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q-analogs of sum equals integral relations
∑

n∈Z f(n) =
∫∞
−∞ f(x)dx for sinc functions

and binomial coefficients are studied. Such analogs are already known in the context of

q-hypergeometric series. This paper deals with multibasic ‘fractional’ generalizations that

are not q-hypergeometric functions.

Surprizing properties of sinc sums and integals were first discovered by C. Stormer in 1895 [1,2]. The

more general properties of band limited functions were known to engineers from signal processing and to

physicists. For example, K.S. Krishnan viewed them as a rich source for finding identities [3]. R.P. Boas has

studied the error term when approximating a sum of a band limited function with corresponding integral

[5]. More recently these properties were studied and popularized in a series of papers [6–8].

sinc function is a special case of binomial coefficients(
2

1 + x

)
=

Γ(3)

Γ(1 + x)Γ(1− x)
=

2 sinπx

πx
= 2 sinc(πx).

Therefore only sums with binomial coefficients will be studied in the following. It is known that binomial

coefficients are band limited (e.g., see [10])(
a

u

)
=

1

2π

∫ π

−π
(1 + eit)ae−iut dt,

i.e. their Fourier spectrum is limited to the band |t| < π. According to general theorems [5, 6] whenever

Fourier spectrum of a function f(x) is limited to the band |t| < 2π one expects that

∞∑
n=−∞

f(n) =

∫ ∞
−∞

f(x)dx. (1)

Bandwidth of a product of bandlimited functions is the sum of their bandwidths [8]. In case of binomial

coefficients this together with the theorem mentioned above implies that

∞∑
n=−∞

(
a

αn

)l
=

∫ ∞
−∞

(
a

αx

)l
dx, 0 < α ≤ 2

l
. (2)

For a general band limited function the above formula would have been valid only when α < 2
l . The validity

of (2) when α = 2
l is explained by the fact that spectral density of binomial coefficient vanishes at boundary

values t = ±π.

q-analog of the Gamma function is defined as

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x

and the q-binomial coefficients [a
b

]
q

=
Γq(a+ 1)

Γq(b+ 1)Γq(a− b+ 1)
,
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with the standard notations for the q-shifted factorials

(a; q)n =

n−1∏
k=0

(1− aqk), (a1, . . . , ar; q)n =

r∏
k=1

(ak; q)n, (a; q)∞ =

∞∏
k=0

(1− aqk).

In the limit q → 1− one has Γq(a) → Γ(a), i.e. standard values of the Gamma function and binomial

coefficients are recovered.[11]

q-analog of the property of bandlimitedness has been studied in the literature [12]. This paper has a much

more narrow scope and only deals with sums of binomial coefficients. We will find that (2) with 0 < α ≤ 1/l

has a very natural q-analog. However no such simple direct q-analog of (2) with 1/l < α ≤ 2/l is known.

Nevertheless there is a formula that in the limit q → 1− can be brought to the form (2) after a series of

simple steps.

In Theorem 2 we will use a method of functional equations [13] (see also [11], sec. 5.2) combined with an

idea to to G. Gasper [14] to find a Laurent series for a certain integral of an infinite product. First we need

the following theorem taken from the book [15].

Theorem 1. Let

F (z) =

∫
γ
f(ζ, z)dζ, (3)

where the following conditions are satisfied

(1) γ is an infinite picewise continous curve

(2) the function f(ζ, z) is continous in (ζ, z) at ζ ∈ γ, z ∈ D, where D is a domain in the complex z

plane,

(3) for each fixed ζ ∈ γ the function f(ζ, z) viewed as a function of z is regular in D,

(4) integral (3) converges uniformly in z ∈ D′, where D′ is an arbitrary closed subdomain of D.

Then F (z) is regular in D.

Lemma 1. Let p and q two real numbers that satisfy 0 < p < q < 1, then

F (z) =

∫ ∞
−∞

(
bqζ , aq−ζ ; p

)
∞

(−zqζ ,−q1−ζ/z; q)∞
dζ

is regular in the half plane Re z > 0.

Proof . Put in the theorem above f(ζ, z) =
(bqζ ,aq−ζ ;p)∞

(−zqζ ,−q1−ζ/z;q)∞
, γ = (−∞,+∞), and D an arbitrary domain

in the half plane Re z > 0. Then (1),(2) and (3) are obviously satisfied. To prove (4) let p = e−ω,

q = pα, ω > 0, 0 < α < 1 and consider the asymptotics of f(ζ, z) when ζ → +∞. In this limit one has

(bqζ ; p)∞ → 1, (−zqζ ; q)∞ → 1. According to an asymptotic formula ([11], p. 118)

Re[ln(ps; p)∞] =
ω

2
(Re s)2 +

ω

2
(Re s) +O(1), Re s→ −∞,

we have

|(aq−ζ ; p)∞| = |(p−αζ−ω
−1 ln a; p)∞| = O

(
|a|αζq−(αζ2−ζ)/2

)
,

|(−q1−ζ/z; q)∞| = |(q1−ζ+α
−1ω−1 ln z; q)∞| = O

(
|q/z|ζq−(ζ2−ζ)/2

)
.

So

f(ζ, z) = O
(
|zaα/q|ζq(1−α)ζ2/2

)
, ζ → +∞.
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Similarly

f(ζ, z) = O
(
|bα/z|−ζq(1−α)ζ2/2

)
, ζ → −∞.

It is now easy to see that the integral (*) converges. Hence according to Weierstrass M-Test integral F (z)

converges uniformly in z when Re z ≥ δ > 0. As a result the function

f(a, b, z) =
(−z,−q/z; q)∞

ln 1
q

∞∫
0

(bt/z, pz/at; p)∞
(−t,−q/t; q)∞

dt

t

is regular when Re z > 0

Lemma 2. The function

f(a, b, z) =
(−z,−q/z; q)∞

ln 1
q

∫ ∞
0

(bt, a/t; p)∞
(−zt,−q/(zt); q)∞

dt

t

satisfies the functional equations

f(a, b, z) = f(a, bp, z)− bf(a, bp, qz), (4)

f(a, b, z) = f(ap, b, z)− af(ap, b, z/q). (5)

Proof . After a series of simple manipulations of the infinite products we find

f(a, b, qz) =
(−qz,−1/z; q)∞

ln 1
q

∫ ∞
0

(bt, a/t; p)∞
(−qzt,−1/(zt); q)∞

dt

t

=
(−z,−q/z; q)∞

z ln 1
q

∫ ∞
0

z (bt, a/t; p)∞
(−zt,−q/(zt); q)∞

dt

=
p(−z,−q/z; q)∞

b ln 1
q

∫ ∞
0

bt

p

(bt, a/t; p)∞
(−zt,−q/(zt); q)∞

dt

t

=
p

b
(f(a, b, z)− f(a, b/p, z)).

This is equivalent to (4). Similarly or using the first functional equation and the formula f(a, b, z) =

f(b, a, q/z) we find

f(a, b, z) = f(b, a, q/z) = f(b, ap, q/z)− af(b, ap, q2/z)

= f(ap, b, z)− af(ap, b, z/q),

as required.

Theorem 2. Let p and q two complex numbers such that |p| < |q| < 1, then

∞∑
n=−∞

(bqn, aq−n; p)∞z
nqn(n−1)/2 =

(−z,−q/z; q)∞
ln 1

q

∫ ∞
0

(bt/z, az/t; p)∞
(−t,−q/t; q)∞

dt

t
.

Proof . First consider the case 0 < p < q < 1. The function f(a, b, z) from Lemma 2 can be written in the

form

f(a, b, z) = (−z,−q/z; q)∞
∫ ∞
−∞

(
bqζ/z, azq−ζ ; p

)
∞

(−qζ ,−q1−ζ ; q)∞
dζ.
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According to Lemma 1 f(a, b, z) is a regular function of z in the region Rez > 0. As a result f(a, b, z) has

the Laurent series expansion

f(a, b, z) =

∞∑
n=−∞

cn(a, b)zn, Re z > 0.

Functional equation (4) gives the following recursion relation for coefficients cn(a, b)

cn(a, b) = (1− bqn)cn(a, bp).

This recursion means that

cn(a, b) = (bqn; p)∞cn(a, 0).

The functional equation (5) gives

cn(a, b) = (1− aq−n)cn(a/p, b),

from which one obtains

cn(a, b) = (aq−n; p)∞cn(0, b).

By combining these equations one gets

cn(a, b) = (bqn; p)∞cn(a, 0) = (bqn, aq−n; p)∞cn(0, 0).

It is known that ([11], ex. 6.16) ∫ ∞
0

1

(−t,−q/t; q)∞
dt

t
= (q; q)∞ ln

1

q
.

According to Jacobi triple product formula

(q,−z,−q/z; q)∞ =

∞∑
n=−∞

znqn(n−1)/2

this implies that cn(0, 0) = znqn(n−1)/2, so finally

cn(a, b) = (bqn, aq−n; p)∞z
nqn(n−1)/2.

Now one needs to continue the result established for Re z > 0, 0 < p < q < 1 analytically to complex values

of parameters z, p, q to complete the proof.

Series containing infinite products (bqn, aq−n; p)∞ have been studied in [12]. It appears that the series

in Theorem 2 have been first considered in the paper [17] which also contains a different representation for

this sum in terms of an integral over a unit circle.

Corollary 1. The formula in Theorem 2 can be written in symmetric form

∞∑
n=−∞

(bqn, aq−n; p)∞
(−zqn,−q1−n/z; q)∞

=

∫ ∞
−∞

(bqx, aq−x; p)∞
(−zqx,−q1−x/z; q)∞

dx,

or in terms of q-binomial coefficients

∞∑
n=−∞

[
a

b+ αn

]
p

1

(−zqn,−q1−n/z; q)∞
=

∫ ∞
−∞

[
a

b+ αx

]
p

1

(−zqx,−q1−x/z; q)∞
dx, (6)

where q = pα, 0 < α < 1.
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This gives an example of function for which sum equals integral. The case |p| = |q| < 1, |b/a| < |z| < 1

was known to Ramanujan. In this case, the series is Ramanujan’s 1ψ1 sum and the integral is Ramanujan’s

q-beta integral ([11], chs. 5,6).

Now let z = eiθ, |θ| < π. Then

lim
q→1−

(−z,−q/z; q)∞
(−zqx,−q1−x/z; q)∞

= (1 + z)x(1 + 1/z)−x = zx.

Let q → 1− with 0 < α < 1 fixed in equation (6). Then formally

∞∑
n=−∞

(
a

b+ αn

)
eiθn =

∫ ∞
−∞

(
a

b+ αx

)
eiθx dx, 0 < α < 1. (7)

The range of validity of (7) is −πα < θ < πα as in (9), and not −π < θ < π. Continuing formal

manipulations we obtain by using (7) and binomial theorem∫ ∞
−∞

(
a

b+ αx

)
eiθx dx =

1

α
e−iθb/α

∫ ∞
−∞

(a
x

)
eiθx/α dx

=
1

α
e−iθb/α

∞∑
n=−∞

(a
n

)
eiθn/α

=
1

α
e−iθb/α

∞∑
n=0

(a
n

)
eiθn/α

=
1

α
e−iθb/α(1 + eiθ/α)a, −πα < θ < πα. (8)

Finally (7) and (8) imply

∞∑
n=−∞

(
a

b+ αn

)
vb+αn =

1

α
(1 + v)a, |v| = 1, | arg v| < π, 0 < α ≤ 1, (9)

which is T. Osler’s generalization of binomial theorem [18]. According to Osler [18], the special case α = 1

of (9) was first stated by Riemann [24]. It also follows from Ramanujan’s 1ψ1 sum in the limit q → 1−.

It should be noted that while (9) has a closed form, the series in Theorem 2 does not. If p = q2,z = 1,b =

aq2, then one can prove that

∞∑
n=−∞

(bqn, p/aqn; p)∞z
nqn(n−1)/2 = 2

(
qa, q/a; q2

)
∞

∞∑
n=−∞

(−1/a)n qn
2+n

1− aq2n+1
.

The sum on the RHS is proportional to Appell-Lerch sum m(qa2, q2, q2/a) in the notation of the paper

[19]. In general Appell-Lerch sums do not have an infinite product representation. For example, by taking

a = q−1/2 in m(qa2, q2, q2/a) we get the sum of the type m(1, q2, z) which is related to mock theta function

of order 2 (see formula (4.2) in [19]).

Corollary 2. The series
∞∑

n=−∞

(bqn, p/aqn; p)∞
(−zqn,−q/zqn; q)∞

, |p| < |q|

with p and q fixed depends only on b/z and az.
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Theorem 3. ∫ ∞
−∞

(bqx, aq−x; p)∞
(−qx,−q1−x; q)∞

eixy dx

=
2πi/ log q

sinh πy
log q

(−q,−q, eiy, qe−iy; q)∞
(q, q,−eiy,−qe−iy; q)∞

∞∑
n=−∞

(bqn, aq−n; p)∞
(−qn,−q1−n; q)∞

einy.

Proof . Consider the contour integral ∫
C

(bqz, aq−z; p)∞
(−qz,−q1−z; q)∞

eizy dz

where C is rectangle with vertices at (±R, 0), (±R,−2πi/log q). In view of asymptotics found in the

proof of Lemma 1 integrals over the vertical segments vanish in the limit R → +∞. Integrals over the

horizontal segments are convergent and related by a factor of −e2πy/ log q. The integrand has simple poles

at z = n− πi/log q with residues

− eπy/ log q

(q; q)2∞ log q
(−bqn,−aq−n; p)∞(−1)nqn(n−1)/2einy.

Application of the residue theorem yields∫ ∞
−∞

(bqx, aq−x; p)∞
(−qx,−q1−x; q)∞

eixy dx =
πi/ log q

(q; q)2∞ sinh πy
log q

∞∑
n=−∞

(−bqn,−aq−n; p)∞(−1)nqn(n−1)/2einy.

According to Corollary 2

∞∑
n=−∞

(−bqn,−aq−n; p)∞(−1)nqn(n−1)/2einy =
(eiy, qe−iy; q)∞

(−eiy,−qe−iy; q)∞

∞∑
n=−∞

(bqn, aq−n; p)∞q
n(n−1)/2einy.

To complete the proof observe that

∞∑
n=−∞

(bqn, aq−n; p)∞q
n(n−1)/2einy = (−1,−q; q)∞

∞∑
n=−∞

(bqn, aq−n; p)∞
(−qn,−q1−n; q)∞

einy

and (−1,−q; q)∞ = 2(−q; q)2∞.

One can see from Theorem 3 that the function

g(x) =
(bqx, aq−x; p)∞

(−qx,−q1−x; q)∞

is not band limited. However Fourier transform of g(x) vanishes at frequencies y = 2πm, where m 6= 0 is

an integer. Hence according to Poisson summation formula [20]

∞∑
n=−∞

g(x) =

∞∑
n=−∞

∫ ∞
−∞

g(x)e−2πinxdx =

∫ ∞
−∞

g(x)dx

in agreement with Corollary 1.

The fact that bilateral summation formulas in the theory of q-hypergeometric functions give examples of

functions of the type (1) has been recognized in the literature.
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Corollary 3. Let |p| < |q| and m ∈ Z, then∫ ∞
−∞

(bqx, aq−x; p)∞
(−qx,−q1−x; q)∞

qmx dx =

∞∑
n=−∞

(bqn, aq−n; p)∞
(−qn,−q1−n; q)∞

qmn.

Proof . Resolve the 0
0 ambiguity at the rhs of the formula of Theorem 2 using L’Hopital’s Rule.

Next we apply the method due to Bailey [22] to the identity in Theorem 2.

Theorem 4.

∞∑
n=−∞

(
b1q

n, b2q
n, a1q

−n, a2q
−n; p

)
∞ z

nqn(n−1) = z

∞∑
n=−∞

(
b1q

n/z, b2q
n/z, a1zq

−n, a2zq
−n; p

)
∞ z
−nqn(n−1).

Proof . Multiplying the equations

∞∑
n=−∞

(b1q
n, a1q

−n; p)∞e
iθnqn(n−1)/2 =

(−eiθ,−qe−iθ; q)∞
ln 1

q

∫ ∞
0

(
b1te

−iθ, a1e
iθ/t; p

)
∞

(−t,−q/t; q)∞
dt

t
,

∞∑
n=−∞

(b2q
n, a2q

−n; p)∞e
−iθnznqn(n−1)/2 =

(−ze−iθ,−qeiθ/z; q)∞
ln 1

q

∫ ∞
0

(
b2te

iθ/z, a2ze
−iθ/t; p

)
∞

(−t,−q/t; q)∞
dt

t
,

and integrating with respect to θ one obtains

∞∑
n=−∞

(
b1q

n, b2q
n, a1q

−n, a2q
−n; p

)
∞ z

nqn(n−1)

=

∫ π

−π

dθ

2π

(−eiθ,−qe−iθ; q)∞
ln 1

q

∫ ∞
0

(
b1t1e

−iθ, a1e
iθ/t1; p

)
∞

(−t1,−q/t1; q)∞
dt1
t1

× (−ze−iθ,−qeiθ/z; q)∞
ln 1

q

∫ ∞
0

(
b2t2e

iθ/z, a2ze
−iθ/t2; p

)
∞

(−t2,−q/t2; q)∞
dt2
t2

= z

∫ π

−π

dθ

2π

(−e−iθ,−qeiθ; q)∞
ln 1

q

∫ ∞
0

(
b2t2e

iθ/z, a2ze
−iθ/t2; p

)
∞

(−t2,−q/t2; q)∞
dt2
t2

× (−eiθ/z,−qze−iθ; q)∞
ln 1

q

∫ ∞
0

(
b1t1e

−iθ, a1e
iθ/t1; p

)
∞

(−t1,−q/t1; q)∞
dt1
t1

= z

∞∑
n=−∞

(
b1q

n/z, b2q
n/z, a1zq

−n, a2zq
−n; p

)
∞ z
−nqn(n−1).

Corollary 4. Let 0 < q < 1 and 0 < α < 1, then

∞∑
n=−∞

[
a1

b1 + αn

]
p

[
a2

b2 + αn

]
p

pαn(n−1)+θn = pθ
∞∑

n=−∞

[
a1

b1 − θ + αn

]
p

[
a2

b2 − θ + αn

]
p

pαn(n−1)−θn.

Theorem 2 can be generalized.

Theorem 5. Let q = pα1

1 = pα2

2 where 0 < α1 + α2 < 1, then
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∞∑
n=−∞

[
a1

b1 + αn

]
p1

[
a2

b2 + αn

]
p2

1

(−zqn,−q1−n/z; q)∞

=

∫ ∞
−∞

[
a1

b1 + αx

]
p1

[
a2

b2 + αx

]
p2

dx

(−zqx,−q1−x/z; q)∞
.
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