g-analogs of sinc sums and integrals

Martin Nicholson

g-analogs of sum equals integral relations Y, f(n) = [*_ f(z)dz for sinc functions
and binomial coefficients are studied. Such analogs are already known in the context of
g-hypergeometric series. This paper deals with multibasic ‘fractional’ generalizations that
are not g-hypergeometric functions.

Surprizing properties of sinc sums and integals were first discovered by C. Stormer in 1895 [I2]. The
more general properties of band limited functions were known to engineers from signal processing and to
physicists. For example, K.S. Krishnan viewed them as a rich source for finding identities [3]. R.P. Boas has
studied the error term when approximating a sum of a band limited function with corresponding integral
[5]. More recently these properties were studied and popularized in a series of papers [6-8].

sinc function is a special case of binomial coeflicients
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Therefore only sums with binomial coefficients will be studied in the following. It is known that binomial
coefficients are band limited (e.g., see [10])
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i.e. their Fourier spectrum is limited to the band [t| < m. According to general theorems [5] [6] whenever
Fourier spectrum of a function f(z) is limited to the band || < 27 one expects that
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Bandwidth of a product of bandlimited functions is the sum of their bandwidths [8]. In case of binomial
coefficients this together with the theorem mentioned above implies that
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For a general band limited function the above formula would have been valid only when o < % The validity
of when a = % is explained by the fact that spectral density of binomial coefficient vanishes at boundary
values t = +7.

g-analog of the Gamma function is defined as
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and the g-binomial coefficients
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with the standard notations for the g-shifted factorials
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In the limit ¢ — 17 one has I'j(a) — I'(a), i.e. standard values of the Gamma function and binomial
coefficients are recovered.[11]

g-analog of the property of bandlimitedness has been studied in the literature [12]. This paper has a much
more narrow scope and only deals with sums of binomial coefficients. We will find that with 0 < a < 1/1
has a very natural ¢g-analog. However no such simple direct g-analog of with 1/1 < a < 2/1 is known.
Nevertheless there is a formula that in the limit ¢ — 17 can be brought to the form after a series of
simple steps.

In Theorem [2| we will use a method of functional equations [I3] (see also [L1], sec. 5.2) combined with an
idea to to G. Gasper [14] to find a Laurent series for a certain integral of an infinite product. First we need
the following theorem taken from the book [15].

Theorem 1. Let
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where the following conditions are satisfied

(1) v is an infinite picewise continous curve

(2) the function f(C,z) is continous in (¢,z) at ( € v, z € D, where D is a domain in the complex z
plane,

(3) for each fized ¢ € v the function f((,z) viewed as a function of z is regular in D,

(4) integral converges uniformly in z € D', where D' is an arbitrary closed subdomain of D.

Then F(z) is regular in D.

Lemma 1. Let p and q two real numbers that satisfy 0 < p < g < 1, then
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is reqular in the half plane Re z > 0.

Proof. Put in the theorem above f((,z) = (_S;(ffjff;’/’i?;) , v = (—00,4+00), and D an arbitrary domain

in the half plane Re z > 0. Then (1),(2) and (3) are obviously satisfied. To prove (4) let p = e,
g=p* w>0,0< a<1and consider the asymptotics of f((,z) when {( — +o00. In this limit one has
(b¢%; D)oo — 1, (—2¢°;¢)oo — 1. According to an asymptotic formula ([T1], p. 118)
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we have
[(ag % P)os] = (P~ M p)ae| = O (|a\a<q7<a< fo/z) 7
(4" /200l = (a7 021 g) | = O (la/210q~ €792 .

So
£(¢.2) = 0 (|27 /alg0 =) | ¢ +ox,



Similarly
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It is now easy to see that the integral (*) converges. Hence according to Weierstrass M-Test integral F'(z)
converges uniformly in z when Rez > § > 0. As a result the function
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Lemma 2. The function
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satisfies the functional equations
f(aa ba Z) = f(aa bpa Z) - bf(aa bp7 qz)’ (4)

f(a,b,z) = f(ap,b,z) — af(ap,b,2/q). (5)

Proof. After a series of simple manipulations of the infinite products we find
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This is equivalent to (4). Similarly or using the first functional equation and the formula f(a,b,2) =
f(b,a,q/z) we find

f(a’7 b, Z) = f(b7 a, Q/Z) = f(ba ap, Q/Z) - af(b7 ap, q2/z)
= f(a’p7 b7 Z) - af(apa b7 Z/q),

as required. O

Theorem 2. Let p and q two complex numbers such that |p| < |q| < 1, then
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Proof . First consider the case 0 < p < ¢ < 1. The function f(a,b, z) from Lemma [2| can be written in the

form
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According to Lemma [l f(a, b, z) is a regular function of z in the region Rez > 0. As a result f(a,b, z) has
the Laurent series expansion

o0

fla,b,2z) = z cn(a,b)z", Rez > 0.

n=—oo

Functional equation gives the following recursion relation for coefficients ¢, (a,b)

cn(a,b) = (1 —bg")en(a, bp).
This recursion means that
cn(a,b) = (bg";p)socn(a, 0).
The functional equation gives
Cn(a7 b) = (1 - aq_”)cn(a/p, b)v

from which one obtains
Cn(aa b) = (aq_n§p)oocn(0a b)
By combining these equations one gets
Cn(a7 b) = (bqn;p)oocn(aa 0) = (bqna aq_n;p)oocn(07 O)'

It is known that ([I1], ex. 6.16)
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According to Jacobi triple product formula
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this implies that ¢, (0,0) = 2"¢"("~1/2, 5o finally

cnla,b) = (bq",aq " p)ocz"q" " V/2,

Now one needs to continue the result established for Re z > 0,0 < p < ¢ < 1 analytically to complex values

of parameters z, p,q to complete the proof. O
Series containing infinite products (bg™, aq~";p)s have been studied in [I2]. It appears that the series

in Theorem [2[ have been first considered in the paper [I7] which also contains a different representation for

this sum in terms of an integral over a unit circle.

Corollary 1. The formula in Theorem[q can be written in symmetric form
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or in terms of q-binomial coefficients
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where g = p*, 0 < a < 1.
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This gives an example of function for which sum equals integral. The case |p| = |q| < 1, |b/a| < |z| < 1
was known to Ramanujan. In this case, the series is Ramanujan’s 171 sum and the integral is Ramanujan’s
g-beta integral ([11], chs. 5,6).

Now let z = ¢, |§| < 7. Then

lim (*Zﬁql/Z; 7)o
=1 (—2¢%, —q1 7% /2;q) o

— (1427 (L+1/2) " = 2~

Let ¢ — 17 with 0 < a < 1 fixed in equation @ Then formally

G a ion > a i0x
= d 1-
2. <b+om>6 /_oo<b+ax>e 2, 0<a< (™)

n=—oo

The range of validity of @ is —ma < 0 < ma as in @, and not —7 < 6§ < w. Continuing formal
manipulations we obtain by using and binomial theorem
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Finally and imply
o
1
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which is T. Osler’s generalization of binomial theorem [I8]. According to Osler [18], the special case o = 1
of @D was first stated by Riemann [24]. It also follows from Ramanujan’s 171 sum in the limit ¢ — 17.

It should be noted that while @ has a closed form, the series in Theorem [2[does not. If p = ¢*>,2 = 1,b =
ag?, then one can prove that

—-1)/2 2
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The sum on the RHS is proportional to Appell-Lerch sum m(ga?,q?,¢?/a) in the notation of the paper
[19]. In general Appell-Lerch sums do not have an infinite product representation. For example, by taking
a=q "% in m(qa?, ¢, ¢*/a) we get the sum of the type m(1, ¢, z) which is related to mock theta function

of order 2 (see formula (4.2) in [19]).
Corollary 2. The series
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with p and q fixed depends only on b/z and az.



Theorem 3.
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Proof. Consider the contour integral
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where C' is rectangle with vertices at (£R,0), (£R,—2mi/logq). In view of asymptotics found in the
proof of Lemma [l] integrals over the vertical segments vanish in the limit R — 4oc0. Integrals over the
horizontal segments are convergent and related by a factor of —e®™¥/1°24, The integrand has simple poles
at z = n — mi/log q with residues
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Application of the residue theorem yields
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To complete the proof observe that
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One can see from Theorem [ that the function
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is not band limited. However Fourier transform of g(z) vanishes at frequencies y = 27wm, where m # 0 is
an integer. Hence according to Poisson summation formula [20]

Z Z / e 2T g — /OO g(x)dx
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in agreement with Corollary
The fact that bilateral summation formulas in the theory of g-hypergeometric functions give examples of
functions of the type has been recognized in the literature.



Corollary 3. Let |p| < |q| and m € Z, then
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Proof. Resolve the % ambiguity at the rhs of the formula of Theorem 2 using L’Hopital’s Rule.
Next we apply the method due to Bailey [22] to the identity in Theorem 2.

Theorem 4.
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Proof . Multiplying the equations
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and integrating with respect to # one obtains
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Corollary 4. Let 0 < ¢ <1 and 0 < a < 1, then

- a1 a2 an(n—1)+0n __ 0 = az an(n—1)—0n
Zoo[bl—i-an]p[bg—l—an]pp -P Z [ 0—1—0471] [bg—H—I—an]pp '

n=—

Theorem [2 can be generalized.

ay

Theorem 5. Let ¢ = pi" = p5? where 0 < a; + ag < 1, then
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