /$ golden ratio

Input:

$1848+16+\frac{1}{\phi}$
ϕ is the golden ratio

Result:

$\frac{1}{\phi}+1864$

Decimal approximation:

1864.618033988749894848204586834365638117720309179805762862...
1864.61803398... result practically equal to the rest mass of D meson 1864.84

Alternate forms:
$\frac{1}{2}(3727+\sqrt{5})$
$\frac{1864 \phi+1}{\phi}$
$\frac{\sqrt{5}}{2}+\frac{3727}{2}$

Alternative representations:

$1848+16+\frac{1}{\phi}=1864+\frac{1}{2 \sin \left(54^{\circ}\right)}$
$1848+16+\frac{1}{\phi}=1864+-\frac{1}{2 \cos \left(216^{\circ}\right)}$
$1848+16+\frac{1}{\phi}=1864+-\frac{1}{2 \sin \left(666^{\circ}\right)}$

Conclusion

In this paper, we highlight how from various Ramanujan mathematical functions, we obtain the particle masses of the Standard Model, the mass value of the candidate glueball, the scalar meson $f_{0} 1710$, some values of the entropies of the black holes and the value of the Cosmological Constant. This allows us to glimpse how Ramanujan's mathematics, further developed and deepened, can become the foundation of a theory that unifies various sectors of physics and cosmology only apparently distant from each other.

Acknowledgments

I would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

References

Manuscript Book Of Srinivasa Ramanujan Volume 2

Andrews, G.E.: Some formulae for the Fibonacci sequence with generalizations. Fibonacci Q. 7, 113-130 (1969) zbMATH Google Scholar

Andrews, G.E.: A polynomial identity which implies the Rogers-Ramanujan identities. Scr. Math. 28, 297-305 (1970) Google Scholar

The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks (Memoirs of the American Mathematical Society), by Bruce C. Berndt, L. Jacobsen, R. L. Lamphere, George E. Andrews (Editor), Srinivasa Ramanujan Aiyangar (Editor) (American Mathematical Society, 1993, ISBN 0-8218-2538-0)

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

