New mathematical connections between the possible developments and solutions of Ramanujan's equations and various parameters of Particle Physics and Cosmology. XI

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further Ramanujan formulas and described further possible mathematical connections with some parameters of Particle Physics and Cosmology

[^0]
https://myindiafacts.online/30-ramanujan-random-facts-mathematical-genius/

In this research thesis, we have analyzed the possible and new connections between different formulas of Ramanujan's mathematics and some formulas concerning particle physics and cosmology. In the course of the discussion we describe and highlight the connections between some developments of Ramanujan equations and particles type solutions such as the mass of the Higgs boson, and the masses of other baryons and mesons. Moreover solutions of Ramanujan equations, connected with the masses of the π mesons (139.57 and 134.9766 MeV) have been described and highlighted. Furthermore, we have obtained also the values of some black hole entropies and the value of the Cosmological Constant.

Is our opinion, that the possible connections between the mathematical developments of some Rogers-Ramanujan continued fractions, the value of the dilaton and that of "the dilaton mass calculated as a type of Higgs boson that is equal about to $125 \mathrm{GeV}^{\prime}$, the Higgs boson mass itself and the like-particle solutions (masses), are fundamental.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

From:

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN

We have from the following functions:

$$
\begin{aligned}
& \psi(x)-x \psi\left(x^{9}\right)=\frac{\phi\left(-x^{9}\right) \sqrt[3]{ }}{\sqrt[3]{\phi}\left(-x^{3}\right)^{3}\left(x^{3}\right)} \\
& \left\{3 \phi\left(-x^{9}\right)-\phi(-x)\right\}^{3}=8 \frac{\psi^{3}(x)}{\psi\left(x^{3}\right)} \phi\left(-x^{3}\right)
\end{aligned}
$$

That:

$$
\begin{aligned}
& \frac{\phi\left(-x^{9}\right)}{\sqrt[3]{\phi\left(-x^{3}\right)}} \sqrt[3]{\psi\left(x^{3}\right)} \\
& 8 \frac{\psi^{3}(x)}{\psi\left(x^{3}\right)} \phi\left(-x^{3}\right)
\end{aligned}
$$

From the sum, we obtain:

$$
\frac{\phi\left(-x^{9}\right)}{\sqrt[3]{\phi\left(-x^{3}\right)}} \sqrt[3]{\psi\left(x^{3}\right)}+8 \frac{\psi^{3}(x)}{\psi\left(x^{3}\right)} \phi\left(-x^{3}\right)=-2.554635593828305^{*} 10^{15}
$$

that Ramanujan has developed, as follows:
$(-44370261693823-1074049339325573-1436215992808909)=$ $=-2.554635593828305^{*} 10^{15}$

Indeed:

$$
1-\operatorname{seb}\left(\frac{15 x}{1-2}+\frac{2^{3} x^{2}}{1-x^{2}}+\right.
$$

$$
=383.67\left\{1+240\left(\frac{11}{1-x}+\frac{2 x^{2}}{1 x^{2}}+\right)\right\}_{2}^{3}
$$ $+5500\left\{1-504\left(\frac{118}{1}+\frac{2 x^{2}}{1 x^{2}}+5\right\}\right.$

$174611+13200\left(\frac{19 x}{1-x}+\frac{2^{19} x^{2}}{1-x^{2}}\right)$

$$
1+480\left(\frac{1^{7} x}{1-x}+\frac{2^{7} x^{2}}{1-x^{2}}+3\right)
$$

$=53361\left\{1+246\left(\frac{1^{3} x}{-x}+\frac{2^{3} x^{2}}{1+2}\right)\right\}^{3}$.
$+12 / 250\left\{1-504\left(\frac{15 x}{1-x}+\frac{2 \sqrt{2}}{1-x^{2}}\right)\right\}$

For $x=2$, we obtain:
$1617\left(\left(\left(1+240^{*}\left(\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 3+2000\left(\left(\left(1-504^{*}\left(\left(1^{\wedge} 5^{*} 2\right) /(1-\right.\right.\right.\right.$ $\left.\left.\left.\left.2)+\left(2^{\wedge} 5^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 2$

Input:

$1617\left(1+240\left(\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}\right)\right)^{3}+2000\left(1-504\left(\frac{1^{5} \times 2}{1-2}+\frac{2^{5} \times 2^{2}}{1-2^{2}}\right)\right)^{2}$

Result:

-44370261693823

Result:

$-4.4370261693823 \times 10^{13}$
$-4.4370261693823 * 10^{13}$

$38367\left(\left(\left(1+240^{*}\left(\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 3+5500\left(\left(\left(1-504^{*}\left(\left(1^{\wedge} 5^{*} 2\right) /(1-\right.\right.\right.\right.$ $\left.\left.\left.\left.2)+\left(2^{\wedge} 5^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 2$

Input:

$38367\left(1+240\left(\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}\right)\right)^{3}+5500\left(1-504\left(\frac{1^{5} \times 2}{1-2}+\frac{2^{5} \times 2^{2}}{1-2^{2}}\right)\right)^{2}$

Result:

-1074049 339325573

Result:

$-1.074049339325573 \times 10^{15}$
$-1.074049339325573 * 10^{15}$

$53361\left(\left(\left(1+240^{*}\left(\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 3+121250(((1-$ 504*((1^5*2)/(1-2)+(2^5*2^2)/(1-2^2)))))^2

Input:

$53361\left(1+240\left(\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}\right)\right)^{3}+121250\left(1-504\left(\frac{1^{5} \times 2}{1-2}+\frac{2^{5} \times 2^{2}}{1-2^{2}}\right)\right)^{2}$

Result:

-1436215992808909

Result:

$-1.436215992808909 \times 10^{15}$
$-1.436215992808909 * 10^{15}$

From the sum of the results
-44370261693823-1074049339325573-1436215992808909
we obtain:
(-44370261693823-1074049339325573-1436215992808909)

Input:

-44370261693823-1074049339325573-1436215992808909

Result:

-2554635593828305

Result:

$-2.554635593828305 \times 10^{15}$
$-2.554635593828305^{*} 10^{15}$
From the division, we obtain:
(-1074049339325573-1436215992808909)/-44370261693823

Input:

-1074049339325573-1436215992808909
44370261693823

Exact result:

193097333241114
3413097053371

Decimal approximation:

56.57540064686948307532098231812452230316809635284773024387...
56.575400646...

Now, we have that:
$1 / 2(1074049339325573 * 44370261693823) / 1436215992808909$

Input:

$\frac{1}{2} \times \frac{1074049339325573 \times 44370261693823}{1436215992808909}$

Exact result:

3665834635227182518726156583
220956306585986

Decimal approximation:

$1.6590767160568050198003976042541379627949369851143603 \ldots \times 10^{13}$
$1.659076716 \ldots * 10^{13}$
1/(5.391247e-44/1.616255e-35)
Where $5.391247 * 10^{-44}$ and $1.616255 * 10^{-35}$ are respectively the Planck time and the Planck length

Input interpretation:

$\frac{1}{\frac{5.391247 \times 10^{-44}}{1.616255 \times 10^{-35}}}$

Result:

$2.99792422791981150186589484770406549727734603886633277 \ldots \times 10^{8}$
$2.9979242279 \ldots * 10^{8}$
299792422.79 a value practically equal to the speed of light c

We have that, from the above expressions:
((((-44370261693823-(((1617)((1+240*((1^3*2)/(1-2)+(2^3*2^2)/(1-
$\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 3\right)\right)\right)\right)\right)\right)\right) /\left(\left(\left(\left(\left(\left(1-504^{*}\left(\left(1^{\wedge} 5^{*} 2\right) /(1-2)+\left(2^{\wedge} 5^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 2\right)\right)\right)$
Input:
$-44370261693823-1617\left(1+240\left(\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}\right)\right)^{3}$

$$
\left(1-504\left(\frac{1^{5} \times 2}{1-2}+\frac{2^{5} \times 2^{2}}{1-2^{2}}\right)\right)^{2}
$$

Result:

2000
2000

And:
((((-1436215992808909-(((121250)((1-504* $\left(\left(1^{\wedge} 5^{*} 2\right) /(1-2)+\left(2^{\wedge} 5^{*} 2^{\wedge} 2\right) /(1-\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 2\right)\right)\right)\right)\right)^{\wedge} 2\right)\right)\right)\right)\right)\right)$)/(((((1+240*((1^3*2)/(1-2)+(2^3*2^2)/(1-2^2)))))^3)))

Input:

$-1436215992808909-121250\left(1-504\left(\frac{1^{5} \times 2}{1-2}+\frac{2^{5} \times 2^{2}}{1-2^{2}}\right)\right)^{2}$

$$
\left(1+240\left(\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}\right)\right)^{3}
$$

Result:

53361
53361
Thence:
$(((1 /(5.391247 \mathrm{e}-44 / 1.616255 \mathrm{e}-35)))) *(53361+2000-21)$
Where 21 is a Fibonacci number

Input interpretation:
$\frac{1}{\frac{5.391247 \times 10^{-44}}{1.616255 \times 10^{-35}}}(53361+2000-21)$

Result:

$1.6590512677308236851325862087194298461932832979086285 \ldots \times 10^{13}$
$1.65905126773 \ldots * 10^{13}$

Inserting the value of c (speed of light), we obtain:
$(299792458) *(53361+2000-21)$

Input:

299792458 (53 361 + 2000-21)

Result:

16590514625720

Scientific notation:

$1.659051462572 \times 10^{13}$
$1.659051462572 * 10^{13}$
$x *(53361+2000-21)=1.659051462572 \mathrm{e}+13$
Input interpretation:
$x(53361+2000-21)=1.659051462572 \times 10^{13}$

Result:
$55340 x=1.659051462572 \times 10^{13}$

Plot:

$-55340 x$
$-1.659051462572 \times 10^{13}$

Alternate form:

$55340 x-1.659051462572 \times 10^{13}=0$

Solution:

$x=299792458$

Integer solution:

$x=299792458$

Without the number 21, we obtain:
$(299792458) *(53361+2000)$

Input:

$299792458(53361+2000)$

Result:

16596810267338

Scientific notation:

$1.6596810267338 \times 10^{13}$
$1.6596810267338 * 10^{13}$
And:
$x^{*}(53361+2000)=1.659051462572 \mathrm{e}+13$
Input interpretation:
$x(53361+2000)=1.659051462572 \times 10^{13}$

Result:

$55361 x=1.659051462572 \times 10^{13}$
Plot:

$-55361 x$
$-1.659051462572 \times 10^{13}$

Alternate form:

$55361 x-1.659051462572 \times 10^{13}=0$

Solution:

$x \approx 2.99678738204 \times 10^{8}$
Decimal form:

$$
1729 *((((1.659051462572 \mathrm{e}+13) /(53361+2000-21))))^{\wedge} 2
$$

Input interpretation:

$1729\left(\frac{1.659051462572 \times 10^{13}}{53361+2000-21}\right)^{2}$

Result:

155394770403595769956

Scientific notation:

$1.55394770403595769956 \times 10^{20}$
$1.55394770403595769956 * 10^{20}$
From $E=m c^{2}$ and the mass value 1732, we obtain:
$1732 \mathrm{MeV}^{*}(299792458)^{\wedge} 2$
Where 1732 MeV is the mass of scalar meson $\mathrm{f}_{0}(1710)$ (see http://pdg.lbl.gov/2019/listings/rpp2019-list-f0-1710.pdf)

Input interpretation:

1732 MeV (megaelectronvolts) $\times 299792458^{2}$

Result:

$1.557 \times 10^{20} \mathrm{MeV}$ (megaelectronvolts)
$1.557 * 10^{20} \mathrm{MeV}$

Unit conversions:

$1.557 \times 10^{26} \mathrm{eV}$ (electronvolts)
24.94 MJ (megajoules)
0.02494 GJ (gigajoules)
2.494×10^{7} J (joules)

Interpretations:

energy

kinetic energy

Without the number 21, we obtain a result very near to the previous:
$1729 *((((1.659051462572 \mathrm{e}+13) /(53361+2000))))^{\wedge} 2$

Input interpretation:

$1729\left(\frac{1.659051462572 \times 10^{13}}{53361+2000}\right)^{2}$

Result:

$1.5527690146159178698179927579985658900498392392430287 \ldots \times 10^{20}$
$1.5527690146 \ldots{ }^{*} 10^{20}$

From the previous sum
(-44370261693823-1074049339325573-1436215992808909)
We obtain:
$(((1 /(-(-44370261693823-1074049339325573-1436215992808909)))))^{\wedge} 1 / 3072$

Input:

Result:

$\frac{1}{\sqrt[3072]{2554635593828305}}$

Decimal approximation:

0.988518026436679916778108195329724141209400946748107546203.
$0.988518026436679 \ldots$. result very near the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$
$1 / 24^{*} \log$ base $0.988518026436679(((1 /(-(-44370261693823-1074049339325573-$ $1436215992808909))$))) $-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$$
\begin{aligned}
& \frac{1}{24} \log _{0.988518026436670}(\\
& \left.\quad-\frac{1}{-44370261693823-1074049339325573-1436215992808909}\right)-\pi+\frac{1}{\phi}
\end{aligned}
$$

$\log _{b}(x)$ is the base- b logarithm
ϕ is the golden ratio

Result:

125.4764413351...
125.4764413.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representation:

$\frac{1}{24} \log _{0.9885180264366790000(}$

$$
\begin{aligned}
& \left.-\frac{1}{-44370261693823-1074049339325573-1436215992808909}\right)- \\
& \pi+\frac{1}{\phi}=-\pi+\frac{1}{\phi}+\frac{\log \left(\frac{1}{2554635593828305}\right)}{24 \log (0.9885180264366790000)}
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Series representations:

$$
\begin{aligned}
& \frac{1}{24} \log _{0.9885180264366790000}(\\
& \left.\quad-\frac{1}{-44370261693823-1074049339325573-1436215992808909}\right)- \\
& \pi+\frac{1}{\phi}=\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\frac{2554635593828304}{2554635593828305}\right)^{k}}{k}}{24 \log (0.9885180264366790000)}
\end{aligned}
$$

$\frac{1}{24} \log _{0.9885180264366790000}($

$$
\begin{aligned}
& \left.-\frac{1}{-44370261693823-1074049339325573-1436215992808909}\right)- \\
& \pi+\frac{1}{\phi}=\frac{1}{\phi}-1.00000000000000000 \pi- \\
& 3.6080433956438380 \log \left(\frac{1}{2554635593828305}\right)- \\
& \frac{1}{24} \log \left(\frac{1}{2554635593828305}\right) \sum_{k=0}^{\infty}(-0.0114819735633210000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

$1 / 24 * \log$ base $0.988518026436679(((1 /(-(-44370261693823-1074049339325573-$ $1436215992808909)))))+11+1 /$ golden ratio
where 11 is a Lucas number

Input interpretation:

$$
\begin{aligned}
& \frac{1}{24} \log _{0.988518026436679}(\\
&\left.-\frac{1}{-44370261693823-1074049339325573-1436215992808909}\right)+ \\
& 11+\frac{1}{\phi}
\end{aligned}
$$

$\log _{b}(x)$ is the base- b logarithm ϕ is the golden ratio

Result:

139.6180339887...
$139.61803398 \ldots$ result practically equal to the rest mass of Pion meson 139.57

Alternative representation:

$\frac{1}{24} \log _{0.9885180264366790000}($

$$
\begin{aligned}
& \left.-\frac{1}{-44370261693823-1074049339325573-1436215992808909}\right)+ \\
& 11+\frac{1}{\phi}=11+\frac{1}{\phi}+\frac{\log \left(\frac{1}{2554635593828305}\right)}{24 \log (0.9885180264366790000)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{24} \log _{0.9885180264366790000}(\\
& \left.\quad-\frac{1}{-44370261693823-1074049339325573-1436215992808909}\right)+ \\
& 11+\frac{1}{\phi}=11+\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\frac{255463553828304}{255635593828305}\right)^{k}}{24 \log (0.9885180264366790000)}}{\frac{1}{24} \log _{0.9885180264366790000}(} \\
& \left.\quad-\frac{1}{-44370261693823-1074049339325573-1436215992808909}\right)+ \\
& 11+\frac{1}{\phi}=11+\frac{1}{\phi}-3.6080433956438380 \log \left(\frac{1}{2554635593828305}\right)- \\
& \frac{1}{24} \log \left(\frac{1}{2554635593828305}\right) \sum_{k=0}^{\infty}(-0.0114819735633210000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Page 243

$\left(\left(\left(1-24^{*}\left(\left(1^{\wedge} 13^{*} 2\right) /(1-2)+\left(2^{\wedge} 13^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 13^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)\right)\right)$

Input:

$$
1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)
$$

Exact result:

$\frac{307945367}{7}$

Decimal approximation:

$4.39921952857142857142857142857142857142857142857142857 \ldots \times 10^{7}$
4.399219528...*107

Input interpretation:

$4.39921952857142857142857142857142857142857142857142857 \times 10^{7}$

Decimal form:

43992195.2857142857142857142857142857142857142857142857
43992195.285714...
$\left.\left(\left(\left(1 /\left(\left(1-24^{*}\left(\left(1^{\wedge} 13^{*} 2\right) /(1-2)+\left(2^{\wedge} 13^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 13^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 1536$

Input:

$$
\sqrt[1536]{\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}}
$$

Result:

$\sqrt[1536]{\frac{7}{307945367}}$

Decimal approximation:

0.988607370490733838321385831723713082410073338229205311334...
$0.98860737049 \ldots$ result very near to the dilaton value $\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3}=\boldsymbol{\phi}$

Alternate form:

$\sqrt[1536]{7} 307945367^{1535 / 1536}$
307945367

And:
$1 / 12 \log$ base $0.98860737049\left(\left(\left(1 /\left(\left(\left(1-24^{*}\left(\left(1 \wedge 13^{*} 2\right) /(1-2)+\left(2^{\wedge} 13 * 2 \wedge 2\right) /(1-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 2\right)+\left(3^{\wedge} 13^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)\right)\right)\right)\right)\right)-\mathrm{Pi}+1 /$ golden ratio

Input interpretation:

$\frac{1}{12} \log _{0.98860737049}\left(\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}\right)-\pi+\frac{1}{\phi}$
$\log _{b}(x)$ is the base $-b$ logarithm

Result:

125.476441...
125.476441... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representation:

$$
\begin{aligned}
& \frac{1}{12} \log _{0.988607370490000}\left(\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}\right)-\pi+\frac{1}{\phi}= \\
& -\pi+\frac{1}{\phi}+\frac{\log \left(\frac{1}{1-24\left(-2 \times 1^{13}+-\frac{4 \times 2^{13}}{3}+\frac{8 \times 3^{13}}{7}\right)}\right)}{12 \log (0.988607370490000)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{12} \log _{0.988607370490000}\left(\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\frac{307945360}{307945307}\right)^{k}}{k}}{12 \log (0.988607370490000)}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{12} \log _{0.988607370490000}\left(\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}\right)-\pi+\frac{1}{\phi}= \\
& \frac{1}{\phi}-1.0000000000000 \pi-7.273004038651 \log \left(\frac{7}{307945367}\right)- \\
& \quad \frac{1}{12} \log \left(\frac{7}{307945367}\right) \sum_{k=0}^{\infty}(-0.011392629510000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

$1 / 12 \log$ base $0.98860737049\left(\left(\left(1 /\left(\left(\left(1-24^{*}\left(\left(1 \wedge 13^{*} 2\right) /(1-2)+\left(2^{\wedge} 13 * 2 \wedge 2\right) /(1-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 2\right)+\left(3^{\wedge} 13^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)\right)\right)\right)\right)\right)+11+1 /$ golden ratio

Where 11 is a Lucas number

Input interpretation:

$\frac{1}{12} \log _{0.08860737049}\left(\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}\right)+11+\frac{1}{\phi}$

Result:

139.618034...
139.618034... result practically equal to the rest mass of Pion meson 139.57

Alternative representation:

$$
\frac{1}{12} \log _{0.988607370490000}\left(\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}\right)+11+\frac{1}{\phi}=
$$

$$
11+\frac{1}{\phi}+\frac{\log \left(\frac{1}{1-24\left(-2 \times 1^{13}+-\frac{4-2^{13}}{3}+\frac{8 \cdot 3^{13}}{7}\right)}\right)}{12 \log (0.988607370490000)}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{12} \log _{0.988607370490000}\left(\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-\frac{307945300 k}{307945367}\right)^{k}}{k}}{12 \log (0.988607370490000)} \\
& \frac{1}{12} \log _{0.988607370490000}\left(\frac{1}{1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}-7.273004038651 \log \left(\frac{7^{7}}{307945367}\right)- \\
& \quad \frac{1}{12} \log \left(\frac{7}{307945367}\right) \sum_{k=0}^{\infty}(-0.011392629510000)^{k} G(k) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
$$

Now, we have that:
7(43992195.2857142857)
Where 7 is a Lucas number

Input interpretation:

$7 \times 4.39921952857142857 \times 10^{7}$

Result:

$3.079453669999999999 \times 10^{8}$
$3.079453669999999999 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$

Input interpretation:

$3.07945367000000000 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (meters per second)

Unit conversions:

$307945.367 \mathrm{~km} / \mathrm{s}$ (kilometers per second)
$6.88854167412312097 \times 10^{8} \mathrm{mph}$ (miles per hour)
$191348.37983675336 \mathrm{mi} / \mathrm{s}$ (miles per second)
1.02719517713817871 c (speed of light)

Note that:

From:

THE SCIENTIFIC PAPERS OF

JAMES CLERK MAXWELL

Edited by W. D. NIVEN, M.A., F.R.S.

Two Volumes Bound As One

This Dover edition, first published in 1965, is an unabridged and unaltered republication of the work first published by Cambridge University Press in 1890. This edition is published by special arrangement with Cambridge University Press.
The work was originally published in two separate volumes, but is now published in two volumes bound as one.

Prop. XVI.-To find the rate of propagation of transverse vibrations through the elastic medium of which the cells are composed, on the supposition that its elasticity is due entirely to forces acting between pairs of particles.

By the ordinary method of investigation we know that

$$
\begin{equation*}
V=\sqrt{\frac{m}{\rho}} . \tag{132}
\end{equation*}
$$

where m is the coefficient of transverse elasticity, and ρ is the density. By referring to the equations of Part I., it will be seen that if ρ is the density of the matter of the vortices, and μ is the "coefficient of magnetic induction,"

whence	$\left.\pi m=V^{2} \mu \ldots . .134\right)$;
and by (108),	$E=V \sqrt{\mu} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ (135).

In air or vacuum $\mu=1$, and therefore

$$
\left.\begin{array}{rl}
V & =E \\
& =310,740,000,000 \text { millimetres per second } \\
& =193,088 \text { miles per second }
\end{array}\right\}
$$

* Abhandlungen der König. Sächsischien Gescllschaft, Vol. mi. (1857), p. 260.

The value of c (speed of light) for (136) is $310740000 \mathrm{~m} / \mathrm{s}$, very near to the result of Ramanujan formula multiplied by 7, that is 307945367 , thence in the range of measurements.

From $E=m c^{2}$ and the mass of scalar meson $f_{0}(1710)$, that we put equal to 1729 (in the range of this meson), we obtain:
$1729 *\left[7 *\left(\left(\left(1-24^{*}\left(\left(1^{\wedge} 13 * 2\right) /(1-2)+\left(2^{\wedge} 13^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 13^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)\right)\right)\right]^{\wedge} 2$

Input:

$1729\left(7\left(1-24\left(\frac{1^{13} \times 2}{1-2}+\frac{2^{13} \times 2^{2}}{1-2^{2}}+\frac{3^{13} \times 2^{3}}{1-2^{3}}\right)\right)\right)^{2}$

Result:

163961673519146147281

Scientific notation:

$1.63961673519146147281 \times 10^{20}$
$1.63961673519146147281 * 10^{20}$

Note that, from c^{2}, we can to obtain the Hardy-Ramanujan number, that coincide with the mass of the above scalar meson. Indeed:
$\mathrm{X}^{*}[307945367]^{\wedge} 2=1.63961673519146147281 \mathrm{e}+20$
Input interpretation:
$x \times 307945367^{2}=1.63961673519146147281 \times 10^{20}$

Result:

$94830349056764689 x=1.63961673519146147281 \times 10^{20}$
Plot:

- $94830349056764689 x$
$-1.63961673519146147281 \times 10^{20}$

Alternate form:

$94830349056764689 x-1.63961673519146147281 \times 10^{20}=0$

Solution:

$x=1729$

Integer solution:

$x=1729$
1729
This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

And:
$\mathrm{x}^{*}[307945367]^{\wedge} 2=1.64493 \mathrm{e}+20$
where $1.64493 * 10^{20}$ is a multiple of $\zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

$$
x \times 307945367^{2}=1.64493 \times 10^{20}
$$

Result:

$94830349056764689 x=1.64493 \times 10^{20}$

Plot:

Alternate form:

$94830349056764689 x-1.64493 \times 10^{20}=0$

Solution:

$x \approx 1734.6$
1734.6

While with the multiple of the golden ratio, we obtain:
$x *[307945367]^{\wedge} 2=$ golden ratio $* 10^{\wedge} 20$

Input:

$x \times 307945367^{2}=\phi \times 10^{20}$

Exact result:

$94830349056764689 x=100000000000000000000 \phi$
Plot:

Alternate forms:

$94830349056764689 x-100000000000000000000 \phi=0$

$$
94830349056764689 x=50000000000000000000(1+\sqrt{5})
$$

$94830349056764689 x=$
$50000000000000000000+50000000000000000000 \sqrt{5}$

Solution:

$$
\begin{aligned}
& x=\frac{50000000000000000000}{94830349056764689}+\frac{50000000000000000000 \sqrt{5}}{94830349056764689} \\
& x \approx 1706.2
\end{aligned}
$$

1706.2

All the three results obtained are in the range of the candidate "glueball" scalar meson $\mathrm{f}_{0}(1710)$ mass.

Now, we have that:

$441\left(\left(\left(1+240^{*}\left(\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 3^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)^{\wedge} 3+250(((1-\right.\right.$ $\left.\left.\left.504^{*}\left(\left(1^{\wedge} 5^{*} 2\right) /(1-2)+\left(2^{\wedge} 5^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 5^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)\right)\right)^{\wedge} 2$
$441\left(\left(\left(1+240 *\left((2) /(1-2)+(8 * 4) /(1-4)+\left(27^{*} 8\right) /(1-8)\right)\right)\right)\right)^{\wedge} 3+250(((1-504 *((2) /(1-$ $2)+(32 * 4) /(1-4)+(243 * 8) /(1-8)))))^{\wedge} 2$

Input:

$441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}$

Exact result:

3471236827803323

Decimal approximation:

$-4.958909754004747142857142857142857142857142857142857 \ldots \times 10^{14}$
$-4.958909754004747 \ldots * 10^{14}$

And:
$1 / 2 * \ln -\left[441(((1+240 *((2) /(1-2)+(8 * 4) /(1-4)+(27 * 8) /(1-8)))))^{\wedge} 3+250(((1-504 *((2) /(1-\right.$ $\left.2)+(32 * 4) /(1-4)+(243 * 8) /(1-8)))))^{\wedge} 2\right]$

Input:

$$
\begin{aligned}
& \frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)
\end{aligned}
$$

Exact result:

$\frac{1}{2} \log \left(\frac{3471236827803323}{7}\right)$

Decimal approximation:

16.91868860541594903398685020885073598649247468579111007542...
$16.9186886 \ldots$ result very near to the black hole entropy 16.8741

Property:

$\frac{1}{2} \log \left(\frac{3471236827803323}{7}\right)$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{\log (3471236827803323)}{2}-\frac{\log (7)}{2} \\
& \frac{1}{2}(-\log (7)+\log (191)+\log (18174014805253)) \\
& -\frac{\log (7)}{2}+\frac{\log (191)}{2}+\frac{\log (18174014805253)}{2}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.\quad 250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)= \\
& \frac{1}{2} \log _{e}\left(-441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}-250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}\right) \\
& \frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.\quad 250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)= \\
& \frac{1}{2} \log (a) \log _{a}\left(-441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}-250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}\right) \\
& \frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.\quad 250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)= \\
& -\frac{1}{2} \operatorname{Li}_{1}\left(1+441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}+250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \frac{1}{2} \log \left(\frac{3471236827803316}{7}\right)-\frac{1}{2} \sum_{k=1}^{\infty} \frac{\left(-\frac{32}{3471236827803316}\right)^{k}}{k} \\
& \frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{243 \times 8}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{2}+\right.\right. \\
& \left.\left.\left.\left.i \pi\left[\frac{\arg \left(\frac{3471236827803323}{7}-x\right)}{7}\right)+\frac{\log (x)}{2 \pi}-\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{3471236827803323}{7}-x\right)^{k} x^{-k}}{2 \pi}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)= \\
& i \pi\left[1-504\left(\frac{2}{1-2}+\right.\right.
\end{aligned}
$$

for $x<0$
$\frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right.$

$$
\begin{gathered}
\left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)= \\
i \pi\left[\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi} \left\lvert\,+\frac{\log \left(z_{0}\right)}{2}-\frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{3471236827803323}{7}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.
\end{gathered}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)=\frac{1}{2} \int_{1}^{3471236827803323} \frac{7}{t} d t \\
& \frac{1}{2} \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)= \\
& -\frac{i}{4 \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(\frac{7}{3471236827803316}\right)^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

$4 * \ln -\left[441(((1+240 *((2) /(1-2)+(8 * 4) /(1-4)+(27 * 8) /(1-8)))))^{\wedge} 3+250(((1-504 *((2) /(1-\right.$ 2) $\left.+(32 * 4) /(1-4)+(243 * 8) /(1-8)))))^{\wedge} 2\right]+4$

Where 4 is a Lucas number

Input:

$$
\begin{aligned}
4 \log (-(441 & \left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+ \\
& \left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+4
\end{aligned}
$$

Exact result:

$4+4 \log \left(\frac{3471236827803323}{7}\right)$

Decimal approximation:

139.3495088433275922718948016708058878919397974863288806033
139.3495088.... result practically equal to the rest mass of Pion meson 139.57

Property:

$4+4 \log \left(\frac{3471236827803323}{7}\right)$ is a transcendental number

Alternate forms:

$4\left(1+\log \left(\frac{3471236827803323}{7}\right)\right)$
$4-4 \log (7)+4 \log (3471236827803323)$
$-4(-1+\log (7)-\log (191)-\log (18174014805253))$

Alternative representations:

$$
\begin{aligned}
& 4 \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+4= \\
& 4+4 \log _{e}\left(-441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}-250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}\right)
\end{aligned}
$$

$$
4 \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right.
$$

$$
\left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+4=
$$

$$
4+4 \log (a) \log _{a}\left(-441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}-250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}\right)
$$

$$
\begin{aligned}
& 4 \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+4= \\
& 4-4 \operatorname{Li}_{1}\left(1+441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}+250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}\right)
\end{aligned}
$$

Series representations:

$$
\begin{array}{r}
4 \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
\left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+4= \\
4+4 \log \left(\frac{3471236827803316}{7}\right)-4 \sum_{k=1}^{\infty} \frac{\left(-\frac{7}{3471236827803316}\right)^{k}}{k}
\end{array}
$$

$$
4 \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right.
$$

$$
\left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+4=
$$

$$
4+8 i \pi\left|\frac{\arg \left(\frac{3471236827803323}{7}-x\right)}{2 \pi}\right|+4 \log (x)-
$$

$$
4 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{3471236827803323}{7}-x\right)^{k} x^{-k}}{k} \text { for } x<0
$$

$$
\begin{aligned}
& 4 \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+4= \\
& 4+8 i \pi\left|\frac{\pi-\arg \left(\frac{1}{z_{0}}\right)-\arg \left(z_{0}\right)}{2 \pi}\right|+4 \log \left(z_{0}\right)-4 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{3471236827803323}{7}-z_{0}\right)^{k} z_{0}^{-k}}{k}
\end{aligned}
$$

Integral representations:

$4 \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right.$

$$
4=4+4 \int_{1}^{\left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+} \frac{7471236827803323}{7} \frac{1}{t} d t
$$

$$
\begin{aligned}
& 4 \log \left(-\left(441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right.\right. \\
& \left.\left.250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right)\right)+4= \\
& 4-\frac{2 i}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{\left(\frac{7}{3471236827803316}\right)^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for } \\
& -1<\gamma<0
\end{aligned}
$$

$\Gamma(x)$ is the gamma function
$\left[-441(((1+240 *((2) /(1-2)+(8 * 4) /(1-4)+(27 * 8) /(1-8)))))^{\wedge} 3+250(((1-504 *((2) /(1-\right.$ $\left.2)+(32 * 4) /(1-4)+(243 * 8) /(1-8)))))^{\wedge} 2\right]^{\wedge} 1 /(\text { golden ratio })^{\wedge} 3+18+$ golden ratio

Where 18 is a Lucas number

Input:

$$
\begin{aligned}
& \phi^{3}-441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2} \\
& \quad+18+\phi
\end{aligned}
$$

Exact result:

$\phi^{3} \sqrt{\frac{3563637091566823}{7}}+\phi+18$

Decimal approximation:

2983.107943240931709838762167692741622705597155152719109613...
2983.1079432.... result very near to the rest mass of Charmed eta meson 2980.3

Alternate forms:

$\left(\frac{3563637091566823}{7}\right)^{\sqrt{5}-2}+\frac{1}{2}(37+\sqrt{5})$
$\frac{1}{2}\left(37+\sqrt{5}+2\left(\frac{3563637091566823}{7}\right)^{8 /(1+\sqrt{5})^{3}}\right)$
$18+\left(\frac{3563637091566823}{7}\right)^{8 /(1+\sqrt{5})^{3}}+\frac{1}{2}(1+\sqrt{5})$

Alternative representations:

$$
\begin{aligned}
& \sqrt[\phi^{3}]{-441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}} \\
& +18+\phi= \\
& 18++^{\left(2 \sin \left(54^{\circ}\right)\right)^{3}} \sqrt{-441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}+250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}}+ \\
& 2 \sin \left(54^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[\phi^{3}]{-441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}} \\
& +18+\phi=18-2 \cos \left(216^{\circ}\right)+ \\
& \left(-2 \cos \left(216^{\circ}\right)\right)^{3} \\
& -441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}+250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}
\end{aligned}
$$

$\sqrt[\phi^{3}]{-441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}}$
$+18+\phi=$
$18+\left(-2 \sin \left(666^{\circ}\right)\right)^{3} \sqrt{-441\left(1+240\left(-\frac{38}{3}+-\frac{216}{7}\right)\right)^{3}+250\left(1-504\left(-\frac{134}{3}+-\frac{1944}{7}\right)\right)^{2}}-$
$2 \sin \left(666^{\circ}\right)$
$[-441(((1+240 *((2) /(1-2)+(8 * 4) /(1-4)+(27 * 8) /(1-8))))))^{\wedge} 3+250(((1-504 *((2) /(1-$ $\left.2)+(32 * 4) /(1-4)+(243 * 8) /(1-8)))))^{\wedge} 2\right]^{\wedge} 1 /(55+13)$

Input:

$\left(-441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right) \wedge$ $\left(\frac{1}{55+13}\right)$

Result:

$\frac{3563637091566823}{7}$

Decimal approximation:

1.645418604084905536458275746617261174178983415175093464460...
$1.645418604084 \ldots . \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate form:

$\frac{1}{7} \sqrt[68]{3563637091566823} 7^{67 / 68}$
$-(29-2) / 10^{\wedge} 3+\left[-441\left(\left(\left(1+240 *\left((2) /(1-2)+\left(8^{*} 4\right) /(1-4)+\left(27^{*} 8\right) /(1-8)\right)\right)\right)\right)^{\wedge} 3+250(((1-\right.$ $\left.\left.\left.\left.504 *\left((2) /(1-2)+\left(32^{*} 4\right) /(1-4)+(243 * 8) /(1-8)\right)\right)\right)\right)^{\wedge} 2\right]^{\wedge} 1 /(55+13)$

Where 2 and 29 are Lucas numbers and 55 and 13 are Fibonacci numbers
Input:

$$
\begin{aligned}
& -\frac{29-2}{10^{3}}+\left(-441\left(1+240\left(\frac{2}{1-2}+\frac{8 \times 4}{1-4}+\frac{27 \times 8}{1-8}\right)\right)^{3}+\right. \\
& \left.\quad 250\left(1-504\left(\frac{2}{1-2}+\frac{32 \times 4}{1-4}+\frac{243 \times 8}{1-8}\right)\right)^{2}\right) \wedge\left(\frac{1}{55+13}\right)
\end{aligned}
$$

Result:

$\sqrt[68]{\frac{3563637091566823}{7}}-\frac{27}{1000}$

Decimal approximation:

$1.618418604084905536458275746617261174178983415175093464460 \ldots$
$1.6184186040849 \ldots$ result that is a very good approximation to the value of the golden ratio 1,618033988749...

Alternate forms:

For $\mathrm{x}=2$ and $\theta=\pi$, we obtain:
$2\left(\left(\left(\left(2 /(1-4) * \cos (\mathrm{Pi})+2^{\wedge} 2 /\left(2^{*}\left(1-2^{\wedge} 4\right)\right) * \cos (2 \mathrm{Pi})+2^{\wedge} 3 /\left(3^{*}\left(1-2^{\wedge} 6\right)\right) * \cos (3 \mathrm{Pi})\right)\right)\right)\right.$

> Input:
> $2\left(\frac{2}{1-4} \cos (\pi)+\frac{2^{2}}{2\left(1-2^{4}\right)} \cos (2 \pi)+\frac{2^{3}}{3\left(1-2^{6}\right)} \cos (3 \pi)\right)$

Exact result:

$\frac{1088}{945}$

Decimal approximation:

1.151322751322751322751322751322751322751322751322751322751
1.15132275132275...

Repeating decimal:

$1.1 \overline{513227}$ (period 6)

Alternative representations:

$2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)=2\left(-\frac{2}{3} \cosh (i \pi)+\frac{4 \cosh (2 i \pi)}{2\left(1-2^{4}\right)}+\frac{8 \cosh (3 i \pi)}{3\left(1-2^{6}\right)}\right)$
$2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)=$
$2\left(-\frac{2}{3} \cosh (-i \pi)+\frac{4 \cosh (-2 i \pi)}{2\left(1-2^{4}\right)}+\frac{8 \cosh (-3 i \pi)}{3\left(1-2^{6}\right)}\right)$

$$
\begin{aligned}
& 2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)= \\
& 2\left(-\frac{2}{3 \sec (\pi)}+\frac{4}{\left(2\left(1-2^{4}\right)\right) \sec (2 \pi)}+\frac{8}{\left(3\left(1-2^{6}\right)\right) \sec (3 \pi)}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)=\sum_{k=0}^{\infty}-\frac{4(-1)^{k}\left(315+63 \times 4^{k}+20 \times 9^{k}\right) \pi^{2 k}}{945(2 k)!} \\
& 2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)= \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{1-2 k}\left(315+7 \times 3^{3+2 k}+4 \times 25^{1+k}\right) \pi^{1+2 k}}{945(1+2 k)!} \\
& 2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)= \\
& \sum_{k=0}^{\infty}-\frac{4 \cos \left(\frac{k \pi}{2}+z_{0}\right)\left(315\left(\pi-z_{0}\right)^{k}+63\left(2 \pi-z_{0}\right)^{k}+20\left(3 \pi-z_{0}\right)^{k}\right)}{945 k!}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)= \\
& \quad-\frac{1592}{945}+\int_{0}^{1} \frac{4}{315} \pi(105 \sin (\pi t)+42 \sin (2 \pi t)+20 \sin (3 \pi t)) d t
\end{aligned}
$$

$$
2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)=
$$

$$
\int_{\frac{\pi}{2}}^{3 \pi}\left(\frac{16 \sin (t)}{189}+\frac{4}{75}\left(5 \sin \left(\frac{1}{5}(2 \pi+t)\right)+3 \sin \left(\frac{1}{5}(\pi+3 t)\right)\right)\right) d t
$$

$$
2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)=
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{2 e^{-\left(9 \pi^{2}\right) /(4 s)+s}\left(20+63 e^{\left(5 \pi^{2}\right) /(4 s)}+315 e^{\left(2 \pi^{2}\right) / s}\right) \sqrt{\pi}}{945 i \pi \sqrt{s}} d s \text { for } \gamma>0
$$

$2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)=$

$$
\begin{aligned}
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{2 \pi^{-1-2 s} \Gamma(s) \sqrt{\pi}}{15 i \Gamma\left(\frac{1}{2}-s\right)}-\frac{2^{1+2 s} \pi^{-1-2 s} \Gamma(s) \sqrt{\pi}}{3 i \Gamma\left(\frac{1}{2}-s\right)}-\frac{2^{3+2 s} \times 3^{-3-2 s} \pi^{-1-2 s} \Gamma(s) \sqrt{\pi}}{7 i \Gamma\left(\frac{1}{2}-s\right)}\right) \\
& \quad d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

And:
$1 / 10^{\wedge} 52 *[-(8 / 175))+2\left(\left(\left(\left(2 /(1-4) * \cos (\mathrm{Pi})+2^{\wedge} 2 /\left(2^{*}\left(1-2^{\wedge} 4\right)\right) * \cos (2 \mathrm{Pi})+2^{\wedge} 3 /(3 *(1-\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.2^{\wedge} 6\right)\right)^{*} \cos (3 \mathrm{Pi})\right)\right)\right)\right]$

Input:

$$
\frac{1}{10^{52}}\left(-\frac{8}{175}+2\left(\frac{2}{1-4} \cos (\pi)+\frac{2^{2}}{2\left(1-2^{4}\right)} \cos (2 \pi)+\frac{2^{3}}{3\left(1-2^{6}\right)} \cos (3 \pi)\right)\right)
$$

Exact result:

590625000

Decimal approximation:

$1.1056084656084656084656084656084656084656084656084656 \ldots \times 10^{-52}$
$1.10560846 \ldots . . .10^{-52}$

Alternative representations:

$$
\begin{aligned}
& -\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right) \\
& \frac{-\frac{8}{175}+2\left(-\frac{2}{3} \cosh (i \pi)+\frac{4 \cosh (2 i \pi)}{2\left(1-2^{4}\right)}+\frac{8 \cosh (3 i \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}= \\
& \frac{-\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}= \\
& -\frac{8}{175}+2\left(-\frac{2}{3} \cosh (-i \pi)+\frac{4 \cosh (-2 i \pi)}{2\left(1-2^{4}\right)}+\frac{8 \cosh (-3 i \pi)}{3\left(1-2^{6}\right)}\right) \\
& \frac{10^{52}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}= \\
& \frac{-\frac{8}{175}+2\left(-\frac{2}{3 \sec (\pi)}+\frac{4}{\left(2\left(1-2^{4}\right)\right) \sec (2 \pi)}+\frac{8}{\left(3\left(1-2^{6}\right)\right) \sec (3 \pi)}\right)}{10^{52}}
\end{aligned}
$$

Series representations:

$$
\frac{-\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}=
$$

$$
-\frac{1}{21875000}+
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{-51-2 k}\left(315+7 \times 3^{3+2 k}+4 \times 25^{1+k}\right) \pi^{1+2 k}}{2098321516541545861400663852691650390625(1+2 k)!}
$$

$$
\frac{-\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}=
$$

$$
-\frac{1}{21875000}+
$$

$$
\sum_{k=0}^{\infty}-\left(\left((-1)^{k}\left(315+63 \times 4^{k}+20 \times 9^{k}\right) \pi^{2 k}\right) /\right.
$$

(23625000 000: : $000000(2 k)!)$

$$
\frac{-\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}=
$$

$$
-\frac{1}{21875000}+
$$

$$
\sum_{k=0}^{\infty}-\left(\left(\cos \left(\frac{k \pi}{2}+z_{0}\right)\left(315\left(\pi-z_{0}\right)^{k}+63\left(2 \pi-z_{0}\right)^{k}+20\left(3 \pi-z_{0}\right)^{k}\right)\right) /\right.
$$

(2362500: $000000 k!)$

Integral representations:

73

$$
\begin{aligned}
& -\int_{0}^{1} \frac{\pi 187500}{+} \frac{\pi(105 \sin (\pi t)+42 \sin (2 \pi t)+20 \sin (3 \pi t))}{7875000} d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}= \\
& -\frac{1}{21875000}+ \\
& \int_{\frac{\pi}{2}}^{3 \pi} \\
& 100 \sin (t)+63\left(5 \sin \left(\frac{1}{5}(2 \pi+t)\right)+3 \sin \left(\frac{1}{5}(\pi+3 t)\right)\right) \\
& 11812500 \\
& d t \\
& \frac{-\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}= \\
& -\frac{1}{21875000}+ \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}-\left(\left(e^{-\left(9 \pi^{2}\right) /(4 s)+s}\left(20+63 e^{\left(5 \pi^{2}\right) /(4 s)}+315 e^{\left(2 \pi^{2}\right) / s}\right) \sqrt{\pi}\right) /\right. \\
& \text { (472500: } \\
& 000000000 i \pi \sqrt{s})) d s \text { for } \gamma>0 \\
& \frac{-\frac{8}{175}+2\left(\frac{2 \cos (\pi)}{1-4}+\frac{2^{2} \cos (2 \pi)}{2\left(1-2^{4}\right)}+\frac{2^{3} \cos (3 \pi)}{3\left(1-2^{6}\right)}\right)}{10^{52}}= \\
& -\frac{1}{21875000}+ \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\left(\left(\pi^{-1-2 s} \Gamma(s) \sqrt{\pi}\right) /\right.\right. \\
& \text { (7500: } \\
& \left.\left.000000000 i \Gamma\left(\frac{1}{2}-s\right)\right)\right)- \\
& 2^{-51+2 s} \pi^{-1-2 s} \Gamma(s) \sqrt{\pi} \\
& 6661338147750939242541790008544921875 i \Gamma\left(\frac{1}{2}-s\right) \\
& \text { ds for } 0<\gamma<\frac{1}{2} \\
& {\left[2 \left(\left(\left(\left(2 /(1-4) * \cos (\mathrm{Pi})+2^{\wedge} 2 /\left(2^{*}\left(1-2^{\wedge} 4\right)\right)^{*} \cos (2 \mathrm{Pi})+2^{\wedge} 3 /\left(3^{*}(1-\right.\right.\right.\right.\right.\right.} \\
& \left.\left.\left.\left.\left.\left.\left.2^{\wedge} 6\right)\right)^{*} \cos (3 \mathrm{Pi})\right)\right)\right)\right)\right]^{\wedge} 47+29+\text { golden ratio }
\end{aligned}
$$

Input:

$$
\left(2\left(\frac{2}{1-4} \cos (\pi)+\frac{2^{2}}{2\left(1-2^{4}\right)} \cos (2 \pi)+\frac{2^{3}}{3\left(1-2^{6}\right)} \cos (3 \pi)\right)\right)^{47}+29+\phi
$$

Exact result:

```
\phi+
```

 \(54700285804157255619147835510155689141812509330735666419891:\)
 508155213628338678427073039279195467073074421874897362290 :
 \(382200779425655569693974317 /\)
 70031753388283328262250343378047033818492911316654501558 :
 446034130403499558931305810077088206291437317304249887683 :
 909037150442600250244140625

Decimal approximation:

782.6963757072209070352136497922880131611296230242149488967...
$782.6963757 \ldots$. result practically equal to the rest mass of Omega meson 782.65

```
Alternate forms:
(70031753388283328262250343378047033818492911316654501 558446:
        034130403499558931305810077088206291437317304249887683909:
        037150442600250244140625 \phi+
        54700285804157255619147835510155689141812509 330735666419:
    891508155213628338678427073039279195467073074421874897:
    362290382200779425655569693974317)/
70031753388283328262250343378047033818492911316654501558446:
    034130403499558931305810077088206291437317304249887683 909:
    037150442600250244140625
109470603361702794566557921363689425 317443511572787987341 341:
            462344557660176915785451888635479140437586161054044612 264673:
            438709293911389632089259/
    1400635067765666565524500686756094067636985822633309003 116:
        892068260806999117862611620154176412582874634608499775 367:
    818074300885200500488281250+\frac{\sqrt{}{5}}{2}
```

54700285804157255619147835510155689141812509330735666419891 :
508155213628338678427073039279195467073074421874897362290382 : $200779425655569693974317 /$
70031753388283328262250343378047033818492911316654501558 :
446034130403499558931305810077088206291437317304249887683 :
$909037150442600250244140625+\frac{1}{2}(1+\sqrt{5})$

Alternative representations:

$$
\begin{aligned}
& \left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi= \\
& \quad 29+\phi+\left(2\left(-\frac{2}{3} \cosh (i \pi)+\frac{4 \cosh (2 i \pi)}{2\left(1-2^{4}\right)}+\frac{8 \cosh (3 i \pi)}{3\left(1-2^{6}\right)}\right)\right)^{47}
\end{aligned}
$$

$$
\begin{aligned}
& \left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi= \\
& \quad 29+\phi+\left(2\left(-\frac{2}{3} \cosh (-i \pi)+\frac{4 \cosh (-2 i \pi)}{2\left(1-2^{4}\right)}+\frac{8 \cosh (-3 i \pi)}{3\left(1-2^{6}\right)}\right)\right)^{47}
\end{aligned}
$$

$$
\left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi=
$$

$$
29+\phi+\left(2\left(-\frac{2}{3 \sec (\pi)}+\frac{4}{\left(2\left(1-2^{4}\right)\right) \sec (2 \pi)}+\frac{8}{\left(3\left(1-2^{6}\right)\right) \sec (3 \pi)}\right)\right)^{47}
$$

Series representations:

$$
\begin{aligned}
& \left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi= \\
& 29+\phi+140737488355328\left(\sum_{k=0}^{\infty}-\frac{2(-1)^{k}\left(315+63 \times 4^{k}+20 \times 9^{k}\right) \pi^{2 k}}{945(2 k)!}\right)^{47}
\end{aligned}
$$

$$
\left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi=
$$

$29+\phi+140737488355328\left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(315+7 \times 3^{3+2 k}+4 \times 25^{1+k}\right) \pi^{1+2 k}}{945(1+2 k)!}\right)^{47}$

$$
\begin{gathered}
\left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi=29+\phi+140737488355328 \\
\left(\sum_{k=0}^{\infty}-\frac{2 \cos \left(\frac{k \pi}{2}+z_{0}\right)\left(315\left(\pi-z_{0}\right)^{k}+63\left(2 \pi-z_{0}\right)^{k}+20\left(3 \pi-z_{0}\right)^{k}\right)}{945 k!}\right)^{47}
\end{gathered}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi= \\
& 29+\phi+140737488355328\left(-\frac{2}{15} T_{2}(\cos (\pi))-\frac{8 T_{3}(\cos (\pi))}{189}-\frac{2 \cos (\pi)}{3}\right)^{47}
\end{aligned}
$$

$$
\begin{gathered}
\left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi=29+\phi+140737488355328 \\
\left(-\frac{2 \cos (\pi)}{3}-\frac{2}{15}\left(-\cos (0)+2 \cos ^{2}(\pi)\right)-\frac{8}{189}(-\cos (\pi)+2 \cos (\pi) \cos (2 \pi))\right)^{47}
\end{gathered}
$$

$$
\left(2\left(\frac{\cos (\pi) 2}{1-4}+\frac{\cos (2 \pi) 2^{2}}{2\left(1-2^{4}\right)}+\frac{\cos (3 \pi) 2^{3}}{3\left(1-2^{6}\right)}\right)\right)^{47}+29+\phi=29+\phi+140737488355328
$$

$$
\left(-\frac{2}{3}\left(-1+2 \cos ^{2}\left(\frac{\pi}{2}\right)\right)-\frac{2}{15}\left(-1+2 \cos ^{2}(\pi)\right)-\frac{8}{189}\left(-1+2 \cos ^{2}\left(\frac{3 \pi}{2}\right)\right)\right)^{47}
$$

Page 251

For $\mathrm{x}=2$, we obtain:
$1 / 240+\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 3^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)-2\left(\left(\left(2 /(1-2)^{\wedge} 2+\right.\right.\right.$ $\left.\left.\left.\left.\left(4^{*} \wedge^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)^{\wedge} 2+\left(9^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)^{\wedge} 2\right)\right)\right)\right)$

Input:

$$
\frac{1}{240}+\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}+\frac{3^{3} \times 2^{3}}{1-2^{3}}-2\left(\frac{2}{(1-2)^{2}}+\frac{4 \times 2^{2}}{\left(1-2^{2}\right)^{2}}+\frac{9 \times 2^{3}}{\left(1-2^{3}\right)^{2}}\right)
$$

Exact result:
$-\frac{1905613}{35280}$

Decimal approximation:

-54.0139739229024943310657596371882086167800453514739229024...
-54.01397392...
$1 / 240\left(1^{\wedge} 5-3 \wedge 5^{*} 2+5^{\wedge} 5^{*} 2^{\wedge} 3-7 \wedge 5^{*} 2^{\wedge} 6\right) /\left(1-3 * 2+5 * 2 \wedge 3-7 * 2^{\wedge} 6\right)$

Input:

$\frac{1}{240} \times \frac{1^{5}-3^{5} \times 2+5^{5} \times 2^{3}-7^{5} \times 2^{6}}{1-3 \times 2+5 \times 2^{3}-7 \times 2^{6}}$

Exact result:

$\frac{1051133}{99120}$

Decimal approximation:

10.60465092816787732041969330104923325262308313155770782889...
10.60465....
$1 / 240+\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 3^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)$

Input:

$\frac{1}{240}+\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}+\frac{3^{3} \times 2^{3}}{1-2^{3}}$

Exact result:

$-\frac{24371}{560}$

Decimal approximation:

-43.5196428571428571428571428571428571428571428571428571428...
-43.519642....
$-2\left(\left(\left(\left(2 /(1-2)^{\wedge} 2+\left(4^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)^{\wedge} 2+\left(9^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)^{\wedge} 2\right)\right)\right)\right)$

Input:

$$
-2\left(\frac{2}{(1-2)^{2}}+\frac{4 \times 2^{2}}{\left(1-2^{2}\right)^{2}}+\frac{9 \times 2^{3}}{\left(1-2^{3}\right)^{2}}\right)
$$

Exact result:

$$
-\frac{4628}{441}
$$

Decimal approximation:

-10.4943310657596371882086167800453514739229024943310657596...
$-10.494331 \ldots$.

We note that:
$\left(\left(\left(\left(-\left(1 / 240+\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 3^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)-2\left(\left(\left(\left(2 /(1-2)^{\wedge} 2\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.+\left(4^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)^{\wedge} 2+\left(9^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)^{\wedge} 2\right)\right)\right)\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 8$

Input:

$\sqrt[8]{-\left(\frac{1}{240}+\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}+\frac{3^{3} \times 2^{3}}{1-2^{3}}-2\left(\frac{2}{(1-2)^{2}}+\frac{4 \times 2^{2}}{\left(1-2^{2}\right)^{2}}+\frac{9 \times 2^{3}}{\left(1-2^{3}\right)^{2}}\right)\right)}$

Result:

$\frac{\sqrt[8]{\frac{1905613}{5}}}{\sqrt{2} \sqrt[4]{21}}$

Decimal approximation:

1.646505805314693801781961279943795052888752959517294353004
$1.646505805 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots$

Alternate forms:

$$
\begin{aligned}
& \frac{1}{210} \sqrt[8]{1905613} \sqrt{2} 5^{7 / 8} \times 21^{3 / 4} \\
& \text { root of } 35280 x^{8}-1905613 \text { near } x=1.64651
\end{aligned}
$$

$1 / 10^{\wedge} 27\left[(18+7) / 10^{\wedge} 3+\left(\left(\left(-\left(1 / 240+\left(1 \wedge 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\right.\right.\right.\right.\right.$ $\left(3^{\wedge} 3 * 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)-2\left(\left(\left(\left(2 /(1-2)^{\wedge} 2+\left(4^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)^{\wedge} 2+(9 * 2 \wedge 3) /(1-\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 3\right)^{\wedge} 2\right)\right)()\right)\right)()\right)\right)^{\wedge} 1 / 8\right]$

Where 18 and 7 are Lucas numbers

Input:

$\frac{1}{10^{27}}$

$$
\left.\left(\frac{18+7}{10^{3}}+\sqrt[8]{-\left(\frac{1}{240}+\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}+\frac{3^{3} \times 2^{3}}{1-2^{3}}-2\left(\frac{2}{(1-2)^{2}}+\frac{4 \times 2^{2}}{\left(1-2^{2}\right)^{2}}+\frac{9 \times 2^{3}}{\left(1-2^{3}\right)^{2}}\right)\right.}\right)\right)
$$

Result:

1000000000000000000000000000

Decimal approximation:

$1.6715058053146938017819612799437950528887529595172943 \ldots \times 10^{-27}$
$1.67150580531 \ldots * 10^{-27}$ result practically equal to the value of the formula:
$m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-27} \mathrm{~kg}$
that is the holographic proton mass (N. Haramein)

Alternate forms:

```
\(21+4 \sqrt{2} 5^{7 / 8} \times 21^{3 / 4} \sqrt[8]{1905613}\)
840000000000000000000000000000
    root of \(35280 x^{8}-1905613\) near \(x=1.64651+\frac{1}{40}\)
    1000000000000000000000000000
\(\frac{1}{40000000000000000000000000000}+\)
\(\sqrt[8]{\frac{1905613}{5}}\)
\(1000000000000000000000000000 \sqrt{2} \sqrt[4]{21}\)
```

Page 253

$$
1-5 x+7 x^{2}-11 x^{5}+13 x^{7}-8 x=\phi^{2}(-x) f\left(-x, i-x^{2}\right)=1 \beta_{1}
$$

We have that:
$11^{*}\left(2^{\wedge} 5\right)+13^{*}\left(2^{\wedge} 7\right)$

Input:

$11 \times 2^{5}+13 \times 2^{7}$

Result:

2016
2016

$$
\begin{aligned}
& 1-2 x+4 x^{5}-5 x^{8}+7 x^{16}-2 c=\psi\left(x^{2}\right) f^{2}\left(x_{1}-x^{2}\right) \\
&= A_{x}
\end{aligned}
$$

$1-2(2)+4 * 2 \wedge 5-5 * 2 \wedge 8+7 * 2 \wedge 16$

Input:

$1-2 \times 2+4 \times 2^{5}-5 \times 2^{8}+7 \times 2^{16}$

Result:

457597
457597
For $\mathrm{x}=2$, we obtain:
$1-2(2)+4 * 2 \wedge 5-5 * 2 \wedge 8+7 * 2 \wedge 16$

For $\mathrm{x}=2$, we obtain:

$$
\begin{aligned}
& 1 / 4+2 /(1-2)+\left(2^{\wedge} 2\right) /\left(1+2^{\wedge} 2\right)+\left(3^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)+\left(6^{*} 2^{\wedge} 4\right) /\left(1+2^{\wedge} 4\right)+\left(5^{*} 2^{\wedge} 5\right) /(1- \\
& \left.2^{\wedge} 5\right)+\left(3^{*} \wedge^{\wedge} 6\right) /\left(1+2^{\wedge} 6\right)
\end{aligned}
$$

Input:

$\frac{1}{4}+\frac{2}{1-2}+\frac{2^{2}}{1+2^{2}}+\frac{3 \times 2^{3}}{1-2^{3}}+\frac{6 \times 2^{4}}{1+2^{4}}+\frac{5 \times 2^{5}}{1-2^{5}}+\frac{3 \times 2^{6}}{1+2^{6}}$
Exact result:
$-\frac{900591}{959140}$

Decimal approximation:

$-0.93895677377650812185916550242925954500907062576891798903$
-0.9389567737....

We have also that:

For $\mathrm{x}=2$, we obtain:
$1-5\left(2^{\wedge} 3\right)-7\left(2^{\wedge} 3\right)^{\wedge} 2+11\left(2^{\wedge} 3\right)^{\wedge} 5+13\left(2^{\wedge} 3\right)^{\wedge} 7$

Input:

$1-5 \times 2^{3}-7\left(2^{3}\right)^{2}+11\left(2^{3}\right)^{5}+13\left(2^{3}\right)^{7}$

Result:

27622937
27622937

Scientific notation:

2.7622937×10^{7}

For $\mathrm{x}=2$, we obtain:
$1-5\left(\left(\left(2 / 3-\left(3^{*} 2^{\wedge} 3\right) /\left(1+2^{\wedge} 3\right)+(4 * 2 \wedge 4) /\left(1+2^{\wedge} 4\right)-\right.\right.\right.$
$\left.\left.\left(7 * 2^{\wedge} 7\right) /\left(1+2^{\wedge} 7\right)+\left(9^{*} 2^{\wedge} 9\right) /\left(1+2^{\wedge} 9\right)+\left(11^{*} 2^{\wedge} 11\right) /\left(1+2^{\wedge} 11\right)-\left(12^{*} 2^{\wedge} 12\right) /\left(1+2^{\wedge} 12\right)\right)\right)$

Input:

$1-5\left(\frac{2}{3}-\frac{3 \times 2^{3}}{1+2^{3}}+\frac{4 \times 2^{4}}{1+2^{4}}-\frac{7 \times 2^{7}}{1+2^{7}}+\frac{9 \times 2^{9}}{1+2^{9}}+\frac{11 \times 2^{11}}{1+2^{11}}-\frac{12 \times 2^{12}}{1+2^{12}}\right)$

Exact result:

$-\frac{5242700117}{403441953}$

Decimal approximation:

-12.9949304429428042155050741587105097124096065438192046428...
-12.99493044...

From the results obtained:
$-12.99493044+27622937-0.9389567737+457597+2016$
we have:
$\ln (-12.99493044+27622937-0.9389567737+457597+2016)+1 /$ golden ratio

Input interpretation:

$\log (-12.99493044+27622937-0.9389567737+457597+2016)+\frac{1}{\phi}$

Result:

17.7686924375383153.

$17.7686924 \ldots$ result practically equal to the black hole entropy 17.7715

Alternative representations:

$$
\begin{aligned}
& \log (-12.9949+27622937-0.938957+457597+2016)+\frac{1}{\phi}= \\
& \quad \log _{e}\left(2.80825 \times 10^{7}\right)+\frac{1}{\phi} \\
& \log (-12.9949+27622937-0.938957+457597+2016)+\frac{1}{\phi}= \\
& \quad \log (a) \log _{a}\left(2.80825 \times 10^{7}\right)+\frac{1}{\phi} \\
& \log (-12.9949+27622937-0.938957+457597+2016)+\frac{1}{\phi}= \\
& \quad-\operatorname{Li}_{1}\left(-2.80825 \times 10^{7}\right)+\frac{1}{\phi}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \log (-12.9949+27622937-0.938957+457597+2016)+\frac{1}{\phi}= \\
& \frac{1}{\phi}+\log \left(2.80825 \times 10^{7}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k} e^{-17.1507 k}}{k} \\
& \log (-12.9949+27622937-0.938957+457597+2016)+\frac{1}{\phi}= \\
& \frac{1}{\phi}+2 i \pi\left[\left.\frac{\arg \left(2.80825 \times 10^{7}-x\right)}{2 \pi} \right\rvert\,+\log (x)-\right. \\
& \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2.80825 \times 10^{7}-x\right)^{k} x^{-k}}{k} \text { for } x<0
\end{aligned}
$$

$\log (-12.9949+27622937-0.938957+457597+2016)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}+\left\lfloor\frac{\arg \left(2.80825 \times 10^{7}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)+\log \left(z_{0}\right)+
$$

$$
\left\lfloor\frac{\arg \left(2.80825 \times 10^{7}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(z_{0}\right)-\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(2.80825 \times 10^{7}-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

Integral representations:

$\log (-12.9949+27622937-0.938957+457597+2016)+\frac{1}{\phi}=\frac{1}{\phi}+\int_{1}^{2.80825 \times 10^{7}} \frac{1}{t} d t$
$\log (-12.9949+27622937-0.938957+457597+2016)+\frac{1}{\phi}=$

$$
\frac{1}{\phi}+\frac{1}{2 i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-17.1507 s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
$$

$\Gamma(x)$ is the gamma function
$(-12.99493044+27622937-0.9389567737+457597+2016)^{\wedge} 1 / 34$

Where 34 is a Fibonacci number

Input interpretation:

$\sqrt[34]{-12.99493044+27622937-0.9389567737+457597+2016}$

Result:

1.65604318057028662...
$1.65604318 \ldots$. is very near to the 14 th root of the following Ramanujan's class invariant $Q=\left(G_{505} / G_{101 / 5}\right)^{3}=1164,2696$ i.e. 1,65578...

We have also:
$1 / 3\left[(-12.99493044+27622937-0.9389567737+457597+2016)^{\wedge} 1 / 2\right]-29-2 \mathrm{Pi}-$ golden ratio ${ }^{2} 2$
Where 29 is a Lucas number

Input interpretation:

$$
\frac{1}{3} \sqrt{-12.99493044+27622937-0.9389567737+457597+2016}-29-2 \pi-\phi^{2}
$$

Result:

1728.5307168747351.
1728.530716...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Series representations:

$$
\begin{aligned}
& \frac{1}{3} \sqrt{-12.9949+27622937-0.938957+457597+2016}-29-2 \pi-\phi^{2}= \\
& 1737.43-\phi^{2}-8 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{1}{3} \sqrt{-12.9949+27622937-0.938957+457597+2016}-29-2 \pi-\phi^{2}= \\
& 1741.43-\phi^{2}-4 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}} \\
& \frac{1}{3} \sqrt{-12.9949+27622937-0.938957+457597+2016}-29-2 \pi-\phi^{2}= \\
& 1737.43-\phi^{2}-2 \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{3} \sqrt{-12.9949+27622937-0.938957+457597+2016}-29-2 \pi-\phi^{2}= \\
& 1737.43-\phi^{2}-4 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t \\
& \frac{1}{3} \sqrt{-12.9949+27622937-0.938957+457597+2016}-29-2 \pi-\phi^{2}= \\
& 1737.43-\phi^{2}-8 \int_{0}^{1} \sqrt{1-t^{2}} d t \\
& \frac{1}{3} \sqrt{-12.9949+27622937-0.938957+457597+2016}-29-2 \pi-\phi^{2}= \\
& 1737.43-\phi^{2}-4 \int_{0}^{\infty} \frac{\sin (t)}{t} d t
\end{aligned}
$$

And:
$1 / 3\left[(-12.99493044+27622937-0.9389567737+457597+2016)^{\wedge} 1 / 2\right]+18$

Where 18 is a Lucas number

Input interpretation:

$\frac{1}{3} \sqrt{-12.99493044+27622937-0.9389567737+457597+2016}+18$

Result:

1784.4319361706646...
1784.431936... result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.
$1 / 26\left[(-12.99493044+27622937-0.9389567737+457597+2016)^{\wedge} 1 / 2\right]-47-18+$ $1 /$ golden ratio

Input interpretation:

$$
\frac{1}{26} \sqrt{-12.99493044+27622937-0.9389567737+457597+2016}-47-18+\frac{1}{\phi}
$$

Result:

139.4371035469035...
139.4371.... result practically equal to the rest mass of Pion meson 139.57
$1 / 26\left[(-12.99493044+27622937-0.9389567737+457597+2016)^{\wedge} 1 / 2\right]-76$-golden ratio
Input interpretation:
$\frac{1}{26} \sqrt{-12.99493044+27622937-0.9389567737+457597+2016}-76-\phi$

Result:

126.2010355694037...
$126.201035 \ldots$ result in the range of the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and the Higgs boson mass 125.18

Page 258

For $\mathrm{x}=2$

$$
1+240\left(\left(\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 3^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)=-2 y^{\wedge} 8+256^{*} 2^{*} 2 z^{\wedge} 8
$$

Input:

$1+240\left(\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}+\frac{3^{3} \times 2^{3}}{1-2^{3}}\right)=-2 y^{8}+256 \times 2 \times 2 z^{8}$

Exact result:

$-\frac{73113}{7}=1024 z^{8}-2 y^{8}$

Implicit plot:

Alternate forms:
$y^{8}-512 z^{8}=\frac{73113}{14}$
$-\frac{73113}{7}=-2\left(y^{8}-512 z^{8}\right)$
$2 y^{8}-1024 z^{8}-\frac{73113}{7}=0$

Solutions:

$z=-\frac{\sqrt[8]{14 y^{8}-73113}}{2 \sqrt[4]{2} \sqrt[8]{7}}$
$z=-\frac{i \sqrt[8]{14 y^{8}-73113}}{2 \sqrt[4]{2} \sqrt[8]{7}}$
$z=\frac{i \sqrt[8]{14 y^{8}-73113}}{2 \sqrt[4]{2} \sqrt[8]{7}}$
$z=\frac{\sqrt[8]{14 y^{8}-73113}}{2 \sqrt[4]{2} \sqrt[8]{7}}$
$z=-\frac{\sqrt[4]{-1} \sqrt[8]{14 y^{8}-73113}}{2 \sqrt[4]{2} \sqrt[8]{7}}$

Implicit derivatives:

$\frac{\partial y(z)}{\partial z}=\frac{512 z^{7}}{y^{7}}$
$\frac{\partial z(y)}{\partial y}=\frac{y^{7}}{512 z^{7}}$

For:

Input:

$-\frac{\sqrt[8]{-73113+14 y^{8}}}{2 \sqrt[4]{2} \sqrt[8]{7}}$

Plots:

- real part
- imaginary part
(y from -31.8 to 31.8)
- real part
- imaginary part

Alternate form:

$$
-\frac{\sqrt[8]{2 y^{8}-\frac{73113}{7}}}{2 \sqrt[4]{2}}
$$

Real roots:

$y=-\sqrt[8]{\frac{73113}{14}}$
$y=\sqrt[8]{\frac{73113}{14}}$

Complex roots:

$y=-i \sqrt[8]{\frac{73113}{14}}$
$y=i \sqrt[8]{\frac{73113}{14}}$
$y=-\sqrt[4]{-1} \sqrt[8]{\frac{73113}{14}}$
$y=\sqrt[4]{-1} \sqrt[8]{\frac{73113}{14}}$
$y=-(-1)^{3 / 4} \sqrt[8]{\frac{73113}{14}}$

Properties as a real function:

Domain

$\left\{y \in \mathbb{R}: y \leq-\sqrt[8]{\frac{73113}{14}}\right.$ or $y \geq \sqrt[8]{\frac{73113}{14}}$,

Range

$\{z \in \mathbb{R}: z \leq 0\}$ (all non-positive real numbers)

Parity

even

Series expansion at $\mathbf{y}=\mathbf{0}$:

$$
\begin{cases}-\frac{\sqrt[8]{-\frac{73113}{7}}}{2 \sqrt[4]{2}}+\frac{\sqrt[8]{-1}\left(\frac{7}{73113}\right)^{7 / 8} y^{8}}{8 \sqrt[4]{2}}+O\left(y^{13}\right) & \operatorname{Im}\left(y^{8}\right) \geq 0 \\ \frac{-8 \sqrt{\frac{73113}{7}} \cos \left(\frac{\pi}{8}\right)+i \sqrt[8]{\frac{73113}{7}} \sin \left(\frac{\pi}{8}\right)}{2 \sqrt[4]{2}}+\frac{\left(\frac{7}{73113}\right)^{7 / 8} y^{8}\left(\cos \left(\frac{\pi}{8}\right)-i \sin \left(\frac{\pi}{8}\right)\right)}{8 \sqrt[4]{2}}+O\left(y^{13}\right) & \text { (otherwise) }\end{cases}
$$

Series expansion at $y=-(73113 / 14)^{\wedge}(1 / 8)$:

$$
\begin{aligned}
& -\frac{73113^{7 / 64} \sqrt[8]{-14 y-14^{7 / 8} \sqrt[8]{73113}}}{2^{63 / 64 \times 7^{15 / 64}}+} \\
& 7^{57 / 64} \sqrt[8]{-14 y-14^{7 / 8} \sqrt[8]{73113}}\left(y+\sqrt[8]{\frac{73113}{14}}\right) \\
& 16 \times 2^{55 / 64} \sqrt[64]{73113} \\
& \frac{35\left(3^{55 / 64} \sqrt[64]{7} \sqrt[8]{-14 y-14^{7 / 8} \sqrt[8]{73113}}\right)\left(y+\sqrt[8]{\frac{73113}{14}}\right)^{2}}{512\left(2^{47 / 64} \times 24371^{9 / 64}\right)}- \\
& \frac{329\left(3^{\left.47 / 64 \times 7^{9 / 64} \sqrt[8]{-14 y-14^{7 / 8} \sqrt[8]{73113}}\right)\left(y+\sqrt[8]{\frac{73113}{14}}\right)^{3}}\right.}{8192\left(2^{39 / 64} \times 24371^{17 / 64}\right)} \\
& \frac{8407 \times 3^{39 / 64} \times 7^{17 / 64} \sqrt[8]{-14 y-14^{7 / 8} \sqrt[8]{73113}}\left(y+\sqrt[8]{\frac{73113}{14}}\right)^{4}}{524288 \times 2^{31 / 64} \times 24371^{25 / 64}}+ \\
& O\left(\left(y+\sqrt[8]{\frac{73113}{14}}\right)^{5}\right)
\end{aligned}
$$

(generalized Puiseux series)

Series expansion at $y=-i(73113 / 14)^{\wedge}(1 / 8)$:

Series expansion at $\mathrm{y}=\mathrm{i}(\mathbf{7 3 1 1 3 / 1 4})^{\wedge}(\mathbf{1} / \mathbf{8})$:
$-\frac{73113^{7 / 64} \sqrt[8]{-14^{7 / 8} \sqrt[8]{73113}-14 i y}}{2^{63 / 64} \times 7^{15 / 64}}+$
$i 7^{57 / 64} \sqrt[8]{-14^{7 / 8} \sqrt[8]{73113}-14 i y}\left(y-i \sqrt[8]{\frac{73113}{14}}\right)$

$$
16 \times 255 / 64 \sqrt[64]{73113}
$$

$$
\frac{35 \times 355 / 64 \sqrt[64]{7} \sqrt[8]{-14^{7 / 8} \sqrt[8]{73113}-14 i y}\left(y-i \sqrt[8]{\frac{73113}{14}}\right)^{2}}{+}
$$

$$
512 \times 2^{47 / 64} \times 24371^{9 / 64}
$$

$$
\underbrace{329 i 3^{47 / 64} \times 7^{0 / 64}} \sqrt[8]{-14^{7 / 8} \sqrt[8]{73113}-14 i y}\left(y-i \sqrt[8]{\frac{73113}{14}}\right)^{3}+
$$

$$
8192 \times 2^{39 / 64} \times 24371^{17 / 64}
$$

$$
\frac{8407 \times 3^{39 / 64} \times 7^{17 / 64} \sqrt[8]{-14^{7 / 8} \sqrt[8]{73113}-14 i y}\left(y-i \sqrt[8]{\frac{73113}{14}}\right)^{4}}{+}
$$

$$
524288 \times 2^{31 / 64} \times 24371^{25 / 64}
$$

$$
o\left(\left(y-i \sqrt[8]{\frac{73113}{14}}\right)^{5}\right)
$$

(generalized Puiseux series)

Series expansion at $\mathbf{y}=(\mathbf{7 3 1 1 3} / 14)^{\wedge}(\mathbf{1 / 8})$:

Series expansion at $y=-(-1)^{\wedge(1 / 4)(73113 / 14) \wedge(1 / 8): ~}$

(generalized Puiseux series)
Series expansion at $y=(-1)^{\wedge}(1 / 4)(73113 / 14)^{\wedge}(1 / 8)$:

$73113^{7 / 64} \sqrt[8]{-2^{3 / 8} \times 7^{7 / 8} \sqrt[8]{73113}+(7-7 i) y}$
$\left(\frac{1}{32}-\frac{i}{32}\right) 7^{57 / 64} \sqrt[8]{-2^{30 / 64} \times 7^{15 / 64} \times 7^{7 / 8} \sqrt[8]{73113}+(7-7 i) y}\left(y-\sqrt[4]{-1} \sqrt[8]{\frac{73113}{14}}\right)$
$35 i 3^{55 / 64} \sqrt[64]{7} \sqrt[8]{-2^{3 / 8} \times 7^{7 / 8} \sqrt[84]{73113}}{ }^{73113}+(7-7 i) y\left(y-\sqrt[4]{-1} \sqrt[8]{\frac{73113}{14}}\right)^{2}$
$329\left(\sqrt[4]{-1} 3^{47 / 64} \times 7^{0 / 64} \sqrt[8]{-2^{3 / 8} \times 7^{7 / 8} \sqrt[8]{73113}+(7-7 i) y}\right)\left(y-\sqrt[4]{-1} \sqrt[8]{\frac{73113}{14}}\right)^{3}$
$8407\left(3^{39 / 64} \times 7^{17 / 64} \sqrt[8]{-2^{3 / 8} \times 7^{7 / 8} \sqrt[8]{73113}+(7-7 i) y}\right)\left(y-\sqrt[4]{-1} \sqrt[8]{\frac{73113}{14}}\right)^{4}$
$O\left(\left(y-\sqrt[4]{-1} \sqrt[8]{\frac{73113}{14}}\right)^{5}\right)$

Series expansion at $y=-(-1)^{\wedge}(3 / 4)(73113 / 14)^{\wedge}(1 / 8)$:

(generalized Puiseux series)

Series expansion at $y=(-1)^{\wedge}(3 / 4)(73113 / 14)^{\wedge}(1 / 8)$:

$$
\begin{aligned}
& -\frac{73113^{7 / 64} \sqrt[8]{-2^{3 / 8} \times 7^{7 / 8} \sqrt[8]{73113}+(-7-7 i) y}}{2^{59 / 64} \times 7^{15 / 64}}+ \\
& \left(\frac{1}{32}+\frac{i}{32}\right) 7^{57 / 64} \sqrt[8]{-2^{3 / 8} \times 7^{7 / 8} \sqrt[8]{73113}+(-7-7 i) y}\left(y-(-1)^{3 / 4} \sqrt[8]{\frac{73113}{14}}\right) \\
& 2^{19 / 64} \sqrt[64]{73113} \\
& 35 i 3^{55 / 64} \sqrt[64]{7} \sqrt[8]{-2^{3 / 8} \times 7^{7 / 8} \sqrt[8]{73113}+(-7-7 i) y}\left(y-(-1)^{3 / 4} \sqrt[8]{\frac{73113}{14}}\right)^{2} \\
& 512 \times 2^{43 / 64} \times 24371^{9 / 64} \\
& 329\left((-1)^{3 / 4} 3^{47 / 64} \times 7^{9 / 64} \sqrt[8]{-14 \sqrt[4]{-1} y-14^{7 / 8} \sqrt[8]{73113}}\right)\left(y-(-1)^{3 / 4} \sqrt[8]{\frac{73113}{14}}\right)^{3} \\
& 8192\left(2^{39 / 64} \times 24371^{17 / 64}\right) \\
& \frac{8407\left(3^{39 / 64} \times 7^{17 / 64} \sqrt[8]{-2^{3 / 8} \times 7^{7 / 8} \sqrt[8]{73113}+(-7-7 i) y}\right)\left(y-(-1)^{3 / 4} \sqrt[8]{\frac{73113}{14}}\right)^{4}}{524288\left(2^{27 / 64} \times 24371^{25 / 64}\right)}+ \\
& O\left(\left(y-(-1)^{3 / 4} \sqrt[8]{\frac{73113}{14}}\right)^{5}\right)
\end{aligned}
$$

(generalized Puiseux series)

Series expansion at $\mathbf{y}=\infty$:
$-\frac{y}{2 \sqrt[8]{2}}+\frac{73113}{224 \sqrt[8]{2} y^{7}}+O\left(\left(\frac{1}{y}\right)^{13}\right)$
(Laurent series)

Derivative:

$$
\frac{d}{d y}\left(-\frac{\sqrt[8]{-73113+14 y^{8}}}{2 \sqrt[4]{2} \sqrt[8]{7}}\right)=-\frac{y^{7}}{\sqrt[4]{2}\left(2 y^{8}-\frac{73113}{7}\right)^{7 / 8}}
$$

Indefinite integral:

$$
\begin{aligned}
& \int-\frac{\sqrt[8]{-73113+14 y^{8}}}{2 \sqrt[4]{2} \sqrt[8]{7}} d y= \\
& \frac{y\left(\sqrt[8]{73113}\left(73113-14 y^{8}\right)^{7 / 8}{ }_{2} F_{1}\left(\frac{1}{8}, \frac{7}{8} ; \frac{9}{8} ; \frac{14 y^{8}}{73113}\right)-14 y^{8}+73113\right)}{4 \sqrt[4]{2} \sqrt[8]{7}\left(14 y^{8}-73113\right)^{7 / 8}}+\text { constant }
\end{aligned}
$$

Global maxima:

$\max \left\{-\frac{\sqrt[8]{-73113+14 y^{8}}}{2 \sqrt[4]{2} \sqrt[8]{7}}\right\}=0$ at $y=\sqrt[8]{\frac{73113}{14}}$
$\max \left\{-\frac{\sqrt[8]{-73113+14 y^{8}}}{2 \sqrt[4]{2} \sqrt[8]{7}}\right\}=0$ at $y=-\sqrt[8]{\frac{73113}{14}}$

Series representations:

$$
\begin{aligned}
& -\frac{\sqrt[8]{-73113+14 y^{8}}}{2 \sqrt[4]{2} \sqrt[8]{7}}= \\
& \sum_{n=-\infty}^{\infty}\left(\left\{\begin{array}{l}
-(-73113)^{(1-n) / 8} 2^{1 / 8(-10+n)} \times 7^{1 / 8(-1+n)}\binom{\frac{1}{8}}{\frac{n}{8}}(n \bmod 8=0 \text { and } n \geq 0) \\
0
\end{array}\right) y^{n}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{\sqrt[8]{-73113+14 y^{8}}}{2 \sqrt[4]{2} \sqrt[8]{7}}=\sum_{n=0}^{\infty} \frac{1}{2(\sqrt[4]{2} \sqrt[8]{7})} \\
& (-1+y)^{n}(-1) \text { DifferenceRoot }[\{y, n\} \mapsto\{(14-14 n) \dot{y}(n)+(-14-112 n) \dot{y}(1+n)+ \\
& (-490-392 n) \dot{y}(2+n)+(-1862-784 n) \dot{y}(3+n)+(-3430-980 n) \\
& \dot{y}(4+n)+(-3626-784 n) \dot{y}(5+n)+(-2254-392 n) \dot{y}(6+n)+ \\
& (-770-112 n) \dot{y}(7+n)+(584792+73099 n) \dot{y}(8+n)=0 \text {, } \\
& \dot{y}(0)=\sqrt[8]{-73099}, \dot{y}(1)=-\frac{14 \sqrt[8]{-1}}{73099^{7 / 8}}, \dot{y}(2)=-\frac{3582537 \sqrt[8]{-1}}{73099 \times 73099^{7 / 8}}, \\
& y(3)=-\frac{524010521916 \sqrt[8]{-1}}{5343463801 \times 73099^{7 / 8}}, \\
& \dot{y}(4)=-\frac{47944987183198035 \sqrt[8]{-1}}{390601860389299 \times 73099^{7 / 8}}, \\
& y(5)=-\frac{2815989016953345208542 \sqrt[8]{-1}}{28552605392597367601 \times 73099^{7 / 8}}, \\
& y(6)=-\frac{8054533051083447351063039 \sqrt[8]{-1}}{160551300122574998020423 \times 73099^{7 / 8}}, \\
& \left.\left.y(7)=-\frac{184029908811334635678404841324 \sqrt[8]{-1}}{11736139487660109780294900877 \times 73099^{7 / 8}}\right\rangle\right](n)
\end{aligned}
$$

From
$y=\sqrt[8]{\frac{73113}{14}}$
we have:
$(73113 / 14)^{\wedge}(1 / 8)$

Input:
$\sqrt[8]{\frac{73113}{14}}$

Decimal approximation:

2.915636115280214646936604438881477147791905653862806377301...
$2.91563611528 \ldots=y=\phi$

Alternate form:

$\frac{1}{14} \sqrt[8]{73113} 14^{7 / 8}$

From
$z=-\frac{\sqrt[8]{14 y^{8}-73113}}{2 \sqrt[4]{2} \sqrt[8]{7}}$

For $y=2.91563611528 \ldots$, we obtain:
$\left(73113-14 *^{*} 2.91563611528^{\wedge} 8\right)^{\wedge}(1 / 8) /\left(22^{\wedge}(1 / 4) 7^{\wedge}(1 / 8)\right)$

Input interpretation:

$\frac{\sqrt[8]{73113-14 \times 2.91563611528^{8}}}{2 \sqrt[4]{2} \sqrt[8]{7}}$

Result:

0.0395671 ..
$0.0395671 \ldots=\mathrm{z}=\psi$

We have thence from

$$
1+240\left(\left(\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3 \wedge 3 * 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)=-2 y^{\wedge} 8+256^{*} 2^{*} 2 z^{\wedge} 8
$$

That:
$1+240\left(\left(\left(1^{\wedge} 3^{*} 2\right) /(1-2)+\left(2^{\wedge} 3^{*} 2^{\wedge} 2\right) /\left(1-2^{\wedge} 2\right)+\left(3^{\wedge} 3^{*} 2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)\right)\right)$

Input:

$1+240\left(\frac{1^{3} \times 2}{1-2}+\frac{2^{3} \times 2^{2}}{1-2^{2}}+\frac{3^{3} \times 2^{3}}{1-2^{3}}\right)$

Exact result:

$-\frac{73113}{7}$

Decimal approximation:

-10444.7142857142857142857142857142857142857142857142857142...
-10444.71428571...

Is equal to
$-2(2.91563611528)^{\wedge} 8+256 * 2 * 2(0.0395671)^{\wedge} 8$

Input interpretation:

$$
-2 \times 2.91563611528^{8}+256 \times 2 \times 2 \times 0.0395671^{8}
$$

Result:

-10444.7142857019828617399658333240063729389056340773605593...
-10444.71428570198...

Repeating decimal:

-10444.7142857019828617399658333240063729389056340773605593.
-10444.7142857...

From which:
$\left(\left(\left(-10444.714285701982861739965833324+2(2.91563611528)^{\wedge} 8\right)\right)\right) /$ ($\left.\left(2 * 2(0.0395671)^{\wedge} 8\right)\right)$

Input interpretation:

```
-10444.714285701982861739965833324+2\times2.915636115288
    2\times2\times0.03956718
```


Result:

256.0000000000000000002652198340920843259334262058536160624...
256.00000000...
$1 / 2\left(\left(\left(-10444.714285701982861739965833324+2(2.91563611528)^{\wedge} 8\right)\right)\right) /$ ((2*2(0.0395671)^8))-Pi+1/golden ratio

Input interpretation:

$\frac{1}{2} \times \frac{-10444.714285701982861739965833324+2 \times 2.91563611528^{8}}{2 \times 2 \times 0.0395671^{8}}-\pi+\frac{1}{\phi}$

Result:

125.476...
125.476... result practically equal to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18

Alternative representations:

```
\(\frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{\left(2 \times 2 \times 0.0395671^{8}\right) 2}-\pi+\frac{1}{\phi}=\)
    \(-\pi+-\frac{1}{2 \cos \left(216^{\circ}\right)}+\)
    \(-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}\)
                        \(2\left(4 \times 0.0395671^{8}\right)\)
\(\frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{\left(2 \times 2 \times 0.0395671^{8}\right) 2}-\pi+\frac{1}{\phi}=\)
    \(-180^{\circ}+-\frac{1}{2 \cos \left(216^{\circ}\right)}+\)
    \(-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}\)
    \(2\left(4 \times 0.0395671^{8}\right)\)
\[
\begin{aligned}
& \frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{\left(2 \times 2 \times 0.0395671^{8}\right) 2}-\pi+\frac{1}{\phi}= \\
& -\pi+\frac{1}{2 \cos \left(\frac{\pi}{5}\right)}+ \\
& \frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{2\left(4 \times 0.0395671^{8}\right)}
\end{aligned}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{\left(2 \times 2 \times 0.0395671^{8}\right) 2}-\pi+\frac{1}{\phi}= \\
& \frac{-128 .+\frac{1}{\phi}-4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}}{130+\frac{1}{\phi}-2 \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}} \begin{array}{l}
\left(2 \times 2 \times 0.0395671^{8}\right) 2
\end{array}-\pi+\frac{1}{\phi}= \\
&
\end{aligned}
\]
\(\frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{\left(2 \times 2 \times 0.0395671^{8}\right) 2}-\pi+\frac{1}{\phi}=\) 128. \(+\frac{1}{\phi}-\sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}\)

\section*{Integral representations:}
\(\frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{\left(2 \times 2 \times 0.0395671^{8}\right) 2}-\pi+\frac{1}{\phi}=\) 128. \(+\frac{1}{\phi}-2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\)
\(\frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{\left(2 \times 2 \times 0.0395671^{8}\right) 2}-\pi+\frac{1}{\phi}=\) 128. \(+\frac{1}{\phi}-4 \int_{0}^{1} \sqrt{1-t^{2}} d t\)
\(\frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{\left(2 \times 2 \times 0.0395671^{8}\right) 2}-\pi+\frac{1}{\phi}=\) 128. \(+\frac{1}{\phi}-2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t\)
\(1 / 2\left(\left(\left(-10444.714285701982861739965833324+2(2.91563611528)^{\wedge} 8\right)\right)\right) /\) \(\left(\left(2 * 2(0.0395671)^{\wedge} 8\right)\right)+11+1 /\) golden ratio

\section*{Input interpretation:}
\(\frac{1}{2} \times \frac{-10444.714285701982861739965833324+2 \times 2.91563611528^{8}}{2 \times 2 \times 0.0395671^{8}}+11+\frac{1}{\phi}\)

\section*{Result:}
139.618...
139.618... result practically equal to the rest mass of Pion meson 139.57

\section*{Alternative representations:}
```

-10444.7142857019828617399658333240000 +2 2.9156361152800008
(2\times2\times0.03956718) 2
11+\frac{1}{\phi}=
11+\frac{-10444.7142857019828617399658333240000+2\times2.915636115280000}{8}
\frac{1}{2\operatorname{sin}(5\mp@subsup{4}{}{\circ})}
-10444.7142857019828617399658333240000 +2 2.9156361152800008
(2\times2\times0.03956718) 2
11+\frac{1}{\phi}=11+-\frac{1}{2\operatorname{cos}(21\mp@subsup{6}{}{\circ})}+
-10444.7142857019828617399658333240000 +2\times2.9156361152800008
2(4\times0.03956718)

```
\(\underline{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}+\)
        \(\left(2 \times 2 \times 0.0395671^{8}\right)^{2}\)
        \(11+\frac{1}{\phi}=\)
    \(11+\frac{-10444.7142857019828617399658333240000+2 \times 2.915636115280000^{8}}{2\left(4 \times 0.0395671^{8}\right)}+\)
    \(-\frac{1}{2 \sin \left(666^{\circ}\right)}\)

Now, we take the value 2.91563611528 of \(\phi\) that we have previously obtained and insert it in the following expression:

Page 271


We obtain:
\(2.91563611528\left(\mathrm{e}^{\wedge}(-3 \mathrm{Pi})\right)^{*} \mathrm{x}=\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right) /\left(\left(\left(6^{*} \mathrm{sqrt} 3-9\right)^{\wedge} 1 / 4\right)\right)\right)\)

\section*{Input interpretation:}
\(2.91563611528 e^{-3 \pi} x=\frac{2.91563611528 e^{-\pi}}{\sqrt[4]{6 \sqrt{3}-9}}\)

\section*{Result:}
\(0.000235290427914 x=0.115990757213\)
Plot:


\section*{Alternate form:}
\(0.000235290427914 x-0.115990757213=0\)

\section*{Solution:}
```

x\approx492.968448575

```
492.968448575 result very near to the rest mass of Kaon meson 493.677
\(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-3 \mathrm{Pi})\right)\right)^{*}\left(0.927+\right.\) golden \(\left.^{\operatorname{ratio}}{ }^{\wedge} 2\right) \mathrm{x}=\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\right.\right.\right.\) \(\mathrm{Pi}))\) )/(((6*sqrt3-9)^1/4)))

Where 0.927 is the Kaon Regge slope

\section*{Input interpretation:}
\(\left(2.91563611528 e^{-3 \pi}\right)\left(0.927+\phi^{2}\right) x=\frac{2.91563611528 e^{-\pi}}{\sqrt[4]{6 \sqrt{3}-9}}\)

\section*{Result:}
\(0.000834113 x=0.115990757213\)
Plot:


\section*{Alternate form:}
\(0.000834113 x-0.115990757213=0\)
Alternate form assuming x is real:
\(0.000834113 x+0=0.115990757213\)

\section*{Solution:}
\(x \approx 139.059\)
139.059 result practically equal to the rest mass of Pion meson 139.57
\(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-3 \mathrm{Pi})\right)\right)^{*}\left(0.927+\text { golden ratio }^{\wedge} 2\right)^{*} 139.059\)

\section*{Input interpretation:}
\(\left(2.91563611528 e^{-3 \pi}\right)\left(0.927+\phi^{2}\right) \times 139.059\)

\section*{Result:}
0.115991 .
0.115991...

\section*{Alternative representations:}
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=\) \(405.445 e^{-540^{\circ}}\left(0.927+\left(2 \cos \left(\frac{\pi}{5}\right)\right)^{2}\right)\)
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=\)
\(\quad\left(\left(0.927+\left(2 \cos \left(\frac{\pi}{5}\right)\right)^{2}\right) 139.059\right) 2.915636115280000 \exp ^{-3 \pi}(z)\) for \(z=1\)
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=\)
\(405.445 e^{-3 \pi}\left(0.927+\right.\) root of \(-1-x+x^{2}\) near \(\left.x=1.61803^{2}\right)\)

\section*{Series representations:}
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=\)
\(405.445\left(0.927+\phi^{2}\right)\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-12 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\)
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=\)
\(405.445\left(0.927+\phi^{2}\right)\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{-12 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\)
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=\)
\(405.445\left(0.927+\phi^{2}\right)\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-3 \times \sum_{k=1}^{\infty} 4^{-k}\left(-1+3^{k}\right) \zeta(1+k)}\)

\section*{Integral representations:}
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=405.445 e^{-6} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\left(0.927+\phi^{2}\right)\)
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=405.445 e^{-12} \int_{0}^{1 \sqrt{1-t^{2}} d t}\left(0.927+\phi^{2}\right)\)
\(\left(\left(0.927+\phi^{2}\right) 139.059\right) 2.915636115280000 e^{-3 \pi}=405.445 e^{-6} \int_{0}^{\infty} \sin (t) / t d t\left(0.927+\phi^{2}\right)\)
\(\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right) /\left(\left(\left(6^{*} \text { sqrt } 3-9\right)^{\wedge} 1 / 4\right)\right)\right)\)
Input interpretation:
\(\frac{2.91563611528 e^{-\pi}}{\sqrt[4]{6 \sqrt{3}-9}}\)

\section*{Result:}
0.115990757213...
0.115990757213...

\section*{Series representations:}
\[
\begin{aligned}
& \frac{2.915636115280000 e^{-\pi}}{\sqrt[4]{6 \sqrt{3}-9}}=\frac{2.215404366764325 e^{-\pi}}{\sqrt[4]{-3+2 \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}} \\
& \frac{2.915636115280000 e^{-\pi}}{\sqrt[4]{6 \sqrt{3}-9}}=\frac{2.215404366764325 e^{-\pi}}{\sqrt[4]{-3+2 \sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}} \\
& \frac{2.915636115280000 e^{-\pi}}{\sqrt[4]{6 \sqrt{3}-9}}=\frac{2.215404366764325 e^{-\pi}}{\sqrt[4]{-3+\frac{\sum_{j=0}^{\infty} \mathrm{Rec}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}}}
\end{aligned}
\]

Page 272


We obtain, from the same previous value of \(\phi\) :
\(2.91563611528\left(\mathrm{e}^{\wedge}(-5 \mathrm{Pi})\right)^{*} \mathrm{x}=\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right) /\left(\left(\left(5^{*} \text { sqrt5-10}\right)^{\wedge} 1 / 2\right)\right)\right)\)

\section*{Input interpretation:}
\(2.91563611528 e^{-5 \pi} x=\frac{2.91563611528 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\)

\section*{Result:}
\(4.39391399448 \times 10^{-7} x=0.115972074392\)

\section*{Plot:}


\section*{Alternate form:}
\(4.39391399448 \times 10^{-7} x-0.115972074392=0\)

\section*{Solution:}
\(x \approx 263937.970879\)
263937.970879

We have:
\(2.91563611528\left(e^{\wedge}(-5 \mathrm{Pi})\right) * 263937.970879\)

\section*{Input interpretation:}
\(2.91563611528 e^{-5 \pi} \times 263937.970879\)

\section*{Result:}
0.115972074392...
0.115972074392...

\section*{Alternative representations:}
```

$2.915636115280000 e^{-5 \pi} 263937.9708790000=769547.080088533 e^{-900^{\circ}}$
$2.915636115280000 e^{-5 \pi} 263937.9708790000=769547.080088533 e^{5 i \log (-1)}$
$2.915636115280000 e^{-5 \pi} 263937.9708790000=$
$2.915636115280000 \exp ^{-5 \pi}(z) 263937.9708790000$ for $z=1$

```

\section*{Series representations:}
\(2.915636115280000 e^{-5 \pi} 263937.9708790000=\)
\(769547.080088533\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-20} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)\)
\(2.915636115280000 e^{-5 \pi} 263937.9708790000=\) \(769547.080088533\left(\sum_{k=0}^{\infty} \frac{(-1+k)^{2}}{k!}\right)^{-20 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\)
\(2.915636115280000 e^{-5 \pi} 263937.9708790000=\) \(769547.080088533\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{-5 \times \sum_{k=1}^{\infty} 4^{-k}\left(-1+3^{k}\right) \zeta(1+k)}\)

\section*{Integral representations:}
\(2.915636115280000 e^{-5 \pi} 263937.9708790000=769547.080088533 e^{-10} f_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\) \(2.915636115280000 e^{-5 \pi} 263937.9708790000=769547.080088533 e^{-20} \int_{0}^{1} \sqrt{1-t^{2}} d t\) \(2.915636115280000 e^{-5 \pi} 263937.9708790000=769547.080088533 e^{-10} \int_{0}^{\infty} \sin (t) / t d t\)

And:
\(\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right) /\left(\left((5 * \text { sqrt5-10 })^{\wedge} 1 / 2\right)\right)\right.\)

\section*{Input interpretation:}
\[
\frac{2.91563611528 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}
\]

\section*{Result:}
0.115972074392...
0.115972074932...

\section*{Series representations:}
\(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}=\frac{1.303912110283899 e^{-\pi}}{\sqrt{-2+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}}}\)
\(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}=\frac{1.303912110283899 e^{-\pi}}{\sqrt{-2+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}}\)
\(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}=\frac{1.844010190506012 e^{-\pi}}{\sqrt{-4+\frac{\sum_{j=0}^{\infty} \mathrm{Res}_{s=-\frac{1}{2}+j} 4^{-5} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}}}\)

From the previous expression, we obtain:
\(\left(\left(\left(\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right) /\left(\left(\left(5^{*} \text { sqrt5-10)}\right)^{\wedge} 1 / 2\right)\right)\right)\right)\right)\right)^{\wedge} 1 / 256\)

Input interpretation:
\(\sqrt[256]{\frac{2.91563611528 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}}\)

\section*{Result:}
0.99161966456557...
\(0.9916196645 \ldots\) result very near to the value of the following Rogers-Ramanujan continued fraction:
\(\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684\)
and to the dilaton value \(\mathbf{0 . 9 8 9 1 1 7 3 5 2 2 4 3 = \boldsymbol { \phi }}\)
\(1 / 2 * \log\) base \(0.99161966456\left(\left(\left(\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right) /\left(\left(\left(5^{*} \operatorname{sqrt5-10}\right)^{\wedge} 1 / 2\right)\right)\right)\right)\right)\right)-\) \(\mathrm{Pi}+1 /\) golden ratio

\section*{Input interpretation:}
\(\frac{1}{2} \log _{0.99161966456}\left(\frac{2.91563611528 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)-\pi+\frac{1}{\phi}\)
\(\log _{b}(x)\) is the base- \(b\) logarithm
\(\phi\) is the golden ratio

\section*{Result:}
125.476441..
125.476441... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Alternative representation:}
\(\frac{1}{2} \log _{0.991619664560000}\left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)-\pi+\frac{1}{\phi}=\)
\(-\pi+\frac{1}{\phi}+\frac{\log \left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{-10+5 \sqrt{5}}}\right)}{2 \log (0.991619664560000)}\)

\section*{Series representations:}
\(\frac{1}{2} \log _{0.991619664560000}\left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)-\pi+\frac{1}{\phi}=\)
\[
\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}\left(-1+\frac{1.303912110283899 e^{-\pi}}{\sqrt{-2+\sqrt{5}}}\right)^{k}}{k}}{2 \log (0.991619664560000)}
\]
\[
\frac{1}{2} \log _{0.991619664560000}\left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)-\pi+\frac{1}{\phi}=
\]
\[
\frac{1}{\phi}-\pi+\frac{1}{2} \log _{0.991619664560000}\left(\frac{1.303912110283899 e^{-\pi}}{\sqrt{-2+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}}}\right)
\]
\[
\frac{1}{2} \log _{0.991619664560000}\left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)-\pi+\frac{1}{\phi}=
\]
\[
\frac{1}{\phi}-\pi+\frac{1}{2} \log _{0.991619664560000}\left(\frac{1.303912110283899 e^{-\pi}}{\sqrt{-2+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}}\right)
\]
\(1 / 2^{*} \log\) base \(0.99161966456\left(\left(\left(\left(2.91563611528\right.\right.\right.\right.\) ( \(\left.\left.\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right) /(((5 *\) sqrt5-
\(\left.\left.\left.10)^{\wedge} 1 / 2\right)\right)\right)\) )) \()+11+1 /\) golden ratio

\section*{Input interpretation:}
\(\frac{1}{2} \log _{0.99161966456}\left(\frac{2.91563611528 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)+11+\frac{1}{\phi}\)
\(\log _{b}(x)\) is the base \(-b\) logarithm

\section*{Result:}
139.618034...
\(139.618034 \ldots\) result practically equal to the rest mass of Pion meson 139.57

\section*{Alternative representation:}
\(\frac{1}{2} \log _{0.991619664560000}\left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)+11+\frac{1}{\phi}=\)
\[
11+\frac{1}{\phi}+\frac{\log \left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{-10+5 \sqrt{5}}}\right)}{2 \log (0.991619664560000)}
\]

\section*{Series representations:}
\[
\begin{aligned}
& \frac{1}{2} \log _{0.991619664560000}\left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)+11+\frac{1}{\phi}= \\
& 11+\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-1)^{k}}{2 \log \left(-1+\frac{1.303912110283899 e^{-\pi}}{\sqrt{-2+\sqrt{5}}}\right)^{k}}}{k}
\end{aligned}
\]
\[
\frac{1}{2} \log _{0.991619664560000}\left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)+11+\frac{1}{\phi}=
\]
\[
11+\frac{1}{\phi}+\frac{1}{2} \log _{0.091619664560000}\left(\frac{1.303912110283899 e^{-\pi}}{\sqrt{-2+\sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}}}\right)
\]
\[
\frac{1}{2} \log _{0.991619664560000}\left(\frac{2.915636115280000 e^{-\pi}}{\sqrt{5 \sqrt{5}-10}}\right)+11+\frac{1}{\phi}=
\]
\[
11+\frac{1}{\phi}+\frac{1}{2} \log _{0.991619664560000}\left(\frac{1.303912110283899 e^{-\pi}}{\sqrt{-2+\sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}}\right)
\]


We obtain, from the same previous value of \(\phi\) :
\(2.91563611528\left(e^{\wedge}(-9 \mathrm{Pi})\right)^{*} \mathrm{x}=1 / 3^{*}\left(\left(1+(2((\mathrm{sqrt} 3)+1))^{\wedge} 1 / 3\right)\right)\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\right.\right.\right.\) Pi))))

\section*{Input interpretation:}
\(2.91563611528 e^{-9 \pi} x=\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.91563611528 e^{-\pi}\right)\)

\section*{Result:}
\(1.53230823825 \times 10^{-12} x=0.115972039438\)
Plot:

\(-1.53230823825 \times 10^{-12} x\)
\(-0.115972039438\)

\section*{Alternate form:}
\(1.53230823825 \times 10^{-12} x-0.115972039438=0\)

\section*{Solution:}
```

x\approx7.5684536925 * 10 }\mp@subsup{0}{}{10

```
\(7.5684536925^{*} 10^{10}\)
\(2.91563611528\left(\mathrm{e}^{\wedge}(-9 \mathrm{Pi})\right) *(7.5684536925 \mathrm{e}+10)=\) \(1 / 3 *\left(\left(1+(2((\text { sqrt } 3)+1))^{\wedge} 1 / 3\right)\right)\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right)\right)\)

\section*{Input interpretation:}
\(2.91563611528 e^{-9 \pi} \times 7.5684536925 \times 10^{10}=\) \(\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.91563611528 e^{-\pi}\right)\)

\section*{Result:}

True

We have that:
\(2.91563611528\left(\mathrm{e}^{\wedge}(-9 \mathrm{Pi})\right)^{*}(7.5684536925 \mathrm{e}+10)\)

\section*{Input interpretation:}
\(2.91563611528 e^{-9 \pi} \times 7.5684536925 \times 10^{10}\)

Result:
0.11597203944...
0.11597203944...
\(1 / 3^{*}\left(\left(1+(2((\text { sqrt } 3)+1))^{\wedge} 1 / 3\right)\right)\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right)\right)\)

Input interpretation:
\(\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.91563611528 e^{-\pi}\right)\)

Result:
0.115972039438...
0.115972039438...

\section*{Series representations:}
\[
\begin{aligned}
& \frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.915636115280000 e^{-\pi}\right)= \\
& 0.971878705093333 e^{-\pi}+1.224490438491662 e^{-\pi} \sqrt[3]{1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}} \\
& \frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.915636115280000 e^{-\pi}\right)= \\
& 0.971878705093333 e^{-\pi}+1.224490438491662 e^{-\pi} \sqrt[3]{1+\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}
\end{aligned}
\]
\[
\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.915636115280000 e^{-\pi}\right)=0.9718787050933 e^{-\pi}+
\]
\[
0.9718787050933 e \sqrt{2+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{\sqrt{\pi}}}
\]
\(\left(\left(\left(\left(0.9568666373+\left(\left(\left(1 / 3^{*}\left(\left(1+(2((\operatorname{sqrt} 3)+1))^{\wedge} 1 / 3\right)\right)\right)\left(\left(2.91563611528\right.\right.\right.\right.\right.\right.\right.\right.\) ( \(^{\wedge}(-\) Pi) )) )) )) ) ) ) ) ) \(\wedge 7\)

Where 0.9568666373 is the following Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
\]

\section*{Input interpretation:}
\(\left(0.9568666373+\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.91563611528 e^{-\pi}\right)\right)^{7}\)

\section*{Result:}
1.63584049...
\(1.63584049 \ldots \approx \zeta(2)=\frac{\pi^{2}}{6}=1.644934 \ldots\)
\(\left(\left(\left(0.9243408674589+\left(\left(\left(1 / 3^{*}\left(\left(1+(2((\mathrm{sqr} 3)+1))^{\wedge} 1 / 3\right)\right)\right)\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.\right.\right.\right.\) Pi) )) )) )) )) )) \()^{\wedge} 13\)

Where 0.9243408674589 is a Ramanujan mock theta function value

\section*{Input interpretation:}
\(\left(0.9243408674589+\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.91563611528 e^{-\pi}\right)\right)^{13}\)

\section*{Result:}
1.67159793946.
\(1.67159793946 \ldots\) result practically equal to the value of the formula:
\(m_{p^{\prime}}=2 \times \frac{\eta}{R} m_{P}=1.6714213 \times 10^{-27} \mathrm{~kg}\)
that is the holographic proton mass (N. Haramein)
\(\left(\left(\left(\left(0.9243408674589+\left(\left(\left(1 / 3^{*}\left(\left(1+(2((\mathrm{sqr} 3)+1))^{\wedge} 1 / 3\right)\right)\right)\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.\right.\right.\right.\right.\) Pi) )) )) )) )) )) \()^{\wedge} 12\)

\section*{Input interpretation:}
\(\left(0.9243408674589+\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.91563611528 e^{-\pi}\right)\right)^{12}\)

\section*{Result:}
1.60682226316...
1.60682226316...
(( \(1.63584049+((() .9243408674589+(()\)
\(1 / 3^{*}\left(\left(1+(2((\mathrm{sqrt3})+1))^{\wedge} 1 / 3\right)\right)\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\right.\right.\right.\)
\(\mathrm{Pi}))\) )) )) )) )) ) \(\left.\left.\left.{ }^{\wedge} 12\right)\right)\right)^{*} 1(((34+3) \mathrm{Pi} /(55+3))\)

\section*{Input interpretation:}
\[
\begin{aligned}
& \left(1.63584049+\left(0.9243408674589+\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.91563611528 e^{-\pi}\right)\right)^{12}\right) \times \\
& \frac{1}{(34+3) \times \frac{\pi}{55+3}}
\end{aligned}
\]

\section*{Result:}
1.61799874...
\(1.61799874 \ldots\) result that is a very good approximation to the value of the golden ratio 1,618033988749...

\section*{Series representations:}
\[
\begin{aligned}
& \frac{1}{\frac{(34+3) \pi}{55+3}}(1.63584+(0.92434086745890000+ \\
& \left.\left.\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.915636115280000 e^{-\pi}\right)\right)^{12}\right)= \\
& \frac{1}{37 \pi} 58(1.63584+(0.92434086745890000+0.9718787050933333 \\
& \left.\left.e^{-\pi}\left(1+\sqrt[3]{2} \sqrt[3]{1+\sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k}}\right)\right)^{12}\right)
\end{aligned}
\]
\[
\begin{array}{r}
\frac{1}{\frac{(34+3) \pi}{55+3}}(1.63584+(0.92434086745890000+ \\
\left.\left.\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.915636115280000 e^{-\pi}\right)\right)^{12}\right)=
\end{array}
\]
\[
\frac{1}{37 \pi} 58(1.63584+(0.92434086745890000+0.9718787050933333
\]
\[
\left.\left.e^{-\pi}\left(1+\sqrt[3]{2} \sqrt[3]{1+\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}\right)\right)^{12}\right)
\]
\[
\left.\left.\left.\begin{array}{l}
\frac{1}{\frac{(34+3) \pi}{55+3}}(1.63584+(0.92434086745890000+ \\
\left.\left.\frac{1}{3}(1+\sqrt[3]{2(\sqrt{3}+1)})\left(2.915636115280000 e^{-\pi}\right)\right)^{12}\right)= \\
\left(1+\sqrt[3]{2} \sqrt[3]{\left.1+\frac{\sum_{j=0}^{\infty} \operatorname{Res}_{s=-\frac{1}{2}+j} 2^{-s} \Gamma\left(-\frac{1}{2}-s\right) \Gamma(s)}{2 \sqrt{\pi}}\right)}\right)
\end{array}\right)\right)^{12}\right)
\]

\section*{Possible closed forms:}
\(\frac{5823014063 \pi}{11306274669} \approx 1.6179987429660464991866619\)
\(\pi\) root of \(224 x^{5}-503 x^{4}+32 x^{3}+187 x^{2}-1411 x+700\) near \(x=0.515025 \approx\)
1.6179987429660464991817718
\(\frac{288+19 e-123 e^{2}}{2\left(408-348 e+49 e^{2}\right)} \approx 1.61799874296604650220\)
\(\frac{-497+204 \sqrt{\pi}+247 \pi-870 \pi^{3 / 2}+565 \pi^{2}}{270 \pi} \approx 1.617998742966046499130094\)
\(\pi\) root of \(4094 x^{4}+1028 x^{3}-8460 x^{2}+2199 x+683\) near \(x=0.515025 \approx\)
1.6179987429660464991880921
\(\sqrt[3]{\frac{3578+1208 e+33 \pi-1243 \log (2)}{1441}} \approx 1.617998742966046499126776\)
\(\frac{1}{2} \sqrt{\frac{1}{433}(4763+1288 e-1039 \pi-672 \log (2))} \approx 1.61799874296604649906740\)
\(\pi\) root of \(117773 x^{3}+41117 x^{2}-42787 x-4959\) near \(x=0.515025 \approx\)
1.617998742966046499194700
root of \(61 x^{5}+699 x^{4}-1003 x^{3}+439 x^{2}-922 x-876\) near \(x=1.618\)
1.617998742966046499198419
\(46+17 e+38 e^{2}+39 \sqrt{1+e}+\sqrt{1+e^{2}}+38 \pi-25 \pi^{2}-87 \sqrt{1+\pi}-44 \sqrt{1+\pi^{2}} \approx\) 1.6179987429660464988388
```

$e^{\frac{3}{8}+\frac{13}{88 e}-\frac{5 e}{88}-\frac{5}{44 \pi}+\frac{2 \pi}{11}} \pi^{3 / 44-(5 e) / 44} \sqrt[22]{\sin (e \pi)} \sqrt[11]{-\cos (e \pi)} \approx$
1.61799874296604649922092
$\frac{-1161-525 \pi+193 \pi^{2}}{-1103+63 \pi+35 \pi^{2}} \approx 1.6179987429660464979125$
$\frac{9-5 \sqrt{2}+\sqrt{3}-7 e-2 \pi^{2}-\log (8)}{5 \sqrt{2}-3 \sqrt{3}+e-4 \pi-\pi^{2}-9 \log (2)+\log (3)} \approx 1.61799874296604649947075$
$\frac{3743399633}{2313598604} \approx 1.61799874296604649922238$

```

From the following continued fraction:
\((((((1 /(1+1 /(95+1 /(1+1 /(1+1 /(1+1 /(1+1 /(1+1 /(1+1 /(1+1 /(2+1 /(1+\) \(1))())))()))\) )

\section*{Input:}


\section*{Exact result:}

12526
12657

\section*{Decimal approximation:}
0.989649996049616812830844591925416765426246345895551868531
\(0.98964999604 \approx 0.98965\) that is very near to the mean of the values of the following four fundamental Rogers-Ramanujan continued fraction:
\[
\frac{\mathrm{e}^{-\frac{2 \pi}{5}}}{\sqrt{\varphi \sqrt{5}}-\varphi}=1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\frac{\mathrm{e}^{-6 \pi}}{1+\frac{\mathrm{e}^{-8 \pi}}{1+\ldots}}}} \approx 1.0018674362
\]
\[
\frac{\mathrm{e}^{-\frac{2 \pi}{\sqrt{5}}}}{\sqrt{5}}-\varphi \quad 1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-6 \pi \sqrt{5}}}{\sqrt{(\varphi-1)^{5} \sqrt[4]{5^{3}}}-1}}} \approx 1.0000007913
\]
\[
\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373
\]
\[
\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684
\]
\(1 / 4(1.0018674362+1.0000007913+0.9568666373+0.9991104684)=\) 0.9894613333
we obtain also:
\((((((1 /(1+1 /(95+1 /(1+1 /(1+1 /(1+1 /(1+1 /(1+1 /(1+1 /(1+1 /(2+1 /(1+\) \(\left.\left.\left.1))))))))))))^{+}\left(\left(\left(1 / 3^{*}\left(\left(1+\left(2((\text { sqrt3) }+1))^{\wedge} 1 / 3\right)\right)\left(\left(2.91563611528\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\)

\section*{Input interpretation:}


\section*{Result:}
1.105622035488...
1.105622035488...

\section*{Series representations:}



We observe that:

\section*{Input interpretation:}


\section*{Result:}
\(1.105622035488 \ldots \times 10^{-52}\)
\(1.105622 \ldots * 10^{-52}\) result practically equal to the value of Cosmological Constant

\section*{Series representations:}



Now, we have that:
Page 284


We obtain, from the same previous value of \(\phi\) :
\(\left(\left(\left(\left(\left(2.91563611528^{\wedge} 2\left(e^{\wedge}(-7 \mathrm{Pi})\right)\right) * 1 /\left(\left(2.91563611528^{\wedge} 2\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right)\right)\right)\right)^{*} \mathrm{x}=(28)^{\wedge} 1 / 8\right.\right.\) * \(\left.\left.1 / 14\left(\left(((13+\text { sqrt } 7))^{\wedge} 1 / 2\right)\right)+\left(\left((7+3 \text { sqrt7 })^{\wedge} 1 / 2\right)\right)\right)\right)\)

\section*{Input interpretation:}

\[
\sqrt[8]{28} \times \frac{1}{14} \sqrt{13+\sqrt{7}}+\sqrt{7+3 \sqrt{7}}
\]

\section*{Result:}
\(6.5124121361 \times 10^{-9} x=\frac{\sqrt{13+\sqrt{7}}}{2^{3 / 4} \times 7^{7 / 8}}+\sqrt{7+3 \sqrt{7}}\)

\section*{Plot:}


\section*{Alternate forms:}
\(6.5124121361 \times 10^{-9} x=\sqrt{7+3 \sqrt{7}}+\frac{\sqrt[4]{91+88 \sqrt{7}}}{7 \sqrt{2}}\)
\(6.5124121361 \times 10^{-9} x=\frac{1}{14}(\sqrt[4]{2} \sqrt[8]{7} \sqrt{13+\sqrt{7}}+14 \sqrt{7+3 \sqrt{7}})\)
\(6.5124121361 \times 10^{-9} x=\)
root of \(173625106649344 x^{8}-9723005972363264 x^{7}+\) \(194453538903864576 x^{6}-1498771403857541632 x^{5}+\) \(1159021887091951456 x^{4}+20840169720671219072 x^{3}+\) \(38742854856889191120 x^{2}+25174749039929292832 x+\) 6894039009519142849 near \(x=18.4332\)

\section*{Solution:}
\(x \approx 6.592623748 \times 10^{8}\)
\(6.592623748 * 10^{8}\)
\(\left(\left(\left(() .91563611528^{\wedge} 2\left(\mathrm{e}^{\wedge}(-7 \mathrm{Pi})\right)\right)\right)^{*} 1 /\left(\left(2.91563611528^{\wedge} 2\left(\mathrm{e}^{\wedge}(-\right.\right.\right.\right.\) Pi)))))) \()^{*}\left(6.592623748 \times 10^{\wedge} 8\right)\)

\section*{Input interpretation:}
\(\left(\left(2.91563611528^{2} e^{-7 \pi}\right) \times \frac{1}{2.91563611528^{2} e^{-\pi}}\right) \times 6.592623748 \times 10^{8}\)

\section*{Result:}
4.293388291...
4.293388291....
\(\left(\left((28)^{\wedge} 1 / 8 * 1 / 14\left(\left(((13+\text { sqrt } 7))^{\wedge} 1 / 2\right)\right)+\left(\left((7+3 \text { sqrt7 })^{\wedge} 1 / 2\right)\right)\right)\right)\)

\section*{Input:}
\(\sqrt[8]{28} \times \frac{1}{14} \sqrt{13+\sqrt{7}}+\sqrt{7+3 \sqrt{7}}\)

\section*{Result:}
\[
\frac{\sqrt{13+\sqrt{7}}}{2^{3 / 4} \times 7^{7 / 8}}+\sqrt{7+3 \sqrt{7}}
\]

\section*{Decimal approximation:}
\(4.293388290292366604711671866594386380711862864679518547720 \ldots\)
4.29338829029.....

\section*{Alternate forms:}
\[
\begin{aligned}
& \frac{1}{14}(\sqrt[4]{2} \sqrt[8]{7} \sqrt{13+\sqrt{7}}+14 \sqrt{7+3 \sqrt{7}}) \\
& \sqrt{7+3 \sqrt{7}}+\frac{\sqrt[4]{91+88 \sqrt{7}}}{7 \sqrt{2}}
\end{aligned}
\]
root of \(173625106649344 x^{8}-9723005972363264 x^{7}+\) \(194453538903864576 x^{6}-1498771403857541632 x^{5}+\) \(1159021887091951456 x^{4}+20840169720671219072 x^{3}+\) \(38742854856889191120 x^{2}+25174749039929292832 x+\) 6894039009519142849 near \(x=18.4332\)

\section*{Minimal polynomial:}
```

173625106649344 x 16 -9723005972363264 x 14 + 194453538903864576 x 12 -
1498771403857541632 x }\mp@subsup{x}{}{10}+1159021887091951456 \mp@subsup{x}{}{8}
20840169720671219072 x}\mp@subsup{x}{}{6}+38742854856889191120 \mp@subsup{x}{}{4}
25174749039929292832 \mp@subsup{x}{}{2}+6894039009519142849

```

We note that:
\[
1 / 2(1 / 1.0018674362)^{*} 1 /\left(\left((28)^{\wedge} 1 / 8 * 1 / 14\left(\left(((13+\mathrm{sqrt7}))^{\wedge} 1 / 2\right)\right)+\left(\left((7+3 \mathrm{sqrt7})^{\wedge} 1 / 2\right)\right)\right)\right)
\]
where 1.0018674362 is the value of the following Rogers-Ramanujan continued fraction
\[
\frac{\mathrm{e}^{-\frac{2 \pi}{5}}}{\sqrt{\varphi \sqrt{5}}-\varphi}=1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\frac{\mathrm{e}^{-6 \pi}}{1+\frac{\mathrm{e}^{-8 \pi}}{1+\ldots}}}} \approx 1.0018674362
\]

Input interpretation:
\(\frac{1}{2} \times \frac{1}{1.0018674362} \times \frac{1}{\sqrt[8]{28} \times \frac{1}{14} \sqrt{13+\sqrt{7}}+\sqrt{7+3 \sqrt{7}}}\)

\section*{Result:}
\(0.116241063832335786356871947868326789844844575770907721152 \ldots\)
0.1162410638...

And:
\(1 / 2(1 / 1.0018674362)^{*} 1 /\left(\left(\left(\left(\left(\left(\left(() .91563611528^{\wedge} 2\left(\mathrm{e}^{\wedge}(-7 \mathrm{Pi})\right)\right)\right)^{*} 1 /\left(\left(2.91563611528^{\wedge} 2\right.\right.\right.\right.\right.\right.\right.\) \(\left.\left.\left.\left.\left.\left.\left(\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right)\right)\right)\right)^{*}\left(6.592623748 \times 10^{\wedge} 8\right)\right)\right)\)

Input interpretation:
\(\frac{1}{2} \times \frac{1}{1.0018674362} \times \frac{1}{\left(\left(2.91563611528^{2} e^{-7 \pi}\right) \times \frac{1}{2.91563611528^{2} e^{-\pi}}\right) \times 6.592623748 \times 10^{8}}\)

\section*{Result:}
0.116241063826487450785004257180506994610987838295922673120 .
0.1162410638...

And also:
\(1 / 10^{\wedge} 52 * 7 /(10 \mathrm{e})\left(\left(\left(\left(\left(()\left(\left(2.91563611528^{\wedge} 2\left(\mathrm{e}^{\wedge}(-7 \mathrm{Pi})\right)\right)\right)^{*} 1 /\left(\left(2.91563611528^{\wedge} 2\left(\mathrm{e}^{\wedge}(-\right.\right.\right.\right.\right.\right.\right.\right.\) \(\left.\left.\left.\left.\left.\left.\mathrm{Pi}))))))^{*}\left(6.592623748 \times 10^{\wedge} 8\right)\right)\right)\right)\right)\right)\right)\)

\section*{Input interpretation:}
\(\frac{1}{10^{52}} \times \frac{7}{10 e}\left(\left(\left(2.91563611528^{2} e^{-7 \pi}\right) \times \frac{1}{2.91563611528^{2} e^{-\pi}}\right) \times 6.592623748 \times 10^{8}\right)\)

\section*{Result:}
\(1.105614500 \ldots \times 10^{-52}\)
\(1.1056145 \ldots * 10^{-52}\) result practically equal to the value of the Cosmological Constant

\section*{Appendix}

A possible proposal of physical theory that explains the mathematical connections between Ramanujan's equations and the analyzed physical and cosmological parameters.

We calculate the \(4096^{\text {th }}\left(4096=64^{2}\right)\) root of the value of scalar field and from it, we obtain 64

Inflationary Cosmology: Exploring the Universe from the Smallest to the Largest Scales

where \(\phi\) is the scalar field.
Thence, we obtain:
\[
\sqrt[4096]{\frac{1}{\phi}}=0.98877237 ; \sqrt{\log _{0.98877237}\left(\frac{1}{\phi}\right)}=64 ; 64^{2}=4096
\]

Now, we calculate the \(4096^{\text {th }}\) root of the value of inflaton mass and from it we obtain, also here, 64

Generalized dilaton-axion models of inflation, deSitter vacua and spontaneous SLSY breaking in supergravity

Table 2 The masses of inflaton, axion and gravitino, and the VEVs of \(F\) - and \(D\)-fields derived from our models by fixing the amplitude \(A_{s}\) according to PLANCK data - see Eq. (57). The value of \(\left\langle F_{T}\right\rangle\) for a positive \(\omega_{1}\) is not fixed by \(A_{s}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline\(\alpha\) & 3 & \multicolumn{2}{|c|}{4} & \multicolumn{2}{|c|}{5} & \multicolumn{2}{|c|}{6} & 7 \\
\hline \(\operatorname{sgn}\left(\omega_{1}\right)\) & - & + & - & + & - & + & - & - \\
\hline\(m_{\varphi}\) & 2.83 & 2.95 & 2.73 & 2.71 & 2.71 & 2.53 & 2.58 & 1.86 \\
\hline\(m_{t^{\prime}}\) & 0 & 0.93 & 1.73 & 2.02 & 2.02 & 4.97 & 2.01 & 1.56 \\
\hline\(m_{3 / 2}\) & \(\geq 1.41\) & 2.80 & 0.86 & 2.56 & 0.64 & 3.91 & 0.49 & 0.29 \\
\hline\(\left\langle F_{T}\right\rangle\) & any & \(\neq 0\) & 0 & \(\neq 0\) & 0 & \(\neq 0\) & 0 & 0 \\
\hline\(\langle D\rangle\) & 8.31 & 4.48 & 5.08 & 3.76 & 3.76 & 3.25 & 2.87 & 1.73 \\
\hline
\end{tabular}\(\} \times 10^{13} \mathrm{GeV}\)
\(m_{0}=2.542-2.33 * 10^{13} \mathrm{GeV}\) with an average of \(2.636 * 10^{13} \mathrm{GeV}\)
\[
\sqrt[4096]{\frac{1}{2.83 \times 10^{13}}}=0.992466536725379764 \ldots
\]
\[
\sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}=64.0000 \ldots
\]
\[
64^{2}=4096
\]
where \(m_{\varphi}\) is the inflaton mass.
Thence we obtain:
\[
\sqrt[4096]{\frac{1}{m_{\varphi}}}=0.99246653 ; \sqrt{\log _{0.99246653}\left(\frac{1}{m_{\varphi}}\right)}=64 ; \quad 64^{2}=4096
\]

We have the following mathematical connections:
\[
\begin{gathered}
\sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}=64 ; \quad \sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}=64 \\
\sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}=\sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}=64
\end{gathered}
\]

\section*{Modular equations and approximations to \(\pi\)}
\[
g_{22}=\sqrt{(1+\sqrt{2})} .
\]

Hence
\[
\begin{array}{rlr}
64 g_{22}^{24} & = & e^{\pi \sqrt{22}}-24+276 e^{-\pi \sqrt{22}}-\cdots, \\
64 g_{22}^{-24} & = & 4096 e^{-\pi \sqrt{22}}+\cdots,
\end{array}
\]
so that
\[
64\left(g_{22}^{24}+g_{22}^{-24}\right)=e^{\pi \sqrt{22}}-24+4372 e^{-\pi \sqrt{22}}+\cdots=64\left\{(1+\sqrt{2})^{12}+(1-\sqrt{2})^{12}\right\}
\]

Hence
\[
e^{\pi \sqrt{22}}=2508951.9982 \ldots
\]

Again
\[
\begin{array}{cc}
G_{37}=(6+\sqrt{37})^{\frac{1}{4}} \\
64 G_{37}^{24}= & e^{\pi \sqrt{37}}+24+276 e^{-\pi \sqrt{37}}+\cdots, \\
64 G_{37}^{-24}= & 4096 e^{-\pi \sqrt{37}}-\cdots,
\end{array}
\]
so that
\[
64\left(G_{37}^{24}+G_{37}^{-24}\right)=e^{\pi \sqrt{37}}+24+4372 e^{-\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
\]

Hence
\[
e^{\pi \sqrt{37}}=199148647.999978 \ldots
\]

Similarly, from
\[
g_{58}=\sqrt{\left(\frac{5+\sqrt{29}}{2}\right)}
\]
we obtain
\(64\left(g_{58}^{24}+g_{58}^{-24}\right)=e^{\pi \sqrt{58}}-24+4372 e^{-\pi \sqrt{58}}+\cdots=64\left\{\left(\frac{5+\sqrt{29}}{2}\right)^{12}+\left(\frac{5-\sqrt{29}}{2}\right)^{12}\right\}\).
Hence
\[
e^{\pi \sqrt{58}}=24591257751.99999982 \ldots
\]

From the following expression (see above part of paper), we obtain:
\[
e^{\pi \sqrt{37}}+24+4372 e^{-\pi \sqrt{37}}-\cdots=64\left\{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}\right\}
\]
\(\left(\left(\left(\exp \left(\mathrm{Pi}^{*}\right.\right.\right.\right.\) sqrt37 \()+24+(4096+276) \exp -(\mathrm{Pi} *\) sqrt37 \(\left.\left.\left.)\right)\right) /\left(\left(\left((6+\text { sqrt37 })^{\wedge} 6+(6-\text { sqrt37 })^{\wedge} 6\right)\right)\right)\right)\)
\[
\begin{aligned}
& \frac{\exp (\pi \sqrt{37})+24+(4096+276) \exp (-(\pi \sqrt{37}))}{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}}=\frac{24+4372 e^{-\sqrt{37} \pi}+e^{\sqrt{37} \pi}}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}= \\
& =\frac{24+4372 e^{-\sqrt{37} \pi}+e^{\sqrt{37} \pi}}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}} \text { is a transcendental number }=
\end{aligned}
\]
\[
=64.00000000000000000077996590154140877656204274015527898430 \ldots
\]

From which:
\[
\begin{aligned}
& \left(((\exp (\mathbf{P i} * \mathbf{s q r t} \mathbf{3 7})+\mathbf{2 4}+(\mathbf{x}+\mathbf{2 7 6}) \exp -(\mathbf{P i} * \mathbf{s q r t 3 7}))) /\left(\left(\left((\mathbf{6}+\mathbf{s q r t 3} \mathbf{3})^{\wedge} \mathbf{6}+(\mathbf{6}-\mathbf{s q r t 3 7})^{\wedge} \mathbf{6}\right)\right)\right)\right. \\
& =\mathbf{6 4} \\
& \\
& \frac{\exp (\pi \sqrt{37})+24+(x+276) \exp (-(\pi \sqrt{37}))}{(6+\sqrt{37})^{6}+(6-\sqrt{37})^{6}}=64
\end{aligned}
\]

\section*{Exact result:}
\[
\frac{e^{-\sqrt{37} \pi}(x+276)+e^{\sqrt{37} \pi}+24}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}=64
\]

\section*{Alternate forms:}
\[
\begin{aligned}
& \frac{e^{-\sqrt{37} \pi}(x+276)}{3111698}+\frac{e^{\sqrt{37} \pi}}{3111698}+\frac{12}{1555849}=64 \\
& \frac{e^{-\sqrt{37} \pi\left(x+e^{2 \sqrt{37} \pi}+24 e^{\sqrt{37} \pi}+276\right)}}{3111698}=64 \\
& \frac{e^{-\sqrt{37} \pi} x}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}+\frac{e^{\sqrt{37} \pi}}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}+ \\
& \frac{276 e^{-\sqrt{37} \pi}}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}+\frac{24}{(6-\sqrt{37})^{6}+(6+\sqrt{37})^{6}}-64=0 \\
& x=-276+199148648 e^{\sqrt{37} \pi}-e^{2 \sqrt{37} \pi} \\
& x \approx 4096.0
\end{aligned}
\]

\section*{Higgs Boson}

\(\underline{\text { http://therealmrscience.net/exactly-what-does-the-higgs-boson-do.html }}\)

From the above values of scalar field \(\phi\), and of the inflaton mass \(m_{\varphi}\), we obtain results that are in the range of the Higgs boson mass:
\[
2 \sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}-\pi+\frac{1}{\phi}
\]
125.476...
and
\[
2 \sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}-\pi+\frac{1}{\phi}
\]
125.476...

\section*{Pion mesons}
https://www.sciencephoto.com/media/476068/view/meson-octet-diagram


Meson octet. Diagram organising mesons into an octet according to their charge and strangeness. Particles along the same diagonal line share the same charge; positive \((+1)\), neutral (0), or negative ( -1 ). Particles along the same horizontal line share the same strangeness. Strangeness is a quantum property that is conserved in strong and
electromagnetic interactions, between particles, but not in weak interactions. Mesons are made up of one quark and one antiquark. Particles with a strangeness of +1 , such as the kaons (blue and red) in the top line, contain one strange antiquark. Particles with a strangeness of 0 , such as the pion mesons (green) and eta meson (yellow) in the middle line, contain no strange quarks. Particles with a strangeness of -1 , such as the antiparticle kaons (pink) in the bottom line, contain one strange quark

The \(\pi^{ \pm}\)mesons have a mass of \(139.6 \mathrm{MeV} / \mathrm{c}^{2}\) and a mean lifetime of \(2.6033 \times 10^{-8} \mathrm{~s}\). They decay due to the weak interaction. The primary decay mode of a pion, with a branching fraction of 0.999877 , is a leptonic decay into a muon and a muon neutrino:
\[
\begin{aligned}
& \pi^{+}-\mu^{+}+v_{\mu} \\
& \pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}
\end{aligned}
\]

The second most common decay mode of a pion, with a branching fraction of 0.000123 , is also a leptonic decay into an electron and the corresponding electron antineutrino. This "electronic mode" was discovered at CERN in 1958: \({ }^{[6]}\)
\[
\begin{aligned}
& \pi^{+}-\mathrm{e}^{+}+\mathrm{v}_{\mathrm{e}} \\
& \pi^{-}-\mathrm{e}^{-+}+\bar{v}_{\mathrm{e}}
\end{aligned}
\]

Pion


From the above values of scalar field \(\phi\), and the inflaton mass \(m_{\varphi}\), we obtain also the value of Pion meson \(\pi^{ \pm}=139.57018 \mathrm{MeV} / \mathrm{c}^{2}\)
\[
2 \sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}+11+\frac{1}{\phi}
\]
139.618...
and
\[
2 \sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}+11+\frac{1}{\phi}
\]
139.618...

The \(\pi^{ \pm}\)mesons have a mass of \(139.6 \mathrm{MeV} / \mathrm{c}^{2}\) and a mean lifetime of \(2.6033 \times 10^{-8} \underline{\mathrm{~s}}\). They decay due to the weak interaction. The primary decay mode of a pion, with a branching fraction of 0.999877 , is a leptonic decay into a muon and a muon neutrino.

Note that the value 0.999877 is very closed to the following Rogers-Ramanujan continued fraction (http://www.bitman.name/math/article/102/109)):
\[
\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684
\]

We observe that also the results of \(4096^{\text {th }}\) root of the values of scalar field \(\phi\), and the inflaton mass \(m_{\varphi}\) :
\[
\sqrt[4096]{\frac{1}{\phi}}=0.98877237 ; \quad \sqrt[4096]{\frac{1}{m_{\varphi}}}=0.99246653
\]
are very closed to the above continued fraction.

Furthermore, from the results concerning the scalar field \(\phi\) (0.98877237, \(1.2175 \mathrm{e}+20)\), and the inflaton \(\operatorname{mass} m_{\varphi}(0.99246653,2.83 \mathrm{e}+13)\), we obtain, performing the \(10^{\text {th }}\) root:
\(((((2 \operatorname{sqrt}(((\log \text { base } 0.98877237((1 / 1.2175 \mathrm{e}+20)))))-\mathrm{Pi}))))^{\wedge} 1 / 10\)

\section*{Input interpretation:}
\(\sqrt[10]{2 \sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}-\pi}\)

\section*{Result:}
1.620472942364990195996419034511458317811826267744760835367...

And:
\(1 / 10^{\wedge} 27\left[(47+4) / 10^{\wedge} 3+((((2 \operatorname{sqrt}(((\log\right.\) base \(0.98877237((1 / 1.2175 \mathrm{e}+20)))))-\) Pi)))) \(\left.{ }^{\wedge} 1 / 10\right]\)
where 47 and 4 are Lucas numbers
\[
\frac{1}{10^{27}}\left(\frac{47+4}{10^{3}}+\sqrt[10]{2 \sqrt{\log _{0.98877237}\left(\frac{1}{1.2175 \times 10^{20}}\right)}-\pi}\right)
\]

\section*{Result:}
\(1.671473 \ldots \times 10^{-27}\)
\(1.671473 \ldots * 10^{-27}\) result practically equal to the proton mass

We have also:
\(((((2 \text { sqrt }(((\log \text { base } 0.99246653((1 / 2.83 \mathrm{e}+13)))))-\mathrm{Pi}))))^{\wedge} 1 / 10\)
\(\sqrt[10]{2 \sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}-\pi}\)

\section*{Result:}
1.620472850161415439289586204886587162444405282709701447326...

And:
\(1 / 10^{\wedge} 27\left[(47+4) / 10^{\wedge} 3+((((2 \operatorname{sqrt}(((\log\right.\) base \(0.99246653((1 / 2.83 \mathrm{e}+13)))))-\) Pi)) )) \(\left.{ }^{\wedge} 1 / 10\right]\)
\(\frac{1}{10^{27}}\left(\frac{47+4}{10^{3}}+\sqrt[10]{2 \sqrt{\log _{0.99246653}\left(\frac{1}{2.83 \times 10^{13}}\right)}-\pi}\right)\)

\section*{Result:}
\(1.671473 \ldots \times 10^{-27}\)
\(1.671473 \ldots * 10^{-27}\) result that is practically equal to the proton mass as the previous

\section*{Trascendental numbers}

From the paper of S. Ramanujan "Modular equations and approximations to \(\pi\) "
have the following expression:
\[
\frac{3}{\pi}=1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}+\cdots\right)
\]
\(1-24\left[\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-1\right)\right)+\left(2 /\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)+\left(3 /\left(\mathrm{e}^{\wedge}(6 \mathrm{Pi})-1\right)\right)\right]\)
\(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\)

\section*{Decimal approximation:}
\(0.954929659721612900604724361833045671977574376370221277342 \ldots\)
\(0.954929659 \ldots\)

\section*{Property:}
\(1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)\) is a transcendental number

\section*{Series representations:}
\[
\begin{aligned}
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)= \\
& 1-\frac{24}{-1+e^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\frac{48}{-1+e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}-\frac{72}{-1+e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}} \\
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)=1-\frac{24}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}- \\
& \frac{48}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\frac{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{24} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}{-1}}
\end{aligned}
\]
\[
\begin{aligned}
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)=1-\frac{24}{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{8} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)} \\
&-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}-\frac{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{24} \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}{}
\end{aligned}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)= \\
& 1-\frac{48}{-1+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}-\frac{72}{-1+e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}-\frac{72}{-1+e^{12} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t} \\
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)= \\
& 1-\frac{48}{-1+e^{4} \int_{0}^{\infty} \sin (t) / t d t}-\frac{-1+e^{8} \int_{0}^{\infty} \sin (t) / t d t}{-\frac{1}{2}}-\frac{72}{-1+e^{12} \int_{0}^{\infty} \sin (t) / t d t} \\
& 1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)= \\
& 1-\frac{48}{-1+e^{8} \int_{0}^{1} \sqrt{1-t^{2}} d t}-\frac{-1+e^{16} \int_{0}^{1} \sqrt{1-t^{2}} d t}{-1+e^{24} \int_{0}^{1} \sqrt{1-t^{2}} d t}
\end{aligned}
\]

Note that the value of the following Rogers-Ramanujan continued fraction is practically equal to the result of the previous expression. Indeed:
\[
\left(\frac{\mathrm{e}^{-\frac{\pi}{5}}}{\sqrt{(\varphi-1) \sqrt{5}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi}}{1+\frac{\mathrm{e}^{-2 \pi}}{1+\frac{\mathrm{e}^{-3 \pi}}{1+\frac{\mathrm{e}^{-4 \pi}}{1+\ldots}}}} \approx 0.9568666373\right)
\]
\(\cong\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)=0.954929659 \ldots\)

We know that:
\[
\begin{array}{r|c|c}
\omega|6| m_{u / d}=0-60 & 0.910-0.918 \\
\omega / \omega_{3}|5+3| m_{u / d}=255-390 & 0.988-1.18 \\
\omega / \omega_{3}|5+3| m_{u / d}=240-345 & 0.937-1.000
\end{array}
\]
that are the various Regge slope of Omega mesons

From the paper:

\section*{Generalized dilaton-axion models of inflation, de Sitter vacua and spontaneous SUSY breaking in supergravity}

Table 1 The predictions for the inflationary parameters ( \(n_{s}, r\) ), and the values of \(\varphi\) at the horizon crossing \(\left(\varphi_{i}\right)\) and at the end of inflation \(\left(\varphi_{f}\right)\), in the case \(3 \leq \alpha \leq \alpha_{*}\) with both signs of \(\omega_{1}\). The \(\alpha\) parameter is taken to be integer, except of the upper limit \(\alpha_{*} \equiv(7+\sqrt{33}) / 2\)
\begin{tabular}{llllllll}
\hline\(\alpha\) & 3 & 4 & & 5 & 6 & \(\alpha_{*}\) \\
\hline \(\operatorname{sgn}\left(\omega_{1}\right)\) & - & + & - & \(+/-\) & + & - & - \\
\(n_{s}\) & 0.9650 & 0.9649 & 0.9640 & 0.9639 & 0.9634 & 0.9637 & 0.9632 \\
\(r\) & 0.0035 & 0.0010 & 0.0013 & 0.0007 & 0.0005 & 0.0004 & 0.0003 \\
\(-\kappa \varphi_{i}\) & 5.3529 & 3.5542 & 3.9899 & 3.2657 & 3.0215 & 2.7427 & 2.5674 \\
\(-\kappa \varphi_{f}\) & 0.9402 & 0.7426 & 0.8067 & 0.7163 & 0.6935 & 0.6488 & 0.6276 \\
\hline
\end{tabular}

We note that the value of inflationary parameter \(n_{s}\) (spectral index) for \(\alpha=3\) is equal to 0.9650 and that the range of Regge slope of the following Omega meson is:
\(\omega / \omega_{3}|5+3| m_{u / d}=240-345 \mid 0.937-1.000\)
the values \(0.954929659 \ldots\) and 0.9568666373 are very near to the above Regge slope, to the spectral index \(\mathrm{n}_{\mathrm{s}}\) and to the dilaton value \(0.989117352243=\phi\)

We observe that 0.954929659 has the following property:
\(1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)\) is a transcendental number
\(=0.9549296597216129\) the result is a transcendental number

We have also that, performing the \(128^{\text {th }}\) root, we obtain:
\(\left(\left(\left(\left(1-24\left[\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-1\right)\right)+\left(2 /\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)+\left(3 /\left(\mathrm{e}^{\wedge}(6 \mathrm{Pi})-1\right)\right)\right]\right)\right)\right)\right)^{\wedge} 1 / 128\)

\section*{Input:}
\(\sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}\)

\section*{Decimal approximation:}
\(0.999639771179582593534832998563472389939029398477483191618 \ldots\)
\(0.9996397711 \ldots\) is also a transcendental number
This result is connected to the primary decay mode of a pion, with a branching fraction of 0.999877 , that is a leptonic decay into a muon and a muon neutrino.

\section*{Property:}
\(\sqrt[128]{1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)}\) is a transcendental number

\section*{Series representations:}
\[
\begin{aligned}
& \sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}= \\
& \left(1-24\left(\frac{1}{-1+e^{8 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}+\frac{3}{-1+e^{16 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}}+} \begin{array}{c}
\left.\frac{3}{\left.-1+e^{24 \sum_{k=0}^{\infty}(-1)^{k} /(1+2 k)}\right)}\right) \wedge(1 / 128)
\end{array}\right.\right.
\end{aligned}
\]
\(\sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}=\)
\[
\sqrt[128]{1-24\left(\frac{1}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{2 \pi}}+\frac{2}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{4 \pi}}+\frac{3}{-1+\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)^{6 \pi}}\right)}
\]
\(\sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}=\)
\[
\sqrt[128]{1-24\left(\frac{1}{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{2 \pi}}+\frac{2}{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{4 \pi}}+\frac{3}{-1+\left(\frac{1}{\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}}\right)^{6 \pi}}\right)}
\]

\section*{Integral representations:}
\[
\begin{aligned}
& \sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}= \\
& \sqrt[128]{1-24\left(\frac{1}{-1+e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+\frac{2}{-1+e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}+\frac{3}{-1+e^{12} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t}\right)} \\
& \sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}= \\
& \sqrt\left[1-24\left(\frac{1}{-1+e^{4} \int_{0}^{\infty \sin (t) / t d t}}+\frac{2}{-1+e^{8} \int_{0}^{\infty \sin (t) / t d t}}+\frac{3}{\left.-1+e^{12} \int_{0}^{\infty \sin (t) / t d t}\right)}\right]{ }\right.
\end{aligned}
\]
\(\sqrt[128]{1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)}=\)
\[
\sqrt[128]{1-24\left(\frac{1}{-1+e^{8} \int_{0}^{1} \sqrt{1-t^{2}} d t}+\frac{2}{-1+e^{16} \int_{0}^{1 \sqrt{1-t^{2}} d t}}+\frac{3}{-1+e^{24} \int_{0}^{1} \sqrt{1-t^{2}} d t}\right)}
\]

Performing:
\(\log\) base \(0.999639771179\left(\left(\left(\left(1-24\left[\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-1\right)\right)+\left(2 /\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)+\left(3 /\left(\mathrm{e}^{\wedge}(6 \mathrm{Pi})-\right.\right.\right.\right.\right.\right.\right.\) 1))])))) \(-\mathrm{Pi}+1 /\) golden ratio
we obtain:

\section*{Input interpretation:}
\(\log _{0.099639771170}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)-\pi+\frac{1}{\phi}\)
\(\log _{b}(x)\) is the base- \(b\) logarithm

\section*{Result:}
125.476441...
125.476441.... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for \(\mathrm{T}=0\) and to the Higgs boson mass 125.18

\section*{Series representations:}
\(\log _{0.0996397711790000}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)-\pi+\frac{1}{\phi}=\)
\(\frac{1}{\phi}-\pi-\frac{\sum_{k=1}^{\infty} \frac{\left(-24 k^{k}\left(\frac{1}{1-e^{2 \pi}}-\frac{2}{-1+e^{4 \pi}}-\frac{3}{\left.-1+e^{6 \pi}\right)^{k}}\right.\right.}{k}}{\log (0.9996397711790000)}\)
\(\log _{0.0996397711790000}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)-\pi+\frac{1}{\phi}=\)
\[
\begin{aligned}
& \frac{1.000000000000}{\phi}-1.000000000000 \pi+ \\
& \log \left(1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)\right) \\
& \quad\left(-2775.513305165-1.000000000000 \sum_{k=0}^{\infty}(-0.0003602288210000)^{k} G(k)\right) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]

And:
\(\log\) base \(0.999639771179\left(\left(\left(\left(1-24\left[\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-1\right)\right)+\left(2 /\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)+\left(3 /\left(\mathrm{e}^{\wedge}(6 \mathrm{Pi})-\right.\right.\right.\right.\right.\right.\right.\) 1)) \(])\) ))) \(+11+1 /\) golden ratio
where 11 is a Lucas number

\section*{Input interpretation:}
\[
\log _{0.099639771179}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)+11+\frac{1}{\phi}
\]

\section*{Result:}
139.618034...
139.618034.... result practically equal to the rest mass of Pion meson 139.57

\section*{Series representations:}
\(\log _{0.0996397711790000}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)+11+\frac{1}{\phi}=\)
\[
11+\frac{1}{\phi}-\frac{\sum_{k=1}^{\infty} \frac{(-24)^{k}\left(\frac{1}{1-e^{2 \pi}}-\frac{2}{-1+e^{4 \pi}}-\frac{3}{-1+e^{6 \pi}}\right)^{k}}{k}}{\log (0.9996397711790000)}
\]
\[
\begin{aligned}
& \log _{0.0996397711790000}\left(1-24\left(\frac{1}{e^{2 \pi}-1}+\frac{2}{e^{4 \pi}-1}+\frac{3}{e^{6 \pi}-1}\right)\right)+11+\frac{1}{\phi}= \\
& 11.00000000000+\frac{1.000000000000}{\phi}+ \\
& \quad \log \left(1-24\left(\frac{1}{-1+e^{2 \pi}}+\frac{2}{-1+e^{4 \pi}}+\frac{3}{-1+e^{6 \pi}}\right)\right) \\
& \quad\left(-2775.513305165-1.000000000000 \sum_{k=0}^{\infty}(-0.0003602288210000)^{k} G(k)\right) \\
& \text { for }\left(G(0)=0 \text { and } G(k)=\frac{(-1)^{1+k} k}{2(1+k)(2+k)}+\sum_{j=1}^{k} \frac{(-1)^{1+j} G(-j+k)}{1+j}\right)
\end{aligned}
\]

In conclusion, we have shown a possible theoretical connection between some parameters of inflationary cosmology, of particle masses (Higgs boson and Pion meson \(\pi \pm\) ) and some fundamental equations of Ramanujan's mathematics.

Further, we note that \(\pi, \phi, 1 / \phi\) and 11 , that is a Lucas number (often in developing Ramanujan's equations we use Fibonacci and Lucas numbers), play a fundamental role in the development, and therefore, in the final results of Ramanujan's equations. This fact can be explained by admitting that \(\pi, \phi, 1 / \phi\) and 11 , and other numbers connected with Fibonacci and Lucas sequences, are not only mathematical constants and / or simple numbers, but "data", which inserted in the right place, and in the most various possible and always logical combinations, lead precisely to the solutions discussed so far: masses of particles and other physical and cosmological parameters.

\section*{References}

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN```


[^0]:    ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

