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Abstract 

  Conditional GAN is a GAN that can generate 

data with the desired condition from the latent 

vector. Among the variation of conditional 

GANs, currently, auxiliary classifier GAN is 

commonly used. In this study, propose a 

conditional activation GAN to reduce 

hyperparameter and improve training speed 

over auxiliary classifier GAN. Conditional 

activation loss is the sum of the losses of each 

GAN when creating a GAN for each condition, 

and since each GAN shares hidden layers, it 

does not increase the amount of computation 

much. Also, purpose mixed batch training to 

apply batch normalization in discriminator. 

 

1. Introduction 

 Conditional GAN [1] is a GAN that can 

generate data with the desired condition from 

the latent vector. There are several studies on 

conditional GANs [2][3]. The most commonly 

used conditional GAN is Auxiliary Classifier 

GAN (AC-GAN) [4]. Loss of AC-GAN is used in 

AttGAN [5] and StarGAN [6] to generate an 

image with desired conditions. In this study, 

propose conditional activation GAN to reduce 

hyperparameter of AC-GAN, and improve 

training speed. Loss of conditional activation 

GAN is the sum of losses of each GAN that each 

GAN trains only one attribute. Because every 

GAN shares all hidden layers, it is possible to 

consider all GANs as one single GAN. Unlike 

AC-GAN using two losses (adversarial loss, 

classification loss), conditional activation GAN 

uses only one loss (conditional activation loss), 

which means it does not need to find the ratio 

of adversarial loss and classification loss. Also, 

conditional activation loss always produces 

meaningful gradients, whereas generator 

classification loss using cross-entropy produces 

meaningless gradients at the beginning of 

training. 

 In AC-GAN (or conditional activation GAN), 

applying batch normalization to discriminator 

distorts condition distribution of input batch. If 

discriminator applied batch normalization, the 

distribution of generated data batch tries to 

follow the distribution of real data batch. 

Likewise, condition distribution of generated 

data batch tries to follow the condition 

distribution of real data batch. This means that 

some data in the generated data batch may 



ignore the input condition to follow the 

condition distribution of the real data batch. I 

suggest mixed batch training, which is 

composing batch always with the same ratio of 

real data and generated data, to keep condition 

distribution of batch same to apply batch 

normalization in the discriminator. 

 

2. Conditional Activation GAN 

2.1 Conditional Activation GAN 

 The loss of AC-GAN is as follows. 
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 In 𝑥, 𝑎𝑡𝑡~𝑃௥(𝑥, 𝑎𝑡𝑡), 𝑥 is real data, and 𝑎𝑡𝑡 is 

the binary vector that expresses the attributes 

of real data. In 𝑥ᇱ, 𝑎𝑡𝑡ᇱ~𝑃௚(𝑥ᇱ, 𝑎𝑡𝑡ᇱ) , 𝑥ᇱ  means 

generated data, and 𝑎𝑡𝑡ᇱ is the target binary 

vector to make 𝑥ᇱ.  

 In the AC-GAN, adversarial loss trains model 

well because there are well known adversarial 

losses such as LSGAN [7] or WGAN-GP [8] that 

can produce meaningful gradients even if real 

data distribution and generated data 

distribution are far from each other. However, 

classification loss of AC-GAN, which is using 

cross-entropy, is hard to produce meaningful 

gradients if real data distribution and generated 

data distribution are far from each other 

because cross-entropy measures only KL-

divergence.  

 

Fig1. Data distribution at the beginning of 

training using AC-GAN 

 In the early stage of learning, the generator 

classification loss 𝐿௖௟௦
௚  does not produce 

meaningful gradients because the distance 

between Real A and Generated A, Real B and 

Generated B are too far from each other. Only 

adversarial loss produces meaningful gradients.  
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Fig2. After some training using AC-GAN 

 As learning progresses to some degree with 

adversarial loss, when the real data distribution 

and the generated data distribution become 

somewhat similar, the generator classification 
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Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X



loss 𝐿௖௟௦
௚  begins to produce a meaningful 

gradient because real A and generated A, real 

B and generated B become somewhat similar.  

 Also, AC-GAN has important hyperparameters: 

adversarial loss weight and classification loss 

weight. If adversarial loss weight is too bigger 

than the classification loss weight, the 

generated data would not have the target 

condition. If classification loss weight is too 

bigger than adversarial loss weight, the data 

does not look real. 

 To solve these problems of AC-GAN, I propose 

conditional activation loss, which is similar to 

having multiple GANs that each GAN trains 

each attribute. 

 

Fig3. Conditional activation loss 

 Conditional activation loss is the sum of each 

GAN’s loss. Each GAN trains only one attribute.  
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 𝑐 means one specific attribute among several 

attributes. GAN 𝑐 is the GAN that train about 

only attribute 𝑐.  

  𝐺௖  and 𝐷௖  are generator and discriminator 

of GAN 𝑐. 𝐺௖ receives a binary activation value 

with a latent vector. If 𝐺௖  receives 1 as an 

activation value, 𝐺௖  tries to trick 𝐷௖ , and 𝐷௖ 

tries to discriminate generated data as fake. If 

𝐺௖  receives 0 as activation value, 𝐺௖  and 𝐷௖ 

don’t care about it (do not train). 𝐷௖ only tires 

of discriminating real data, which has attribute 

𝑐 as real, and don’t care about other real data. 

 In 𝑥, 𝑐~𝑃௥(𝑥, 𝑐) , 𝑥  is real data which has 

attribute 𝑐 . In 𝑥ᇱ~𝑃
೎
(𝑥ᇱ, 1) , 𝑥ᇱ  is generated 

data by 𝐺௖ when it receives latent vector and 1 

as activation value.  

 𝑓௥஽ is an adversarial loss of discriminator about 

real data. 𝑓௚
஽  is an adversarial loss of 

discriminator about generated data. 𝑓ீ  is an 

adversarial loss of generator.  

 The following formula is an example of LSGAN 

adversarial loss. 

𝐿஽೎ = 𝐸௫,௖~௉ೝ(௫,௖)[(𝐷௖(𝑥) − 1)ଶ]

+ 𝐸௫ᇲ~௉ಸ೎(௫
ᇲ,ଵ)[𝐷௖(𝑥

ᇱ)ଶ] 

𝐿ீ೎ = 𝐸௫ᇲ~௉ಸ೎൫௫
ᇲ,ଵ൯[(𝐷௖(𝑥

ᇱ) − 1)ଶ] 

 Since each GAN shares all hidden layers, 

conditional activation loss can be changed as 

the following formula. 
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 In 𝑥, 𝑎𝑡𝑡~𝑃௥(𝑥, 𝑎𝑡𝑡), 𝑥 is real data, and 𝑎𝑡𝑡 is 

the binary vector that expresses the attributes 

of real data. In 𝑥ᇱ, 𝑎𝑡𝑡ᇱ~𝑃௚(𝑥ᇱ, 𝑎𝑡𝑡ᇱ) , 𝑥ᇱ  means 

generated data, and 𝑎𝑡𝑡ᇱ is the target binary 

vector to make 𝑥ᇱ. ‘∙’ is an inner product.  

 The following formula is an example of 

conditional activation loss with LSGAN 

adversarial loss. 

𝐿௖௔
஽ = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)ൣ(𝐷(𝑥)− 1)2 ∙ 𝑎𝑡𝑡൧ 

+𝐸௫ᇲ,௔௧௧ᇲ~௉೒(௫
ᇲ,௔௧௧ᇲ) ቂ൫𝐷(𝑥

ᇱ)൯
ଶ
∙ 𝑎𝑡𝑡ᇱቃ 

𝐿௖௔
ீ = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔ቀ𝑥
′,𝑎𝑡𝑡′ቁ

ቂ൫𝐷൫𝑥′൯ − 1൯
ଶ
∙ 𝑎𝑡𝑡ᇱቃ 

 Also, in AC-GAN, when the output of classifier 

A is 0, that means input data does not have 

attribute A. However, in conditional activation 

GAN, GAN A does not care about attribute not-

A. Therefore, to train attribute not-A, new GAN 

which trains attribute not-A should be added.  

 

 

Fig4. AC-GAN discriminator output example 

 

 

Fig5. AC-GAN generator input example 

 

 

Fig6. conditional activation GAN discriminator 

output example 

 

 

Fig7. conditional activation GAN generator 

input example 

(Assume P(Black hair) + P(Blond hair) + P(Bald) 

= 1, P(Male) + P(Female) = 1) 

 

 Using conditional activation loss with 

adversarial loss of LSGAN or WGAN-GP or other 

GAN can generate meaningful gradients at the 

beginning of the training when real data 

distribution and generated data distribution are 

far from each other. Also, conditional activation 

loss can replace adversarial loss and 

classification loss, which can reduce one 

important hyperparameter of AC-GAN. 

Conditional activation GAN loss has only one 
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hyperparameter: conditional activation loss 

weight, while AC-GAN loss has two 

hyperparameters: adversarial loss weight, 

classification loss weight. 

 

2.2 Mixed batch training 

 In AC-GAN (or conditional activation GAN), 

applying batch normalization to discriminator 

distorts condition distribution of input batch. If 

discriminator applied batch normalization, the 

distribution of generated data batch tries to 

follow the distribution of real data batch. 

Likewise, condition distribution of generated 

data batch tries to follow the condition 

distribution of real data batch. This means that 

some data in the batch may ignore the input 

condition to follow the condition distribution of 

the real data batch. I suggest mixed batch 

training, which is composing batch always with 

the same ratio of real data and generated data, 

to keep condition distribution of batch same to 

apply batch normalization to the discriminator. 

 

3. Material and methods 

 Used train dataset of MNIST handwriting 

number dataset [9]. Data size is 60000, 

resolution is 28x28 and channel size is 1. 

 Used tensorflow2.0. Model architecture used 

basic design of DCGAN [10]. However, used 

batch normalization on only discriminator, not 

generator. 

 Used conditional activation loss with LSGAN 

adversarial loss. 

 Used average of FID [11] for evaluation. Used 

all test dataset for calculate FID. Generated data 

size is same as each test dataset size. Since the 

MNIST dataset has one channel and their 

resolution is too low to input the inception 

network, triple the resolution and channel 

(84x84x3). 

 

4. Results and Conclusions 

 Each row has same condition. Each col has 

same latent vector. 

 

 

Epoch 1 

 

 

Epoch 10 

 



 

Epoch 20 

 

Epoch 100 

 

This graph is average fid of each GAN (low is 

better). 

 

5. Discussion and Future works 

 Experiments show that conditional activation 

GAN can replace AC-GAN. Since there is one 

less hyperparameter than AC-GAN loss, 

conditional activation loss can significantly 

reduce the time to search for optimal 

hyperparameters. Further experimentation is 

needed to compare the training speed of 

conditional activation GAN and AC-GAN. 
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7. Appendix 

Results of CASL-GAN (Image-to-image 

translation GAN, 

http://vixra.org/abs/1909.0061?ref=10946100), 

which is using conditional activation GAN loss. 

All first pictures are original pictures, second 

pictures are generated pictures, third pictures 

are mask images, and fourth pictures are 

generated segment images. 
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