
Higher accuracy order in
differentiation-by-integration

Andrej Liptaj∗

December 18, 2019

Abstract
In this text explicit forms of several higher precision order kernel func-

tions (to be used in the differentiation-by integration procedure) are given
for particular derivative orders. A system of linear equations is formu-
lated which allows to construct kernels with arbitrary precision for arbi-
trary derivative order. A study on a real computer is performed and it is
shown that numerical differentiation based on these kernels performs much
better (w.r.t errors) than the same procedure based on usual Legendre-
polynomial kernels. Presented results may have implications for numerical
implementations of the differentiation-by-integration method.

1 Introduction
Derivative, if exists, can be expressed in an alternative way

f ′ (x) |x=x0
= lim

h→0
Dh

n=1 (f) ≡ lim
h→0
− 1

h

ˆ 1

−1
k (t) f (x0 + ht) dt, (1)

where k is an appropriate kernel function and n indicates the derivative order.
The method is know as “differentiation by integration” (DbI) and an example
was first published by Cioranescu [1]. Later, Lanczos [2] studied a version of (1)
with kernel

k (t) = −3

2
t (2)

and his name became associated with this type of differentiation1. DbI has
some interesting features because it generalizes the ordinary derivative in several
aspects. It may be used in situations where the latter does not exist, or, when
generalized to higher orders, it can be (in some cases) seen as a way to define a
fractional-order derivative [3]. The DbI also attracts attention for its potential
applications in numerical analysis [4, 5, 6, 7, 8].

In published texts [9, 10, 11, 12, 13, 14] two dominant ideas can be seen:
∗Institute of Physics, Bratislava, Slovak Academy of Sciences, andrej.liptaj@savba.sk
1“Generalized Lanczos derivative” is to be seen as an alternative label to “DbI”.
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• The least-squares property: the derivative as defined by the Lanczos’ for-
mula (1)(2) behaves as the slope parameter of a line which is in the least-
squares manner adjusted to the function f on the interval [−h, h]. The
idea was further generalized to higher derivatives in [10] where the kernel
functions are based on the Legendre polynomials. This property is to be
seen as very closely linked to the Savitzky–Golay filter [15] and related
way of numerically computing a derivative from discrete data sets.

• Orthogonality approach: if one expands a function f into Taylor series

ˆ 1

−1
k (t) f (x0 + ht) dt =

∞∑
n=0

1

n!
hnf (n) (x0)

ˆ 1

−1
k (t) tndt, (3)

one can search for a function k orthogonal to desired powers of tn so as
to make vanish all terms except those which we are interested in. For
instance, to extract Dth derivative one can use a polynomial orthogonal
to all tn for n < D (e.g. Legendre polynomial LD). If one then multiplies
the resulting expression by an appropriate power of h, the limit h → 0
makes disappear all higher terms n > D and isolates the one with the Dth
derivative. This approach can provide large generalizations (as presented
in [13]) but remains limited to analytic functions f .

A universal procedure for constructing a kernel function for the first derivative
was presented in [5], a full generalization to all derivative orders was given in
[16]. A function k is a valid kernel function for computing Dth derivative if and
only if

k =
dD

dtD
ω (t) , (4)

where ω is a weight function satisfying

1ˆ

−1

ω (t) dt = 1, (5)

dm

dtm
ω (t) |t=−1 =

dm

dtm
ω (t) |t=+1 = 0 for all m < D, (6)

assuming that all appearing integrals and derivatives exist. The Dth derivative
is then computed as

dD

dtD
f (x) |x=x0 = lim

h→0
Dh

D (f) |x0 ≡ lim
h→0

(
−1

h

)D ˆ 1

−1
k (t) f (x0 + ht) dt. (7)

In the standard finite-difference approach is a large emphasis (in relation
to numerical applications) given to the accuracy order in the discretization-
parameter (h) expansion. It is know that the higher-order approaches perform
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much better than the lower-order ones2. Systematic study of these effects is
somewhat missing with respect to the DbI methods. Higher accuracy orders
might break the “least-square” behavior, but lead (as demonstrated later) to
largely improved overall numerical precision. In existing literature, formulas
with higher accuracy order can be found (e.g. formula 4.1 in [13]), however
explicit kernel function forms which could be directly used as a recipe for an
immediate implementation are missing. One also lacks a numerical study of
performance of such higher-order methods. The aim of this text is to

• provide explicit expressions for kernel functions for first few orders in pre-
cision and derivative (Sec. 2). Further, we want to

• give an explicit formulation of a linear system which, when solved, leads to
kernel functions for any derivative order and any order in precision (Sec.
2). We also want to

• perform a numerical study of the higher accuracy order approach (Sec. 3).

We will briefly discuss the presented results in Sec. 4 and close the text by
providing summary and conclusion (Sec. 5).

2 Higher order formulas
Different strategies can be adopted when constructing higher precision order
kernels. Orthogonality approach is certainly an option: by an appropriate choice
of a kernel k one can set to zero all hn terms in (3) up to a desired value of
n < N , with exception of the term containing the derivative one is interested
in. Yet, we prefer to chose a different strategy which stems from basic principles
(4), (5) and (6). We adopt the most natural choice and search for kernels in
form of least-degree polynomials. This minimalist approach is allowed by a
“brute force” computation which provides us with full control over coefficients
and leads to explicit relations between them.

A general polynomial respecting (6) is written as

ω (x) = N (1− x)
D

(1 + x)
D

N∑
n=0

anx
n, (8)

= N

 2D∑
j=0

1

2

{
1 + (−1)

j
}
CD,j/2 (−1)

j/2
xj

 N∑
n=0

anx
n,

where N is normalization, D is derivative order and Ca,b represents binomial co-
efficient

(
a
b

)
. Formally appearing non-integer powers in the last line are canceled

2A simple forward difference is over-performed by central difference, which is on its turn
over-performed by, for example, five-point rule.
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by the 1 + (−1)
j term. The two sums can be multiplied

ω (x) = N
N+2D∑
n=0

Ωnx
n, (9)

where

Ωn =

n∑
k=n−2D

1

2
HkHN−k

{
1 + (−1)

n−k
}
CD,(n−k)/2 (−1)

(n−k)/2
ak, (10)

with H indicating a step function

Hi =

{
0 if i < 0

1 else
.

The condition (5) implies the normalization

N =

b(N+2D)/2c∑
n=0

2Ω2n

2n+ 1

−1 , (11)

where symbol b. . .c stands for the floor function. For the needs of formula (4)
one has to compute higher-order derivatives

ω(m) = N
N+2D−m∑

n=0

(n+m)!

n!
Ωn+mx

n ⇒ ω(D) = N
N+D∑
n=0

(n+D)!

n!
Ωn+Dx

n.

(12)
Expanding a function f into Taylor series and plugging (12) into (7) using (4)
one gets3

f (D) =

(
− 1

h

)D ˆ 1

−1
N

N+D∑
n=0

αnt
n
∞∑

m=0

1

m!
hmf (m)tmdt,

= N (−1)
D
∞∑

m=0

1

m!
f (m)

{
N+D∑
n=0

αn

n+m+ 1

[
1 + (−1)

m+n
]}

hm−D,

with αn ≡
(n+D)!

n!
Ωn+D,

where one controls the accuracy order by adjusting the coefficients in front of
the powers of h. The series formally contains also negative powers (for m < D),
formula (7) however implies that their coefficients are identically zero. Further
more, formula (7) also implies4 that the overall coefficient in front of the constant
term (h0) is f (D). The interesting terms are so those with m > D.

3Argument of f is omitted, one implicitly assumes it takes value x0 (point of differentia-
tion).

4Both of these statements can be verified by in explicit computation (but do not need to
be).
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An important observation is that the odd powers of h are controlled only
by odd-indexed coefficients a1, a3, a5, . . ..It can be verified in an explicit way,
that the index of Ω has the same parity as the power of h (symbol ∼ means
conservation of index and power-related properties)

hm−D
N+D∑
n=0

αn

[
1 + (−1)

m+n
]

n+m+ 1
∼

N+D∑
n=0

hm+n−(D+n)Ωn+D

[
1 + (−1)

m+n
]

=

N+D∑
n=0

hm+n−ZnΩZn

[
1 + (−1)

m+n
]

∼
N+D∑
n=0

h2in−ZnΩZn
=

N+D∑
n=0

hZn+2inΩZn
,

where the factor 1 + (−1)
m+n allows only for even-valued sums of the two

numbers m+n = 2i. The expression for ΩZ is, on its turn, given only by terms
whose coefficients ai have index of the same parity as Z:

Ω2i+1 ∼
n∑

k=n−2D

{
1 + (−1)

2i+1−k
}

(−1)
(2i+1−k)/2

ak, 0 < k < N

∼
n∑

k=n−2D

{
1 + (−1)

1+k
}

(−1)
(2i+1−k)/2

ak.

If k is even, then 1 + k is odd and 1 + (−1)
1+k is zero for all related ak terms.

Therefore Ω2i+1 depends only on the odd-index ai coefficients. This being es-
tablished, in what follows we will study only even-index based weight functions5,
i.e. even function of x on the interval [−1, 1]. Even-indexed coefficients, con-
trolling the even powers of h, cannot be set all to zero because one needs to
fulfill the normalization condition (5).

We are now in the situation, where we need to adjust the even-indexed
coefficients a0, a2, a4, . . . appearing in

N (−1)
D

m!
f (m)

{
N+D∑
n=0

αn (ak)

n+m+ 1

[
1 + (−1)

m+n
]}

hm−D

= Dh
n=D (f) = f (D) + c2h

2 + c4h
4 + c6h

6 + . . .

so as to make chosen ci coefficients vanish. Let us denote the highest even-power
h term which is meant to be set to zero (together with all lower terms) by h2i.
For achieving that we need to match i (even-indexed) coefficients and formulate
i equations. In a compact form the jth equation can be written (1 ≤ j ≤ i)

Ej :

2i+D∑
n=0

αn (∆ [ak])

n+ 2j +D + 1

[
1 + (−1)

2j+D+n
]

= 0, (13)

5Aiming highest accuracy order, we have no motivation to keep or study odd-h-power
terms. We directly set them all to zero.
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where the dependence of αn on coefficients is

∆ [ak] =


1 if k = 0

0 if 1 ≤ k ≤ 2i and k is odd
ak if 1 ≤ k ≤ 2i and k is even
0 else

and equality
N = 2i

is assumed in all expressions. Here, without loss of generality, we set the first
coefficient to one a0 = 1. Initially a general number, N (as an unspecified
number of polynomial terms) can be cut to 2i (it comprises all coefficients, odd-
indexed included) and is so determined only by the accuracy order. Once the
system is solved and ai coefficients are found, one computes the normalization
N from (11) and constructs the weight function (8). The kernel function is
given as its Dth derivative (4).

We will note ω[2i]
D and k

[2i]
D those functions, which provide Dth derivative

with order of precision O
(
h2i+2

)
Dh

D

(
f, k2iD

)
= f (D) +O

(
h2i+2

)
.

This notations reflects the fact that the highest even-power term which is anni-
hilated is h2i. Since the next one is also zero (because has an odd power), the
first nonzero term corresponds to the power 2i+2. Solving system (13) one gets
as example results

ω
[2]
1 (x) =

45

32
(1− x) (1 + x)

(
1− 7

3
x2
)
,

k
[2]
1 (x) =

1

8

(
105x3 − 75x

)
,

ω
[4]
1 (x) =

525

256
(1− x) (1 + x)

(
1− 6x2 +

33

5
x4
)
,

k
[4]
1 (x) = − 1

128

(
10395x5 − 13230x3 + 3675x

)
,

ω
[2]
2 (x) =

105

64
(1− x)

2
(1 + x)

2 (
1− 3x2

)
,

k
[2]
2 (x) = − 1

32

(
4725x4 − 4410x2 + 525

)
,

ω
[4]
2 (x) =

4725

2048
(1− x)

2
(1 + x)

2

(
1− 22

3
x2 +

143

15
x4
)
,

k
[4]
2 (x) =

1

256

(
315315x6 − 467775x4 + 178605x2 − 11025

)
.

The functions are depicted in Fig. (1). All cases with 1 ≤ D ≤ 4 and 2 ≤ 2i ≤ 10
are listed in Appendix.
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(a) (b)

Figure 1: Selected weight functions (a) and corresponding kernel functions (b).

3 Numerical investigations
The topic under consideration is, from the perspective of numerical study6,
rather large and multidimensional. One could by interested in the dependence
of results on the

• size of the discretization parameter h, or on the

• precision order of the kernel function, or on the

• derivative order of the kernel function, or on the

• choice of the test functions.

To reduce the complexity, we opt for our purposes only for the O
(
h6
)
precision

kernels k2i=4
D . Next, the optimal size of the discretization parameter is analyzed.

For that we select 3 test functions with fixed point of differentiation x0

sin (x) with x0 = 1; exp (x) with x0 = π and ln (x) with x0 =
1

2
.

Using these settings we scan 8 orders of magnitude in discretization parameter
10−8 ≤ h ≤ 10−1, changing the step in geometrical progression with factor 10.
For comparison purposes we add results from the least-squares (LS) approach,
which is based on the Legendre-polynomial kernels.

As seen from the summary Table (1), the optimal h for higher precision
order (HO) methods is h ∼ 10−1, 10−2, for the LS methods it is systematically
smaller7 h ∼ 10−3, 10−4. The important observation is that the HO kernels
significantly over-perform the LS kernels (if each method uses its own optimal

6Numerical analysis was done with the GNU Octave [17] software 5.1.0 configured for
“x86_64-suse-linux-gnu”. The quadl function was used for numerical integration. Author also
greatly profited from the WxMaxima tools [18].

7This behavior is also observed in finite-difference methods when comparing formulas with
different accuracy order.
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value of h). If the HO kernels are used with an h-size that is optimal for the LS
methods, the HO results remain competitive.

Fixing the discretization parameter size to near-optimal values hHO = 10−2

and hLS = 10−3, we study the error behavior on a whole interval: [−π, π] for
sin (x), [−2, 2] for exp (x) and [0.1, 2] for ln (x). Results are shown in Fig. (2).
Analyzing them, one can draw a straightforward conclusion: when interested
in absolute errors, the HO differentiation provide several orders of magnitude
more precise results than the LS methods and, when it comes to implementing
a numerical differentiation-by-integration method on a computer, the approach
based on the HO kernels is a clearly the preferred option.

4 Discussion
An interesting lesson can be learnt from previous observations: if a function-
related quantity Q is to be extracted in a numerical way from the function
behavior on the interval [−h, h], where h is small enough and can play a role of
a power-expansion parameter, then the “least-squares” optimum does not need
to be the “Q-extraction” optimum. The results suggest, that a more effective
way might consist in expanding Q into powers of h: Q = q0 + q1h+ q2h

2 + . . .
and finding a method which reaches a higher precision with respect to this
expansion.

One should also address the question of numerical (i.e. round-off) errors.
This text deals with the so-called discretization error which can be made ar-
bitrary small and can be handled with full mathematical rigorosity. However,
on a real computer the use of a (very) high-accuracy approach would fail: as
seen from Fig. (1) higher-order weight functions become more sharply peaked
near zero which can, in some sense, be interpreted as effective shrinking of the
interval [−h, h]. If integral becomes small, numerical errors grow. In addition,
higher-order weight functions (and thus kernel functions too) become more and
more oscillatory, which further worsens numerical uncertainties. One can also
notice, that with increasing precision order kernel function become numerically
large.

Numerical errors are difficult to handle: a reliable mathematical treatment
of the float-point arithmetic in computer registers is presumably a very hard
task. In principle one cannot exclude a different behavior of numerical errors
for HO and LS approaches, but such differences (if existing and significant) are
hard to estimate in an exact way. Rather than trying to quantify this issue, a
trustful (we believe) conclusion can be deduced from the numerical tests in Sec.
3. Whatever the behavior of numerical errors is, the HO differentiation provides
in studied examples a significantly smaller overall (total) error. It is reasonable
to assume that this is a standard behavior8 of the HO method when compared
to the LS approach.

8HO method having smaller discretization error, one judges improbable for the HO ap-
proach to have such big numerical error (in copmarison to LS outputs) so as to have a larger
total error.
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Figure 2: Absolute errors of the HO approach (full blue line) and LS-based
methods (dotted red line) for 3 functions (in columns) and 4 derivative orders
(rows).
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5 Summary and conclusion
By using straightforward calculations we constructed a system of linear equa-
tions (13) which leads to arbitrary precision order kernel functions for arbitrary
derivative in the DbI procedure. Numerical tests show that these kernels sig-
nificantly over-perform (with respect to precision) standard least-squares based
kernels, which were most widely used and discussed up to now. If a DbI method
is to be implemented on a computer, then the results provide strong evidence
for preferring higher precision order kernels. The text also opens a general ques-
tion of extracting a function-related quantity from behavior of the function on
a small interval and promotes a method of higher precision order linked to a
small parameter (interval length) expansion.
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Appendix
List of higher accuracy order weight and kernel functions. Kernel functions k
are to be used in formula (7), notation from the end of Sec. 2 is adopted.

• First derivative

ω
[2]
1 (x) =

45

32
(1− x) (1 + x)

(
1− 7

3
x2
)

k
[2]
1 (x) =

1

8

(
105x3 − 75x

)

ω
[4]
1 (x) =

525

256
(1− x) (1 + x)

(
1− 6x2 +

33

5
x4
)

k
[4]
1 (x) = − 1

128

(
10395x5 − 13230x3 + 3675x

)

ω
[6]
1 (x) =

11025

4096
(1− x) (1 + x)

(
1− 11x2 +

143

5
x4 − 143

7
x6
)

k
[6]
1 (x) =

1

512

(
225225x7 − 405405x5 + 218295x3 − 33075x

)

ω
[8]
1 (x) =

218295

65536
(1− x) (1 + x)

(
1− 52

3
x2 + 78x4 − 884

7
x6 +

4199

63
x8
)

k
[8]
1 (x) = − 1

32768

(
72747675x9 − 168468300x7 + 133783650x5 − 41621580x3 + 4002075x

)

ω
[10]
1 (x) =

2081079

524288
(1− x) (1 + x)

(
1− 25x2 + 170x4 − 3230

7
x6 +

1615

3
x8 − 7429

33
x10
)

k
[10]
1 (x) =

1

131072
(1405485081x11 − 3972023055x9 + 4161167010x7 − 1971079110x5

+ 405810405x3 − 27054027x)

• Second derivative

ω
[2]
2 (x) =

105

64
(1− x)

2
(1 + x)

2 (
1− 3x2

)
k
[2]
2 (x) = − 1

32

(
4725x4 − 4410x2 + 525

)

ω
[4]
2 (x) =

4725

2048
(1− x)

2
(1 + x)

2

(
1− 22

3
x2 +

143

15
x4
)

k
[4]
2 (x) =

1

256

(
315315x6 − 467775x4 + 178605x2 − 11025

)
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ω
[6]
2 (x) =

24255

8192
(1− x)

2
(1 + x)

2

(
1− 13x2 + 39x4 − 221

7
x6
)

k
[6]
2 (x) = − 1

4096

(
34459425x8 − 69369300x6 + 44594550x4 − 9604980x2 + 363825

)
ω
[8]
2 (x) =

945945

262144
(1− x)

2
(1 + x)

2

(
1− 20x2 + 102x4 − 1292

7
x6 +

323

3
x8
)

k
[8]
2 (x) =

1

65536
(3360942585x10 − 8511477975x8 + 7665307650x6 − 2898645750x4

+ 405810405x2 − 10405395)

ω
[10]
2 (x) =

4459455

1048576
(1− x)

2
(1 + x)

2

(
1− 85

3
x2 +

646

3
x4 − 646x6 +

7429

9
x8 − 37145

99
x10
)

k
[10]
2 (x) = − 1

524288
(152260883775x12 − 463810076730x10 + 536223112425x8

− 291281690700x6 + 73915466625x4 − 7304587290x2 + 135270135)

• Third derivative

ω
[2]
3 (x) =

945

512
(1− x)

3
(1 + x)

3

(
1− 11

3
x2
)

k
[2]
3 (x) =

1

32

(
72765x5 − 85050x3 + 19845x

)
ω
[4]
3 (x) =

10395

4096
(1− x)

3
(1 + x)

3

(
1− 26

3
x2 + 13x4

)
k
[4]
3 (x) = − 1

256

(
6081075x7 − 10405395x5 + 5145525x3 − 654885x

)
ω
[6]
3 (x) =

105105

32768
(1− x)

3
(1 + x)

3

(
1− 15x2 + 51x4 − 323

7
x6
)

k
[6]
3 (x) =

1

4096

(
800224425x9 − 1791890100x7 + 1352701350x5 − 386486100x3 + 31216185x

)
ω
[8]
3 (x) =

2027025

524288
(1− x)

3
(1 + x)

3

(
1− 68

3
x2 +

646

5
x4 − 1292

5
x6 +

7429

45
x8
)

k
[8]
3 (x) = − 1

65536
(91356530265x11 − 252070693875x9 + 255344339250x7

− 114979614750x5 + 21739843125x3 − 1217431215x)

ω
[10]
3 (x) =

75810735

16777216
(1− x)

3
(1 + x)

3

(
1− 95

3
x2 + 266x4 − 874x6 +

10925

9
x8 − 6555

11
x10
)

k
[10]
3 (x) =

1

524288
(4743512148375x13 − 15530610145050x11 + 19711928261025x9

− 12154390548300x7 + 3713841556425x5 − 502625173050x3 + 20696330655x)
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• Fourth derivative

ω
[2]
4 (x) =

2079

1024
(1− x)

4
(1 + x)

4

(
1− 13

3
x2
)

k
[2]
4 (x) = − 1

64

(
2837835x6 − 4002075x4 + 1403325x2 − 72765

)

ω
[4]
4 (x) =

45045

16384
(1− x)

4
(1 + x)

4 (
1− 10x2 + 17x4

)
k
[4]
4 (x) =

1

2048

(
1137161025x8 − 2213511300x6 + 1352701350x4 − 267567300x2 + 8513505

)

ω
[6]
4 (x) =

225225

65536
(1− x)

4
(1 + x)

4

(
1− 17x2 +

323

5
x4 − 323

5
x6
)

k
[6]
4 (x) = − 1

8192
(43692253605x10 − 108030297375x8 + 94074230250x6

− 33817533750x4 + 4347968625x2 − 93648555)

ω
[8]
4 (x) =

34459425

8388608
(1− x)

4
(1 + x)

4

(
1− 76

3
x2 +

798

5
x4 − 1748

5
x6 +

2185

9
x8
)

k
[8]
4 (x) =

1

613312
(1631366611875x12 − 4881048902730x10 + 5509545166125x8

− 2854618767000x6 + 645712192125x4 − 46520223750x2 + 237277755)

ω
[10]
4 (x) =

160044885

33554432
(1− x)

4
(1 + x)

4

(
1− 35x2 + 322x4 − 1150x6 + 1725x8 − 10005

11
x10
)

k
[10]
4 (x) = − 1

1048576
(334078784164125x14 − 1171647500648625x12 + 1622948760157725x10

− 1123579910878425x8 + 404133485730975x6 − 70562989572075x4

+ 4774939143975x2 − 56175754635)
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