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Abstract

A brief introduction of the history of Born’s Reciprocal Relativity The-
ory, Hopf algebraic deformations of the Poincare algebra, de Sitter alge-
bra, and noncommutative spacetimes paves the road for the exploration of
gravity in curved phase spaces within the context of the Finsler geometry
of the cotangent bundle T ∗M of spacetime. A scalar-gravity model is duly
studied, and exact nontrivial analytical solutions for the metric and non-
linear connection are found that obey the generalized gravitational field
equations, in addition to satisfying the zero torsion conditions for all of
the torsion components. The curved base spacetime manifold and inter-
nal momentum space both turn out to be (Anti) de Sitter type. The most
salient feature is that the solutions capture the very early inflationary and
very-late-time de Sitter phases of the Universe. A regularization of the
8-dim phase space action leads naturally to an extremely small effective
cosmological constant Λeff , and which in turn, furnishes an extremely
small value for the underlying four-dim spacetime cosmological constant
Λ, as a direct result of a correlation between Λeff and Λ resulting from
the field equations. The rich structure of Finsler geometry deserves to be
explore further since it can shine some light into Quantum Gravity, and
lead to interesting cosmological phenomenology.
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1 Introduction

Most of the work devoted to Quantum Gravity has been focused on the ge-
ometry of spacetime rather than phase space per se. Moyal [2] anticipated
the importance of phase space and introduced the noncommutative star prod-
uct A(x, p) ∗B(x, p) (Moyal-Weyl-Wigner-Groenewold product) of functions in
phase space which spawned the Moyal-Fedosov deformation quantization pro-
gram. A thorough study of the geometry of phase space can be found in [3].
The first indication that phase space should play a role in Quantum Gravity was
raised by [1]. The principle of Born’s reciprocal relativity [1] was proposed long
ago based on the idea that coordinates and momenta should be unified on the
same footing, and consequently, if there is a limiting speed (temporal derivative
of the position coordinates) in Nature there should be a maximal force [4] as
well, since force is the temporal derivative of the momentum. A maximal speed
limit (speed of light) must be accompanied with a maximal proper force (which
is also compatible with a maximal and minimal length duality).

The generalized velocity and acceleration boosts (and rotations) transfor-
mations of the flat 8D Phase space, where xi, t, E, pi; i = 1, 2, 3 are all boosted
(rotated) into each-other, were given by [7] based on the group U(1, 3) and which
is the Born version of the Lorentz group SO(1, 3). The U(1, 3) = SU(1, 3)×U(1)
group transformations leave invariant the symplectic 2-form Ω = − dt ∧ dp0 +
δijdx

i ∧ dpj ; i, j = 1, 2, 3, and also the following Born-Green line interval in the
flat 8D phase-space (dω)2 = ηµνdx

µdxν + b−2ηµνdp
µdpν . Factoring out the

spacetime proper time dτ2 = ηµνdx
µdxν leaves (dω)2 = (dτ)2(1 − F 2

b2 ), where
−F 2 < 0 is the spacelike proper-force squared (dpµ/dτ)(dpµ/dτ) < 0 associated
to a timelike interval (dτ)2 > 0. The Born constant b is the maximal proper
force which can be postulated to be the Planck mass-squared M2

P in the units
h̄ = c = 1.

A study of the many novel consequences of Born’s reciprocal relativity theory
(BRRT) can be found in [5], in particular the relativity of locality. Given a local
event in a given reference frame represented by the intersection of two world-
lines associated with two particles of equal mass, but different energies and
momenta, there is an accelerated frame of reference with sufficient acceleration-
rapidity parameter such that no intersection of the worldlines occurs. Besides
relativity of locality, we also may have relativity of chronology. One observer
will describe as a physical event to be the one defined by the intersection of two
worldlines taken place in his (her) future, while an accelerated observer will
describe it as an intersection of two worldlines taken place in his (her) past [5].

Relative locality [8], [13] in a very different context originated from some in-
terpretational issues connected to the possibility that energy-momentum space
be curved, as for example in doubly special relativity (DSR) [9] , some models
of noncommutative geometry [11] and 3D quantum gravity [14]. It is better
understood now that the Planck-scale modifications of the particle dispersion
relations can be encoded in the nontrivial geometrical properties of momentum
space [8]. When both spacetime curvature and Planck-scale deformations of
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momentum space are present, it is expected that the nontrivial geometry of mo-
mentum space and spacetime get intertwined. The interplay between spacetime
curvature and non-trivial momentum space effects was essential in the notion
of “relative locality” and in the deepening of the relativity principle [8].

The theory is based on the assumption that physics takes place in phase space
and there is no invariant global projection that gives a description of physical
processes in spacetime. Therefore, local observers can construct descriptions
of particles interacting in spacetime, but different observers construct different
spacetimes, which correspond to different foliations of phase space. So, the
notion of locality becomes observer dependent, whence the name of the theory.

This formulation of relative locality is very different than ours despite the
fact that both rely on the geometry of phase-spaces. Our results above are based
on the nontrivial transformation properties of the phase space coordinates under
force/acceleration boost transformations which mix spacetime coordinates with
energy-momentum coordinates. Whereas the formulations [8], [9], [11], [14] rely
on the geometry of curved phase-spaces, and the use of Hopf algebras leading
to a deformed Poincare algebra, modified dispersion relations, a coproduct of
momenta, and a coproduct of Lorentz generators.

We recall that DSR introduces in special relativity a new fundamental scale
with the dimension of mass (usually identified with the Planck mass) in addition
to the speed of light. The new scale gives rise to deformations of the action
of the Lorentz group on phase space, and consequently of the dispersion law of
particles, of the addition law of momenta, and so on. Although doubly special
relativity is mainly concerned with energy-momentum space, it is often real-
ized in terms of noncommutative geometries that postulate a noncommutative
structure of spacetime with a fundamental length scale of the order of the Planck
length, and are in some sense dual to the DSR approach. It is important to
emphasize that a maximal proper force does not necessarily imply a minimum
length. Setting F = mc2/L = b, as a maximal proper force, one could have the
scenario where m → 0, L → 0 such that (m/L)c2 = b, and consequently there
is no minimal length but there is a maximal proper force.

The energy-momentum space geometry defined in [8] has been investigated
in a specific instance in [15], where it has been applied to the case of the κ-
Poincare model [11], one of the favorite realization of DSR. This is a model of
noncommutative geometry displaying a deformed action of the Lorentz group
on spacetime, whose energy-momentum space can be identified with a curved
hyperboloid embedded in a 5-dimensional flat space [16].

The theory of relative locality refines this picture, by introducing some ad-
ditional structures in the geometry of energy-momentum space, related to the
properties of the deformed addition law of momenta, due to the coproduct of
momenta associated with the Hopf algebraic structure. The authors [13] inves-
tigated a different example of noncommutative geometry, namely the Snyder
model [17] and its generalizations [18]. The distinctive property of this class of
models is the preservation of the linear action of the Lorentz algebra on space-
time. This implies that the leading-order corrections to the composition law of
the momenta must be cubic in the momenta, rather than quadratic. Moreover,
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the composition law is not only noncommutative but also nonassocative.
A new proposal [19] for the notion of spacetime in a relativistic general-

ization of special relativity based on a modification of the composition law of
momenta was presented. Locality of interactions is the principle which defines
the spacetime structure for a system of particles. The main result [19] has been
to show that it is possible to define a noncommutative spacetime for particles
participating in an interaction in such a way that the interaction is seen as local
for every observer. There exists then a large freedom to introduce a noncom-
mutative spacetime in a relativistic theory beyond Special Relativity (SR) in a
way compatible with the locality of interactions. An interesting particular case
is the one in which the new spacetime of the two-particle system is such that
the coordinates of one of the particles depend only on its own momentum.

Quantum groups, non-commutative Lorentzian spacetimes and curved mo-
mentum spaces were analyzed further by [12]. Most importantly, (Anti) de Sit-
ter non-commutative spacetimes and curved momentum spaces in (1 + 1) and
(2 + 1) dimensions arising from the κ-deformed quantum group symmetries.
The generalization of these results to the physically relevant (3+1)-dimensional
deformation was also discussed.

The aim of this work is to explore gravity in curved phase spaces within
the context of the Finsler geometry of the cotangent bundle of spacetime. We
study a scalar-gravity model and find exact nontrivial analytical solutions for
the metric and nonlinear connection that obey the generalized gravitational
field equations, in addition to satisfying the zero torsion conditions for all of
the torsion components. The curved base spacetime manifold and momentum
space both turn out to be (Anti) de Sitter type. The most salient feature
is that the solutions capture the very early inflationary and very-late-time de
Sitter phases of the Universe. A regularization of the 8-dim phase space action
leads naturally to an extremely small effective cosmological constant Λeff , and
which in turn, furnishes an extremely small value for the underlying four-dim
spacetime cosmological constant Λ, as a direct result of a correlation between
Λeff and Λ resulting from the field equations. Therefore, the rich structure of
Finsler geometry deserves to be explore further since it can lead to interesting
cosmological phenomenology [21], and shine some light into Quantum Gravity.

2 Curved Phase Space and Finsler Geometry

To explore the geometry behind a maximal proper force and/or maximal ac-
celeration in more general curved phase spaces (cotangent bundles), we shall
follow next the description by [20], [22] where one may study in detail the ge-
ometry of Lagrange-Finsler and Hamilton-Cartan spaces and their higher order
(jet bundles) generalizations. For other references on Finsler geometry see [21].

In the case of the cotangent space of a d-dim manifold T ∗Md the Sasaki-
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Finsler metric can be rewritten in the block diagonal form as

(dω)2 = gij(x
k, pa) dxid xj + hab(xk, pc) δpa δpb =

gij(x
k, pa) dxid xj + hab(x

k, pc) δp
a δpb (1)

The indices range is i, j, k = 0, 1, 2, 3, .....d−1; a, b, c = 0, 1, 2, 3, .....d−1, and the
standard coordinate basis frame has been replaced by the following anholonomic
frames (non-coordinate basis)

δi = δ/δxi = ∂xi + Nia ∂
a = ∂xi + Nia ∂pa ; ∂a ≡ ∂pa =

∂

∂pa
(2)

The signature is chosen to be Lorentzian (−,+,+,+, · · · ,+) for both gij and
hab. It is important to emphasize that one does not have two times because the
energy coordinate is not time. One should note the key position of the indices
that allows us to distinguish between derivatives with respect to xi and those
with respect to pa. The dual basis of (δi = δ/δxi; ∂a = ∂/∂pa) is

dxi, δpa = dpa − Nja dx
j , δpa = dpa − Na

j dx
j (3)

where the N–coefficients define a nonlinear connection, N–connection structure.
An N-linear connection D on T ∗M allows to construct covariant derivatives

which are compatible with the structure induced by the nonlinear connection
that preserve the horizontal-vertical split of the cotangent bundle. Thus, an N-
linear connection D on T ∗M can be uniquely represented in the adapted basis
in the following form

Dδj (δi) = Hk
ij δk; Dδj (∂

a) = − Ha
bj ∂

b; (4a)

D∂a(δi) = Ckai δk; D∂a(∂b) = − Cbac ∂c (4b)

where Hk
ij(x, p), H

a
bj(x, p), C

ka
i (x, p), Cbac (x, p) are the connection coefficients.

Our notation for the derivatives is

∂a = ∂/∂pa, ∂i = ∂xi , δi = δ/δxi = ∂xi + Nia ∂
a (4c)

The N–connection structures can be naturally defined on (pseudo) Rieman-
nian spacetimes and one can relate them with some anholonomic frame fields
(vielbeins) satisfying the relations δαδβ − δβδα = W γ

αβδγ . The only nontrivial
(nonvanishing) nonholonomy coefficients are

Wija = Rija; W a
jb = ∂aNjb = − W a

j b (5a)

and
Rija = δjNia − δiNja (5b)

is the nonlinear connection curvature (N–curvature).
Imposing a zero nonmetricity condition of gij(x, p), h

ab(x, p) along the hori-
zontal and vertical directions, respectively, gives
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Digjk = δi ggk −H l
ij glk −H l

ik gjl = 0, (6a)

Dahbc = ∂a hbc + Cabd hdc + Cacd hbd = 0 (6b)

Performig a cyclic permutation of the indices in eqs-(6a,6b), followed by lin-
ear combination of the equations obtained yields the irreducible (horizontal,
vertical) h-v-components for the connection coefficients

Hi
jk =

1

2
gin (δkgnj + δjgnk − δngjk) (7)

Cabc = − 1

2
hcd

(
∂bhad + ∂ahbd − ∂dhab

)
(8)

The additional conditions Dih
ab = 0, Dagij = 0, yield the mixed compo-

nents of the connection coefficients

Hb
ja = ∂bNja +

1

2
hbc

(
δjhac − had ∂

dNjc − hcd ∂
dNja

)
(9)

and

Cjai =
1

2
gjk ∂agik (10)

For any N-linear connection D with the above coefficients the torsion 2-forms
are

Ωi =
1

2
T ijk dx

j ∧ dxk + Ciaj dxj ∧ δpa (11a)

Ωa =
1

2
Rjka dx

j ∧ dxk + P baj dx
j ∧ δpb +

1

2
Sbca δpb ∧ δpc (11b)

and the curvature 2-forms are

Ωij =
1

2
Rijkm dxk ∧ dxm + P iajk dx

k ∧ δpa +
1

2
Siabj δpa ∧ δpb (12)

Ωab =
1

2
Rabkm dxk ∧ dxm + P acbk dxk ∧ δpc +

1

2
Sacdb δpc ∧ δpd (13)

where one must recall that the dual basis of δi = δ/δxi, ∂a = ∂/∂pa is given by
dxi, δpa = dpa −Njadxj .

The distinguished torsion tensors are

T ijk = Hi
jk − Hi

kj ; Sabc = Cabc − Cbac ; T iaj = Ciaj = − T ia j

P a
b j = Ha

bj − ∂aNjb, P a
b j = − P a

bj
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Rija =
δNja
δxi

− δNia
δxj

(14)

The distinguished tensors of the curvature are

Rikjh = δhH
i
kj − δjH

i
kh + H l

kj H
i
lh − H l

kh H
i
lj − Ciak Rjha (15)

P abcj = ∂a Hb
cj + Cadc P bdj −

(
δj C

ab
c + Hb

dj C
da
c + Ha

dj C
bd
c − Hd

cj C
ab
d

)
(16)

P akij = ∂a Hk
ij + Cali T klj −

(
δj C

ak
i + Ha

bj C
bk
i + Hk

lj C
al
i − H l

ij C
ak
l

)
(17)

Sabcd = ∂c Cabd − ∂b Cacd + Cebd Cace − Cecd Cabe ; (18)

Sibcj = ∂cCbij − ∂bCcij + Cbhj Ccih − Cchj Cbih (19)

Rabjk = δkH
a
bj − δjH

a
bk + Hc

bj H
a
ck − Hc

bk H
a
cj − Ccab Rjkc (20)

Adopting the units where h̄ = c = G = 1 such that the Planck mass and
length squared are respectively M2

P = 1, L2
P = 1; given gAB ≡ gij , hab, and the

definitions ∂AΦ(x, p) ≡ δiΦ(x, p), ∂aΦ(x, p), where the ordinary ∂a and elon-
gated derivatives δi defined by eq-(2) act on Φ(x, p), one may construct the
simplest gravity-scalar field action of the form1

S = SG + SM =
1

2κ

∫
d4x d4p

√
|det gAB |

(
gij R(ij) + hab S

(ab)
)
−

∫
d4x d4p

√
|det gAB |

(
1

2
gAB ∂AΦ ∂BΦ + V (Φ)

)
(21)

The determinant factorizes det(gAB) = det(gij)det(hab) in an anhololomic basis
adapted to the nonlinear connection (the metric assumes the block diagonal
form (1)). κ is the gravitational coupling constant. If the phase space action
action (21) is dimensionless, after reintroducing the physical constants that were
set to unity, gives κ = 8π → (8πG/c4)(Mpc)

4.
After a very laborious procedure the authors [21] have shown that variation

of the action (21)

δS
δgij

= 0,
δS
δhab

= 0,
δS
δNia

= 0,
δS
δΦ

= 0 (22)

1d4x d4p = dx0 ∧ dx1 ∧ · · · ∧ δp0 ∧ δp1 ∧ · · · = dx0 ∧ dx1 ∧ · · · ∧ dp0 ∧ dp1 ∧ · · ·
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leads to the following field equations

R(ij)(x, p) −
1

2
gij(x, p) (R+ S) + Rk(ia C

ka
j) = Tij (23)

S(ab)(x, p) −
1

2
hab(x, p) (R+ S) = Tab (24)

gik ∂aHj
kj − gkl ∂aHi

kl = T ia (25)

where

Rkh = Rikjh δ
j
i , R = gkh R(kh) Sac = Sabcd δdb , S = hac S

(ac) (26)

after symmetrizing the indices accordingly and denoted by (). The components
of the stress energy tensor are defined as

Tij = − 2√
|detGAB |

δ(
√
|detGAB |LM )

δgij
, Tab = − 2√

|detGAB |
δ(
√
|detGAB |LM )

δhab

(27)

T ia = − 2√
|detGAB |

δ(
√
|detGAB |LM )

δNia
(28)

and given by

Tij = (δiΦ(x, p)) (δjΦ(x, p)) − gij

(
1

2
gAB(∂AΦ(x, p)) (∂BΦ(x, p)) + V (Φ)

)
(29)

Tab = (∂aΦ(x, p)) (∂bΦ(x, p))− hab
(

1

2
gAB(∂AΦ(x, p)) (∂BΦ(x, p)) + V (Φ)

)
(30)

T ia = gij δjΦ(x, p) ∂aΦ(x, p) (31)

One must include also the equation of motion for the scalar field Φ(x, p),
which is a generalization of the d’Alambert equation,

gij DiDjΦ + hab DaDbΦ −
∂V (Φ)

∂Φ
= 0 (32)

DiDjΦ = δiδjΦ − Hk
ij δkΦ, DaDbΦ = ∂a∂bΦ − Ccab ∂cΦ (33)

The system of coupled nonlinear differential equations (23,24,25,32) lead-
ing to the solutions for gij(x, p), hab(x, p), Nai(x, p),Φ(x, p) are highly nontriv-
ial. The scalar field Φ(x, p) curves both spacetime and momentum space. The
equations have almost a similar form to the Einstein gravitational field equation
with the difference of the extra term Rk(ia C

ka
j) in eq-(23).

Many authors choose the nonlinear connection depending on the physical
context rather than including the last equation (25) obtained from the variation
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δS
δNia

= 0. For example, the authors [21] investigated the cosmological bounce re-
alization in the framework of generalized modified gravities arising from Finsler
and Finsler-like geometries. They chose a specific nonlinear connection in the
modified Friedman equations that satisfied the general cosmological bounce con-
ditions and thus induced the bounce.

Instead of choosing the nonlinear connection by hand, and eliminating eq-
(25) in the process, one could also impose the zero torsion condition

P a
b j = Ha

bj − ∂aNjb = 0 ⇒

Njb(x, p) =

∫
Ha
bj(h,N) dpa + fjb(x) (34)

yielding an integro-differential equation for Njb. The connection Ha
bj(h,N) de-

fined in eq-(9) is a function of hab and Nbj , and fjb(x) are arbitrary integration
functions. Hence, instead of using eq-(25) obtained from a variation with respect
to a dynamical nonlinear connection Nja, eq-(34) determines, in principle, the
nonlinear connection Njb(x, p) in terms of hab(x, p), and the integration func-
tions fjb(x).

Let us find solutions to these equations in the case when Φ(x, p) = Φo =
constant, V (Φ) = Vo = constant; the horizontal metric solely depends on x :
gij(x), and the vertical metric solely depends on p : hab(p). In doing so one gets
for the connection components the following

Ckaj = 0, Hi
jk = Γijk(x), Cabc = Γabc(p) (35)

where Γijk(x),Γabc(p) are the ordinary Levi-Civita (Christoffel) connections writ-
ten in terms of gij(x), hab(p), respectively. Eq-(25) is identically satisfied since
T ia = 0 for constant Φ and Hi

jk(x) depend on x only. From eq-(35) one then
finds that the nonlinear connection decouples from the field equations (23,24)
leading to

Rij(x) − 1

2
gij(x) (R(x) + S(p)) = − κ gij(x) Vo (36)

Sab(p) −
1

2
hab(p) (R(x) + S(p)) = − κ hab(p) Vo (37)

Let us find solutions to eqs-(36,37) which are (Anti) de Sitter like. These
solutions can be generalized to other dimensions than d+ d = 4 + 4. In a d-dim
base spacetime one has Rij = 2Λ1

d−2gij , and R = 2d
d−2Λ1 with Λ1 > 0 for the d-dim

de Sitter space dSd, and Λ1 < 0 for anti de Sitter AdSd. Similar expressions
hold for the internal d-dim momentum space Ricci and scalar curvatures Sab =
2Λ2

d−2hab and S = 2d
d−2Λ2. Taking the trace of eqs-(36,37), where the indices range

is now given by i, j = 0, 1, 2, · · · , d− 1, and a, b = 0, 1, 2, · · · , d− 1, leads to

R (1− d

2
) − 1

2
d S = − Λeff d ≡ − κVo d (38)

S (1− d

2
) − 1

2
d R = − Λeff d ≡ − κVo d (39)
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Upon using the expressions for the Ricci scalar curvatures R,S in terms of
Λ1,Λ2 respectively, and inserting them into eqs-(38, 39), one arrives at

Λ1 = Λ2 = Λ =
d(d− 2)

2(d− 1)
κV0 =

d(d− 2)

2(d− 1)
Λeff (40a)

The cosmological constant is given in terms of the (Anti ) de Sitter throat size
L as

Λ = ± (d− 2)(d− 1)

2L2
⇒ κV0 = ± (d− 1)2

d

1

L2
(40b)

and the scalar curvatures (positive for de Sitter, negative for Anti deSitter) are

R = S =
d2

d− 1
κV0 = ± d(d− 1)

L2
(40c)

One should note that when d = 2 ⇒ Λ = 0 but the effective cosmological
constant Λeff ≡ κV0 = ± 1

2L2 6= 0. So we have a situation where Λeff could be

extremely large, like in the order of M2
P = L−2

P for a Planck-sized throat size
L, while Λ = 0. The quantity Λeff is associated with gravity in the four-dim
phase space (cotangent bundle) while Λ = 0 is associated with the two-dim base
manifold (spacetime) and the internal two-dim momentum space. The two-dim
(Anti) de Sitter metrics are conformally flat with (negative) constant positive
scalar curvature ± 2

L2 .
In particular, the solutions to eqs-(36,37) in d + d = 4 + 4 dimensions are

given by

gtt = − (1 − Λ

3
r2), grr = (1 − Λ

3
r2)−1, gθθ = r2, gφφ = r2 sin2θ (41)

hEE = − (1 − Λ

3
p2
r), hprpr = (1 − Λ

3
p2
r)
−1,

hpθpθ = p2
r, hpφpφ = p2

r sin
2pθ (42)

with xi = (t, r, θ, φ) ; pa = (E, pr, pθ, pφ), and Λ = ± 3
L2 . The above solutions

are given in static global coordinates that cover all of (Anti) de Sitter space.
The units are taken such that the Planck length (mass) are set to unity. One can
reintroduce the physical constants in eqs-(41, 42) if one wishes so all expressions
have the correct physical units.

Because in this simple case the nonlinear connection Njb has decoupled from
the field equations, we can obtain it by imposing the zero torsion condition
P abk = 0 in eq-(14). Instead of solving the integro-differential equation (34) it is
far simpler to choose the ansatz Njk(x, p) = Njk(x) leading to

P a
bk = Ha

bk − ∂aNkb(x) = 0 ⇒ Ha
bk = 0 ⇒

hac δkhbc = hac (∂k + Nkd ∂
d) hbc = hac Nkd ∂

d hbc = 0 (43)

10



because the internal space metric hac(p) (42) does not depend on x. As a
reminder, ∂k = (∂/∂xk); and ∂a = (∂/∂pa).

A solution to (43) can be found by setting

Nk0(x) 6= 0, Nk1(x) = Nk2(x) = Nk3(x) = 0 (44)

since the metric hac(p) (42) does not depend on the energy. One can further
restrict the expression for Nk0(x) by setting the remaining torsion Rija in eq-
(14) to zero when Njk(x, p) = Njk(x)

Rija = δjNia(x) − δiNja = ∂jNia(x) − ∂iNja(x) = 0 ⇒

Nia(x) = ∂iNa(x), Nja(x) = ∂jNa(x) ⇒ ∂[i∂j]Na(x) = 0 (45)

From eqs-(44,45) one learns that the nonholonomic functions Na(x) are

N0(x) 6= 0, N1(x) = N2(x) = N3(x) = 0 (46)

so that the nonvanishing nonlinear connection coefficients Nk0(x) = ∂kN0(x) are
given in terms of one nonholonomic function N0(x). The spherical symmetry
requires N0(x) = N0(r) for an arbitrary function of r. Therefore, the only
nonvanishing nonlinear connection coefficient Nr0 = ∂rN0(r) is given in terms of
one nonholonomic functionN0(r). Thus, to conclude, the solutions (41,42,45,46)
above yield zero torsion for all of the torsion components of eq-(14), and obey
the field equations (23,24,25,32) when Φ(x, p) and V (Φ) are constants.

Concluding, the Sasaki-Finsler metric corresponding to the above solutions
yields the infinitesimal interval

(dω)2 = gij(x
k) dxi dxj − 2 hEE(pc) NrE(r) dr dE +

hEE(pc) NrE(r) NrE(r) (dr)2 + hab(pc) dpa dpb (47)

One must note the presence of the key off-diagonal term in eq-(47) due to the
nonlinear connection coefficient ∂rN0(r) = Nr0(r) ≡ NrE(r). It also modifies
the spacetime metric via the extra term hEE(pc)(NrE(r))2(dr)2. The base man-
ifold gij(x) and internal metric hab(p) are (Anti) de Sitter-like as displayed in
eqs-(41, 42). Thus, the cotangent bundle metric is parametrized by a family of
arbitrary functions N0(r).

Our findings associated to the geometry of the cotangent bundle are different
from those in [21] that were based on Finsler-like geometries where the zero
torsion conditions were not imposed; the internal metric hab(x, y) = hab(x)
was chosen to be diagonal and independent of the internal fiber coordinates y;
the nonholonomic function defined by ∂yaN

a
0 (xi, ya) = N0(t) was specifically

chosen to depend on time only, and to satisfy the general cosmological bounce
conditions. At early times they found that one can acquire an exponential de
Sitter solution.

Besides these differences we found exact (Anti) de Sitter solutions in eqs-
(41,42). There are many different expressions to describe the de Sitter metric
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depending on the coordinates being used. A flat slicing of the four-dim de Sitter
space is given by a FLRW metric with zero spatial curvature parameter

(ds)2
x = − (dt)2 + e2Hot ((dx)2 + (dy)2 + (dz)2) (48)

The internal de Sitter-like metric hab(p) for the momentum variables (with h̄ =
c = G = 1) is

(ds)2
p = − (dE)2 + e2HoE ((dpx)2 + (dpy)2 + (dpz)

2) (49)

where 4
3κV0 = Λ = 3H2

o which follows from (40) when d = 4. Thus, instead of
using expressions in eqs-(41,42) we could have written the metrics in the form
provided by eqs-(48,49).

In this case, the nonvanishing nonlinear connection coefficient can be chosen
to be Ntpx(t) = ∂tNpx(t) where Npx(t) is the nonholonomic function of time.
The Sasaki-Finsler metric (1) will have an off-diagonal −2hpxpx(E)Ntpx(t)dtdpx
term, and an additional hpxpx(E)(Ntpx(t))2(dt)2 term which will modify the
underlying four-dim spacetime de Sitter metric (48). The energy dependence of
hpxpx(E) = e−2HoE reflects the Lorentz-violating character of the kinematics in
Finsler geometry. Such property is called dynamic anisotropy, and as such it
has many relevant cosmological applications as described in [21]. At very large
energies, say in the very early universe, limE→∞ hpxpx(E) = e−2HoE → 0 (we
choose Ntpx(t = 0) 6= ∞) and one recovers the four-dim spacetime de Sitter
metric (48). At very late stages, very low energies, we can have Ntpx(∞) → 0,
and once again one recovers a four-dim spacetime de Sitter metric (48). In both
limits, the off-diagonal term −2e−2HoENtpx(t)dtdpx → 0.

To conclude, choosing the function N(t) = Ntpx(t) = ∂tNpx(t) judiciously,
so that N(t = 0) 6= ∞, N(t = ∞) = 0, the most salient feature of the Sasaki-
Finsler metric

(dω)2 = − (dt)2 + e2Hot ((dx)2 + (dy)2 + (dz)2) −

(dE)2 + e2HoE ((dpx)2 + (dpy)2 + (dpz)
2) +

e−2HoE N(t)2 (dt)2 − 2 e−2HoE N(t) dt dpx (47′)

is that it captures both the very early inflationary and very-late-times de Sitter
phases of the four-dim Universe.

The on-shell value of the 8-dim cotangent space (phase space) action for the
solutions found in eqs-(41,42) when Φ and V (Φ) are constant, is

S ∼ 1

2κ
κV0

∫
d4x d4p

√
|detgij(x)|

√
|dethab(p)| ∼ V0 Ω8 (50)

where Ω8 ≡ Ω4
x Ω4

p is the 8-dim phase space proper hyper-volume. Since the
proper four-volumes of the de Sitter domains diverge, the action (50) diverges
unless one takes the double-scaling limit V0 → 0, Ω8 →∞, such that the prod-
uct V0 Ω8 is finite. Thus a regularization of the phase space action (50) leads
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naturally to an extremely small effective cosmological constant Λeff = κV0, and
which in turn, furnishes an extremely small value for the four-dim spacetime
cosmological constant Λ as a direct result of eq-(40a). It is the correlation be-
tween Λeff and Λ displayed by eq-(40a), and resulting from the field equations,
combined with the regularization procedure, which forces Λ to be extremely
small. The latter regularization by itself is not enough.

One can estimate the extremely low value for V0 after equating the mo-
mentum space integral in eq-(50) V0

∫
d4p
√
|dethab(p)| = V0Ω4

p to the observed
vacuum energy density ρvac by setting the cutoff of the momentum four-volume
domain Ω4

p to be M4
P . Hence, if V0M

4
P = ρvac = (3/8πGR2

H) ∼ 10−120M4
P ,

yields V0 ∼ 10−120. The constant V0 in eq-(50) is dimensionless in the system of
units where [px] = l0. And, as such, it cannot be equated to an energy density.

More precisely, one cannot use the value of the huge vacuum energy density
(Λ/8πG) = ρP = M4

P , obtained from the regularization of the zero point energy
in QFT, to regularize the spacetime integral ρP

∫
d4x
√
|detgij(x)| since both

factors are already huge. However, one can regularize the four-volume of the
spacetime integral such that the product ρvac

∫
d4x
√
|detgij(x)| = ρvacΩ

4
x is

finite, since one factor (ρvac) is extremely small, and the other (Ω4
x) is extremely

large.
To sum up, it is the key dimensionless (and extremely small) factor of V0

in V0M
4
P = ρvac originating from the 8-dim phase space action which makes all

the difference. If the scalar field Φ(x, p) = ϕ(p) depends on the four-momentum
only, V0 can be set equal to the average value of a complicated oscillating po-
tential V (ϕ(p)) whose magnitude ranges between ±M4

P , and given as < V >=

Ω−4
p

∫
d4p
√
|dethab(p)|V (ϕ(p)). In this scenario, the average < V >= V0 can

be close to zero.
Consequently, this key finding may cast some light into the resolution of

the cosmological constant problem. Functional regularization group methods
of the effective action (FRGE) are also very promising [23], [24], [25]. Instead
of working on the geometry/gravity of phase space, they rely on the energy-
momentum scale k dependence of the effective average action Γk to study the
Wilsonian flow as a function of the scale k (a coordinate invariant k =

√
|kµkµ|).

In particular, the corrections to the classical scalar potential due to the quantum
fluctuations lead to an effective scalar potential with a running cosmological
constant which vanishes in the t → ∞ limit [23]. Rainbow metrics in DSR
[10] also depend on the energy, however this approach is very different from the
Finsler geometry of the cotangent bundle.

To finalize we add some concluding remarks. To find other exact analytical
solutions than those found in this work after setting Φ and V (Φ) to a constant
is a daunting task. Solutions to the vacuum field equations in 2 + 2 dimensions
have been found by [20]. More general actions can be proposed. Like adding the
squared and derivatives of torsion terms; curvature squared terms; f(R), f(S)
types of actions, etc ... Furthermore, if the metric gAB has also antisymmetric
components one may include the other curvature tensors (19,20) in the action.
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Defining
R[jk] = Rabjk δ

b
a, S[bc] = Sibcj δji (51)

one may add the terms

g[jk] R[jk] + h[ab] S
[ab] (52)

to the action. Caution must be taken in inverting the metric because g[ij] 6=
(g[ij])

−1, but instead it is a function of both gij and g[ij]. Therefore, a vari-
ation with respect to the metric gAB will modify the original field equations
(23,24,25), and it will add extra equations due to the variation of SG+SM with
respect to the antisymmetric components of the metric. Because the nonlinear
connection does not transform as a tensor under local coordinate transforma-
tions of the base manifold [22], [21] one cannot use Nai to contract the indices
of the remaining two curvature tensors

(1)P aj = δcb P
ab
cj ,

(2)P aj = δik P
ak
ij (53)

as follows
gij Nai ( (1)P aj + (2)P aj ) (54)

and include the terms of eq-(54) in the action.
A local transformation of the base spacetime manifold coordinates

x′i = x′i(x0, x1, · · · , xd−1), det||∂x
′i

∂xj
|| 6= 0 (55a)

leads to a transformation of the internal fiber momentum coordinates of the
form

p′a =
∂xb

∂x′a
pb = Mb

a pb, a, b = 0, 1, · · · , d− 1, xa = δai x
i (55b)

Since the elongated differential δpa = dpa −Naidxi must transform covariantly
δp′a =Mb

a δpb, one can deduce the inhomogeneous transformation property of
the nonlinear connection

N ′ai =
∂xb

∂x′a
Nbj

∂xj

∂x′i
+

∂x′b

∂xc
∂2xc

∂x′a∂x′i
p′b (56)

One should note that the transformations (55a,55b) are very different from
the most general coordinate transformations of a (curved) 2d-dim manifold
Z ′A = Z ′A(ZB), A,B = 1, 2, · · · , 2d where the new coordinates are functions
of all the original coordinates, and all the components of the metric tensor gAB
transform covariantly. This is what occurs in the local U(1, d− 1) transforma-
tions associated with Born’s Reciprocal Relativity theory in phase spaces [7]
that mix the spacetime coordinates with the energy-momentum ones.

A Born’s Reciprocal complex gravitational theory (and its deformation) was
constructed by [6] based on a U(1, 3) gauge theory formulation of complex grav-
ity. Because the Weyl unitary trick allows to convert the pseudo unitary group
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U(1, 3) into U(2, 2) = SU(2, 2)×U(1), and the latter SU(2, 2) is the conformal
group in four-dimensions it is warranted to explore further Born’s Reciprocal
Relativity within the context of conformal gravity in 4D. Having found (Anti)
de Sitter solutions in this work within the framework of Finsler gravity in the
cotangent bundle is very encouraging due to its appeal behind the AdS/CFT
correspondence.
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