An optimization approach to Fermat's last theorem
 By: Hassine Saidane, Ph.D.

Introduction

The so-called Fermat's last theorem is actually a conjecture that was formulated by Pierre de Fermat in 1637 where he stated that the Diophantine equation $x^{n}+y^{n}=z^{n}$, with x, y, z and n positive integers, has no nonzero solution for $n>2$. This conjecture was one of the most famous unsolved problems of mathematics for over three and a half centuries. Early on, the following few specific cases were proved [1]: Fermat, for $n=4$, Euler for $n=3$, Dirichlet and Lagrange for $n=5$, Lamé for $n=7$, and Dirichlet for $n=14$. The proof was eventually extended by other mathematicians to cover all prime exponents up to four millions [2]. This conjecture was finally proven by Andrew Wiles in late 1994 [2] using very long and complex analyses. In this note, we present a direct, short and easy to grasp solution based on the following optimization approach.

Problem formulation and solution

Let's consider Fermat's Diophantine equation $D(x, y, z ; n):(1)$, and the associated function $F(x, y, z ; n):(2)$

$$
\begin{align*}
& D(x, y, z ; n)=x^{n}+y^{n}=z^{n} \tag{1}\\
& F(x, y, z ; n)=x^{n}+y^{n}-z^{n} \tag{2}
\end{align*}
$$

The Diophantine equation $D(x, y, z ; n)$ has a nonzero solution if and only if $F(x, y, z ; n)$ achieves a minimum value of zero for some positive integer values x, y, and z. Hence, the task of finding out whether $F(x, y, z ; n)$ has a solution or not entails analyzing its conditions and feasibility optimality, given that $x^{n-1}+y^{n-1}=z^{n-1}$ (e.g. $n-1=3$) has no nonzero solution, i.e. given that:

$$
\begin{equation*}
F(x, y, z ; n-1)=x^{n-1}+y^{n-1}-z^{n-1} \neq 0 \tag{3}
\end{equation*}
$$

Necessary optimality conditions can be derived from the simple unconstrained optimization problem below:

$$
\begin{equation*}
\text { Minimize } F(x, y, z ; n)=x^{n}+y^{n}-z^{n} \tag{P}
\end{equation*}
$$

The necessary optimality condition for problem (P) is that the gradient of F be equal to zero ${ }^{1}$ [3], that is:

$$
\begin{gather*}
\frac{\partial F}{\partial x}=n x^{n-1}=0 ; \quad \frac{\partial F}{\partial y}=n y^{n-1}=0 ; \quad \frac{\partial F}{\partial z}=-n z^{n-1}=0, \text { from which we derive: } \tag{4}\\
n\left(x^{n-1}+y^{n-1}-z^{n-1}\right)=0, \text { i.e. } x^{n-1}+y^{n-1}=z^{n-1}, \text { since } n>0 \tag{5}
\end{gather*}
$$

Thus, in order for $F(x, y, z ; n)$ to vanish, it is necessary that $D(x, y, z ; n-1)$ has a solution, which is not feasible since it is in contradiction with condition (3), $D(x, y, z ; n-1)$ having no solution. This infeasibility implies that the Diophantine $D(x, y, z ; n)=x^{n}+y^{n}=z^{n}$, also has no solution. Since condition (3) is true for $n=3$, by induction, this result is valid for all exponents $n>3$, which proves the conjecture in Fermat's last theorem.

References

1. Fermat's last theorem: https://mathworld.wolfram.com/FermatsLastTheorem.html
2. Fermat's last theorem: https://en.wikipedia.org/wiki/Fermat\'s_Last_Theorem
3. Bertsikas, D.P., Nonlinear Programming, $2^{\text {nd }}$ edition, 1995, p. 4
[^0]
[^0]: ${ }^{1}$ Originally formulated by Fermat in 1637

