
Conditional Activation GAN: improved Auxiliary Classifier GAN

JeongIk Cho

Konkuk University

Note: This paper is separated from my other

paper CASL-GAN

(http://vixra.org/abs/1909.0061?ref=10946100).

Abstract

 Conditional GAN is a GAN that can generate

data with the desired condition from the latent

vector. Among the variation of conditional

GANs, currently, auxiliary classifier GAN is

commonly used. In this study, propose a

conditional activation GAN to reduce

hyperparameter and improve training speed

over auxiliary classifier GAN. Conditional

activation loss is the sum of the losses of each

GAN when creating a GAN for each condition,

and since each GAN shares hidden layers, it

does not increase the amount of computation

much. Also, purpose mixed batch training to

apply batch normalization in discriminator.

1. Introduction

 Conditional GAN [1] is a GAN that can

generate data with the desired condition from

the latent vector. There are several studies on

conditional GANs [2][3]. The most commonly

used conditional GAN is Auxiliary Classifier

GAN (AC-GAN) [4]. Loss of AC-GAN is used in

AttGAN [5] and StarGAN [6] to generate an

image with desired conditions. In this study,

propose conditional activation GAN to reduce

hyperparameter of AC-GAN, and improve

training speed. Loss of conditional activation

GAN is the sum of losses of each GAN that each

GAN trains only one attribute. Because every

GAN shares all hidden layers, it is possible to

consider all GANs as one single GAN. Unlike

AC-GAN using two losses (adversarial loss,

classification loss), conditional activation GAN

uses only one loss (conditional activation loss),

which means it does not need to find the ratio

of adversarial loss and classification loss. Also,

conditional activation loss always produces

meaningful gradients, whereas generator

classification loss using cross-entropy produces

meaningless gradients at the beginning of

training.

 In AC-GAN (or conditional activation GAN),

applying batch normalization to discriminator

distorts condition distribution of input batch. If

discriminator applied batch normalization, the

distribution of generated data batch tries to

follow the distribution of real data batch.

Likewise, condition distribution of generated

data batch tries to follow the condition

distribution of real data batch. This means that

some data in the generated data batch may

ignore the input condition to follow the

condition distribution of the real data batch. I

suggest mixed batch training, which is

composing batch always with the same ratio of

real data and generated data, to keep condition

distribution of batch same to apply batch

normalization in the discriminator.

2. Conditional Activation GAN

2.1 Conditional Activation GAN

 The loss of AC-GAN is as follows.

𝐿஽ = 𝐿௔ௗ௩
ௗ + 𝜆௖௟௦𝐿௖௟௦

௥

𝐿ீ = 𝐿௔ௗ௩
௚

+ 𝜆௖௟௦𝐿௖௟௦
௚

𝐿௖௟௦
௥ = 𝐸௫,௔௧௧~௉ೝ(௫,௔௧௧)ൣ− log൫𝐷௖௟௦(𝑎𝑡𝑡|𝑥)൯൧

𝐿௖௟௦
௚

= 𝐸௫ᇲ,௔௧௧ᇲ~௉೒൫௫
ᇲ,௔௧௧ᇲ൯ൣ− log൫𝐷௖௟௦(𝑎𝑡𝑡

ᇱ|𝑥ᇱ)൯൧

 In 𝑥, 𝑎𝑡𝑡~𝑃௥(𝑥, 𝑎𝑡𝑡), 𝑥 is real data, and 𝑎𝑡𝑡 is

the binary vector that expresses the attributes

of real data. In 𝑥ᇱ, 𝑎𝑡𝑡ᇱ~𝑃௚(𝑥ᇱ, 𝑎𝑡𝑡ᇱ) , 𝑥ᇱ means

generated data, and 𝑎𝑡𝑡ᇱ is the target binary

vector to make 𝑥ᇱ.

 In the AC-GAN, adversarial loss trains model

well because there are well known adversarial

losses such as LSGAN [7] or WGAN-GP [8] that

can produce meaningful gradients even if real

data distribution and generated data

distribution are far from each other. However,

classification loss of AC-GAN, which is using

cross-entropy, is hard to produce meaningful

gradients if real data distribution and generated

data distribution are far from each other

because cross-entropy measures only KL-

divergence.

Fig1. Data distribution at the beginning of

training using AC-GAN

 In the early stage of learning, the generator

classification loss 𝐿௖௟௦
௚ does not produce

meaningful gradients because the distance

between Real A and Generated A, Real B and

Generated B are too far from each other. Only

adversarial loss produces meaningful gradients.

Real B

Generated A
Generated B

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

Fig2. After some training using AC-GAN

 As learning progresses to some degree with

adversarial loss, when the real data distribution

and the generated data distribution become

somewhat similar, the generator classification

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

loss 𝐿௖௟௦
௚ begins to produce a meaningful

gradient because real A and generated A, real

B and generated B become somewhat similar.

 Also, AC-GAN has important hyperparameters:

adversarial loss weight and classification loss

weight. If adversarial loss weight is too bigger

than the classification loss weight, the

generated data would not have the target

condition. If classification loss weight is too

bigger than adversarial loss weight, the data

does not look real.

 To solve these problems of AC-GAN, I propose

conditional activation loss, which is similar to

having multiple GANs that each GAN trains

each attribute.

Fig3. Conditional activation loss

 Conditional activation loss is the sum of each

GAN’s loss. Each GAN trains only one attribute.

𝐿௖௔
஽ = ෍𝐿஽೎

௔௧௧

௖

𝐿௖௔
ீ = ෍𝐿ீ೎

௔௧௧

௖

𝐿஽೎ = 𝐸௫,௖~௉ೝ(௫,௖)[𝑓௥
஽(𝐷௖ , 𝑥)]

+ 𝐸௫ᇲ~௉ಸ೎൫௫
ᇲ,ଵ൯ൣ𝑓௚

஽(𝐷௖ , 𝑥
ᇱ)൧

𝐿ீ೎ = 𝐸௫ᇲ~௉ಸ೎൫௫
ᇲ,ଵ൯[𝑓

ீ(𝐷௖ , 𝑥
ᇱ)]

 𝑐 means one specific attribute among several

attributes. GAN 𝑐 is the GAN that train about

only attribute 𝑐.

 𝐺௖ and 𝐷௖ are generator and discriminator

of GAN 𝑐. 𝐺௖ receives a binary activation value

with a latent vector. If 𝐺௖ receives 1 as an

activation value, 𝐺௖ tries to trick 𝐷௖ , and 𝐷௖

tries to discriminate generated data as fake. If

𝐺௖ receives 0 as activation value, 𝐺௖ and 𝐷௖

don’t care about it (do not train). 𝐷௖ only tires

of discriminating real data, which has attribute

𝑐 as real, and don’t care about other real data.

 In 𝑥, 𝑐~𝑃௥(𝑥, 𝑐) , 𝑥 is real data which has

attribute 𝑐 . In 𝑥ᇱ~𝑃
೎
(𝑥ᇱ, 1) , 𝑥ᇱ is generated

data by 𝐺௖ when it receives latent vector and 1

as activation value.

 𝑓௥஽ is an adversarial loss of discriminator about

real data. 𝑓௚
஽ is an adversarial loss of

discriminator about generated data. 𝑓ீ is an

adversarial loss of generator.

 The following formula is an example of LSGAN

adversarial loss.

𝐿஽೎ = 𝐸௫,௖~௉ೝ(௫,௖)[(𝐷௖(𝑥) − 1)ଶ]

+ 𝐸௫ᇲ~௉ಸ೎(௫
ᇲ,ଵ)[𝐷௖(𝑥

ᇱ)ଶ]

𝐿ீ೎ = 𝐸௫ᇲ~௉ಸ೎൫௫
ᇲ,ଵ൯[(𝐷௖(𝑥

ᇱ) − 1)ଶ]

 Since each GAN shares all hidden layers,

conditional activation loss can be changed as

the following formula.

Real B

Generated B

Generated A

Real A

Real X: Real data distribution with attribute X
Generated X: Generated data distribution to have attribute X

GAN X: GAN which trains about only attribute X

𝐿௖௔
஽ = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)

[𝑓௥
஽(𝐷, 𝑥) ∙ 𝑎𝑡𝑡]

+𝐸௫ᇲ,௔௧௧ᇲ~௉೒(௫
ᇲ,௔௧௧ᇲ)ൣ𝑓௚

஽(𝐷, 𝑥ᇱ) ∙ 𝑎𝑡𝑡ᇱ൧

𝐿௖௔
ீ = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔ቀ𝑥
′,𝑎𝑡𝑡′ቁ

ൣ𝑓𝐺൫𝐷, 𝑥′൯ ∙ 𝑎𝑡𝑡ᇱ൧

 In 𝑥, 𝑎𝑡𝑡~𝑃௥(𝑥, 𝑎𝑡𝑡), 𝑥 is real data, and 𝑎𝑡𝑡 is

the binary vector that expresses the attributes

of real data. In 𝑥ᇱ, 𝑎𝑡𝑡ᇱ~𝑃௚(𝑥ᇱ, 𝑎𝑡𝑡ᇱ) , 𝑥ᇱ means

generated data, and 𝑎𝑡𝑡ᇱ is the target binary

vector to make 𝑥ᇱ. ‘∙’ is an inner product.

 The following formula is an example of

conditional activation loss with LSGAN

adversarial loss.

𝐿௖௔
஽ = 𝐸𝑥,𝑎𝑡𝑡~𝑃𝑟(𝑥,𝑎𝑡𝑡)ൣ(𝐷(𝑥)− 1)2 ∙ 𝑎𝑡𝑡൧

+𝐸௫ᇲ,௔௧௧ᇲ~௉೒(௫
ᇲ,௔௧௧ᇲ) ቂ൫𝐷(𝑥

ᇱ)൯
ଶ
∙ 𝑎𝑡𝑡ᇱቃ

𝐿௖௔
ீ = 𝐸

𝑥′,𝑎𝑡𝑡′~𝑃𝑔ቀ𝑥
′,𝑎𝑡𝑡′ቁ

ቂ൫𝐷൫𝑥′൯ − 1൯
ଶ
∙ 𝑎𝑡𝑡ᇱቃ

 Also, in AC-GAN, when the output of classifier

A is 0, that means input data does not have

attribute A. However, in conditional activation

GAN, GAN A does not care about attribute not-

A. Therefore, to train attribute not-A, new GAN

which trains attribute not-A should be added.

Fig4. AC-GAN discriminator output example

Fig5. AC-GAN generator input example

Fig6. conditional activation GAN discriminator

output example

Fig7. conditional activation GAN generator

input example

(Assume P(Black hair) + P(Blond hair) + P(Bald)

= 1, P(Male) + P(Female) = 1)

 Using conditional activation loss with

adversarial loss of LSGAN or WGAN-GP or other

GAN can generate meaningful gradients at the

beginning of the training when real data

distribution and generated data distribution are

far from each other. Also, conditional activation

loss can replace adversarial loss and

classification loss, which can reduce one

important hyperparameter of AC-GAN.

Conditional activation GAN loss has only one

BaldBlond
Hair

Black
Hair Male

SigmoidSoftmax

Real/
Fake

Linear

Hidden Layer

BaldBlond
Hair

Black
Hair Male

Hidden Layer

Latent Vector

BaldBlond
Hair

Black
Hair Male Female

LinearLinear Linear Linear Linear

Hidden Layer

BaldBlond
Hair

Black
Hair Male Female

Hidden Layer

Latent Vector

hyperparameter: conditional activation loss

weight, while AC-GAN loss has two

hyperparameters: adversarial loss weight,

classification loss weight.

2.2 Mixed batch training

 In AC-GAN (or conditional activation GAN),

applying batch normalization to discriminator

distorts condition distribution of input batch. If

discriminator applied batch normalization, the

distribution of generated data batch tries to

follow the distribution of real data batch.

Likewise, condition distribution of generated

data batch tries to follow the condition

distribution of real data batch. This means that

some data in the batch may ignore the input

condition to follow the condition distribution of

the real data batch. I suggest mixed batch

training, which is composing batch always with

the same ratio of real data and generated data,

to keep condition distribution of batch same to

apply batch normalization to the discriminator.

3. Material and methods

 Used train dataset of MNIST handwriting

number dataset [9]. Data size is 60000,

resolution is 28x28 and channel size is 1.

 Used tensorflow2.0. Model architecture used

basic design of DCGAN [10]. However, used

batch normalization on only discriminator, not

generator.

 Used conditional activation loss with LSGAN

adversarial loss.

 Used average of FID [11] for evaluation. Used

all test dataset for calculate FID. Generated data

size is same as each test dataset size. Since the

MNIST dataset has one channel and their

resolution is too low to input the inception

network, triple the resolution and channel

(84x84x3).

4. Results and Conclusions

 Each row has same condition. Each col has

same latent vector.

Epoch 1

Epoch 10

Epoch 20

Epoch 100

This graph is average fid of each GAN (low is

better).

5. Discussion and Future works

 Experiments show that conditional activation

GAN can replace AC-GAN. Since there is one

less hyperparameter than AC-GAN loss,

conditional activation loss can significantly

reduce the time to search for optimal

hyperparameters. Further experimentation is

needed to compare the training speed of

conditional activation GAN and AC-GAN.

6. Funding

 This work was supported by "University

Innovation Grant" from the Ministry of

Education and National Research Foundation of

Korea

7. Appendix

Results of CASL-GAN (Image-to-image

translation GAN,

http://vixra.org/abs/1909.0061?ref=10946100),

which is using conditional activation GAN loss.

All first pictures are original pictures, second

pictures are generated pictures, third pictures

are mask images, and fourth pictures are

generated segment images.

8. References

 [1] Mehdi Mirza, Simon Osindero

Conditional Generative Adversarial Nets

https://arxiv.org/abs/1411.1784

[2] Takuhiro Kaneko, Kaoru Hiramatsu, Kunio

Kashino

Generative Attribute Controller with Conditional

Filtered Generative Adversarial Networks

http://openaccess.thecvf.com/content_cvpr_201

7/papers/Kaneko_Generative_Attribute_Controll

er_CVPR_2017_paper.pdf?

[3] Xi Chen, Yan Duan, Rein Houthooft, John

Schulman, Ilya Sutskever, Pieter Abbeel

InfoGAN: Interpretable Representation Learning

by Information Maximizing Generative

Adversarial Nets

https://arxiv.org/abs/1606.03657

[4] Augustus Odena, Christopher Olah,

Jonathon Shlens

Conditional Image Synthesis With Auxiliary

Classifier GANs

https://arxiv.org/abs/1610.09585

[5] Zhenliang He, Wangmeng Zuo, Meina Kan,

Shiguang Shan, Xilin Chen

AttGAN: Facial Attribute Editing by Only

Changing What You Want

https://arxiv.org/abs/1711.10678

[6] Yunjey Choi, Minje Choi, Munyoung Kim,

Jung-Woo Ha, Sunghun Kim, Jaegul Choo

StarGAN: Unified Generative Adversarial

Networks for Multi-Domain Image-to-Image

Translation

https://arxiv.org/abs/1711.09020

[7] Xudong Mao, Qing Li, Haoran Xie, Raymond

Y.K. Lau, Zhen Wang, Stephen Paul Smolley

Least Squares Generative Adversarial Networks

https://arxiv.org/abs/1611.04076

[8] Ishaan Gulrajani, Faruk Ahmed, Martin

Arjovsky, Vincent Dumoulin, Aaron Courville

Improved Training of Wasserstein GANs

https://arxiv.org/abs/1704.00028

[9] Yann LeCun, Corinna Cortes, Christopher J.C.

Burges

THE MNIST DATABASE of handwritten digits

http://yann.lecun.com/exdb/mnist/

[10] Alec Radford, Luke Metz, Soumith Chintala

Unsupervised Representation Learning with

Deep Convolutional Generative Adversarial

Networks

https://arxiv.org/abs/1511.06434

[11] Martin Heusel, Hubert Ramsauer, Thomas

Unterthiner, Bernhard Nessler, Sepp Hochreiter

GANs Trained by a Two Time-Scale Update Rule

Converge to a Local Nash Equilibrium

https://arxiv.org/abs/1706.08500

