q-analogs of sinc sums and integrals

Martin Nicholson

q-analogs of sum equals integral relations $\sum_{n \in \mathbb{Z}} f(n)=\int_{-\infty}^{\infty} f(x) d x$ for sinc functions and binomial coefficients are studied. Such analogs are already known in the context of q-hypergeometric series. This paper deals with multibasic 'fractional' generalizations that are not q-hypergeometric functions.

Surprizing properties of sinc sums and integals were first discovered by C. Stormer in 1895 [1|2]. The more general properties of band limited functions were known to engineers from signal processing and to physicists. For example, K.S. Krishnan viewed them as a rich source for finding identities [3]. R.P. Boas has studied the error term when approximating a sum of a band limited function with corresponding integral [5]. More recently these properties were studied and popularized in a series of papers [6]-8].
sinc function is a special case of binomial coefficients

$$
\binom{2}{1+x}=\frac{\Gamma(3)}{\Gamma(1+x) \Gamma(1-x)}=\frac{2 \sin \pi x}{\pi x}=2 \operatorname{sinc}(\pi x)
$$

Therefore only sums with binomial coefficients will be studied in the following. It is known that binomial coefficients are band limited (e.g., see [10])

$$
\binom{a}{u}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(1+e^{i t}\right)^{a} e^{-i u t} d t
$$

i.e. their Fourier spectrum is limited to the band $|t|<\pi$. According to general theorems [5, 6] whenever Fourier spectrum of a function $f(x)$ is limited to the band $|t|<2 \pi$ one expects that

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} f(n)=\int_{-\infty}^{\infty} f(x) d x \tag{1}
\end{equation*}
$$

Bandwidth of a product of bandlimited functions is the sum of their bandwidths [8]. In case of binomial coefficients this together with the theorem mentioned above implies that

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\binom{a}{\alpha n}^{l}=\int_{-\infty}^{\infty}\binom{a}{\alpha x}^{l} d x, \quad 0<\alpha \leq \frac{2}{l} \tag{2}
\end{equation*}
$$

For a general band limited function the above formula would have been valid only when $\alpha<\frac{2}{l}$. The validity of (2) when $\alpha=\frac{2}{l}$ is explained by the fact that spectral density of binomial coefficient vanishes at boundary values $t= \pm \pi$.
q-analog of the Gamma function is defined as

$$
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}
$$

and the q-binomial coefficients

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]_{q}=\frac{\Gamma_{q}(a+1)}{\Gamma_{q}(b+1) \Gamma_{q}(a-b+1)}
$$

with the standard notations for the q-shifted factorials

$$
(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right), \quad\left(a_{1}, \ldots, a_{r} ; q\right)_{n}=\prod_{k=1}^{r}\left(a_{k} ; q\right)_{n}, \quad(a ; q)_{\infty}=\prod_{k=0}^{\infty}\left(1-a q^{k}\right)
$$

In the limit $q \rightarrow 1^{-}$one has $\Gamma_{q}(a) \rightarrow \Gamma(a)$, i.e. standard values of the Gamma function and binomial coefficients are recovered. [1]
q-analog of the property of bandlimitedness has been studied in the literature [12]. This paper has a much more narrow scope and only deals with sums of binomial coefficients. We will find that (2) with $0<\alpha \leq 1 / l$ has a very natural q-analog. However no such simple direct q-analog of (2) with $1 / l<\alpha \leq 2 / l$ is known. Nevertheless there is a formula that in the limit $q \rightarrow 1^{-}$can be brought to the form (2) after a series of simple steps.
In Theorem 2 we will use a method of functional equations [13] (see also [11], sec. 5.2) combined with an idea to to G. Gasper [14] to find a Laurent series for a certain integral of an infinite product. First we need the following theorem taken from the book [15].

Theorem 1. Let

$$
\begin{equation*}
F(z)=\int_{\gamma} f(\zeta, z) d \zeta, \tag{3}
\end{equation*}
$$

where the following conditions are satisfied
(1) γ is an infinite picewise continous curve
(2) the function $f(\zeta, z)$ is continous in (ζ, z) at $\zeta \in \gamma, z \in D$, where D is a domain in the complex z plane,
(3) for each fixed $\zeta \in \gamma$ the function $f(\zeta, z)$ viewed as a function of z is regular in D,
(4) integral (3) converges uniformly in $z \in D^{\prime}$, where D^{\prime} is an arbitrary closed subdomain of D.

Then $F(z)$ is regular in D.
Lemma 1. Let p and q two real numbers that satisfy $0<p<q<1$, then

$$
F(z)=\int_{-\infty}^{\infty} \frac{\left(b q^{\zeta}, a q^{-\zeta} ; p\right)_{\infty}}{\left(-z q^{\zeta},-q^{1-\zeta} / z ; q\right)_{\infty}} d \zeta
$$

is regular in the half plane $\operatorname{Re} z>0$.
Proof. Put in the theorem above $f(\zeta, z)=\frac{\left(b q^{\zeta}, a q^{-} ; p\right)_{\infty}}{\left(-z q^{\zeta},-q^{1-\zeta} / z ; q\right)_{\infty}}, \gamma=(-\infty,+\infty)$, and D an arbitrary domain in the half plane $\operatorname{Re} z>0$. Then (1),(2) and (3) are obviously satisfied. To prove (4) let $p=e^{-\omega}$, $q=p^{\alpha}, \omega>0,0<\alpha<1$ and consider the asymptotics of $f(\zeta, z)$ when $\zeta \rightarrow+\infty$. In this limit one has $\left(b q^{\zeta} ; p\right)_{\infty} \rightarrow 1,\left(-z q^{\zeta} ; q\right)_{\infty} \rightarrow 1$. According to an asymptotic formula ([11, p. 118)

$$
\operatorname{Re}\left[\ln \left(p^{s} ; p\right)_{\infty}\right]=\frac{\omega}{2}(\operatorname{Re} s)^{2}+\frac{\omega}{2}(\operatorname{Re} s)+O(1), \quad \operatorname{Re} s \rightarrow-\infty
$$

we have

$$
\begin{gathered}
\left|\left(a q^{-\zeta} ; p\right)_{\infty}\right|=\left|\left(p^{-\alpha \zeta-\omega^{-1} \ln a} ; p\right)_{\infty}\right|=O\left(|a|^{\alpha \zeta} q^{-\left(\alpha \zeta^{2}-\zeta\right) / 2}\right) \\
\left|\left(-q^{1-\zeta} / z ; q\right)_{\infty}\right|=\left|\left(q^{1-\zeta+\alpha^{-1} \omega^{-1} \ln z} ; q\right)_{\infty}\right|=O\left(|q / z|^{\zeta} q^{-\left(\zeta^{2}-\zeta\right) / 2}\right) .
\end{gathered}
$$

So

$$
f(\zeta, z)=O\left(\left|z a^{\alpha} / q\right|^{\zeta} q^{(1-\alpha) \zeta^{2} / 2}\right), \quad \zeta \rightarrow+\infty
$$

Similarly

$$
f(\zeta, z)=O\left(\left|b^{\alpha} / z\right|^{-\zeta} q^{(1-\alpha) \zeta^{2} / 2}\right), \quad \zeta \rightarrow-\infty
$$

It is now easy to see that the integral $\left(^{*}\right)$ converges. Hence according to Weierstrass M-Test integral $F(z)$ converges uniformly in z when $\operatorname{Re} z \geq \delta>0$. As a result the function

$$
f(a, b, z)=\frac{(-z,-q / z ; q)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{(b t / z, p z / a t ; p)_{\infty}}{(-t,-q / t ; q)_{\infty}} \frac{d t}{t}
$$

is regular when $\operatorname{Re} z>0$
Lemma 2. The function

$$
f(a, b, z)=\frac{(-z,-q / z ; q)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{(b t, a / t ; p)_{\infty}}{(-z t,-q /(z t) ; q)_{\infty}} \frac{d t}{t}
$$

satisfies the functional equations

$$
\begin{align*}
& f(a, b, z)=f(a, b p, z)-b f(a, b p, q z) \tag{4}\\
& f(a, b, z)=f(a p, b, z)-a f(a p, b, z / q) \tag{5}
\end{align*}
$$

Proof. After a series of simple manipulations of the infinite products we find

$$
\begin{aligned}
f(a, b, q z) & =\frac{(-q z,-1 / z ; q)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{(b t, a / t ; p)_{\infty}}{(-q z t,-1 /(z t) ; q)_{\infty}} \frac{d t}{t} \\
& =\frac{(-z,-q / z ; q)_{\infty}}{z \ln \frac{1}{q}} \int_{0}^{\infty} \frac{z(b t, a / t ; p)_{\infty}}{(-z t,-q /(z t) ; q)_{\infty}} d t \\
& =\frac{p(-z,-q / z ; q)_{\infty}}{b \ln \frac{1}{q}} \int_{0}^{\infty} \frac{b t}{p} \frac{(b t, a / t ; p)_{\infty}}{(-z t,-q /(z t) ; q)_{\infty}} \frac{d t}{t} \\
& =\frac{p}{b}(f(a, b, z)-f(a, b / p, z))
\end{aligned}
$$

This is equivalent to (4). Similarly or using the first functional equation and the formula $f(a, b, z)=$ $f(b, a, q / z)$ we find

$$
\begin{aligned}
f(a, b, z)=f(b, a, q / z) & =f(b, a p, q / z)-a f\left(b, a p, q^{2} / z\right) \\
& =f(a p, b, z)-a f(a p, b, z / q)
\end{aligned}
$$

as required.
Theorem 2. Let p and q two complex numbers such that $|p|<|q|<1$, then

$$
\sum_{n=-\infty}^{\infty}\left(b q^{n}, a q^{-n} ; p\right)_{\infty} z^{n} q^{n(n-1) / 2}=\frac{(-z,-q / z ; q)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{(b t / z, a z / t ; p)_{\infty}}{(-t,-q / t ; q)_{\infty}} \frac{d t}{t}
$$

Proof. First consider the case $0<p<q<1$. The function $f(a, b, z)$ from Lemma 2 can be written in the form

$$
f(a, b, z)=(-z,-q / z ; q)_{\infty} \int_{-\infty}^{\infty} \frac{\left(b q^{\zeta} / z, a z q^{-\zeta} ; p\right)_{\infty}}{\left(-q^{\zeta},-q^{1-\zeta} ; q\right)_{\infty}} d \zeta .
$$

According to Lemma $1 f(a, b, z)$ is a regular function of z in the region $\operatorname{Re} z>0$. As a result $f(a, b, z)$ has the Laurent series expansion

$$
f(a, b, z)=\sum_{n=-\infty}^{\infty} c_{n}(a, b) z^{n}, \quad \operatorname{Re} z>0
$$

Functional equation (4) gives the following recursion relation for coefficients $c_{n}(a, b)$

$$
c_{n}(a, b)=\left(1-b q^{n}\right) c_{n}(a, b p)
$$

This recursion means that

$$
c_{n}(a, b)=\left(b q^{n} ; p\right)_{\infty} c_{n}(a, 0)
$$

The functional equation (5) gives

$$
c_{n}(a, b)=\left(1-a q^{-n}\right) c_{n}(a / p, b)
$$

from which one obtains

$$
c_{n}(a, b)=\left(a q^{-n} ; p\right)_{\infty} c_{n}(0, b)
$$

By combining these equations one gets

$$
c_{n}(a, b)=\left(b q^{n} ; p\right)_{\infty} c_{n}(a, 0)=\left(b q^{n}, a q^{-n} ; p\right)_{\infty} c_{n}(0,0)
$$

It is known that ([11], ex. 6.16)

$$
\int_{0}^{\infty} \frac{1}{(-t,-q / t ; q)_{\infty}} \frac{d t}{t}=(q ; q)_{\infty} \ln \frac{1}{q}
$$

According to Jacobi triple product formula

$$
(q,-z,-q / z ; q)_{\infty}=\sum_{n=-\infty}^{\infty} z^{n} q^{n(n-1) / 2}
$$

this implies that $c_{n}(0,0)=z^{n} q^{n(n-1) / 2}$, so finally

$$
c_{n}(a, b)=\left(b q^{n}, a q^{-n} ; p\right)_{\infty} z^{n} q^{n(n-1) / 2}
$$

Now one needs to continue the result established for $\operatorname{Re} z>0,0<p<q<1$ analytically to complex values of parameters z, p, q to complete the proof.

Series containing infinite products $\left(b q^{n}, a q^{-n} ; p\right)_{\infty}$ have been studied in [12]. It appears that the series in Theorem 2 have been first considered in the paper [17] which also contains a different representation for this sum in terms of an integral over a unit circle.

Corollary 1. The formula in Theorem 2 can be written in symmetric form

$$
\sum_{n=-\infty}^{\infty} \frac{\left(b q^{n}, a q^{-n} ; p\right)_{\infty}}{\left(-z q^{n},-q^{1-n} / z ; q\right)_{\infty}}=\int_{-\infty}^{\infty} \frac{\left(b q^{x}, a q^{-x} ; p\right)_{\infty}}{\left(-z q^{x},-q^{1-x} / z ; q\right)_{\infty}} d x
$$

or in terms of q-binomial coefficients

$$
\sum_{n=-\infty}^{\infty}\left[\begin{array}{c}
a \tag{6}\\
b+\alpha n
\end{array}\right]_{p} \frac{1}{\left(-z q^{n},-q^{1-n} / z ; q\right)_{\infty}}=\int_{-\infty}^{\infty}\left[\begin{array}{c}
a \\
b+\alpha x
\end{array}\right]_{p} \frac{1}{\left(-z q^{x},-q^{1-x} / z ; q\right)_{\infty}} d x
$$

where $q=p^{\alpha}, 0<\alpha<1$.

This gives an example of function for which sum equals integral. The case $|p|=|q|<1,|b / a|<|z|<1$ was known to Ramanujan. In this case, the series is Ramanujan's ${ }_{1} \psi_{1}$ sum and the integral is Ramanujan's q-beta integral ([11], chs. 5,6).

Now let $z=e^{i \theta},|\theta|<\pi$. Then

$$
\lim _{q \rightarrow 1^{-}} \frac{(-z,-q / z ; q)_{\infty}}{\left(-z q^{x},-q^{1-x} / z ; q\right)_{\infty}}=(1+z)^{x}(1+1 / z)^{-x}=z^{x}
$$

Let $q \rightarrow 1^{-}$with $0<\alpha<1$ fixed in equation (6). Then formally

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\binom{a}{b+\alpha n} e^{i \theta n}=\int_{-\infty}^{\infty}\binom{a}{b+\alpha x} e^{i \theta x} d x, \quad 0<\alpha<1 \tag{7}
\end{equation*}
$$

The range of validity of (7) is $-\pi \alpha<\theta<\pi \alpha$ as in (9), and not $-\pi<\theta<\pi$. Continuing formal manipulations we obtain by using (7) and binomial theorem

$$
\begin{align*}
\int_{-\infty}^{\infty}\binom{a}{b+\alpha x} e^{i \theta x} d x & =\frac{1}{\alpha} e^{-i \theta b / \alpha} \int_{-\infty}^{\infty}\binom{a}{x} e^{i \theta x / \alpha} d x \\
& =\frac{1}{\alpha} e^{-i \theta b / \alpha} \sum_{n=-\infty}^{\infty}\binom{a}{n} e^{i \theta n / \alpha} \\
& =\frac{1}{\alpha} e^{-i \theta b / \alpha} \sum_{n=0}^{\infty}\binom{a}{n} e^{i \theta n / \alpha} \\
& =\frac{1}{\alpha} e^{-i \theta b / \alpha}\left(1+e^{i \theta / \alpha}\right)^{a}, \quad-\pi \alpha<\theta<\pi \alpha \tag{8}
\end{align*}
$$

Finally (7) and (8) imply

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty}\binom{a}{b+\alpha n} v^{b+\alpha n}=\frac{1}{\alpha}(1+v)^{a}, \quad|v|=1,|\arg v|<\pi, 0<\alpha \leq 1 \tag{9}
\end{equation*}
$$

which is T. Osler's generalization of binomial theorem [18]. According to Osler [18], the special case $\alpha=1$ of (9) was first stated by Riemann [24]. It also follows from Ramanujan's ${ }_{1} \psi_{1}$ sum in the limit $q \rightarrow 1^{-}$.

It should be noted that while (9) has a closed form, the series in Theorem 2 does not. If $p=q^{2}, z=1, b=$ $a q^{2}$, then one can prove that

$$
\sum_{n=-\infty}^{\infty}\left(b q^{n}, p / a q^{n} ; p\right)_{\infty} z^{n} q^{n(n-1) / 2}=2\left(q a, q / a ; q^{2}\right) \infty \sum_{n=-\infty}^{\infty} \frac{(-1 / a)^{n} q^{n^{2}+n}}{1-a q^{2 n+1}}
$$

The sum on the RHS is proportional to Appell-Lerch sum $m\left(q a^{2}, q^{2}, q^{2} / a\right)$ in the notation of the paper [19]. In general Appell-Lerch sums do not have an infinite product representation. For example, by taking $a=q^{-1 / 2}$ in $m\left(q a^{2}, q^{2}, q^{2} / a\right)$ we get the sum of the type $m\left(1, q^{2}, z\right)$ which is related to mock theta function of order 2 (see formula (4.2) in [19]).

Corollary 2. The series

$$
\sum_{n=-\infty}^{\infty} \frac{\left(b q^{n}, p / a q^{n} ; p\right)_{\infty}}{\left(-z q^{n},-q / z q^{n} ; q\right)_{\infty}}, \quad|p|<|q|
$$

with p and q fixed depends only on b / z and $a z$.

Theorem 3.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\left(b q^{x}, a q^{-x} ; p\right)_{\infty}}{\left(-q^{x},-q^{1-x} ; q\right)_{\infty}} e^{i x y} d x \\
& =\frac{2 \pi i / \log q}{\sinh \frac{\pi y}{\log q}} \frac{\left(-q,-q, e^{i y}, q e^{-i y} ; q\right)_{\infty}}{\left(q, q,-e^{i y},-q e^{-i y} ; q\right)_{\infty}} \sum_{n=-\infty}^{\infty} \frac{\left(b q^{n}, a q^{-n} ; p\right)_{\infty}}{\left(-q^{n},-q^{1-n} ; q\right)_{\infty}} e^{i n y}
\end{aligned}
$$

Proof. Consider the contour integral

$$
\int_{C} \frac{\left(b q^{z}, a q^{-z} ; p\right)_{\infty}}{\left(-q^{z},-q^{1-z} ; q\right)_{\infty}} e^{i z y} d z
$$

where C is rectangle with vertices at $(\pm R, 0),(\pm R,-2 \pi i / \log q)$. In view of asymptotics found in the proof of Lemma 1 integrals over the vertical segments vanish in the limit $R \rightarrow+\infty$. Integrals over the horizontal segments are convergent and related by a factor of $-e^{2 \pi y / \log q}$. The integrand has simple poles at $z=n-\pi i / \log q$ with residues

$$
-\frac{e^{\pi y / \log q}}{(q ; q)_{\infty}^{2} \log q}\left(-b q^{n},-a q^{-n} ; p\right)_{\infty}(-1)^{n} q^{n(n-1) / 2} e^{i n y}
$$

Application of the residue theorem yields

$$
\int_{-\infty}^{\infty} \frac{\left(b q^{x}, a q^{-x} ; p\right)_{\infty}}{\left(-q^{x},-q^{1-x} ; q\right)_{\infty}} e^{i x y} d x=\frac{\pi i / \log q}{(q ; q)_{\infty}^{2} \sinh \frac{\pi y}{\log q}} \sum_{n=-\infty}^{\infty}\left(-b q^{n},-a q^{-n} ; p\right)_{\infty}(-1)^{n} q^{n(n-1) / 2} e^{i n y}
$$

According to Corollary 2

$$
\sum_{n=-\infty}^{\infty}\left(-b q^{n},-a q^{-n} ; p\right)_{\infty}(-1)^{n} q^{n(n-1) / 2} e^{i n y}=\frac{\left(e^{i y}, q e^{-i y} ; q\right)_{\infty}}{\left(-e^{i y},-q e^{-i y} ; q\right)_{\infty}} \sum_{n=-\infty}^{\infty}\left(b q^{n}, a q^{-n} ; p\right)_{\infty} q^{n(n-1) / 2} e^{i n y}
$$

To complete the proof observe that

$$
\sum_{n=-\infty}^{\infty}\left(b q^{n}, a q^{-n} ; p\right)_{\infty} q^{n(n-1) / 2} e^{i n y}=(-1,-q ; q)_{\infty} \sum_{n=-\infty}^{\infty} \frac{\left(b q^{n}, a q^{-n} ; p\right)_{\infty}}{\left(-q^{n},-q^{1-n} ; q\right)_{\infty}} e^{i n y}
$$

and $(-1,-q ; q)_{\infty}=2(-q ; q)_{\infty}^{2}$.
One can see from Theorem 3 that the function

$$
g(x)=\frac{\left(b q^{x}, a q^{-x} ; p\right)_{\infty}}{\left(-q^{x},-q^{1-x} ; q\right)_{\infty}}
$$

is not band limited. However Fourier transform of $g(x)$ vanishes at frequencies $y=2 \pi m$, where $m \neq 0$ is an integer. Hence according to Poisson summation formula [20]

$$
\sum_{n=-\infty}^{\infty} g(x)=\sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} g(x) e^{-2 \pi i n x} d x=\int_{-\infty}^{\infty} g(x) d x
$$

in agreement with Corollary 1 .
The fact that bilateral summation formulas in the theory of q-hypergeometric functions give examples of functions of the type (1) has been recognized in the literature.

Corollary 3. Let $|p|<|q|$ and $m \in \mathbb{Z}$, then

$$
\int_{-\infty}^{\infty} \frac{\left(b q^{x}, a q^{-x} ; p\right)_{\infty}}{\left(-q^{x},-q^{1-x} ; q\right)_{\infty}} q^{m x} d x=\sum_{n=-\infty}^{\infty} \frac{\left(b q^{n}, a q^{-n} ; p\right)_{\infty}}{\left(-q^{n},-q^{1-n} ; q\right)_{\infty}} q^{m n}
$$

Proof. Resolve the $\frac{0}{0}$ ambiguity at the rhs of the formula of Theorem 2 using L'Hopital's Rule.
Next we apply the method due to Bailey [22] to the identity in Theorem 2.

Theorem 4.

$$
\sum_{n=-\infty}^{\infty}\left(b_{1} q^{n}, b_{2} q^{n}, a_{1} q^{-n}, a_{2} q^{-n} ; p\right)_{\infty} z^{n} q^{n(n-1)}=z \sum_{n=-\infty}^{\infty}\left(b_{1} q^{n} / z, b_{2} q^{n} / z, a_{1} z q^{-n}, a_{2} z q^{-n} ; p\right)_{\infty} z^{-n} q^{n(n-1)}
$$

Proof. Multiplying the equations

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty}\left(b_{1} q^{n}, a_{1} q^{-n} ; p\right)_{\infty} e^{i \theta n} q^{n(n-1) / 2} & =\frac{\left(-e^{i \theta},-q e^{-i \theta} ; q\right)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{\left(b_{1} t e^{-i \theta}, a_{1} e^{i \theta} / t ; p\right)_{\infty}}{(-t,-q / t ; q)_{\infty}} \frac{d t}{t} \\
\sum_{n=-\infty}^{\infty}\left(b_{2} q^{n}, a_{2} q^{-n} ; p\right)_{\infty} e^{-i \theta n} z^{n} q^{n(n-1) / 2} & =\frac{\left(-z e^{-i \theta},-q e^{i \theta} / z ; q\right)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{\left(b_{2} t e^{i \theta} / z, a_{2} z e^{-i \theta} / t ; p\right)_{\infty}}{(-t,-q / t ; q)_{\infty}} \frac{d t}{t}
\end{aligned}
$$

and integrating with respect to θ one obtains

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty}\left(b_{1} q^{n}, b_{2} q^{n}, a_{1} q^{-n}, a_{2} q^{-n} ; p\right)_{\infty} z^{n} q^{n(n-1)} \\
& =\int_{-\pi}^{\pi} \frac{d \theta}{2 \pi} \frac{\left(-e^{i \theta},-q e^{-i \theta} ; q\right)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{\left(b_{1} t_{1} e^{-i \theta}, a_{1} e^{i \theta} / t_{1} ; p\right)_{\infty}}{\left(-t_{1},-q / t_{1} ; q\right)_{\infty}} \frac{d t_{1}}{t_{1}} \\
& \times \frac{\left(-z e^{-i \theta},-q e^{i \theta} / z ; q\right)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{\left(b_{2} t_{2} e^{i \theta} / z, a_{2} z e^{-i \theta} / t_{2} ; p\right)_{\infty}}{\left(-t_{2},-q / t_{2} ; q\right)_{\infty}} \frac{d t_{2}}{t_{2}} \\
& =z \int_{-\pi}^{\pi} \frac{d \theta}{2 \pi} \frac{\left(-e^{-i \theta},-q e^{i \theta} ; q\right)_{\infty}}{\ln \frac{1}{q}} \int_{0}^{\infty} \frac{\left(b_{2} t_{2} e^{i \theta} / z, a_{2} z e^{-i \theta} / t_{2} ; p\right)_{\infty}}{\left(-t_{2},-q / t_{2} ; q\right)_{\infty}} \frac{d t_{2}}{t_{2}} \\
& \times \frac{\left(-e^{i \theta} / z,-q z e^{-i \theta} ; q\right)_{\infty}}{\ln \frac{1}{q} \int_{0}^{\infty} \frac{\left(b_{1} t_{1} e^{-i \theta}, a_{1} e^{i \theta} / t_{1} ; p\right)_{\infty}}{\left(-t_{1},-q / t_{1} ; q\right)_{\infty}} \frac{d t_{1}}{t_{1}}} \\
& =z \sum_{n=-\infty}^{\infty}\left(b_{1} q^{n} / z, b_{2} q^{n} / z, a_{1} z q^{-n}, a_{2} z q^{-n} ; p\right)_{\infty} z^{-n} q^{n(n-1)} .
\end{aligned}
$$

Corollary 4. Let $0<q<1$ and $0<\alpha<1$, then

$$
\sum_{n=-\infty}^{\infty}\left[\begin{array}{c}
a_{1} \\
b_{1}+\alpha n
\end{array}\right]_{p}\left[\begin{array}{c}
a_{2} \\
b_{2}+\alpha n
\end{array}\right]_{p} p^{\alpha n(n-1)+\theta n}=p^{\theta} \sum_{n=-\infty}^{\infty}\left[\begin{array}{c}
a_{1} \\
b_{1}-\theta+\alpha n
\end{array}\right]_{p}\left[\begin{array}{c}
a_{2} \\
b_{2}-\theta+\alpha n
\end{array}\right]_{p} p^{\alpha n(n-1)-\theta n}
$$

Theorem 2 can be generalized.
Theorem 5. Let $q=p_{1}^{\alpha_{1}}=p_{2}^{\alpha_{2}}$ where $0<\alpha_{1}+\alpha_{2}<1$, then

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} & {\left[\begin{array}{c}
a_{1} \\
b_{1}+\alpha n
\end{array}\right]_{p_{1}}\left[\begin{array}{c}
a_{2} \\
b_{2}+\alpha n
\end{array}\right]_{p_{2}} \frac{1}{\left(-z q^{n},-q^{1-n} / z ; q\right)_{\infty}} } \\
& =\int_{-\infty}^{\infty}\left[\begin{array}{c}
a_{1} \\
b_{1}+\alpha x
\end{array}\right]_{p_{1}}\left[\begin{array}{c}
a_{2} \\
b_{2}+\alpha x
\end{array}\right]_{p_{2}} \frac{d x}{\left(-z q^{x},-q^{1-x} / z ; q\right)_{\infty}}
\end{aligned}
$$

[1] C. Störmer, Om en generalisation af integralet $\int_{0}^{\infty} \frac{\sin a x}{x} d x=\frac{\pi}{2}$, Videnskapsselskapet i Kristiania, 4, (1895).
[2] C. Störmer, Sur une Généralisation de la formule $\frac{\varphi}{2}=\frac{\sin \varphi}{1}-\frac{\sin 2 \varphi}{2}+\frac{\sin 3 \varphi}{3} \ldots$, Acta math. 19, 341-350 (1895).
[3] K S Krishnan, On the equivalence of certain infinite series and the corresponding integrals, J. Indian Math. Soc., 12, 79-88, (1948).
[4] R. Simon, K.S. Krishnan's 1948 Perception of the Sampling Theorem, Resonance, 7, 20-25 (2002).
[5] R.P. Boas, Summation formulas and band-limited signals, Tohoku Math. Journ. 24, 121-125 (1972).
[6] D. Borwein and J.M. Borwein, Some remarkable properties of sinc and related integrals, The Ramanujan Journal, 5, 73-89 (2001).
[7] R. Baillie, D. Borwein and J.M. Borwein, Surprising sinc sums and integrals, Amer. Math. Monthly 115, 888-901 (2008).
[8] G. Almkvist, J. Gustavsson, More remarkable sinc integrals and sums, arXiv:1405.1265 (2014).
[9] M.E. Ismail, A.I. Zayed, q-analogue of the Whittaker-Shannon-Kotel'nikov sampling theorem, Proc. Amer. Math. Soc. 131, 3711-3719 (2003).
[10] H. Pollard, O. Shisha, Variations on the Binomial Series, Amer. Math. Monthly 79, 495-499 (1972).
[11] G. Gasper, M. Rahman, Basic hypergeometric series, 2nd ed., Cambridge University Press, Cambridge (2004).
[12] M.E.H. Ismail, D. Stanton, q-Taylor theorems, polynomial expansions, and interpolation of entire functions, J. Approx. Theory 123, 125-146 (2003).
[13] G.E. Andrews, R. Askey, A simple proof of Ramanujan's summation of the ${ }_{1} \psi_{1}$, Aequationes Math. 18, 333-337 (1978).
[14] G. Gasper, Solution to problem 6497 (q-Analogues of a gamma function identity, by R. Askey), Amer. Math. Monthly 94, 199-201 (1987).
[15] Yu.V. Sidorov, M.V. Fedoryuk, and M.I. Shabunin, Lectures on the Theory of Functions of a Complex Variable (English translation), Mir Publishers, Moscow (1985).
[16] M.E.H. Ismail and M. Rahman, Some bilateral sums and integrals, Pacific J. Math. 170, 497-515 (1995).
[17] N.M. Vildanov, Some extensions of Ramanujan's ${ }_{1} \psi_{1}$ summation formula, arXiv:1204.6569 (2012).
[18] T.J. Osler, Taylor's series generalized for fractional derivatives and applications, SIAM J. Math. Anal. 2, 37-48 (1971).
[19] D.R. Hickerson, E.T. Mortenson, Hecke-type double sums, Appell-Lerch sums, and mock theta functions, I, Proc. Lond. Math. Soc. 109, 382-422 (2014).
[20] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd.ed., Oxford University Press (1948).
[21] S.K. Suslov, Multiparameter Ramanujan-Type q-Beta Integrals, Ramanujan J. 2, 351-369 (1998).
[22] W.N. Bailey, On the basic bilateral hypergeometric series ${ }_{2} \psi_{2}$, Quart. J. Math. 1, 194-198 (1950).
[23] P.L. Butzer, P.J.S.G. Ferreira, J.R. Higgins, S. Saitoh, G. Schmeisser, R.L. Stens, Interpolation and Sampling: E.T. Whittaker, K. Ogura and Their Followers, J. Fourier Anal. Appl. 17, 320-354 (2011).
[24] B. Riemann, Versuch einer allgemeinen Auffasung der Integration und Differentiation, The Collected Works of Bernhard Riemann, 2nd ed., H. Weber, ed., Dover, New York, (1953). pp. 353-366
[25] G. Gasper, Elementary derivations of summation and transformation formulas for q-series, Fields Inst. Commun. 14, 55-70. (1997).

