Further mathematical connections between various solutions of Ramanujan's equations and some particle masses and Cosmological parameters: Pion meson (139.57 MeV), Higgs boson, scalar meson $\mathrm{f}_{0}(\mathbf{1 7 1 0})$, hypothetical gluino and Cosmological Constant value. XIV

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further Ramanujan formulas and described further possible mathematical connections with some parameters of Particle Physics and Cosmology: Pion meson mass (139.57 MeV), Higgs boson mass, scalar meson $f_{0}(1710)$ mass, hypothetical gluino mass and Cosmological Constant value.

[^0]From:

https://www.wikiwand.com/en/Pi

Srinivasa Ramanujan, working in isolation in India, produced many innovative series for computing π.

From:
Modular equations and approximations to $\boldsymbol{\pi}$ - Srinivasa Ramanujan - Quarterly Journal of Mathematics, XLV, 1914, 350-372

$$
\pi=\frac{24}{\sqrt{142}} \log \left\{\sqrt{\left(\frac{10+11 \sqrt{2}}{4}\right)}+\sqrt{\left(\frac{10+7 \sqrt{2}}{4}\right)}\right\}
$$

[^1]In this research thesis, we have analyzed the possible and new connections between different formulas of Ramanujan's mathematics and some formulas concerning particle physics and cosmology. In the course of the discussion we describe and highlight the connections between some developments of Ramanujan equations and particles type solutions such as the mass of the Higgs boson, and the masses of some baryons and mesons.

Moreover solutions of Ramanujan equations, connected with the mass of candidate glueball $\mathrm{f}_{0}(\mathbf{1 7 1 0})$ meson and with the hypothetical mass of Gluino (gluino $=1785.16 \mathrm{GeV}$), the masses of the π mesons (139.57 MeV) have been described and highlighted. Furthermore, we have obtained also the value of the Cosmological Constant.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

From:

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN

Page 323

for $\mathrm{x}=2$ and $\mathrm{n}=8$, we obtain:
$4 / \mathrm{Pi}$ * $\left(\left(\left(1-\mathrm{e}^{\wedge}(-\mathrm{Pi})-\left(1-\mathrm{e}^{\wedge}(-3 \mathrm{Pi}) /\left(3^{\wedge} 2\right)\right)+\left(1-\mathrm{e}^{\wedge}(-5 \mathrm{Pi}) /\left(5^{\wedge} 2\right)\right)\right)\right)\right)-4 \tan ^{\wedge}-1\left(\mathrm{e}^{\wedge}-\mathrm{Pi}\right)$

Input:

$\frac{4}{\pi}\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)-4 \tan ^{-1}\left(e^{-\pi}\right)$

Exact Result:

$\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)$
(result in radians)
Decimal approximation:
1.045481089990804929843170409244130499174030865104459079924...
(result in radians)
1.045481089.....

Alternate forms:

$\frac{4-\frac{4 e^{-5 \pi}}{25}+\frac{4 e^{-3 \pi}}{9}-4 e^{-\pi}}{\pi}-4 \cot ^{-1}\left(e^{\pi}\right)$
$-\frac{4\left(-225+9 e^{-5 \pi}-25 e^{-3 \pi}+225 e^{-\pi}+225 \pi \tan ^{-1}\left(e^{-\pi}\right)\right)}{225 \pi}$
$\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4 \cot ^{-1}\left(e^{\pi}\right)$
$\cot ^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)=$
$-4 \operatorname{sc}^{-1}\left(e^{-\pi} \mid 0\right)+\frac{4\left(1+\frac{e^{-3 \pi}}{9}-e^{-\pi}-\frac{e^{-5 \pi}}{5^{2}}\right)}{\pi}$

$$
\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)=
$$

$$
\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)=
$$

$$
-4 \cot ^{-1}\left(\frac{1}{e^{-\pi}}\right)+\frac{4\left(1+\frac{e^{-3 \pi}}{9}-e^{-\pi}-\frac{e^{-5 \pi}}{5^{2}}\right)}{\pi}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)= \\
& \frac{4}{\pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}-4 \sum_{k=0}^{\infty} \frac{e^{(-1-(2-i) k) \pi}}{1+2 k} \\
& \frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)= \\
& \frac{4}{\pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}-2 i \log (2)+2 i \log \left(i\left(-i+e^{-\pi}\right)\right)+2 i \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}+\frac{i e^{-\pi}}{2}\right)^{k}}{k}
\end{aligned}
$$

$\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)=$

$$
\frac{4}{\pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}+2 i \log (2)-2 i \log \left(-i\left(i+e^{-\pi}\right)\right)-2 i \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2} i\left(i+e^{-\pi}\right)\right)^{k}}{k}
$$

Integral representations:

$$
\begin{aligned}
& \frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)= \\
& \frac{4}{\pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}-\frac{4 e^{-\pi}}{\pi}-4 e^{-\pi} \int_{0}^{1} \frac{1}{1+e^{-2 \pi} t^{2}} d t \\
& \frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)=\frac{4}{\pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}- \\
& \frac{4 e^{-\pi}}{\pi}+\frac{i e^{-\pi}}{\pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(1+e^{-2 \pi}\right)^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2} \\
& \frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)^{4}}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)=\frac{4}{\pi}-\frac{4 e^{-5 \pi}}{25 \pi}+\frac{4 e^{-3 \pi}}{9 \pi}- \\
& \frac{4 e^{-\pi}}{\pi}+\frac{i e^{-\pi}}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{2 \pi s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction representations:

$$
\begin{array}{r}
\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)= \\
\frac{4-\frac{4 e^{-5 \pi}}{25}+\frac{4 e^{-3 \pi}}{9}-4 e^{-\pi}}{\pi}-\frac{4 e^{-\pi}}{1+\mathrm{K}_{k=1}^{\infty} \frac{e^{-2 \pi} k^{2}}{1+2 k}}= \\
\frac{4-\frac{4 e^{-5 \pi}}{25}+\frac{4 e^{-3 \pi}}{9}-4 e^{-\pi}}{\pi}-\frac{4 e^{-\pi}}{1+\frac{e^{-2 \pi}}{3+\frac{4 e^{-2 \pi}}{5+\frac{9 e^{-2 \pi}}{7+\frac{16 e^{-2 \pi}}{9+\ldots}}}}}
\end{array}
$$

$$
\begin{aligned}
& \frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)= \\
& \frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3 \pi}}{3+\mathrm{K}_{k=1}^{\infty} \frac{e^{-2 \pi\left(1+(-1)^{1+k}+k\right)^{2}}}{3+2 k}}\right)= \\
& \frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3 \pi}}{\left.3+\frac{9 e^{-2 \pi}}{5+\frac{4 e^{-2 \pi}}{7+\frac{25 e^{-2 \pi}}{9+\frac{16 e^{-2 \pi}}{11+\ldots}}}}\right)}\right. \text { (}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)= \\
& \frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+\underset{k=1}{\infty} \frac{e^{-2 \pi}(-1+2 k)^{2}}{1+2 k-e^{-2 \pi}(-1+2 k)}}= \\
& \frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+\frac{e^{-2 \pi}}{3-e^{-2 \pi}+\frac{9 e^{-2 \pi}}{5-3 e^{-2 \pi}+\frac{25 e^{-2 \pi}}{7-5 e^{-2 \pi}+\frac{49 e^{-2 \pi}}{9+\ldots-7 e^{-2 \pi}}}}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 \tan ^{-1}\left(e^{-\pi}\right)=}{\left.1+e^{-2 \pi}+\underset{k=1}{\infty} \frac{2 e^{-2 \pi}\left(1-2\left\lfloor\frac{1+k}{2}\right.\right.}{\left(1+\frac{1}{2}\left(1+(-1)^{k}\right) e^{-2 \pi}\right)(1+2 k)} \frac{1+k}{2}\right]}}=
\end{aligned}
$$

$$
\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+e^{-2 \pi}+-\frac{2 e^{-2 \pi}}{3-\frac{2 e^{-2 \pi}}{5\left(1+e^{-2 \pi}\right)-\frac{12 e^{-2 \pi}}{7-\frac{12 e^{-2 \pi}}{9\left(1+e^{-2 \pi}\right)+\ldots}}}}}
$$

From which, we obtain:
$1 / 10^{\wedge} 52\left(\left(\left(\left(\left(\left(4 / \mathrm{Pi} *\left(\left(\left(1-\mathrm{e}^{\wedge}(-\mathrm{Pi})-\left(1-\mathrm{e}^{\wedge}(-3 \mathrm{Pi}) /\left(3^{\wedge} 2\right)\right)+\left(1-\mathrm{e}^{\wedge}(-5 \mathrm{Pi}) /\left(5^{\wedge} 2\right)\right)\right)\right)\right)-4 \tan ^{\wedge}-\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.1\left(\mathrm{e}^{\wedge}-\mathrm{Pi}\right)\right)\right)\right)+((1 /$ golden ratio* $\left.\left.\left.\left.1 / 10))-16 / 10^{\wedge} 4\right)\right)\right)\right)$

Input:

$\frac{1}{10^{52}}\left(\left(\frac{4}{\pi}\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi} \times \frac{1}{10}-\frac{16}{10^{4}}\right)$
$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$$
\frac{1}{10 \phi}-\frac{1}{625}+\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)
$$

100
(result in radians)

Decimal approximation:

$1.1056844888657944146636290926806943109460617830850353 \ldots \times 10^{-52}$
(result in radians)
$1.10568448 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternate forms:

$\frac{\frac{1}{10 \phi}-\frac{1}{625}-4 \cot ^{-1}\left(e^{\pi}\right)+\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}+\sinh (\pi)-\cosh (\pi)\right.}{20}}{\pi}$
100

$$
\begin{aligned}
& -\left(\left(1800 e^{-5 \pi} \phi-5000 e^{-3 \pi} \phi+45000 e^{-\pi} \phi-\right.\right. \\
& \left.9(2(2500-\pi) \phi+125 \pi)+45000 \pi \phi \tan ^{-1}\left(e^{-\pi}\right)\right) /
\end{aligned}
$$

(1125000 $\pi \phi)$)

$$
-\frac{1}{625}+\frac{1}{5(1+\sqrt{5})}+\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4 \cot ^{-1}\left(e^{\pi}\right)
$$

100

Alternative representations:

$$
\frac{\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}}}{10^{52}}=
$$

$$
\frac{\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}}}{10^{52}}=
$$

$$
\frac{\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}}}{10^{52}}=
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}}}{10^{52}}= \\
& -\frac{1}{625000}+ \\
& \frac{1}{1000 \phi}+ \\
& \frac{1}{2500 \pi}- \\
& \frac{e^{-5 \pi}}{62500 \pi}+ \\
& \frac{e^{-3 \pi}}{225000 \pi}- \\
& \frac{e^{-\pi}}{25000 \pi}- \\
& \hline
\end{aligned}
$$

2500
$\frac{\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}}}{10^{52}}=$

$-\frac{1}{62500}+$
$\frac{1}{1000 \phi}+$
$\frac{1}{2500 \pi}-$ $\frac{e^{-5 \pi}}{62500 \pi}$ $\frac{e^{-3 \pi}}{225000 \pi}$ $e^{-\pi}$

2500π

2500

$$
\begin{aligned}
& \frac{\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}}}{10^{52}}= \\
& -\frac{1}{62500}+ \\
& \frac{1}{1000 \phi}+ \\
& \frac{1}{25000 \pi}- \\
& \frac{e^{-5 \pi}}{625000 \pi} \\
& \frac{e^{-3 \pi}}{225000 \pi} \\
& e^{-\pi}
\end{aligned}+
$$

Integral representations:

$\left.\begin{array}{l}\frac{\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right.}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}}}{10^{52}}= \\ -\frac{1}{625000}+ \\ \frac{1}{1000 \phi}+ \\ \frac{1}{2500 \pi}- \\ \frac{e^{-5 \pi}}{62500 \pi}+ \\ \frac{e^{-3 \pi}}{22500 \pi} e^{-\pi}\end{array}\right]$

Continued fraction representations:

$$
\frac{\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}}}{10^{52}}=
$$

$100=$

$$
-\frac{1}{625}+\frac{1}{10 \phi}+\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+\frac{e^{-2 \pi}}{3+\frac{4 e^{-2 \pi}}{5+\frac{9 e^{-2 \pi}}{7+\frac{16 e^{-2 \pi}}{9+\ldots}}}}}
$$

100

$$
\begin{aligned}
& \left.\frac{\left(4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)\right.}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}} \\
& -\frac{1}{625}+\frac{1}{10 \phi}+\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+\mathrm{K}_{k=1}^{\infty} \frac{e^{-2 \pi}(-1+2 k)^{2}}{1+2 k-e^{-2 \pi}(-1+2 k)}}
\end{aligned}
$$

$$
1000=
$$

$$
-\frac{1}{625}+\frac{1}{10 \phi}+\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+\frac{e^{-2 \pi}}{3-e^{-2 \pi}+\frac{9 e^{-2 \pi}}{5-3 e^{-2 \pi}+\frac{25 e^{-2 \pi}}{7-5 e^{-2 \pi}+\frac{49 e^{-2 \pi}}{9+\ldots-7 e^{-2 \pi}}}}}}
$$

100

$$
\begin{aligned}
& \begin{array}{l}
\left(\frac{4\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+\frac{1}{\phi 10}-\frac{16}{10^{4}} \\
-\frac{1}{625}+\frac{1}{10 \phi}+\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+e^{-2 \pi}+\underset{k=1}{\infty} \frac{2 e^{-2 \pi}\left(1-2\left\lfloor\frac{1+k}{2}\right]\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(1+\frac{1}{2}\left(1+(-1)^{k}\right) e^{-2 \pi}\right)(1+2 k)}}
\end{array} \\
& 100= \\
& -\frac{1}{625}+\frac{1}{10 \phi}+\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+e^{-2 \pi}+-\frac{2 e^{-2 \pi}}{3-\frac{2 e^{-2 \pi}}{5\left(1+e^{-2 \pi}\right)-\frac{12 e^{-2 \pi}}{7-\frac{12 e^{-2 \pi}}{9\left(1+e^{-2 \pi}\right)+\ldots}}}}}
\end{aligned}
$$

100

And again:

$10^{\wedge} 3^{*}\left(\left(\left(4 / \mathrm{Pi} *\left(\left(\left(1-\mathrm{e}^{\wedge}(-\mathrm{Pi})-\left(1-\mathrm{e}^{\wedge}(-3 \mathrm{Pi}) /\left(3^{\wedge} 2\right)\right)+\left(1-\mathrm{e}^{\wedge}(-5 \mathrm{Pi}) /\left(5^{\wedge} 2\right)\right)\right)\right)\right)-4 \tan ^{\wedge}-1\left(\mathrm{e}^{\wedge}-\right.\right.\right.\right.$
$\mathrm{Pi}))))+27^{\wedge} 2+8$
Where 8 is a Fibonacci number

Input:

$$
10^{3}\left(\frac{4}{\pi}\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8
$$

Exact Result:

$737+1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)$
(result in radians)

Decimal approximation:

1782.481089990804929843170409244130499174030865104459079924...
(result in radians)
$1782.481089 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.

Alternate forms:

$737+1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4 \cot ^{-1}\left(e^{\pi}\right)\right)$
$737+1000\left(\frac{4-\frac{4 e^{-5 \pi}}{25}+\frac{4 e^{-3 \pi}}{9}-4 e^{-\pi}}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)$
$-\frac{1440 e^{-5 \pi}-4000 e^{-3 \pi}+36000 e^{-\pi}-9(4000+737 \pi)+36000 \pi \tan ^{-1}\left(e^{-\pi}\right)}{9 \pi}$
$\cot ^{-1}(x)$ is the inverse cotangent function

Alternative representations:

$10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8=$

$$
8+27^{2}+10^{3}\left(-4 \operatorname{sc}^{-1}\left(e^{-\pi} \mid 0\right)+\frac{4\left(1+\frac{e^{-3 \pi}}{9}-e^{-\pi}-\frac{e^{-5 \pi}}{5^{2}}\right)}{\pi}\right)
$$

$$
\begin{aligned}
& 10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
& 8+27^{2}+10^{3}\left(-4 \tan ^{-1}\left(1, e^{-\pi}\right)+\frac{4\left(1+\frac{e^{-3 \pi}}{9}-e^{-\pi}-\frac{e^{-5 \pi}}{5^{2}}\right)}{\pi}\right) \\
& 10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
& 8+27^{2}+10^{3}\left(-4 \cot ^{-1}\left(\frac{1}{e^{-\pi}}\right)+\frac{4\left(1+\frac{e^{-3 \pi}}{9}-e^{-\pi}-\frac{e^{-5 \pi}}{5^{2}}\right)}{\pi}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
& 737+\frac{4000}{\pi}-\frac{160 e^{-5 \pi}}{\pi}+\frac{4000 e^{-3 \pi}}{9 \pi}-\frac{4000 e^{-\pi}}{\pi}-4000 \sum_{k=0}^{\infty} \frac{e^{(-1-(2-i) k) \pi}}{1+2 k} \\
& 10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)^{4}}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
& 737+\frac{4000}{\pi}-\frac{160 e^{-5 \pi}}{\pi}+\frac{4000 e^{-3 \pi}}{9 \pi}-\frac{4000 e^{-\pi}}{\pi}- \\
& 2000 i \log (2)+2000 i \log \left(i\left(-i+e^{-\pi}\right)\right)+2000 i \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}+\frac{i e^{-\pi}}{2}\right)^{k}}{k} \\
& 10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
& 737+\frac{4000}{\pi}-\frac{160 e^{-5 \pi}}{\pi}+\frac{4000 e^{-3 \pi}}{9 \pi}-\frac{4000 e^{-\pi}}{\pi}+ \\
& 2000 i \log (2)-2000 i \log \left(-i\left(i+e^{-\pi}\right)\right)-2000 i \sum_{k=1}^{\infty} \frac{\left(-\frac{1}{2} i\left(i+e^{-\pi}\right)\right)^{k}}{k}
\end{aligned}
$$

Integral representations:

$$
\left.\begin{array}{l}
10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
737+\frac{4000}{\pi}-\frac{160 e^{-5 \pi}}{\pi}+\frac{4000 e^{-3 \pi}}{9 \pi}-\frac{4000 e^{-\pi}}{\pi}-4000 e^{-\pi} \int_{0}^{1} \frac{1}{1+e^{-2 \pi} t^{2}} d t \\
10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
737+\frac{4000}{\pi}-\frac{160 e^{-5 \pi}}{\pi}+\frac{4000 e^{-3 \pi}}{9 \pi}-\frac{4000 e^{-\pi}}{\pi}+ \\
\frac{1000 i e^{-\pi}}{\pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(1+e^{-2 \pi}\right)^{-5} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s \text { for } 0<\gamma<\frac{1}{2} \\
10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
737+\frac{4000}{\pi}-\frac{160 e^{-5 \pi}}{\pi}+\frac{4000 e^{-3 \pi}}{9 \pi}-\frac{4000 e^{-\pi}}{\pi}+ \\
\frac{1000 i e^{-\pi}}{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} e^{2 \pi s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) \\
\Gamma\left(\frac{3}{2}-s\right)
\end{array} d s \text { for } 0<\gamma<\frac{1}{2}\right]
$$

Continued fraction representations:
$10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8=$

$$
737+1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+\mathrm{K}_{k=1}^{\infty} \frac{e^{-2 \pi k^{2}}}{1+2 k}}\right)=
$$

$$
737+1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{\left.1+\frac{e^{-2 \pi}}{3+\frac{4 e^{-2 \pi}}{5+\frac{9 e^{-2 \pi}}{7+\frac{16 e^{-2 \pi}}{9+\ldots}}}}\right)}\right)
$$

$$
\begin{aligned}
& 10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right)^{4}}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8= \\
& 737+1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3 \pi}}{3+K_{k=1}^{\infty} \frac{e^{-2 \pi}\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}\right)\right) \\
& 737+1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-4\left(e^{-\pi}-\frac{e^{-3 \pi}}{\left.3+\frac{9 e^{-2 \pi}}{5+\frac{4 e^{-2 \pi}}{7+\frac{25 e^{-2 \pi}}{9+\frac{16 e^{-2 \pi}}{11+\ldots}}}}\right)}\right)\right.
\end{aligned}
$$

$$
10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8=
$$

$$
737+1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+\mathrm{K}_{k=1}^{\infty} \frac{e^{-2 \pi}(-1+2 k)^{2}}{1+2 k-e^{-2 \pi}(-1+2 k)}}\right)=737+1000
$$

$$
\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{\left.1+\frac{e^{-2 \pi}}{3-e^{-2 \pi}+\frac{9 e^{-2 \pi}}{5-3 e^{-2 \pi}+\frac{25 e^{-2 \pi}}{7-5 e^{-2 \pi}+\frac{49 e^{-2 \pi}}{9+\ldots-7 e^{-2 \pi}}}}}\right)}\right.
$$

$$
\begin{aligned}
& 10^{3}\left(\frac{\left(1-e^{-\pi}-\left(1-\frac{e^{-3 \pi}}{3^{2}}\right)+\left(1-\frac{e^{-5 \pi}}{5^{2}}\right)\right) 4}{\pi}-4 \tan ^{-1}\left(e^{-\pi}\right)\right)+27^{2}+8=737+ \\
& 1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{1+e^{-2 \pi}+{\underset{k N}{K}}_{\infty}^{\infty} \frac{\left.2 e^{-2 \pi}\left(1-2\left\lfloor\frac{1+k}{2}\right)\right] \frac{1+k}{2}\right\rfloor}{\left(1+\frac{1}{2}\left(1+(-1)^{k}\right) e^{-2 \pi}\right)(1+2 k)}}\right)=737+ \\
& 1000\left(\frac{4\left(1-\frac{e^{-5 \pi}}{25}+\frac{e^{-3 \pi}}{9}-e^{-\pi}\right)}{\pi}-\frac{4 e^{-\pi}}{\left.1+e^{-2 \pi}+-\frac{2 e^{-2 \pi}}{3-\frac{2 e^{-2 \pi}}{5\left(1+e^{-2 \pi}\right)-\frac{12 e^{-2 \pi}}{7-\frac{12 e^{-2 \pi}}{9\left(1+e^{-2 \pi}\right)+\ldots}}}}\right)}\right.
\end{aligned}
$$

Page 326

For $2.91563611528 \ldots=\mathrm{y}=\phi ; 0.0395671 \ldots=\mathrm{z}=\psi$ and $\mathrm{x}=2$, we obtain:
$2.91563611528^{\wedge} 2(-2)^{*}\left(\left(\left(2^{*}(1+2) /(1-2)^{\wedge} 2+2^{\wedge} 6^{*}\left(1+2^{\wedge} 3\right) /(1-\right.\right.\right.$
$\left.\left.\left.\left.\left.2^{\wedge} 3\right)^{\wedge} 2+2^{\wedge} 10^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)^{\wedge} 2\right)\right)\right)\right)^{*}(1+2) /(1-2)-3^{\wedge} 2^{*} 2^{\wedge} 2^{*}\left(1+2^{\wedge} 3\right) /(1-$ $\left.2^{\wedge} 3\right)+5^{\wedge} 2^{*} 2^{\wedge} 6^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)$

Input interpretation:

$2.91563611528^{2} \times(-2)\left(2 \times \frac{1+2}{(1-2)^{2}}+2^{6} \times \frac{1+2^{3}}{\left(1-2^{3}\right)^{2}}+2^{10} \times \frac{1+2^{5}}{\left(1-2^{5}\right)^{2}}\right) \times \frac{1+2}{1-2}-$

$$
3^{2} \times 2^{2} \times \frac{1+2^{3}}{1-2^{3}}+5^{2} \times 2^{6} \times \frac{1+2^{5}}{1-2^{5}}
$$

Result:

1042.198599190821988838242872246172142113869481195183588523...
1042.19859919...
$1 / 8\left(\left(\left(2.91563611528^{\wedge} 2(-2)^{*}\left(\left(() 2^{*}(1+2) /(1-2)^{\wedge} 2+2^{\wedge} 6^{*}\left(1+2^{\wedge} 3\right) /(1-\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.2^{\wedge} 3\right)^{\wedge} 2+2^{\wedge} 10^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)^{\wedge} 2\right)\right)\right)\right)^{*}(1+2) /(1-2)-3^{\wedge} 2^{*} 2^{\wedge} 2^{*}\left(1+2^{\wedge} 3\right) /(1-$
$\left.\left.\left.\left.2^{\wedge} 3\right)+5^{\wedge} 2^{*} 2^{\wedge} 6^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)\right)\right)\right)+11$-golden ratio
Where 11 is a Lucas number

Input interpretation:

$\frac{1}{8}\left(2.91563611528^{2} \times(-2)\left(2 \times \frac{1+2}{(1-2)^{2}}+2^{6} \times \frac{1+2^{3}}{\left(1-2^{3}\right)^{2}}+2^{10} \times \frac{1+2^{5}}{\left(1-2^{5}\right)^{2}}\right) \times \frac{1+2}{1-2}-\right.$

$$
\left.3^{2} \times 2^{2} \times \frac{1+2^{3}}{1-2^{3}}+5^{2} \times 2^{6} \times \frac{1+2^{5}}{1-2^{5}}\right)+11-\phi
$$

Result:

139.65679091...
$139.65679091 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\frac{1}{8}\left(\frac{2.915636115280000^{2}(1+2)(-2)\left(\frac{2(1+2)}{(1-2)^{2}}+\frac{2^{6}\left(1+2^{3}\right)}{\left(1-2^{3}\right)^{2}}+\frac{2^{10}\left(1+2^{5}\right)}{\left(1-2^{5}\right)^{2}}\right)}{1-2}-\right.
$$

$$
\left.\frac{\left(1+2^{3}\right) 3^{2} \times 2^{2}}{1-2^{3}}+\frac{5^{2} \times 2^{6}\left(1+2^{5}\right)}{1-2^{5}}\right)+11-\phi=
$$

$$
11+\frac{1}{8}\left(\frac{-324}{-7}+\frac{\left(1+2^{5}\right) 2^{6} \times 5^{2}}{1-2^{5}}+6 \times 2.915636115280000^{2}\right.
$$

$$
\left.\left(6 \times \frac{1}{1}+\frac{9 \times 2^{6}}{(-7)^{2}}+\frac{\left(1+2^{5}\right) 2^{10}}{\left(1-2^{5}\right)^{2}}\right)\right)-2 \sin \left(54^{\circ}\right)
$$

$$
\frac{1}{8}\left(\frac{2.915636115280000^{2}(1+2)(-2)\left(\frac{2(1+2)}{(1-2)^{2}}+\frac{2^{6}\left(1+2^{3}\right)}{\left(1-2^{3}\right)^{2}}+\frac{2^{10}\left(1+2^{5}\right)}{\left(1-2^{5}\right)^{2}}\right)}{1-2}-\right.
$$

$$
\left.\frac{\left(1+2^{3}\right) 3^{2} \times 2^{2}}{1-2^{3}}+\frac{5^{2} \times 2^{6}\left(1+2^{5}\right)}{1-2^{5}}\right)+11-\phi=
$$

$$
11+2 \cos \left(216^{\circ}\right)+\frac{1}{8}\left(\frac{-324}{-7}+\frac{\left(1+2^{5}\right) 2^{6} \times 5^{2}}{1-2^{5}}+\right.
$$

$\left.6 \times 2.915636115280000^{2}\left(6 \times \frac{1}{1}+\frac{9 \times 2^{6}}{(-7)^{2}}+\frac{\left(1+2^{5}\right) 2^{10}}{\left(1-2^{5}\right)^{2}}\right)\right)$
$\frac{1}{8}\left(\frac{2.915636115280000^{2}(1+2)(-2)\left(\frac{2(1+2)}{(1-2)^{2}}+\frac{2^{6}\left(1+2^{3}\right)}{\left(1-2^{3}\right)^{2}}+\frac{2^{10}\left(1+2^{5}\right)}{\left(1-2^{5}\right)^{2}}\right)}{1-2}-\right.$

$$
\left.\frac{\left(1+2^{3}\right) 3^{2} \times 2^{2}}{1-2^{3}}+\frac{5^{2} \times 2^{6}\left(1+2^{5}\right)}{1-2^{5}}\right)+11-\phi=
$$

$11+\frac{1}{8}\left(\frac{-324}{-7}+\frac{\left(1+2^{5}\right) 2^{6} \times 5^{2}}{1-2^{5}}+6 \times 2.915636115280000^{2}\right.$

$$
\left.\left(6 \times \frac{1}{1}+\frac{9 \times 2^{6}}{(-7)^{2}}+\frac{\left(1+2^{5}\right) 2^{10}}{\left(1-2^{5}\right)^{2}}\right)\right)+2 \sin \left(666^{\circ}\right)
$$

$10^{\wedge}-52\left(\left(\left(1 / 10^{\wedge} 3\left(\left(\left(2.91563611528^{\wedge} 2(-2)^{*}\left(()\left(2^{*}(1+2) /(1-2)^{\wedge} 2+2^{\wedge} 6^{*}\left(1+2^{\wedge} 3\right) /(1-\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.2^{\wedge} 3\right)^{\wedge} 2+2^{\wedge} 10^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)^{\wedge} 2\right)\right)\right)\right)^{*}(1+2) /(1-2)-3^{\wedge} 2^{*} 2^{\wedge} 2^{*}\left(1+2^{\wedge} 3\right) /(1-$ $\left.\left.\left.\left.2^{\wedge} 3\right)+5^{\wedge} 2^{*} 2^{\wedge} 6^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)\right)\right)\right)+1 /$ golden ratio* $\left.\left.\left.1 / 10+16 / 10^{\wedge} 4\right)\right)\right)$

Input interpretation:

$$
\begin{aligned}
& \frac{\frac{1}{10^{52}}}{\frac{1}{10^{3}}}\left(2.91563611528^{2} \times(-2)\left(2 \times \frac{1+2}{(1-2)^{2}}+2^{6} \times \frac{1+2^{3}}{\left(1-2^{3}\right)^{2}}+2^{10} \times \frac{1+2^{5}}{\left(1-2^{5}\right)^{2}}\right) \times \frac{1+2}{1-2}-\right. \\
& \left.\left.3^{2} \times 2^{2} \times \frac{1+2^{3}}{1-2^{3}}+5^{2} \times 2^{6} \times \frac{1+2^{5}}{1-2^{5}}\right)+\frac{1}{\phi} \times \frac{1}{10}+\frac{16}{10^{4}}\right)
\end{aligned}
$$

Result:

$1.1056019981 \ldots \times 10^{-52}$
$1.1056019981 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternative representations:

$$
\left.\begin{array}{l}
\frac{1}{10^{52}}\left(\frac{2.915636115280000^{2}(1+2)(-2)\left(\frac{2(1+2)}{(1-2)^{2}}+\frac{2^{6}\left(1+2^{3}\right)}{\left(1-2^{3}\right)^{2}}+\frac{2^{10}\left(1+2^{5}\right)}{\left(1-2^{5}\right)^{2}}\right)}{1-2}-\frac{\left(1+2^{3}\right) 3^{2} \times 2^{2}}{1-2^{3}}+\frac{5^{2} \times 2^{6}\left(1+2^{5}\right)}{1-2^{5}}\right. \\
10^{3} \\
\left.\quad \frac{1}{10 \phi}+\frac{16}{10^{4}}\right)= \\
\frac{16}{\frac{10}{4}}+\frac{-324}{-7}+\frac{\left(1+2^{5}\right) 2^{6} \times 5^{2}}{1-2^{5}}+6 \times 2.915636115280000^{2}\left(6 \times \frac{1}{1}+\frac{9 \times 2^{6}}{(-7)^{2}}+\frac{\left(1+2^{5}\right) 2^{10}}{\left(1-2^{5}\right)^{2}}\right) \\
10^{3} \\
10^{52}
\end{array}+\frac{1}{10\left(2 \sin \left(54^{\circ}\right)\right)}\right)
$$

$27^{\wedge} 2+\left(\left(\left(2.91563611528^{\wedge} 2(-2)^{*}\left(\left(\left(2^{*}(1+2) /(1-2)^{\wedge} 2+2^{\wedge} 6^{*}\left(1+2^{\wedge} 3\right) /(1-\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.2^{\wedge} 3\right)^{\wedge} 2+2^{\wedge} 10^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)^{\wedge} 2\right)\right)\right)\right)^{*}(1+2) /(1-2)-3^{\wedge} 2^{*} 2^{\wedge} 2^{*}\left(1+2^{\wedge} 3\right) /(1-$ $\left.\left.\left.\left.2^{\wedge} 3\right)+5^{\wedge} 2^{*} 2^{\wedge} 6^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)\right)\right)\right)-47+4$

Where 47 and 4 are Lucas number

Input interpretation:

$27^{2}+\left(2.91563611528^{2} \times(-2)\left(2 \times \frac{1+2}{(1-2)^{2}}+2^{6} \times \frac{1+2^{3}}{\left(1-2^{3}\right)^{2}}+2^{10} \times \frac{1+2^{5}}{\left(1-2^{5}\right)^{2}}\right) \times \frac{1+2}{1-2}-\right.$

$$
\left.3^{2} \times 2^{2} \times \frac{1+2^{3}}{1-2^{3}}+5^{2} \times 2^{6} \times \frac{1+2^{5}}{1-2^{5}}\right)-47+4
$$

Result:

1728.198599190821988838242872246172142113869481195183588523...
1728.19859919...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729
$27^{\wedge} 2+\left(\left(\left(2.91563611528^{\wedge} 2(-2)^{*}\left(\left(\left(\left(2 *(1+2) /(1-2)^{\wedge} 2+2^{\wedge} 6^{*}\left(1+2^{\wedge} 3\right) /(1-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.2^{\wedge} 3\right)^{\wedge} 2+2^{\wedge} 10^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)^{\wedge} 2\right)\right)\right)\right)^{*}(1+2) /(1-2)-3^{\wedge} 2^{*} 2^{\wedge} 2^{*}\left(1+2^{\wedge} 3\right) /(1-$ $\left.\left.\left.\left.2^{\wedge} 3\right)+5^{\wedge} 2^{*} 2^{\wedge} 6^{*}\left(1+2^{\wedge} 5\right) /\left(1-2^{\wedge} 5\right)\right)\right)\right)+11$

Where 11 is a Lucas number

Input interpretation:

$$
\begin{aligned}
27^{2}+(& \left(2.91563611528^{2} \times(-2)\left(2 \times \frac{1+2}{(1-2)^{2}}+2^{6} \times \frac{1+2^{3}}{\left(1-2^{3}\right)^{2}}+2^{10} \times \frac{1+2^{5}}{\left(1-2^{5}\right)^{2}}\right) \times \frac{1+2}{1-2}-\right. \\
& \left.3^{2} \times 2^{2} \times \frac{1+2^{3}}{1-2^{3}}+5^{2} \times 2^{6} \times \frac{1+2^{5}}{1-2^{5}}\right)+11
\end{aligned}
$$

Result:

1782.198599190821988838242872246172142113869481195183588523...
$1782.19859919 \ldots$ result in the range of the hypothetical mass of Gluino (gluino $=$ $1785.16 \mathrm{GeV})$.

We have that:
$2 /(1-2)-\left(2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)+\left(2^{\wedge} 6\right) /\left(1-2^{\wedge} 5\right)-\left(2^{\wedge} 10\right) /\left(1-2^{\wedge} 7\right)$

Input:

$\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}$

Exact result:

$\frac{141690}{27559}$

Decimal approximation:

5.141333139809136761130665118473094089045320947784752712362...
5.1413331398...
$27\left(\left(\left(2 /(1-2)-\left(2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)+\left(2^{\wedge} 6\right) /\left(1-2^{\wedge} 5\right)-\left(2^{\wedge} 10\right) /\left(1-2^{\wedge} 7\right)\right)\right)\right)+1 /$ golden ratio
Input:
$27\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}+\frac{3825630}{27559}$

Decimal approximation:

139.4340287635965873987325450331391785219439747699940860959...
139.43402876 result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$$
\begin{aligned}
& \frac{7623701+27559 \sqrt{5}}{55118} \\
& \frac{3825630 \phi+27559}{27559 \phi} \\
& \frac{\sqrt{5}}{2}+\frac{7623701}{55118}
\end{aligned}
$$

Alternative representations:

$27\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\frac{1}{\phi}=$

$$
27\left(-2--\frac{8}{7}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\frac{1}{2 \sin \left(54^{\circ}\right)}
$$

$27\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\frac{1}{\phi}=$

$$
-\frac{1}{2 \cos \left(216^{\circ}\right)}+27\left(-2--\frac{8}{7}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)
$$

$$
\begin{aligned}
& 27\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\frac{1}{\phi}= \\
& 27\left(-2--\frac{8}{7}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+-\frac{1}{2 \sin \left(666^{\circ}\right)}
\end{aligned}
$$

And:
$24\left(\left(\left(2 /(1-2)-\left(2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)+\left(2^{\wedge} 6\right) /\left(1-2^{\wedge} 5\right)-\left(2^{\wedge} 10\right) /\left(1-2^{\wedge} 7\right)\right)\right)\right)+$ golden ratio

Input:

$24\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\phi$

Result:
$\phi+\frac{3400560}{27559}$

Decimal approximation:

125.0100293441691771153405496777198962548080119266398279588...
125.010029344... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:
$\frac{6828679+27559 \sqrt{5}}{55118}$
$\frac{27559 \phi+3400560}{27559}$
$\frac{6828679}{55118}+\frac{\sqrt{5}}{2}$

Alternative representations:
$24\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\phi=24\left(-2--\frac{8}{7}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+2 \sin \left(54^{\circ}\right)$
$24\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\phi=$

$$
-2 \cos \left(216^{\circ}\right)+24\left(-2--\frac{8}{7}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)
$$

$24\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\phi=24\left(-2--\frac{8}{7}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)-2 \sin \left(666^{\circ}\right)$

And:
$1 / 10^{\wedge} 52\left(\left((1 / 5)\left(\left(\left(2 /(1-2)-\left(2^{\wedge} 3\right) /\left(1-2^{\wedge} 3\right)+\left(2^{\wedge} 6\right) /\left(1-2^{\wedge} 5\right)-\left(2^{\wedge} 10\right) /(1-\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.\left.2^{\wedge} 7\right)\right)\right)\right)+76 / 10^{\wedge} 3+(11+3) / 10^{\wedge} 4\right)\right)\right)$
Where 76, 11 and 3 are Lucas numbers

Input:

$\frac{1}{10^{52}}\left(\frac{1}{5}\left(\frac{2}{1-2}-\frac{2^{3}}{1-2^{3}}+\frac{2^{6}}{1-2^{5}}-\frac{2^{10}}{1-2^{7}}\right)+\frac{76}{10^{3}}+\frac{11+3}{10^{4}}\right)$

Exact result:

137795000

Decimal approximation:

$1.1056666279618273522261330236946188178090641895569505 \ldots \times 10^{-52}$
$1.105666 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternate form:

152355333
137795000

Page 327

For $\mathrm{x}=1 / 2$, we obtain:
$8 \mathrm{Pi}^{*} 0.5^{\wedge} 3^{*}\left[1 /\left(\left(\left(\mathrm{e}^{\wedge}(\mathrm{Pi})-\mathrm{e}^{\wedge}(-\mathrm{Pi})\right)\right)^{\wedge} 2\right)^{*}-1^{*} 1 /\left(0.5^{\wedge} 4\right)+1 /\left(\left(\left(\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-\mathrm{e}^{\wedge}(-2 \mathrm{Pi})\right)\right)^{\wedge} 2\right)\right) 1 /(16-\right.$ $\left.0.5^{\wedge} 4\right)$]

Input:

$8 \pi \times 0.5^{3}\left(\frac{1}{\left(e^{\pi}-e^{-\pi}\right)^{2}} \times(-1) \times \frac{1}{0.5^{4}}+\frac{1}{\left(e^{2 \pi}-e^{-2 \pi}\right)^{2}} \times \frac{1}{16-0.5^{4}}\right)$

Result:

-0.0942188...
-0.0942188 .. partial result

Alternative representations:

$$
\begin{aligned}
& 8 \pi 0.5^{3}\left(-\frac{1}{0.5^{4}\left(e^{\pi}-e^{-\pi}\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(e^{2 \pi}-e^{-2 \pi}\right)^{2}}\right)= \\
& 1440^{\circ} 0.5^{3}\left(-\frac{1}{0.5^{4}\left(-e^{-180^{\circ}}+e^{180^{\circ}}\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(-e^{-360^{\circ}}+e^{360^{\circ}}\right)^{2}}\right)
\end{aligned}
$$

$$
8 \pi 0.5^{3}\left(-\frac{1}{0.5^{4}\left(e^{\pi}-e^{-\pi}\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(e^{2 \pi}-e^{-2 \pi}\right)^{2}}\right)=8 \pi 0.5^{3}
$$

$$
\left(-\frac{1}{0.5^{4}\left(\exp ^{\pi}(z)-\exp ^{-\pi}(z)\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(\exp ^{2 \pi}(z)-\exp ^{-2 \pi}(z)\right)^{2}}\right) \text { for } z=1
$$

$$
\begin{aligned}
& \frac{14 x}{\left(e^{\pi}-x\right)^{2}}+\frac{24 x}{\left(e^{2 \pi} e^{-2 \pi}\right)^{2}}+8<=\frac{2}{\pi}\left(\frac{B_{4} x}{P x}+\frac{15 x-1}{e^{2} \pi}+\frac{x^{6}}{e^{2}+1}\right) \\
& \frac{1}{2 x^{2}}+\frac{1}{(x+1)^{2}}+\frac{1}{(x+2)^{2}}+\frac{1}{(x+3)^{2}}+8 k \\
& =\frac{1}{2 \pi x^{3}}+\frac{\pi}{3 x^{2}}-\frac{\pi}{3 x^{2} m x\left(e^{2 \cdot \pi}-1\right)} \\
& t x_{1} x\left\{\frac{1}{e^{2} \frac{1}{2}} \cdot \frac{1}{\left(1^{2}-x^{2}\right)^{2}}+\frac{2}{e^{42}-1} \cdot \frac{1}{\left(2^{2}-x^{2}\right)^{2}}+8<x\right\} \\
& \neq 8 \pi x^{3}\left\{\frac{1}{\left(e^{\pi} e^{-\pi}\right)^{2}}: \frac{1}{1^{4}-x^{4}}+\frac{1}{\left(e^{2} \pi e^{-2 \pi}\right)^{2}} \cdot \frac{1}{2^{5}-x 4}+8 \pi\right\}
\end{aligned}
$$

$$
\begin{aligned}
& 8 \pi 0.5^{3}\left(-\frac{1}{0.5^{4}\left(e^{\pi}-e^{-\pi}\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(e^{2 \pi}-e^{-2 \pi}\right)^{2}}\right)= \\
& -8 i \log (-1) 0.5^{3}\left(-\frac{1}{0.5^{4}\left(e^{-i \log (-1)}-e^{i \log (-1)}\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(e^{-2 i \log (-1)}-e^{2 i \log (-1)}\right)^{2}}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 8 \pi 0.5^{3}\left(-\frac{1}{0.5^{4}\left(e^{\pi}-e^{-\pi}\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(e^{2 \pi}-e^{-2 \pi}\right)^{2}}\right)= \\
& -\frac{1}{\left(-1+e^{8} \int_{0}^{\infty} \sin (t) / t d t\right)^{2}} 32 e^{4} \int_{0}^{\infty \sin (t) / t d t} \\
& \left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t+1.99608 e^{4} \int_{0}^{\infty} \sin (t) / t d t\right. \\
& \left.\int_{0}^{\infty} \frac{\sin (t)}{t} d t+e^{8} \int_{0}^{\infty} \sin (t) / t d t \int_{0}^{\infty} \frac{\sin (t)}{t} d t\right) \\
& 8 \pi 0.5^{3}\left(-\frac{1}{0.5^{4}\left(e^{\pi}-e^{-\pi}\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(e^{2 \pi}-e^{-2 \pi}\right)^{2}}\right)= \\
& -\left(\left(32 e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t+1.99608 e^{4} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t \int_{0}^{\infty} \frac{1}{1+t^{2}} d t+\right.\right.\right. \\
& \left.\left.\left.e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)\right) /\left(-1+e^{8} \int_{0}^{\infty} 1 /\left(1+t^{2}\right) d t\right)^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 8 \pi 0.5^{3}\left(-\frac{1}{0.5^{4}\left(e^{\pi}-e^{-\pi}\right)^{2}}+\frac{1}{\left(16-0.5^{4}\right)\left(e^{2 \pi}-e^{-2 \pi}\right)^{2}}\right)= \\
& -\left(\left(32 e^{4} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\left(\int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t+1.99608 e^{4} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t \int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t+\right.\right.\right. \\
& e^{8} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t \\
& \left.\left.\left.\int_{0}^{\infty} \frac{\sin ^{2}(t)}{t^{2}} d t\right)\right) /\left(-1+e^{8} \int_{0}^{\infty} \sin ^{2}(t) / t^{2} d t\right)^{2}\right)
\end{aligned}
$$

$1 /\left(2 \mathrm{Pi}^{*} 0.5^{\wedge} 3\right)+\mathrm{Pi} /\left(3^{*} 0.5\right)-\left(\mathrm{Pi}^{\wedge} 2\right) /\left(\sin ^{\wedge} 2\left(0.5^{*} \mathrm{Pi}\right)^{*}\left(\mathrm{e}^{\wedge}\left(2^{*} 0.5^{*} \mathrm{Pi}\right)-1\right)\right)+2\left(\left(\left(\left(1 /\left(\mathrm{e}^{\wedge}(2 \mathrm{Pi})-\right.\right.\right.\right.\right.$ $\left.\left.\left.1))^{*} 1 /\left(1-0.5^{\wedge} 2\right)^{\wedge} 2+2 /\left(\left(e^{\wedge}(4 \mathrm{Pi})-1\right)\right)^{*} 1 /\left(4-0.5^{\wedge} 2\right)^{\wedge} 2\right)\right)\right)-0.0942188$

Input interpretation:

$$
\begin{aligned}
& \frac{1}{2 \pi \times 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+ \\
& 2\left(\frac{1}{e^{2 \pi}-1} \times \frac{1}{\left(1-0.5^{2}\right)^{2}}+\frac{2}{e^{4 \pi}-1} \times \frac{1}{\left(4-0.5^{2}\right)^{2}}\right)-0.0942188
\end{aligned}
$$

Result:

2.83430..
2.83430... final result

Alternative representations:

$$
\begin{aligned}
& \frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+ \\
& 2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188= \\
& -0.0942188+\frac{\pi}{1.5}+\frac{1}{2 \pi 0.5^{3}}-\frac{\pi^{2}}{\left(-1+e^{\pi}\right) \cos ^{2}(0)}+ \\
& 2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right) \\
& \frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}{}+ \\
& 2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188= \\
& -0.0942188+\frac{\pi}{1.5}+\frac{1}{2 \pi 0.5^{3}}-\frac{\pi^{2}}{\left(-1+e^{\pi}\right) \cosh ^{2}(0)}+ \\
& 2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right)
\end{aligned}
$$

$$
\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+
$$

$$
2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188=-0.0942188+\frac{\pi}{1.5}+
$$

$$
\frac{1}{2 \pi 0.5^{3}}+2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right)-\frac{\pi^{2}}{\left(-1+e^{\pi}\right)\left(\frac{1}{\sec (0)}\right)^{2}}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+ \\
& \quad 2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188= \\
& -0.0942188+\frac{3.55556}{-1+e^{2 \pi}}+\frac{0.284444}{-1+e^{4 \pi}}+\frac{4}{\pi}+0.666667 \pi- \\
& \frac{\pi^{2}}{\left(-1+e^{\pi}\right)\left(3 \sin (0.166667 \pi)-4 \sin ^{3}(0.166667 \pi)\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{200.5 \pi}-1\right)}+ \\
& 2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188=-0.0942188+ \\
& \frac{3.55556}{-1+e^{2 \pi}}+\frac{0.284444}{-1+e^{4 \pi}}+\frac{4}{\pi}+0.666667 \pi-\frac{\pi^{2}}{4\left(-1+e^{\pi}\right) \cos ^{2}(0.25 \pi) \sin ^{2}(0.25 \pi)} \\
& \frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+ \\
& 2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188=-0.0942188+ \\
& \frac{3.55556}{-1+e^{2 \pi}}+\frac{0.284444}{-1+e^{4 \pi}}+\frac{4}{\pi}+0.666667 \pi-\frac{\pi^{2}}{\left(-1+e^{\pi}\right) U_{-0.5}(\cos (\pi))^{2} \sin ^{2}(\pi)}
\end{aligned}
$$

$47\left(\left(\left(1 /\left(2 \mathrm{Pi}^{*} 0.5^{\wedge} 3\right)+\mathrm{Pi} /\left(3^{*} 0.5\right)-\left(\mathrm{Pi}^{\wedge} 2\right) /\left(\sin ^{\wedge} 2(0.5 * \mathrm{Pi})^{*}\left(\mathrm{e}^{\wedge}\left(2 * 0.5^{*} \mathrm{Pi}\right)-\right.\right.\right.\right.\right.$
$1))+2\left(\left(\left(\left(1 /\left(e^{\wedge}(2 \mathrm{Pi})-1\right)\right)^{*} 1 /\left(1-0.5^{\wedge} 2\right)^{\wedge} 2+2 /\left(\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)^{*} 1 /\left(4-0.5^{\wedge} 2\right)^{\wedge} 2\right)\right)\right)-$ $0.0942188)))+\mathrm{e}+(5+$ sqrt5 $) / 2$
where 47 is a Lucas number

Input interpretation:

$$
\begin{aligned}
& 47\left(\frac{1}{2 \pi \times 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right. \\
& \left.\quad 2\left(\frac{1}{e^{2 \pi}-1} \times \frac{1}{\left(1-0.5^{2}\right)^{2}}+\frac{2}{e^{4 \pi}-1} \times \frac{1}{\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)+e+\frac{1}{2}(5+\sqrt{5})
\end{aligned}
$$

Result:

139.548...
139.548... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternative representations:

$$
\begin{aligned}
& 47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right. \\
& \left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+e+ \\
& \frac{1}{2}(5+\sqrt{5})=e+47\left(-0.0942188+\frac{\pi}{1.5}+\frac{1}{2 \pi 0.5^{3}}-\frac{\pi^{2}}{\left(-1+e^{\pi}\right) \cos ^{2}(0)}+\right. \\
& \left.2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right)\right)+\frac{1}{2}(5+\sqrt{5})
\end{aligned}
$$

$$
\begin{aligned}
& 47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right. \\
& \left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+e+ \\
& \frac{1}{2}(5+\sqrt{5})=e+47\left(-0.0942188+\frac{\pi}{1.5}+\frac{1}{2 \pi 0.5^{3}}-\frac{\pi^{2}}{\left(-1+e^{\pi}\right) \cosh ^{2}(0)}+\right. \\
& \left.2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right)\right)+\frac{1}{2}(5+\sqrt{5})
\end{aligned}
$$

$$
47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.
$$

$$
\left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+
$$

$$
e+\frac{1}{2}(5+\sqrt{5})=e+47\left(-0.0942188+\frac{\pi}{1.5}+\frac{1}{2 \pi 0.5^{3}}+\right.
$$

$$
2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right)-
$$

$$
\left.\frac{\pi^{2}}{\left(-1+e^{\pi}\right)\left(\frac{1}{\sec (0)}\right)^{2}}\right)+\frac{1}{2}(5+\sqrt{5})
$$

Series representations:

$$
\begin{aligned}
& 47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right. \\
& \left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+e+ \\
& \frac{1}{2}(5+\sqrt{5})=-1.92828+e+\frac{167.111}{-1+e^{2 \pi}}+\frac{13.3689}{-1+e^{4 \pi}}+\frac{188}{\pi}+31.3333 \pi- \\
& \frac{47 \pi^{2}}{4\left(-1+e^{\pi}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(0.5 \pi)\right)^{2}}+\frac{1}{2} \sqrt{4} \sum_{k=0}^{\infty} 4^{-k}\binom{\frac{1}{2}}{k}
\end{aligned}
$$

$$
\begin{aligned}
& 47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{20.5 \pi}-1\right)}+\right. \\
& \left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+e+ \\
& \frac{1}{2}(5+\sqrt{5})=-1.92828+e+\frac{167.111}{-1+e^{2 \pi}}+\frac{13.3689}{-1+e^{4 \pi}}+\frac{188}{\pi}+31.3333 \pi- \\
& \frac{47 \pi^{2}}{4\left(-1+e^{\pi}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(0.5 \pi)\right)^{2}}+\frac{1}{2} \sqrt{4} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{4}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& 47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right. \\
& \left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+ \\
& e+\frac{1}{2}(5+\sqrt{5})=-1.92828+e+\frac{167.111}{-1+e^{2 \pi}}+\frac{13.3689}{-1+e^{4 \pi}}+\frac{188}{\pi}+ \\
& 31.3333 \pi-\frac{47 \pi^{2}}{4\left(-1+e^{\pi}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(0.5 \pi)\right)^{2}}+ \\
& \frac{1}{2} \exp \left(i \pi\left[\frac{\arg (5-x)}{2 \pi}\right]\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(5-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& 47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right. \\
& \left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+e+ \\
& \frac{1}{2}(5+\sqrt{5})=-1.92828+e+\frac{167.111}{-1+e^{2 \pi}}+\frac{13.3689}{-1+e^{4 \pi}}+\frac{188}{\pi}+31.3333 \pi- \\
& \frac{47 \pi^{2}}{\left(-1+e^{\pi}\right)\left(3 \sin (0.166667 \pi)-4 \sin ^{3}(0.166667 \pi)\right)^{2}}+\frac{\sqrt{5}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{20.5 \pi}-1\right)}+\right. \\
& \left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+ \\
& e+\frac{1}{2}(5+\sqrt{5})=-1.92828+e+\frac{167.111}{-1+e^{2 \pi}}+\frac{13.3689}{-1+e^{4 \pi}}+\frac{188}{\pi}+ \\
& 31.3333 \pi-\frac{47 \pi^{2}}{4\left(-1+e^{\pi}\right) \cos ^{2}(0.25 \pi) \sin ^{2}(0.25 \pi)}+\frac{\sqrt{5}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 47\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{20.5 \pi}-1\right)}+\right. \\
& \left.2\left(\frac{1}{\left(1-0.5^{2}\right)^{2}\left(e^{2 \pi}-1\right)}+\frac{2}{\left(4-0.5^{2}\right)^{2}\left(e^{4 \pi}-1\right)}\right)-0.0942188\right)+e+ \\
& \frac{1}{2}(5+\sqrt{5})=e+47\left(-0.0942188+2\left(\frac{1.77778}{-1+e^{2 \pi}}+\frac{0.142222}{-1+e^{4 \pi}}\right)+\frac{4}{\pi}+0.666667 \pi-\right. \\
& \left.\frac{\pi^{2}}{\left(-1+e^{\pi}\right)\left(3 \sin (0.166667 \pi)-4 \sin ^{3}(0.166667 \pi)\right)^{2}}\right)+\frac{1}{2}(5+\sqrt{5})
\end{aligned}
$$

We have also:
$1 / 10^{\wedge} 52\left[\left(\left(\left(1 /\left(2 \mathrm{Pi}^{*} 0.5^{\wedge} 3\right)+\mathrm{Pi} /\left(3^{*} 0.5\right)-\left(\mathrm{Pi}^{\wedge} 2\right) /\left(\sin ^{\wedge} 2\left(0.5^{*} \mathrm{Pi}\right)^{*}\left(\mathrm{e}^{\wedge}\left(2 * 0.5^{*} \mathrm{Pi}\right)-\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.1))+2\left(\left(\left(\left(1 /\left(e^{\wedge}(2 \mathrm{Pi})-1\right)\right)^{*} 1 /\left(1-0.5^{\wedge} 2\right)^{\wedge} 2+2 /\left(\left(\mathrm{e}^{\wedge}(4 \mathrm{Pi})-1\right)\right)^{*} 1 /\left(4-0.5^{\wedge} 2\right)^{\wedge} 2\right)\right)\right)-0.0942188\right)\right)\right)-$ sqrt3+34/10^4]

Input interpretation:

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi \times 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.\quad 2\left(\frac{1}{e^{2 \pi}-1} \times \frac{1}{\left(1-0.5^{2}\right)^{2}}+\frac{2}{e^{4 \pi}-1} \times \frac{1}{\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)
\end{aligned}
$$

Result:

$1.10565 \ldots \times 10^{-52}$
$1.10565 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)= \\
& \frac{1}{10^{52}}\left(-0.0942188+\frac{\pi}{1.5}+\frac{1}{2 \pi 0.5^{3}}+\frac{34}{10^{4}}-\frac{\pi^{2}}{\left(-1+e^{\pi}\right) \cos ^{2}(0)}+\right. \\
& \left.\quad 2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right)-\sqrt{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{20.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)= \\
& \frac{1}{10^{52}}\left(-0.0942188+\frac{\pi}{1.5}+\frac{1}{2 \pi 0.5^{3}}+\frac{34}{10^{4}-\frac{\pi^{2}}{\left(-1+e^{\pi}\right) \cosh ^{2}(0)}+}\right. \\
& \left.2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right)-\sqrt{3}\right) \\
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)= \\
& \frac{1}{10^{52}}\left(-0.0942188+\frac{\pi}{1.5}+\frac{1}{2 \pi 0.5^{3}}+\frac{34}{10^{4}}+\right. \\
& \left.2\left(\frac{1}{\left(-1+e^{2 \pi}\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(-1+e^{4 \pi}\right)\left(4-0.5^{2}\right)^{2}}\right)-\frac{\pi^{2}}{\left(-1+e^{\pi}\right)\left(\frac{1}{\sec (0)}\right)^{2}}-\sqrt{3}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)= \\
& -9.08188 \times 10^{-54}+\frac{3.55556 \times 10^{-52}}{-1+e^{2 \pi}}+\frac{2.84444 \times 10^{-53}}{-1+e^{4 \pi}}+ \\
& \frac{4 \times 10^{-52}}{\pi}+6.66667 \times 10^{-53} \pi- \\
& \pi^{2} /(400 \\
& \left.\quad\left(-1+e^{\pi}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(0.5 \pi)\right)^{2}\right)- \\
& \sqrt{2} \sum_{k=0}^{\infty} 2^{-k}\binom{\frac{1}{2}}{k} \\
& \frac{1000}{}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)= \\
& -9.08188 \times 10^{-54}+\frac{3.55556 \times 10^{-52}}{-1+e^{2 \pi}}+\frac{2.84444 \times 10^{-53}}{-1+e^{4 \pi}}+ \\
& \frac{4 \times 10^{-52}}{\pi}+6.66667 \times 10^{-53} \pi- \\
& \pi^{2} /(400 \\
& \left.\quad\left(-1+e^{\pi}\right)\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}(0.5 \pi)\right)^{2}\right)- \\
& \frac{\sqrt{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{2}\right)^{k}\left(-\frac{1}{2}\right)_{k}}{k!}}{1000}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)- \\
& \left.\sqrt{3}+\frac{34}{10^{4}}\right)=-9.08188 \times 10^{-54}+\frac{3.55556 \times 10^{-52}}{-1+e^{2 \pi}}+ \\
& \frac{2.84444 \times 10^{-53}}{-1+e^{4 \pi}}+\frac{4 \times 10^{-52}}{\pi}+6.66667 \times 10^{-53} \pi-
\end{aligned}
$$

$$
\pi^{2} /(100
$$

$$
\begin{aligned}
&\left.\left(-1+e^{\pi}\right)\left(\sum_{k=0}^{\infty} \frac{(-1)^{k} 0.5^{1+2 k} \pi^{1+2 k}}{(1+2 k)!}\right)^{2}\right)- \\
& \quad \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}
\end{aligned}
$$

100
for ($x \in \mathbb{R}$ and $x<0$)

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)= \\
& \left(-0.0908188+\frac{3.55556}{-1+e^{2 \pi}}+\frac{0.284444}{-1+e^{4 \pi}}+\frac{4}{\pi}+0.666667 \pi-\right. \\
& \left.\quad \frac{\pi^{2}}{\left(-1+e^{\pi}\right)\left(3 \sin (0.166667 \pi)-4 \sin ^{3}(0.166667 \pi)\right)^{2}}-\sqrt{3}\right) / \\
& 100
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)= \\
& \left(-0.0908188+2\left(\frac{1.77778}{-1+e^{2 \pi}}+\frac{0.142222}{-1+e^{4 \pi}}\right)+\frac{4}{\pi}+0.666667 \pi-\right. \\
& \left.\quad \frac{\pi^{2}}{\left(-1+e^{\pi}\right)\left(3 \sin (0.166667 \pi)-4 \sin ^{3}(0.166667 \pi)\right)^{2}}-\sqrt{3}\right) /
\end{aligned}
$$

100

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(\left(\frac{1}{2 \pi 0.5^{3}}+\frac{\pi}{3 \times 0.5}-\frac{\pi^{2}}{\sin ^{2}(0.5 \pi)\left(e^{2 \times 0.5 \pi}-1\right)}+\right.\right. \\
& \left.\left.2\left(\frac{1}{\left(e^{2 \pi}-1\right)\left(1-0.5^{2}\right)^{2}}+\frac{2}{\left(e^{4 \pi}-1\right)\left(4-0.5^{2}\right)^{2}}\right)-0.0942188\right)-\sqrt{3}+\frac{34}{10^{4}}\right)= \\
& -0.0908188+\frac{3.55556}{-1+e^{2 \pi}}+\frac{0.284444}{-1+e^{4 \pi}}+\frac{4}{\pi}+0.666667 \pi-\frac{\pi^{2}}{4\left(-1+e^{\pi}\right) \cos ^{2}(0.25 \pi) \sin ^{2}(0.25 \pi)}-\sqrt{3} \\
& \hline
\end{aligned}
$$

100

Page 328

For $\theta=\pi$, and $\mathrm{x}=2$ we obtain:
$\mathrm{Pi} / 8-1 / 2 * \tan ^{\wedge}-1 * \mathrm{x}^{\wedge} 2=(\cos (\mathrm{Pi})) /(\cosh (\mathrm{Pi} / 2))-(\cos (3 \mathrm{Pi})) /(3 \cosh ((3 \mathrm{Pi}) / 2))+$ $(\cos (5 \mathrm{Pi})) /(5 \cosh ((5 \mathrm{Pi}) / 2))$

Where
$(\cos (\mathrm{Pi})) /(\cosh (\mathrm{Pi} / 2))-(\cos (3 \mathrm{Pi})) /(3 \cosh ((3 \mathrm{Pi}) / 2))+(\cos (5 \mathrm{Pi})) /(5 \cosh ((5 \mathrm{Pi}) / 2))$

Input:

$$
\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}
$$

Exact result:

$-\operatorname{sech}\left(\frac{\pi}{2}\right)+\frac{1}{3} \operatorname{sech}\left(\frac{3 \pi}{2}\right)-\frac{1}{5} \operatorname{sech}\left(\frac{5 \pi}{2}\right)$

Decimal approximation:

-0.39270371917497223187894692013318053770132991527772714109...
-0.39270371917 result very near to $-\frac{\pi}{8}=-0.392699081 \ldots$

Property:

$-\operatorname{sech}\left(\frac{\pi}{2}\right)+\frac{1}{3} \operatorname{sech}\left(\frac{3 \pi}{2}\right)-\frac{1}{5} \operatorname{sech}\left(\frac{5 \pi}{2}\right)$ is a transcendental number

Alternate forms:

$$
\begin{aligned}
& \frac{1}{15}\left(-15 \operatorname{sech}\left(\frac{\pi}{2}\right)+5 \operatorname{sech}\left(\frac{3 \pi}{2}\right)-3 \operatorname{sech}\left(\frac{5 \pi}{2}\right)\right) \\
& -\frac{2 \cosh \left(\frac{\pi}{2}\right)}{1+\cosh (\pi)}+\frac{2 \cosh \left(\frac{3 \pi}{2}\right)}{3(1+\cosh (3 \pi))}-\frac{2 \cosh \left(\frac{5 \pi}{2}\right)}{5(1+\cosh (5 \pi))}
\end{aligned}
$$

$$
-53+106 \cosh (\pi)-70 \cosh (2 \pi)+30 \cosh (3 \pi)) \operatorname{sech}\left(\frac{\pi}{2}\right)
$$

$$
15(2 \cosh (\pi)-1)(1-2 \cosh (\pi)+2 \cosh (2 \pi))
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}=\frac{\cosh (-i \pi)}{\cos \left(\frac{i \pi}{2}\right)}-\frac{\cosh (-3 i \pi)}{3 \cos \left(\frac{3 i \pi}{2}\right)}+\frac{\cosh (-5 i \pi)}{5 \cos \left(\frac{5 i \pi}{2}\right)} \\
& \frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}=\frac{\cosh (i \pi)}{\cos \left(-\frac{i \pi}{2}\right)}-\frac{\cosh (3 i \pi)}{3 \cos \left(-\frac{3 i \pi}{2}\right)}+\frac{\cosh (5 i \pi)}{5 \cos \left(-\frac{5 i \pi}{2}\right)} \\
& \frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}=\frac{\cosh (-i \pi)}{\cos \left(-\frac{i \pi}{2}\right)}-\frac{\cosh (-3 i \pi)}{3 \cos \left(-\frac{3 i \pi}{2}\right)}+\frac{\cosh (-5 i \pi)}{5 \cos \left(-\frac{5 i \pi}{2}\right)}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}=\sum_{k=0}^{\infty}-\frac{2}{15} e^{(-5 / 2-(5-i) k) \pi}\left(3-5 e^{\pi+2 k \pi}+15 e^{2 \pi+4 k \pi}\right) \\
& \frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}= \\
& \sum_{k=0}^{\infty}-\frac{2(-1)^{k}(1+2 k)\left(925+436 k+488 k^{2}+104 k^{3}+52 k^{4}\right)}{15\left(1+2 k+2 k^{2}\right)\left(5+2 k+2 k^{2}\right)\left(13+2 k+2 k^{2}\right) \pi} \\
& \frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}= \\
& \sum_{k=0}^{\infty}-\frac{i 2^{-k}\left(\mathrm{Li}_{-k}\left(-i e^{z_{0}}\right)-\mathrm{Li}_{-k}\left(i e^{z_{0}}\right)\right)\left(15\left(\pi-2 z_{0}\right)^{k}-5\left(3 \pi-2 z_{0}\right)^{k}+3\left(5 \pi-2 z_{0}\right)^{k}\right)}{15 k!} \\
& \text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
\end{aligned}
$$

Integral representation:

$$
\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}=\int_{0}^{\infty}-\frac{2\left(15-5 t^{2 i}+3 t^{4 i}\right) t^{i}}{15 \pi\left(1+t^{2}\right)} d t
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}= \\
& -\frac{\operatorname{sech}^{2}\left(\frac{\pi}{4}\right)}{2-\operatorname{sech}^{2}\left(\frac{\pi}{4}\right)}+\frac{\operatorname{sech}^{2}\left(\frac{3 \pi}{4}\right)}{3\left(2-\operatorname{sech}^{2}\left(\frac{3 \pi}{4}\right)\right)}-\frac{\operatorname{sech}^{2}\left(\frac{5 \pi}{4}\right)}{5\left(2-\operatorname{sech}^{2}\left(\frac{5 \pi}{4}\right)\right)} \\
& \frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}= \\
& -\frac{\operatorname{sech}^{3}\left(\frac{\pi}{6}\right)}{4-3 \operatorname{sech}^{2}\left(\frac{\pi}{6}\right)}+\frac{\operatorname{sech}^{3}\left(\frac{\pi}{2}\right)}{3\left(4-3 \operatorname{sech}^{2}\left(\frac{\pi}{2}\right)\right)}-\frac{\operatorname{sech}^{3}\left(\frac{5 \pi}{6}\right)}{5\left(4-3 \operatorname{sech}^{2}\left(\frac{5 \pi}{6}\right)\right)}
\end{aligned}
$$

And:
$\mathrm{Pi} / 8-1 / 2 * \tan ^{\wedge}-1 \mathrm{v}^{\wedge} 2=(\cos (\mathrm{Pi})) /(\cosh (\mathrm{Pi} / 2))-(\cos (3 \mathrm{Pi})) /(3 \cosh ((3 \mathrm{Pi}) / 2))+$ $(\cos (5 \mathrm{Pi})) /(5 \cosh ((5 \mathrm{Pi}) / 2))$

Input:

$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}(v)^{2}=\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}$
$\tan ^{-1}(x)$ is the inverse tangent function
$\cosh (x)$ is the hyperbolic cosine function

Exact result:

$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}(v)^{2}=-\operatorname{sech}\left(\frac{\pi}{2}\right)+\frac{1}{3} \operatorname{sech}\left(\frac{3 \pi}{2}\right)-\frac{1}{5} \operatorname{sech}\left(\frac{5 \pi}{2}\right)$

Plot:

Alternate forms:

$\frac{1}{8}\left(\pi-4 \tan ^{-1}(v)^{2}\right)+\frac{1}{5} \operatorname{sech}\left(\frac{5 \pi}{2}\right)+\operatorname{sech}\left(\frac{\pi}{2}\right)=\frac{1}{3} \operatorname{sech}\left(\frac{3 \pi}{2}\right)$
$\frac{1}{8}\left(\pi-4 \tan ^{-1}(\nu)^{2}\right)=\frac{1}{15}\left(-15 \operatorname{sech}\left(\frac{\pi}{2}\right)+5 \operatorname{sech}\left(\frac{3 \pi}{2}\right)-3 \operatorname{sech}\left(\frac{5 \pi}{2}\right)\right)$
$\frac{1}{8}\left(\pi-4 \tan ^{-1}(\nu)^{2}\right)=-\frac{(-53+106 \cosh (\pi)-70 \cosh (2 \pi)+30 \cosh (3 \pi)) \operatorname{sech}\left(\frac{\pi}{2}\right)}{15(2 \cosh (\pi)-1)(1-2 \cosh (\pi)+2 \cosh (2 \pi))}$

Solutions:

$v \approx-3.0433$
$v \approx 3.0433$
thence:
$\mathrm{Pi} / 8-1 / 2^{*} \tan ^{\wedge}-1\left(3.0433^{\wedge} 2\right)$

Input interpretation:

$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)$
$\tan ^{-1}(x)$ is the inverse tangent function

Result:

-0.338921...
(result in radians)
$-0.338921 \ldots$

Alternative representations:

$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=-\frac{\operatorname{sc}^{-1}\left(3.0433^{2} \mid 0\right)}{2}+\frac{\pi}{8}$
$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=-\frac{1}{2} \cot ^{-1}\left(\frac{1}{3.0433^{2}}\right)+\frac{\pi}{8}$
$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=-\frac{1}{2} \tan ^{-1}\left(1,3.0433^{2}\right)+\frac{\pi}{8}$

Series representations:

$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=\frac{\pi}{8}-\frac{2.31542 \pi}{\sqrt{85.7786}}+0.0539859 \sum_{k=0}^{\infty} \frac{(-1)^{k} e^{-4.45177 k}}{1+2 k}$
$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=\frac{\pi}{8}-\frac{1}{2} \sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 18.5233^{1+2 k} F_{1+2 k}\left(\frac{1}{1+\sqrt{69.6229}}\right)^{1+2 k}}{1+2 k}$
$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}(x)-\frac{1}{2} \pi\left[\frac{\arg (i(9.26167-x))}{2 \pi}\right]-$

$$
\frac{1}{4} i \sum_{k=1}^{\infty} \frac{\left(-(-i-x)^{-k}+(i-x)^{-k}\right)(9.26167-x)^{k}}{k} \text { for }(i x \in \mathbb{R} \text { and } i x<-1)
$$

Integral representations:

$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=0.125 \pi-4.63084 \int_{0}^{1} \frac{1}{1+85.7786 t^{2}} d t$
$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=\frac{\pi}{8}+\frac{1.15771 i}{\pi^{3 / 2}} \int_{-i \infty+\gamma}^{i \infty+\gamma} e^{-4.46336 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} d s$ for $0<\gamma<\frac{1}{2}$
$\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=\frac{\pi}{8}-\frac{1.15771}{i \pi} \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{-4.45177 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)} d s$ for $0<\gamma<\frac{1}{2}$

Continued fraction representations:

$$
\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=\frac{\pi}{8}-\frac{4.63084}{1+\mathrm{K}_{k=1}^{\infty} \frac{85.7786 k^{2}}{1+2 k}}=\frac{\pi}{8}-\frac{4.63084}{1+\frac{85.7786}{3+\frac{343.114}{5+\frac{772.008}{7+\frac{1372.46}{9+\ldots}}}}}
$$

$$
\begin{gathered}
\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=\frac{\pi}{8}-\frac{4.63084}{1+\mathrm{K}_{k=1}^{\infty} \frac{85.7786(1-2 k)^{2}}{86.7786-169.557 k}}
\end{gathered}=
$$

$$
\frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=-4.63084+\frac{\pi}{8}+\frac{397.227}{3+\stackrel{@}{k}_{K=1}^{\infty} \frac{85.7786\left(1+(-1)^{1+k}+k\right)^{2}}{3+2 k}}=
$$

$$
-4.23814+\frac{397.227}{3+\frac{772.008}{5+\frac{343.114}{7+\frac{2144.47}{9+\frac{1372.46}{11+\ldots}}}}}
$$

$$
\begin{aligned}
& \frac{\pi}{8}-\frac{1}{2} \tan ^{-1}\left(3.0433^{2}\right)=\frac{\pi}{8}-\frac{4.63084}{86.7786+\mathrm{K}_{k=1}^{\infty} \frac{171.557\left(1-2\left\lfloor\frac{1+k}{2}\right\rfloor\right)\left\lfloor\frac{1+k}{2}\right\rfloor}{\left(43.8893+42.8893(-1)^{k}\right)(1+2 k)}} \\
& \frac{\pi}{8}-\frac{4.63084}{86.7786+-\frac{171.557}{3-\frac{171.557}{433.893-\frac{1029.34}{7-\frac{1029.34}{781.008+\ldots}}}}}= \\
&
\end{aligned}
$$

We have also that:
$-0.338921498443 \geq-0.392703719174$
from which:
$-0.338921498443 x=-0.392703719174$

Input interpretation:

$-0.338921498443 x=-0.392703719174$

Result:

$-0.338921498443 x=-0.392703719174$
Plot:

Alternate form:
$0.392703719174-0.338921498443 x=0$

Solution:

$x \approx 1.15868636536$
1.15868636536

We have also:
$\left(-0.338921498443\left(x+(55-2) / 10^{\wedge} 3\right)\right)=-0.392703719174$
Where 2 and 55 are Fibonacci numbers

Input interpretation:

$-0.338921498443\left(x+\frac{55-2}{10^{3}}\right)=-0.392703719174$
Result:
$-0.338921498443\left(x+\frac{53}{1000}\right)=-0.392703719174$
Plot:

Alternate forms:

$0.374740879757-0.338921498443 x=0$
$-0.338921498443(1.00000000000 x+0.053000000000)=-0.392703719174$

Expanded form:

$-0.338921498443 x-0.0179628394175=-0.392703719174$

Solution:

$x \approx 1.10568636536$
1.10568636536

We have:
$-0.338921498443 x-0.0179628394175=-0.392703719174$
from which.
$1 / 10^{\wedge} 52(((-0.392703719174+0.0179628394175) /(-0.338921498443)))$

Input interpretation:

$$
\frac{1}{10^{52}}\left(-\frac{-0.392703719174+0.0179628394175}{0.338921498443}\right)
$$

Result:

$1.1056863653620489430995384016829303877751119765664006 \ldots \times 10^{-52}$
1.1056863653 ... $* 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Now, from
$\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}$
we have that also:
$-55 /((((\cos (\mathrm{Pi})) /(\cosh (\mathrm{Pi} / 2))-(\cos (3 \mathrm{Pi})) /(3 \cosh ((3 \mathrm{Pi}) / 2))+$ $(\cos (5 \mathrm{Pi})) /(5 \cosh ((5 \mathrm{Pi}) / 2)))))-1 /$ golden ratio
where 55 is a Fibonacci number

Input:

$-\frac{55}{\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}$
$\cosh (x)$ is the hyperbolic cosine function ϕ is the golden ratio

Exact result:

$$
-\frac{1}{\phi}-\frac{55}{-\operatorname{sech}\left(\frac{\pi}{2}\right)+\frac{1}{3} \operatorname{sech}\left(\frac{3 \pi}{2}\right)-\frac{1}{5} \operatorname{sech}\left(\frac{5 \pi}{2}\right)}
$$

Decimal approximation:

139.4366619931191163259040033663031454721145273519348302417...
139.436661993... result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$$
-\frac{1}{\phi}-\frac{55}{-\operatorname{sech}\left(\frac{\pi}{2}\right)+\frac{1}{3} \operatorname{sech}\left(\frac{3 \pi}{2}\right)-\frac{1}{5} \operatorname{sech}\left(\frac{5 \pi}{2}\right)} \text { is a transcendental number }
$$

Alternate forms:

$$
\frac{825}{15 \operatorname{sech}\left(\frac{\pi}{2}\right)-5 \operatorname{sech}\left(\frac{3 \pi}{2}\right)+3 \operatorname{sech}\left(\frac{5 \pi}{2}\right)}-\frac{1}{\phi}
$$

$\frac{825}{15 \operatorname{sech}\left(\frac{\pi}{2}\right)-5 \operatorname{sech}\left(\frac{3 \pi}{2}\right)+3 \operatorname{sech}\left(\frac{5 \pi}{2}\right)}-\frac{2}{1+\sqrt{5}}$
$\frac{1}{2}(1-\sqrt{5})-\frac{55}{-\operatorname{sech}\left(\frac{\pi}{2}\right)+\frac{1}{3} \operatorname{sech}\left(\frac{3 \pi}{2}\right)-\frac{1}{5} \operatorname{sech}\left(\frac{5 \pi}{2}\right)}$

Alternative representations:

$-\frac{55}{\frac{\cos ([)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}=-\frac{1}{\phi}-\frac{55}{\frac{\cosh (-i \pi)}{\cos \left(\frac{\pi}{2}\right)}-\frac{\cosh (-3 i \pi)}{3 \cos \left(\frac{3 i \pi}{2}\right)}+\frac{\cosh (-5 i \pi)}{5 \cos \left(\frac{5 i \pi}{2}\right)}}$

$$
-\frac{55}{-\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}=-\frac{1}{\phi}-\frac{55}{\frac{\cosh (i \pi)}{\cos \left(-\frac{i \pi}{2}\right)}-\frac{\cosh (3 i \pi)}{3 \cos \left(-\frac{3 i \pi}{2}\right)}+\frac{\cosh (5 i \pi)}{5 \cos \left(-\frac{5 i \pi}{2}\right)}}
$$

$$
-\frac{55}{\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}=-\frac{1}{\phi}-\frac{55}{\frac{\cosh (-i \pi)}{\cos \left(-\frac{i \pi}{2}\right)}-\frac{\cosh (-3 i \pi)}{3 \cos \left(-\frac{3 i \pi}{2}\right)}+\frac{\cosh (-5 i \pi)}{5 \cos \left(-\frac{5 i \pi}{2}\right)}}
$$

Series representations:

$$
\begin{aligned}
& -\frac{55}{\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}= \\
& -\frac{1}{\phi}-\frac{55}{\sum_{k=0}^{\infty}-\frac{2}{15} e^{(-5 / 2-(5-i) k) \pi}\left(3-5 e^{\pi+2 k \pi}+15 e^{2 \pi+4 k \pi}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{55}{\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}-\frac{1}{\phi}=} \\
& -\frac{1}{\phi}-\frac{55}{\sum_{k=0}^{\infty}-\frac{2(-1)^{k}(1+2 k)\left(925+436 k+488 k^{2}+104 k^{3}+52 k^{4}\right)}{15\left(1+2 k+2 k^{2}\right)\left(5+2 k+2 k^{2}\right)\left(13+2 k+2 k^{2}\right) \pi}} \\
& -\frac{55}{\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}= \\
& -\frac{1}{\phi}-\frac{55}{\sum_{k=0}^{\infty}-\frac{i 2^{-k}\left(\mathrm{Li}_{-k}\left(-i e^{z_{0}}\right)-\mathrm{Li} i_{-k}\left(i e^{z_{0}}\right)\right)\left(15\left(\pi-2 z_{0}\right)^{k}-5\left(3 \pi-2 z_{0}\right)^{k}+3\left(5 \pi-2 z_{0}\right)^{k}\right)}{15 k!}}
\end{aligned}
$$

$$
\text { for } \frac{1}{2}+\frac{i z_{0}}{\pi} \notin \mathbb{Z}
$$

Integral representation:

$$
-\frac{55}{\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}=-\frac{1}{\phi}-\frac{55}{\int_{0}^{\infty}-\frac{2\left(15-5 t^{2 i}+3 t^{4 i}\right) t^{i}}{15 \pi\left(1+t^{2}\right)} d t}
$$

Multiple-argument formulas:

$-\frac{55}{\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}=-\frac{1}{\phi}-\frac{55}{-\frac{\operatorname{sech}^{2}\left(\frac{\pi}{4}\right)}{2-\operatorname{sech}^{2}\left(\frac{\pi}{4}\right)}+\frac{\operatorname{sech}^{2}\left(\frac{3 \pi}{4}\right)}{3\left(2-\operatorname{sech}^{2}\left(\frac{3 \pi}{4}\right)\right)}-\frac{\operatorname{sech}^{2}\left(\frac{5 \pi}{4}\right)}{5\left(2-\operatorname{sech}^{2}\left(\frac{5 \pi}{4}\right)\right)}}$

$$
\begin{aligned}
& -\frac{55}{\frac{\cos (\pi)}{\cosh \left(\frac{\pi}{2}\right)}-\frac{\cos (3 \pi)}{3 \cosh \left(\frac{3 \pi}{2}\right)}+\frac{\cos (5 \pi)}{5 \cosh \left(\frac{5 \pi}{2}\right)}}-\frac{1}{\phi}= \\
& -\frac{1}{\phi}-\frac{55}{-\frac{\operatorname{sech}^{3}\left(\frac{\pi}{6}\right)}{4-3 \operatorname{sech}^{2}\left(\frac{\pi}{6}\right)}+\frac{\operatorname{sech}^{3}\left(\frac{\pi}{2}\right)}{3\left(4-3 \operatorname{sech}^{2}\left(\frac{\pi}{2}\right)\right)}-\frac{\operatorname{sech}^{3}\left(\frac{5 \pi}{6}\right)}{5\left(4-3 \operatorname{sech}^{2}\left(\frac{5 \pi}{6}\right)\right)}}
\end{aligned}
$$

Now, we have that:
$\mathrm{Pi} /(4 \mathrm{sqrt} 3) *\left[\sinh \left(2 \mathrm{Pi}^{*} \operatorname{sqrt} 3\right) \sinh (2 \mathrm{Pi})+\sin (2 \mathrm{Pi}) * \operatorname{sqrt} 3 \sin (2 \mathrm{Pi})\right] /\left[\left(\cosh \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)-\right.\right.$ $\left.\cos (2 \mathrm{Pi}))\left(\left(\cosh (2 \mathrm{Pi})-\cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right]$

Input:

$\frac{\pi}{4 \sqrt{3}} \times \frac{\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)}{(\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3}))}$

Exact result:

$\frac{\pi \sinh (2 \pi) \sinh (2 \sqrt{3} \pi)}{4 \sqrt{3}(\cosh (2 \sqrt{3} \pi)-1)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}$

Decimal approximation:

$0.453273189285992921124825767272334554743233589025364237378 \ldots$
$0.4532731892 \ldots$

Alternate forms:

```
\(-\frac{\pi \sinh (2 \pi) \operatorname{coth}(\sqrt{3} \pi)}{4 \sqrt{3}(\cos (2 \sqrt{3} \pi)-\cosh (2 \pi))}\)
\(\frac{\pi \sinh (\pi) \cosh (\pi) \operatorname{coth}(\sqrt{3} \pi) \operatorname{csch}(\pi-i \sqrt{3} \pi) \operatorname{csch}(\pi+i \sqrt{3} \pi)}{4 \sqrt{3}}\)
```

$\frac{\pi \sinh (2 \pi) \sinh (2 \sqrt{3} \pi) \operatorname{csch}^{2}(\sqrt{3} \pi)}{4 \sqrt{3}(2 \cosh (2 \pi)-2 \cos (2 \sqrt{3} \pi))}$

Alternative representations:

$$
\begin{aligned}
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \frac{\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\left(-e^{-2 i \pi}+e^{2 i \pi}\right)^{2}\left(\frac{1}{2 i}\right)^{2} \sqrt{3}\right)}{\left(\left(-\cosh (-2 i \pi \sqrt{3})+\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)\right)\left(-\cosh (-2 i \pi)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})} \\
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \left(\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\cos ^{2}\left(\frac{5 \pi}{2}\right) \sqrt{3}\right)\right) / \\
& \quad\left(\left(\frac{1}{2}\left(-e^{-2 i \pi}-e^{2 i \pi}\right)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\right. \\
& \left.\left.\quad\left(\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-2 i \pi \sqrt{3}}-e^{2 i \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \left(\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\cos ^{2}\left(-\frac{3 \pi}{2}\right) \sqrt{3}\right)\right) / \\
& \quad\left(\left(\left(\frac{1}{2}\left(-e^{-2 i \pi}-e^{2 i \pi}\right)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\right.\right. \\
& \left.\left.\quad\left(\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-2 i \pi \sqrt{3}}-e^{2 i \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \frac{\pi^{4} \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\operatorname{Res}_{s=-j_{1}} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right)\left(\operatorname{Res}_{s=-j_{2}} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right)}{4\left(-1+\sum_{k=0}^{\infty} \frac{12^{k} \pi^{2 k}}{(2 k)!}\right) \sum_{k=0}^{\infty}-\frac{\left(-1+(-3)^{k}\right)(2 \pi)^{2 k}}{(2 k)!}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \left(\pi \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{3^{1 / 2+k_{2}}(2 \pi)^{2+2 k_{1}+2 k_{2}}}{\left(1+2 k_{1}\right)!\left(1+2 k_{2}\right)!}\right) /\left(4 \sqrt{3}\left(-1+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)\right. \\
& \left.\quad\left(-\sum_{k=0}^{\infty} \frac{(-3)^{k}(2 \pi)^{2 k}}{(2 k)!}+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& -\frac{\pi^{4} \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\operatorname{Res}_{s=-j_{1}} \frac{(-3)^{-5} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right)\left(\operatorname{Res}_{s=-j_{2}} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right)}{4\left(-1+\sum_{k=0}^{\infty} \frac{12^{k} \pi^{2 k}}{(2 k)!}\right)\left(-\sum_{k=0}^{\infty} \frac{(2 \pi)^{2 k}}{(2 k)!}+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} s_{\Gamma(s)}}{\Gamma\left(\frac{1}{2}-s\right)}\right)}
\end{aligned}
$$

Integral representations:

$$
\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}=
$$

$$
\begin{aligned}
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \int_{0}^{1} \int_{0}^{1} \cosh \left(2 \pi t_{1}\right) \cosh \left(2 \sqrt{3} \pi t_{2}\right) d t_{2} d t_{1} \text { for } 0<\gamma<\frac{1}{2} \\
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \frac{\pi^{3}\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{2} / s+s}{s^{3 / 2}} d s\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{s^{3 / 2}} d s}{4\left(2 i \sqrt{\pi}-\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{e^{-\left(3 \pi^{2}\right) / s+s}\left(-1+e^{\left(4 \pi^{2}\right) / s}\right)}{\sqrt{s}} d s}
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& -\frac{\pi \operatorname{coth}(\sqrt{3} \pi) \sinh (2 \pi)}{4 \sqrt{3}(\cos (2 \sqrt{3} \pi)-\cosh (2 \pi))} \\
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \frac{\pi \cosh (\pi) \operatorname{coth}^{2}(\sqrt{3} \pi) \sinh (\pi)}{2 \sqrt{3}\left(2-2 \cos ^{2}(\sqrt{3} \pi)+2 \sinh ^{2}(\pi)\right)} \\
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}= \\
& \frac{\pi \cosh ^{2}(\pi) \cosh (\sqrt{3} \pi) \sinh (\pi) \sinh (\sqrt{3} \pi)}{\sqrt{3}\left(-2 \cos ^{2}(\sqrt{3} \pi)+2 \cosh ^{2}(\pi)\right)\left(-2+2 \cosh ^{2}(\sqrt{3} \pi)\right)}
\end{aligned}
$$

We obtain also:
$1 / 10^{\wedge} 52\left(\left(\left(-5 / 10^{\wedge} 4-(123+3) / 10^{\wedge} 3+e^{*}\right.\right.\right.$
$\mathrm{Pi} /(4 \mathrm{sqrt} 3) *\left[\sinh \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right) \sinh (2 \mathrm{Pi})+\sin (2 \mathrm{Pi}) * \operatorname{sqrt} 3 \sin (2 \mathrm{Pi})\right] /[(\cosh (2 \mathrm{Pi} * \operatorname{sqrt} 3)-$ $\left.\left.\left.\left.\left.\cos (2 \mathrm{Pi}))\left(\left(\cosh (2 \mathrm{Pi})-\cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right]\right)\right)\right)\right)$

Where 123 and 3 are Lucas numbers, while 5 is a Fibonacci number

Input:

$\frac{1}{10^{52}}\left(-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+e \times \frac{\pi}{4 \sqrt{3}} \times \frac{\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)}{(\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3}))}\right)$

Exact result:

$$
\frac{e \pi \sinh (2 \pi) \sinh (2 \sqrt{3} \pi)}{4 \sqrt{3}(\cosh (2 \sqrt{3} \pi)-1)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}-\frac{253}{2000}
$$

$\overline{100}$

Decimal approximation:

$1.1056242737637917502885479567284333963425448626209147 \ldots \times 10^{-52}$
$1.105624273 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternate forms:

$\left(e \pi \sinh (2 \pi) \sinh (2 \sqrt{3} \pi) \operatorname{csch}^{2}(\sqrt{3} \pi)\right) /$
(400

$$
\sqrt{3}(2 \cosh (2 \pi)-2 \cos (2 \sqrt{3} \pi)))-
$$

2000
$(e \pi \sinh (2 \pi) \sinh (2 \sqrt{3} \pi)) /$
(400

$$
\begin{gathered}
\sqrt{3}(\cosh (2 \sqrt{3} \pi)-1)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi)))- \\
253
\end{gathered}
$$

2000

$$
\begin{array}{r}
-((-759 \cos (2 \sqrt{3} \pi)+500 \sqrt{3} e \pi \sinh (2 \pi) \sinh (2 \sqrt{3} \pi)+759 \cosh (2 \pi)- \\
759 \cosh (2 \pi) \cosh (2 \sqrt{3} \pi)+759 \cos (2 \sqrt{3} \pi) \cosh (2 \sqrt{3} \pi)) /
\end{array}
$$

$(6000$

$$
(\cosh (2 \sqrt{3} \pi)-1)(\cos (2 \sqrt{3} \pi)-\cosh (2 \pi))))
$$

Alternative representations:

$\frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}=$
$\frac{-\frac{126}{10^{3}}-\frac{5}{10^{4}}+\frac{e \pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\left(-e^{-2 i \pi}+e^{2 i \pi}\right)^{2}\left(\frac{1}{2 i}\right)^{2} \sqrt{3}\right)}{\left(\left(-\cosh (-2 i \pi \sqrt{3})+\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)\right)\left(-\cosh (-2 i \pi)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})}}{10^{52}}$

$$
\begin{gathered}
-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))} \\
\left(-\frac{126}{10^{3}}-\frac{5}{10^{4}}+\left(e \pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\cos ^{2}\left(\frac{5 \pi}{2}\right) \sqrt{3}\right)\right) /\right. \\
\left(\left(\left(\frac{1}{2}\left(-e^{-2 i \pi}-e^{2 i \pi}\right)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\right.\right. \\
\left.\left.\left.\left(\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-2 i \pi \sqrt{3}}-e^{2 i \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})\right)\right)
\end{gathered}
$$

$$
\begin{gathered}
-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))} \\
\left(-\frac{126}{10^{3}}-\frac{5}{10^{4}}+\left(e \pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\cos ^{2}\left(-\frac{3 \pi}{2}\right) \sqrt{3}\right)\right) /\right. \\
\left(\left(\left(\frac{1}{2}\left(-e^{-2 i \pi}-e^{2 i \pi}\right)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\right.\right. \\
\left.\left.\left.\left(\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-2 i \pi \sqrt{3}}-e^{2 i \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})\right)\right)
\end{gathered}
$$

Series representations:

$\frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}=$

$$
\begin{aligned}
& \left(253 \sum_{k=0}^{\infty}-\frac{\left(-1+(-3)^{k}\right)(2 \pi)^{2 k}}{(2 k)!}-253 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{3^{k_{2}}(2 \pi)^{2 k_{2}}\left(\frac{(2 \pi)^{2 k_{1}}}{\left(2 k_{1}\right)!}-\frac{(-3)^{k_{1}}(2 \pi)^{2 k_{1}}}{\left(2 k_{1}\right)!}\right)}{\left(2 k_{2}\right)!}+\right. \\
& \left.500 e \pi^{4} \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\operatorname{Res}_{s=-j_{1}} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right)\left(\operatorname{Res}_{s=-j_{2}} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right)\right) /
\end{aligned}
$$

$(2000$

$$
\left.\left(-1+\sum_{k=0}^{\infty} \frac{12^{k} \pi^{2 k}}{(2 k)!}\right)_{k=0}^{\infty}-\frac{\left(-1+(-3)^{k}\right)(2 \pi)^{2 k}}{(2 k)!}\right)
$$

$\frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}=$
$-\int\left(253 \sum_{k=0}^{\infty} \frac{(2 \pi)^{2 k}}{(2 k)!}-253 \sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}-\right.$

$$
\begin{aligned}
& 253 \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{3^{k_{2}}(2 \pi)^{2 k_{1}+2 k_{2}}}{\left(2 k_{1}\right)!\left(2 k_{2}\right)!}+ \\
& 253 \sqrt{\pi} \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{3^{k_{1}}(2 \pi)^{2 k_{1}}\left(\operatorname{Res}_{s=-k_{2}} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)}{\left(2 k_{1}\right)!}+
\end{aligned}
$$

$$
500 e \pi^{4} \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\operatorname{Res}_{s=-j_{1}} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right)\left(\operatorname{Res}_{s=-j_{2}} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right) /
$$

$(2000$

$$
\begin{aligned}
& \left(-1+\sum_{k=0}^{\infty} \frac{12^{k} \pi^{2 k}}{(2 k)!}\right) \\
& \left.\left(-\sum_{k=0}^{\infty} \frac{(2 \pi)^{2 k}}{(2 k)!}+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}= \\
& \left(759 \sum_{j=0}^{\infty} \sqrt{\pi}\left(\operatorname{Res}_{s=-j} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}-\operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)+\right. \\
& 500 \sqrt{3} e \pi \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \frac{3^{1 / 2\left(1+2 k_{2}\right)}(2 \pi)^{2+2 k_{1}+2 k_{2}}}{\left(1+2 k_{1}\right)!\left(1+2 k_{2}\right)!}- \\
& 759 \sqrt{\pi} \sum_{j_{1}=0}^{\infty} \sum_{j_{2}=0}^{\infty}\left(\operatorname{Res}_{s=-j_{1}} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) \\
& \left.\quad\left(\sqrt{\pi}\left(\operatorname{Res}_{s=-j_{2}} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)-\sqrt{\pi}\left(\operatorname{Res}_{s=-j_{2}} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)\right)\right) /
\end{aligned}
$$

$(6000$

$$
\begin{aligned}
& \left(-1+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) \\
& \left.\sum_{j=0}^{\infty} \sqrt{\pi}\left(\operatorname{Res}_{s=-j} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}-\operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}= \\
& -\left(\left(506 \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{-\left(3 \pi^{2}\right) / s+s}\left(-1+e^{\left(4 \pi^{2}\right) / s}\right)}{2 \sqrt{\pi} \sqrt{s}} d s+\right.\right. \\
& 253 i\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{-\left(3 \pi^{2}\right) / s+s}\left(-1+e^{\left(4 \pi^{2}\right) / s}\right)}{2 \sqrt{\pi} \sqrt{s}} d s+ \\
& \left.\int_{0}^{1} \int_{0}^{1} \cosh \left(2 \pi t_{1}\right) \cosh \left(2 \sqrt{3} \pi t_{2}\right) d t_{2} d t_{1}\right) \\
& 200 \text { : } \\
& \begin{array}{l}
000\left(2 \sqrt{\pi}+i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) \\
\left.\left.\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{-\left(3 \pi^{2}\right) / s+s}\left(-1+e^{\left(4 \pi^{2}\right) / s}\right)}{2 \sqrt{\pi} \sqrt{s}} d s\right)\right) \text { for } \gamma>0
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}= \\
\left(250 e \pi^{5 / 2}\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\pi^{2} / s+s}}{s^{3 / 2}} d s\right) \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{s^{3 / 2}} d s-\right. \\
506 \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{-\left(3 \pi^{2}\right) / s+s}\left(-1+e^{\left(4 \pi^{2}\right) / s}\right)}{2 \sqrt{\pi} \sqrt{s}} d s- \\
\left.253 i\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{-\left(3 \pi^{2}\right) / s+s}\left(-1+e^{\left(4 \pi^{2}\right) / s}\right)}{2 \sqrt{\pi} \sqrt{s}} d s\right) /
\end{gathered}
$$

2000

$$
\left(2 \sqrt{\pi}+i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right)
$$

$$
\left.\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{i e^{-\left(3 \pi^{2}\right) / s+s}\left(-1+e^{\left(4 \pi^{2}\right) / s}\right)}{2 \sqrt{\pi} \sqrt{s}} d s\right) \text { for } \gamma>0
$$

$$
\begin{aligned}
& \frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}= \\
& -\left(\left(506 \sqrt{\pi} \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{1}{2} i\left(\frac{e^{\pi^{2} / s+s}}{\sqrt{\pi} \sqrt{s}}-\frac{3^{-s} \pi^{-1 / 2-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) d s+253 i\right.\right. \\
& \quad\left(\int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) \int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{1}{2} i\left(\frac{e^{\pi^{2} / s+s}}{\sqrt{\pi} \sqrt{s}}-\frac{3^{-s} \pi^{-1 / 2-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) d s+ \\
& \left.\int_{0}^{1} \int_{0}^{1} \cosh \left(2 \pi t_{1}\right) \cosh \left(2 \sqrt{3} \pi t_{2}\right) d t_{2} d t_{1}\right) /
\end{aligned}
$$

200 :

$$
\begin{gathered}
000\left(2 \sqrt{\pi}+i \int_{-i \infty+\gamma}^{i \infty+\gamma} \frac{e^{\left(3 \pi^{2}\right) / s+s}}{\sqrt{s}} d s\right) \\
\left.\left.\int_{-i \infty+\gamma}^{i \infty+\gamma}-\frac{1}{2} i\left(\frac{e^{\pi^{2} / s+s}}{\sqrt{\pi} \sqrt{s}}-\frac{3^{-s} \pi^{-1 / 2-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) d s\right)\right) \text { for } 0<\gamma<\frac{1}{2}
\end{gathered}
$$

Multiple-argument formulas:

$$
\frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi)(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}=
$$

100

$$
\begin{array}{r}
-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))} \\
-\frac{10^{52}}{2000}+\frac{e \pi \cosh (\pi) \cosh (\sqrt{3} \pi) \sinh (\pi) \sinh (\sqrt{3} \pi)}{\sqrt{3}\left(-2 \cos ^{2}(\sqrt{3} \pi)+2 \cosh ^{2}(\pi)\right)\left(-2+2 \cosh ^{2}(\sqrt{3} \pi)\right)}
\end{array}
$$

100

```
\(\frac{-\frac{5}{10^{4}}-\frac{123+3}{10^{3}}+\frac{e \pi(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi))}{(4 \sqrt{3})((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))}}{10^{52}}=\)
    \(-\frac{253}{2000}+\frac{e \pi \cosh (\pi) \cosh (\sqrt{3} \pi) \sinh (\pi) \sinh (\sqrt{3} \pi)}{\sqrt{3}\left(-2+2 \cosh ^{2}(\sqrt{3} \pi)\right)\left(-2+2 \cosh ^{2}(\pi)+2 \sin ^{2}(\sqrt{3} \pi)\right)}\)
```

100
$55 /\left(\left(\left(\mathrm{Pi} /(4 \mathrm{sqrt} 3) *\left[\sinh \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right) \sinh (2 \mathrm{Pi})+\sin (2 \mathrm{Pi}) * \operatorname{sqrt} 3 \sin (2 \mathrm{Pi})\right] /\left[\left(\cosh \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.)-\cos (2 \mathrm{Pi}))\left(\left(\cosh (2 \mathrm{Pi})-\cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right]\right)\right)\right)\right)+4$

Input:

$\frac{55}{\frac{\pi}{4 \sqrt{3}} \times \frac{\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)}{(\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3}))}}+4$

Exact result:

$4+\frac{220 \sqrt{3}(\cosh (2 \sqrt{3} \pi)-1) \operatorname{csch}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}{\pi}$

Decimal approximation:

125.3396276242090406268301345257681325815757747396127243609...
125.339627624... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$4-\frac{220 \sqrt{3} \tanh (\sqrt{3} \pi) \operatorname{csch}(2 \pi)(\cos (2 \sqrt{3} \pi)-\cosh (2 \pi))}{\pi}$
$4+\frac{110 \sqrt{3} \tanh (\pi) \tanh (\sqrt{3} \pi)}{\pi}+\frac{110 \sqrt{3} \tanh (\sqrt{3} \pi) \operatorname{coth}(\pi)}{\pi}-$
$\frac{110 \sqrt{3} \cos ^{2}(\sqrt{3} \pi) \tanh (\sqrt{3} \pi) \operatorname{csch}(\pi) \operatorname{sech}(\pi)}{\pi}+$
$110 \sqrt{3} \sin ^{2}(\sqrt{3} \pi) \tanh (\sqrt{3} \pi) \operatorname{csch}(\pi) \operatorname{sech}(\pi)$

$$
\begin{aligned}
& -\frac{1}{\pi} 4(-\pi-55 \sqrt{3} \operatorname{coth}(2 \pi) \operatorname{coth}(2 \sqrt{3} \pi)- \\
& \quad 55 \sqrt{3} \cos (2 \sqrt{3} \pi) \operatorname{csch}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)+ \\
& 55 \sqrt{3} \operatorname{coth}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)+55 \sqrt{3} \cos (2 \sqrt{3} \pi) \operatorname{coth}(2 \sqrt{3} \pi) \operatorname{csch}(2 \pi))
\end{aligned}
$$

Expanded form:

$$
\begin{aligned}
& 4+\frac{220 \sqrt{3} \operatorname{coth}(2 \pi) \operatorname{coth}(2 \sqrt{3} \pi)}{\pi}+\frac{220 \sqrt{3} \cos (2 \sqrt{3} \pi) \operatorname{csch}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)}{\pi}- \\
& \frac{220 \sqrt{3} \operatorname{coth}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)}{\pi}-\frac{220 \sqrt{3} \cos (2 \sqrt{3} \pi) \operatorname{coth}(2 \sqrt{3} \pi) \operatorname{csch}(2 \pi)}{\pi}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}+4=} \\
& 4+\frac{55}{\frac{\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\left(-e^{-2 i \pi}+e^{2 i \pi}\right)^{2}\left(\frac{1}{2 i}\right)^{2} \sqrt{3}\right)}{\left(\left(-\cosh (-2 i \pi \sqrt{3})+\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)\right)\left(-\cosh (-2 i \pi)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})}}
\end{aligned}
$$

$\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{\frac{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}{5}+4=}$
$4+\frac{55}{\frac{\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\cos ^{2}\left(\frac{5 \pi}{2}\right) \sqrt{3}\right)}{\left(\left(\frac{1}{2}\left(-e^{-2 i \pi}-e^{2 i \pi}\right)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\left(\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-2 i \pi \sqrt{3}}-e^{2 i \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})}}$
$\frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})} 55}+4=$

$$
4+\frac{55}{\frac{\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\cos ^{2}\left(-\frac{3 \pi}{2}\right) \sqrt{3}\right)}{\left(\left(\frac{1}{2}\left(-e^{-2 i \pi}-e^{2 i \pi}\right)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\left(\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-2 i \pi \sqrt{3}}-e^{2 i \pi \sqrt{3}}\right)\right)(4 \sqrt{3})\right.}}
$$

Series representations:

$$
\begin{aligned}
& \frac{55}{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}+4=\frac{1}{\pi^{3}} \\
& 4((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3}) \\
& \pi^{3}-660 \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(\frac{(2 \pi)^{2 k_{3}}}{\left(2 k_{3}\right)!}-\frac{(-3)^{k_{3}}(2 \pi)^{2 k_{3}}}{\left(2 k_{3}\right)!}\right)}{\left(4+k_{1}^{2}\right)\left(12+k_{2}^{2}\right)}+ \\
& \left.660 \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \sum_{k_{3}=0}^{\infty} \sum_{k_{4}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 12^{k_{4}} \pi^{2 k_{4}\left(\frac{(2 \pi)^{2 k_{3}}}{\left(2 k_{3}\right)!}-\frac{(-3)^{k_{3}(2 \pi)^{2 k_{3}}}}{\left(2 k_{3}\right)!!}\right)}}{\left(2 k_{4}\right)!\left(4+k_{1}^{2}\right)\left(12+k_{2}^{2}\right)}\right)
\end{aligned}
$$

55

$$
\begin{aligned}
& \frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}+4= \\
& 4+\frac{1}{\pi} 220 \sqrt{3}\left(\frac{1}{2 \pi}+4 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{\left(4+k^{2}\right) \pi^{2}}\right) \\
& \left(\frac{1}{2 \sqrt{3} \pi}+4 \sqrt{3} \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{\left(12+k^{2}\right) \pi^{2}}\right)\left(-1+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) \\
& \quad \sum_{j=0}^{\infty} \sqrt{\pi}\left(\operatorname{Res}_{s=-j} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}-\operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3}))(4 \sqrt{3})}+4=} \\
& 4+\frac{1}{\pi} 220 \sqrt{3}\left(\frac{1}{2 \pi}+4 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{4 \pi^{2}+k^{2} \pi^{2}}\right) \\
& \quad\left(\frac{1}{2 \sqrt{3} \pi}+4 \sqrt{3} \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{12 \pi^{2}+k^{2} \pi^{2}}\right)\left(-1+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) \\
& \quad\left(-\sum_{k=0}^{\infty} \frac{(-3)^{k}(2 \pi)^{2 k}}{(2 k)!}+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)
\end{aligned}
$$

Multiple-argument formulas:

```
\(\frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}}+4=\)
\(4+\frac{110 \sqrt{3} \operatorname{csch}(\pi) \operatorname{sech}(\pi)\left(2-2 \cos ^{2}(\sqrt{3} \pi)+2 \sinh ^{2}(\pi)\right) \tanh (\sqrt{3} \pi)}{\pi}\)
```

55
$\frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}}+4=$
$4+\frac{1}{\pi} 55 \sqrt{3}\left(-2 \cos ^{2}(\sqrt{3} \pi)+2 \cosh ^{2}(\pi)\right)$
$\left(-2+2 \cosh ^{2}(\sqrt{3} \pi)\right) \operatorname{csch}(\pi) \operatorname{csch}(\sqrt{3} \pi) \operatorname{sech}(\pi) \operatorname{sech}(\sqrt{3} \pi)$
$\frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3}))(4 \sqrt{3})}}+4=$
$4+\frac{1}{\pi} 55 \sqrt{3}\left(-2+2 \cosh ^{2}(\sqrt{3} \pi)\right) \operatorname{csch}(\pi) \operatorname{csch}(\sqrt{3} \pi)$
$\operatorname{sech}(\pi) \operatorname{sech}(\sqrt{3} \pi)\left(-2+2 \cosh ^{2}(\pi)+2 \sin ^{2}(\sqrt{3} \pi)\right)$
$\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}$
$4+\frac{1}{\pi} 55 \sqrt{3}\left(-2+2 \cosh ^{2}(\sqrt{3} \pi)\right) \operatorname{csch}(\pi) \operatorname{csch}(\sqrt{3} \pi)$
$\operatorname{sech}(\pi) \operatorname{sech}(\sqrt{3} \pi)\left(-2+2 \cosh ^{2}(\pi)+2 \sin ^{2}(\sqrt{3} \pi)\right)$
$55 /((((\mathrm{Pi} /(4 \mathrm{sqrt} 3) *[\sinh (2 \mathrm{Pi} * \operatorname{sqrt} 3) \sinh (2 \mathrm{Pi})+\sin (2 \mathrm{Pi}) * \operatorname{sqrt} 3 \sin (2 \mathrm{Pi})] /[(\cosh (2 \mathrm{Pi} * \operatorname{sqrt} 3$ $\left.\left.\left.\left.\left.)-\cos (2 \mathrm{Pi}))\left(\left(\cosh (2 \mathrm{Pi})-\cos \left(2 \mathrm{Pi}^{*} \mathrm{sqrt} 3\right)\right)\right)\right]\right)\right)\right)\right)+18$

Input:

$\frac{55}{\frac{\pi}{4 \sqrt{3}} \times \frac{\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)}{(\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3}))}}+18$

Exact result:

$18+\frac{220 \sqrt{3}(\cosh (2 \sqrt{3} \pi)-1) \operatorname{csch}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)(\cosh (2 \pi)-\cos (2 \sqrt{3} \pi))}{\pi}$
$\operatorname{csch}(x)$ is the hyperbolic cosecant function

Decimal approximation:

139.3396276242090406268301345257681325815757747396127243609...
$139.339627624 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$$
\begin{aligned}
& 18-\frac{220 \sqrt{3} \tanh (\sqrt{3} \pi) \operatorname{csch}(2 \pi)(\cos (2 \sqrt{3} \pi)-\cosh (2 \pi))}{\pi} \\
& 18+\frac{110 \sqrt{3} \tanh (\pi) \tanh (\sqrt{3} \pi)}{\pi}+\frac{110 \sqrt{3} \tanh (\sqrt{3} \pi) \operatorname{coth}(\pi)}{\pi}- \\
& \frac{110 \sqrt{3} \cos ^{2}(\sqrt{3} \pi) \tanh (\sqrt{3} \pi) \operatorname{csch}(\pi) \operatorname{sech}(\pi)}{\pi}+ \\
& 110 \sqrt{3} \sin ^{2}(\sqrt{3} \pi) \tanh (\sqrt{3} \pi) \operatorname{csch}(\pi) \operatorname{sech}(\pi)
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{\pi} 2(-9 \pi-110 \sqrt{3} \operatorname{coth}(2 \pi) \operatorname{coth}(2 \sqrt{3} \pi)- \\
& 110 \sqrt{3} \cos (2 \sqrt{3} \pi) \operatorname{csch}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)+110 \sqrt{3} \operatorname{coth}(2 \pi) \\
& \quad \operatorname{csch}(2 \sqrt{3} \pi)+110 \sqrt{3} \cos (2 \sqrt{3} \pi) \operatorname{coth}(2 \sqrt{3} \pi) \operatorname{csch}(2 \pi))
\end{aligned}
$$

Expanded form:

$$
\begin{aligned}
& 18+\frac{220 \sqrt{3} \operatorname{coth}(2 \pi) \operatorname{coth}(2 \sqrt{3} \pi)}{\pi}+\frac{220 \sqrt{3} \cos (2 \sqrt{3} \pi) \operatorname{csch}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)}{\pi}- \\
& \frac{220 \sqrt{3} \operatorname{coth}(2 \pi) \operatorname{csch}(2 \sqrt{3} \pi)}{\pi}-\frac{220 \sqrt{3} \cos (2 \sqrt{3} \pi) \operatorname{coth}(2 \sqrt{3} \pi) \operatorname{csch}(2 \pi)}{\pi}
\end{aligned}
$$

Alternative representations:

```
\(\frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}}+18=\)
    \(18+\frac{55}{\frac{\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\left(-e^{-2 i \pi}+e^{2 i \pi}\right)^{2}\left(\frac{1}{2 i}\right)^{2} \sqrt{3}\right)}{\left(\left(-\cosh (-2 i \pi \sqrt{3})+\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)\right)\left(-\cosh (-2 i \pi)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})}}\)
```

 55
 $\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{\frac{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}{(18}=}$

$$
18+\frac{55}{\frac{\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\cos ^{2}\left(\frac{5 \pi}{2}\right) \sqrt{3}\right)}{\left(\left(\frac{1}{2}\left(-e^{-2 i \pi}-e^{2 i \pi}\right)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\left(\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-2 i \pi \sqrt{3}}-e^{2 i \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})}}
$$

55
$\frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}+18=}$
$18+\frac{55}{\frac{\pi\left(\frac{1}{4}\left(-e^{-2 \pi}+e^{2 \pi}\right)\left(-e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)+\cos ^{2}\left(-\frac{3 \pi}{2}\right) \sqrt{3}\right)}{\left(\left(\frac{1}{2}\left(-e^{-2 i \pi}-e^{2 i \pi}\right)+\frac{1}{2}\left(e^{-2 \pi \sqrt{3}}+e^{2 \pi \sqrt{3}}\right)\right)\left(\frac{1}{2}\left(e^{-2 \pi}+e^{2 \pi}\right)+\frac{1}{2}\left(-e^{-2 i \pi \sqrt{3}}-e^{2 i \pi \sqrt{3}}\right)\right)\right)(4 \sqrt{3})}}$

Series representations:

$$
\begin{aligned}
& \frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}+18=\frac{1}{\pi^{3}}} \\
& 6\left(3 \pi^{3}-440 \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \sum_{k_{3}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}}\left(\frac{(2 \pi)^{2 k_{3}}}{\left(2 k_{3}\right)!}-\frac{(-3)^{k_{3}}(2 \pi)^{2 k_{3}}}{\left(2 k_{3}\right)!}\right)}{\left(4+k_{1}^{2}\right)\left(12+k_{2}^{2}\right)}+\right. \\
& \left.440 \sum_{k_{1}=-\infty}^{\infty} \sum_{k_{2}=-\infty}^{\infty} \sum_{k_{3}=0}^{\infty} \sum_{k_{4}=0}^{\infty} \frac{(-1)^{k_{1}+k_{2}} 12^{k_{4}} \pi^{2 k_{4}}\left(\frac{(2 \pi)^{2 k_{3}}}{\left(2 k_{3}\right)!}-\frac{(-3)^{k_{3}(2 \pi)^{2 k_{3}}}}{\left(2 k_{3}\right)!}\right)}{\left(2 k_{4}\right)!\left(4+k_{1}^{2}\right)\left(12+k_{2}^{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}+18=} \\
& 18+\frac{1}{\pi} 220 \sqrt{3}\left(\frac{1}{2 \pi}+4 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{\left(4+k^{2}\right) \pi^{2}}\right) \\
& \quad\left(\frac{1}{2 \sqrt{3} \pi}+4 \sqrt{3} \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{\left(12+k^{2}\right) \pi^{2}}\right)\left(-1+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) \\
& \sum_{j=0}^{\infty} \sqrt{\pi}\left(\operatorname{Res}_{s=-j} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}-\operatorname{Res}_{s=-j} \frac{3^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}+18=} \\
& 18+\frac{1}{\pi} 220 \sqrt{3}\left(\frac{1}{2 \pi}+4 \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{4 \pi^{2}+k^{2} \pi^{2}}\right) \\
& \left(\frac{1}{2 \sqrt{3} \pi}+4 \sqrt{3} \pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{12 \pi^{2}+k^{2} \pi^{2}}\right)\left(-1+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-3)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right) \\
& \left(-\sum_{k=0}^{\infty} \frac{(-3)^{k}(2 \pi)^{2 k}}{(2 k)!}+\sqrt{\pi} \sum_{j=0}^{\infty} \operatorname{Res}_{s=-j} \frac{(-1)^{-s} \pi^{-2 s} \Gamma(s)}{\Gamma\left(\frac{1}{2}-s\right)}\right)
\end{aligned}
$$

Multiple-argument formulas:

$\frac{55}{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}+18=$
$\frac{(\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}{\pi}$
$18+\frac{110 \sqrt{3} \operatorname{csch}(\pi) \operatorname{sech}(\pi)\left(2-2 \cos ^{2}(\sqrt{3} \pi)+2 \sinh ^{2}(\pi)\right) \tanh (\sqrt{3} \pi)}{\pi}$
$\frac{55}{\frac{(\sinh (2 \pi \sqrt{3}) \sinh (2 \pi)+\sin (2 \pi) \sqrt{3} \sin (2 \pi)) \pi}{((\cosh (2 \pi \sqrt{3})-\cos (2 \pi))(\cosh (2 \pi)-\cos (2 \pi \sqrt{3})))(4 \sqrt{3})}}+18=$

$$
\begin{aligned}
& 18+\frac{1}{\pi} 55 \sqrt{3}\left(-2 \cos ^{2}(\sqrt{3} \pi)+2 \cosh ^{2}(\pi)\right) \\
& \quad\left(-2+2 \cosh ^{2}(\sqrt{3} \pi)\right) \operatorname{csch}(\pi) \operatorname{csch}(\sqrt{3} \pi) \operatorname{sech}(\pi) \operatorname{sech}(\sqrt{3} \pi)
\end{aligned}
$$

Page 329

For $\theta=\pi / 2$, we obtain:
$1 /\left(\sin ^{\wedge} 2(\mathrm{Pi} / 2)\right)-\mathrm{z} /(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)+8\left(\left(\left((\cos (2 \mathrm{Pi} / 2)) /\left(\left(\mathrm{e}^{\wedge}(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)+1\right)\right)-\right.\right.\right.$ $\left.\left.\left.\left(((2 \cos (4 \mathrm{Pi} / 2))) /\left(\left(\mathrm{e}^{\wedge}(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)-1\right)\right)\right)\right)\right)\right)$

Input:

$$
\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}-\frac{z}{\frac{\pi}{2} \sqrt{3}}+8\left(\frac{\cos \left(2 \times \frac{\pi}{2}\right)}{e^{\pi / 2} \sqrt{3}+1}-\frac{2 \cos \left(4 \times \frac{\pi}{2}\right)}{e^{\pi / 2} \sqrt{3}}-1\right)
$$

Exact result:

$$
-\frac{2 z}{\sqrt{3} \pi}+8\left(-\frac{2}{e^{(\sqrt{3} \pi) / 2}-1}-\frac{1}{1+e^{(\sqrt{3} \pi) / 2}}\right)+1
$$

Plot:

Geometric figure:

line

Alternate forms:

$-\frac{2 z}{\sqrt{3} \pi}+5+4 \tanh \left(\frac{\sqrt{3} \pi}{4}\right)-8 \operatorname{coth}\left(\frac{\sqrt{3} \pi}{4}\right)$
$-\frac{2 \sqrt{3} z-3 \pi}{3 \pi}-\frac{8}{1+e^{(\sqrt{3} \pi) / 2}}-\frac{16}{e^{(\sqrt{3} \pi) / 2}-1}$
Factor $\left[-\frac{2 z}{\sqrt{3} \pi}+8\left(-\frac{2}{e^{(\sqrt{3} \pi) / 2}-1}-\frac{1}{1+e^{(\sqrt{3} \pi) / 2}}\right)+1\right.$, Extension $\left.\rightarrow e^{(\sqrt{3} \pi) / 2}\right]$

Root:

$z \approx-1.6911$
-1.6911

Branch points:

(none; function is entire)
Derivative:
$\frac{d}{d z}\left(\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}-\frac{z}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)\right)=-\frac{2}{\sqrt{3} \pi}$
Indefinite integral:
$\int\left(1+8\left(-\frac{2}{-1+e^{(\sqrt{3} \pi) / 2}}-\frac{1}{1+e^{(\sqrt{3} \pi) / 2}}\right)-\frac{2 z}{\sqrt{3} \pi}\right) d z=$

$$
-\frac{z^{2}}{\sqrt{3} \pi}+8\left(-\frac{2}{e^{(\sqrt{3} \pi) / 2}-1}-\frac{1}{1+e^{(\sqrt{3} \pi) / 2}}\right) z+z+\text { constant }
$$

$1 /\left(\sin ^{\wedge} 2(\mathrm{Pi} / 2)\right)+(1.6911) /(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)+8\left(\left(\left((\cos (2 \mathrm{Pi} / 2)) /\left(\left(\mathrm{e}^{\wedge}(\mathrm{Pi} / 2 * \mathrm{sqrt} 3)+1\right)\right)-\right.\right.\right.$ $\left.\left.\left.\left(((2 \cos (4 \mathrm{Pi} / 2))) /\left(\left(\mathrm{e}^{\wedge}(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)-1\right)\right)\right)\right)\right)\right)$

Input interpretation:

$$
\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi}{2} \sqrt{3}}+8\left(\frac{\cos \left(2 \times \frac{\pi}{2}\right)}{e^{\pi / 2} \sqrt{3}}+1-\frac{2 \cos \left(4 \times \frac{\pi}{2}\right)}{e^{\pi / 2 \sqrt{3}}-1}\right)
$$

Result:

-0.0000154756...
$-0.0000154756 \ldots$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& 8\left(-\frac{2 \cosh (2 i \pi)}{-1+e^{(\pi \sqrt{3}) / 2}}+\frac{\cosh (i \pi)}{1+e^{(\pi \sqrt{3}) / 2}}\right)+\frac{1}{\cos ^{2}(0)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}} \\
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& 8\left(-\frac{2 \cosh (-2 i \pi)}{-1+e^{(\pi \sqrt{3}) / 2}}+\frac{\cosh (-i \pi)}{1+e^{(\pi \sqrt{3}) / 2}}\right)+\frac{1}{\cos ^{2}(0)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}} \\
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& 8\left(-\frac{2 \cosh (-2 i \pi)}{-1+e^{(\pi \sqrt{3}) / 2}}+\frac{\cosh (-i \pi)}{1+e^{(\pi \sqrt{3}) / 2}}\right)+\frac{1}{(-\cos (\pi))^{2}}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)=\frac{1}{4\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(\frac{\pi}{2}\right)\right)^{2}}- \\
\left.\left.\left.\frac{-1+\exp \left(\frac { 1 } { 2 } \pi \operatorname { e x p } \left(i \pi \left\lfloor\frac{(-4)^{k} \pi^{2 k}}{(2 k)!}\right.\right.\right.}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right) \\
\frac{8 \sum_{k=0}^{\infty} \frac{(-1)^{k} \pi^{2} k}{(2 k)!}}{1+\exp \left(\frac{1}{2} \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)}+ \\
\frac{3.3822}{\pi \exp \left(i \pi\left\lfloor\frac{\operatorname{agg}(3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right) k}{k!}} \text { for }(x \in \mathbb{R} \text { and } x<0)
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& 16 \sum_{k=0}^{\infty} \frac{(-4)^{k} \pi^{2 k}}{(2 k)!} \\
& -1+\exp \left(\frac{1}{2} \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& 8 \sum_{k=0}^{\infty} \frac{(-1)^{k} \pi^{2 k}}{(2 k)!} \\
& 1+\exp \left(\frac{1}{2} \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!}\right)+ \\
& \frac{1}{\left(\sum_{k=0}^{\infty} \frac{(-1)^{k_{2}-1-2 k_{\pi^{1+2 k}}}}{(1+2 k)!}\right)^{2}}+ \\
& 3.3822 \\
& \pi \exp \left(i \pi\left\lfloor\frac{\arg (3-x)}{2 \pi}\right\rfloor\right) \sqrt{x} \sum_{k=0}^{\infty} \frac{(-1)^{k}(3-x)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}}{k!} \\
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)=\frac{1}{4\left(\sum_{k=0}^{\infty}(-1)^{k} J_{1+2 k}\left(\frac{\pi}{2}\right)\right)^{2}}- \\
& 16 \sum_{k=0}^{\infty} \frac{(-4)^{k} \pi^{2 k}}{(2 k)!} \\
& -1+\exp \left(\frac{1}{2} \pi\left(\frac{1}{z_{0}}\right)^{\left.1 / 2 \arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right]\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(3-z_{0}\right)^{k} z_{0}^{k}}}{k!}\right)+ \\
& 8 \sum_{k=0}^{\infty} \frac{(-1)^{k} \pi^{2 k}}{(2 k)!} \\
& 1+\exp \left(\frac{1}{2} \pi\left(\frac{1}{z_{0}}\right)^{1 / 2\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor} z_{0}^{\left.1 / 2\left(1+\left\lfloor\arg \left(3-z_{0}\right)\right)(2 \pi)\right\rfloor\right)} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}^{\left(3-z_{0}\right)^{k} z_{0}^{k}}}{k!}\right)+ \\
& 3.3822\left(\frac{1}{z_{0}}\right)^{-1 / 2\left\lfloor\arg \left(3-z_{0}\right)(2 \pi)\right\rfloor} z_{0}^{1 / 2\left(-1-\left\lfloor\arg \left(3-z_{0}\right) /(2 \pi)\right\rfloor\right)} \\
& \pi \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(3-z_{0} k^{k} z_{0}^{k}\right.}{k!}
\end{aligned}
$$

Half-argument formulas:

$$
\begin{aligned}
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& \frac{3.3822 \sqrt{2}}{\pi \sqrt{6}}+\frac{1}{\sqrt{\frac{1}{2}(1-\cos (\pi))^{2}}}+8\left(\frac{1}{1+e^{(\pi \sqrt{6}) /(2 \sqrt{2})}}(-1)^{\lfloor(\pi+\mathrm{Re}(2 \pi))(2 \pi)]}\right. \\
& \sqrt{\frac{1}{2}(1+\cos (2 \pi))}\left(1-\left(1+(-1)^{L-(\pi+\operatorname{Re}(2 \pi))(2 \pi)+L(\pi+\operatorname{Re}(2 \pi))(2 \pi)]}\right) \theta(-\operatorname{Im}(2 \pi))\right)- \\
& \frac{1}{-1+e^{(\pi \sqrt{6}) /(2 \sqrt{2})}} 2(-1)^{\lfloor(\pi+\operatorname{Re}(4 \pi))(2 \pi)\rfloor} \sqrt{\frac{1}{2}(1+\cos (4 \pi))} \\
& \left(1-\left(1+(-1)^{L-(\pi+\operatorname{Re}(4 \pi))(2 \pi)]+\lfloor(\pi+\operatorname{Re}(4 \pi))(2 \pi)]}\right) \theta(-\operatorname{Im}(4 \pi))\right) \\
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& \frac{3.3822 \sqrt{2}}{\pi \sqrt{6}}+\frac{(-1)^{-2\lfloor\operatorname{Re}(\pi) /(2 \pi)\rfloor}}{\sqrt{\frac{1}{2}(1-\cos (\pi))^{2}}\left(1-\left(1+(-1)^{l-\operatorname{Re}(\pi))(2 \pi)\rfloor+\lfloor\operatorname{Re}(\pi))(2 \pi)\rfloor}\right) \theta(-\operatorname{Im}(\pi))\right)^{2}}+ \\
& 8\left(\frac{1}{1+e^{(\pi \sqrt{6}) /(2 \sqrt{2})}}(-1)^{\lfloor(\pi+\mathrm{Re}(2 \pi))(2 \pi)\rfloor} \sqrt{\frac{1}{2}(1+\cos (2 \pi))}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{-1+e^{(\pi \sqrt{6}) /(2 \sqrt{2})}} 2(-1)^{\lfloor(\pi+\operatorname{Re}(4 \pi)) /(2 \pi)\rfloor} \sqrt{\frac{1}{2}(1+\cos (4 \pi))} \\
& \left(1-\left(1+(-1)^{L-(\pi+\operatorname{Re}(4 \pi))(2 \pi))+\mathrm{L}(\pi+\mathrm{Rc}(4 \pi))(2 \pi)]}\right) \theta(-\operatorname{Im}(4 \pi))\right)
\end{aligned}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& 8\left(\frac{-1+2 \cos ^{2}\left(\frac{\pi}{2}\right)}{1+e^{(\pi \sqrt{3}) / 2}}-\frac{2\left(-1+2 \cos ^{2}(\pi)\right)}{-1+e^{(\pi \sqrt{3}) / 2}}\right)+\frac{1}{4 \cos ^{2}\left(\frac{\pi}{4}\right) \sin ^{2}\left(\frac{\pi}{4}\right)}+\frac{3.3822}{\pi \sqrt{3}} \\
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& \frac{1}{4 \cos ^{2}\left(\frac{\pi}{4}\right) \sin ^{2}\left(\frac{\pi}{4}\right)}+8\left(\frac{1-2 \sin ^{2}\left(\frac{\pi}{2}\right)}{1+e^{(\pi \sqrt{3}) / 2}}-\frac{2\left(1-2 \sin ^{2}(\pi)\right)}{-1+e^{(\pi \sqrt{3}) / 2}}\right)+\frac{3.3822}{\pi \sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\sqrt{3} \pi}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\sqrt{3} \pi) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}\right)= \\
& 8\left(\frac{-1+2 \cos ^{2}\left(\frac{\pi}{2}\right)}{1+e^{(\pi \sqrt{3}) / 2}}-\frac{2\left(-1+2 \cos ^{2}(\pi)\right)}{-1+e^{(\pi \sqrt{3}) / 2}}\right)+\frac{1}{\left(3 \sin \left(\frac{\pi}{6}\right)-4 \sin ^{3}\left(\frac{\pi}{6}\right)\right)^{2}}+\frac{3.3822}{\pi \sqrt{3}}
\end{aligned}
$$

1/2sqrt(($(-$
$1 /\left(\left(\left(1 /\left(\sin ^{\wedge} 2(\mathrm{Pi} / 2)\right)+(1.6911) /(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)+8\left(\left(\left((\cos (2 \mathrm{Pi} / 2)) /\left(\left(\mathrm{e}^{\wedge}(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)+1\right)\right)-\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left(((2 \cos (4 \mathrm{Pi} / 2))) /\left(\left(\mathrm{e}^{\wedge}(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)-1\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$-golden ratio

Input interpretation:

$\frac{1}{2} \sqrt{\left.-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6011}{\frac{\pi}{2} \sqrt{3}}+8\left(\frac{\cos \left(2 \times \frac{\pi}{2}\right)}{e^{\pi / 2} \sqrt{3}}+1\right.}-\frac{2 \cos \left(4 \times \frac{\pi}{2}\right)}{e^{\pi / 2} \sqrt{3}-1}\right)}-\phi$

Result:

125.482...
$125.482 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\left.\begin{array}{l}
\frac{1}{2} \sqrt{\left.-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{\left.e^{(\pi \sqrt{3}}\right) / 2}+1\right.}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}
\end{array}\right) \phi=
$$

$$
\begin{aligned}
& \frac{1}{2} \sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}+\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}}\right)}}-\phi= \\
& -\phi+\frac{1}{2} \sqrt{\left.-\frac{1}{8\left(-\frac{2 \cosh (-2 i \pi)}{\left.-1+e^{(\pi \sqrt{3}}\right) / 2}+\frac{\cosh (-i \pi)}{1+e}(\pi \sqrt{3}) / 2\right.}\right)+\frac{1}{\cos ^{2}(0)}+\frac{1.6011}{\frac{\pi \sqrt{3}}{2}}}
\end{aligned}
$$

$$
\frac{1}{2} \sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6011}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{\left.e^{(\pi \sqrt{3}}\right) /{ }^{2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{\left.e^{(\pi \sqrt{3}}\right) / 2}\right)}}-\phi=
$$

$$
-\phi+\frac{1}{2} \sqrt{-\frac{1}{8\left(-\frac{2 \cosh (-2 i \pi)}{-1+e(\pi \sqrt{3}) / 2}+\frac{\cosh (-i \pi)}{\left.1+e^{(\pi \sqrt{3}}\right) / 2}\right)+\frac{1}{(-\cos (\pi))^{2}}+\frac{1.6011}{\frac{\pi \sqrt{3}}{2}}}}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{2} \sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6011}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{\left.e^{(\pi \sqrt{3}}\right) /{ }^{2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}-\phi= \\
& -\phi+\frac{1}{2} \exp \left(\left.i \pi\left(\frac{\arg \left(-x-\frac{1}{\left.8\left(\frac{\cos (\pi)}{\left(\frac{1+e}{3}\right) / 2}-\frac{2 \cos (2 \pi)}{-1+e(\pi \sqrt{3}) / 2}\right)+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}\right)}\right.}{2 \pi}\right) \right\rvert\, \sqrt{x}\right. \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{-k}\left(-\frac{1}{2}\right)_{k}\left(-x-\frac{1}{8\left(\frac{\cos (\pi)}{1+e^{(\pi \sqrt{3})} / 2}-\frac{2 \cos (2 \pi)}{\left.-1+e^{(\pi \sqrt{3}) / 2}\right)}\right)+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}\right)^{k}}{k!} \\
& \text { for (} x \in \mathbb{R} \text { and } x<0 \text {) }
\end{aligned}
$$

$\frac{1}{2} \sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}}\right)}}-\phi=$

$$
\frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-\frac{1}{8\left(\frac{\cos (\pi)}{1+(\pi \sqrt{3}) / 2}-\frac{2 \cos (2 \pi)}{-1+e^{(\pi \sqrt{3}) / 2}}\right)+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}-z_{0}\right)^{k} z_{0}^{k}}{k!}
$$

Half-argument formulas:

$$
\begin{aligned}
& \frac{1}{2} \sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6011}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{\left.e^{(\pi \sqrt{3}}\right) / 2}+\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{\left.e^{(\pi \sqrt{3}}\right) / 2}\right)}}-\phi= \\
& -\phi+\frac{\sqrt{-\frac{2}{\frac{8 \cos (\pi)}{\left.1+e^{(\pi \sqrt{3}}\right) / 2}-\frac{16 \cos (2 \pi)}{\left.-1+e^{(\pi \sqrt{3}}\right) / 2}+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}}}{2 \sqrt{2}}
\end{aligned}
$$

$$
\frac{1}{2} \sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}-\phi=
$$

$$
-\phi+\frac{\sqrt{\left.-\frac{2}{8\left(\frac{\cos (\pi)}{(1+e}(\pi \sqrt{3}) / 2\right.}-\frac{2 \cos (2 \pi)}{\left.-1+e^{(\pi \sqrt{3}}\right) / 2}\right)+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}}{2 \sqrt{2}}
$$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{1}{2} \sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}-\phi=} \\
& \left.-\phi+\frac{1}{e^{2} \exp \left(i \pi\left(-\frac{1}{-\pi+\arg (-1)+\arg \left(\frac{\left.\frac{8 \cos (\pi)}{1+e^{(\pi \sqrt{3}) / 2}}-\frac{16 \cos (2 \pi)}{-1+e^{(\pi \sqrt{3}) / 2}+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}\right)}{2 \pi}\right.}\right)\right.}\right] \\
& \sqrt{-1} \sqrt{\frac{8 \cos (\pi)}{1+e^{(\pi \sqrt{3}) / 2}-\frac{16 \cos (2 \pi)}{-1+e^{(\pi \sqrt{3}) / 2}}+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}}
\end{aligned}
$$

$$
\frac{1}{2} \sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{\left.e^{(\pi \sqrt{3}}\right) / 2_{+1}}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}-\phi=
$$

$$
\begin{gathered}
-\phi+\frac{1}{2} \exp \left(i \pi\left(\frac{1}{\pi-\arg (-1)-\arg \left(\frac{1}{8\left(\frac{\cos (\pi)}{\left.1+e^{(\pi \sqrt{3}) / 2}-\frac{2 \cos (2 \pi)}{\left.-1+e^{(\pi \sqrt{3}}\right) / 2}\right)}+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3 \cdot 3822}{\pi \sqrt{3}}\right.}\right)}\right]\right) \\
\sqrt{-1} \sqrt{\frac{8}{8\left(\frac{\cos (\pi)}{1+e^{(\pi \sqrt{3}) / 2}}-\frac{2 \cos (2 \pi)}{\left.-1+e^{(\pi \sqrt{3}}\right) / 2}\right)+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}}
\end{gathered}
$$

We have also that:
$1 / 10^{\wedge} 52\left(\left(\left(-3 / 10^{\wedge} 4+[\operatorname{sqrt}(((-\right.\right.\right.$
$1 /\left(\left(\left(1 /\left(\sin ^{\wedge} 2(\mathrm{Pi} / 2)\right)+(1.6911) /(\mathrm{Pi} / 2 * \operatorname{sqrt} 3)+8\left(\left(\left((\cos (2 \mathrm{Pi} / 2)) /\left(\left(\mathrm{e}^{\wedge}(\mathrm{Pi} / 2 * \mathrm{sqrt} 3)+1\right)\right)-\right.\right.\right.\right.\right.\right.$ $\left(((2 \cos (4 \mathrm{Pi} / 2))) /\left(\left(\mathrm{e}^{\wedge}\left(\mathrm{Pi} / 2^{*}\right.\right.\right.\right.$ sqrt3 $\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.\left.)-1\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right]^{\wedge} 1 / 55\right)\right)\right)$

Input interpretation:

$\frac{1}{10^{52}}\left(-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{\left.-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6011}{\frac{\pi}{2} \sqrt{3}}+8\left(\frac{\cos \left(2 \frac{\pi}{2}\right)}{e^{\pi / 2} \sqrt{3}}+1\right.}-\frac{2 \cos \left(4 \times \frac{\pi}{2}\right)}{e^{\pi / 2} \sqrt{3}-1}\right)}}\right)$

Result:

$1.10564 \ldots \times 10^{-52}$
1.10564 $\ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternative representations:

$$
\frac{-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{((\pi \sqrt{3}) / 2}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}}=1 e^{52}}{10^{52}}=
$$

$$
\frac{-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{-\frac{1}{8\left(-\frac{2 \cosh (-2 i \pi)}{-1+e}+\frac{\cosh (-i \pi)}{\left.1+e^{(\pi \sqrt{3}}\right) / 2}\right)+\frac{1}{(-\cos (\pi))^{2}}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}}}} \sqrt[10^{52}]{ }}{\frac{1}{-1}}
$$

$$
\begin{aligned}
& \frac{-\frac{3}{10^{4}}+\sqrt[55]{\sqrt[55]{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{((\pi \sqrt{3}) / 2}+\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}} \sqrt{10^{52}}}{}= \\
& \frac{-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{\left.-\frac{1}{8\left(-\frac{2 \cosh (2 i \pi)}{-1+e}(\pi \sqrt{3}) / 2\right.}+\frac{\cosh (i \pi)}{1+e^{(\pi \sqrt{3})} / 2}\right)+\frac{1}{\cos ^{2}(0)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}}}}{10^{52}} \\
& \frac{-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}}=1 e^{52}}{e^{52}}= \\
& \frac{-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{-\frac{1}{8\left(-\frac{2 \cosh (-2 i \pi)}{(\pi \sqrt{3}) / 2}+\frac{\cosh (-i \pi)}{\left.1+e^{(\pi \sqrt{3}) / 2}\right)+\frac{1}{\cos ^{2}(0)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}}\right.}}} \sqrt{10^{52}}}{}
\end{aligned}
$$

Series representations:

$$
\frac{-\frac{3}{10^{4}}+\sqrt{\sqrt[55]{\sqrt{\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}}} \frac{10^{52}}{}}{=-(3 /) .=(3)}
$$

100 :
000000) +
$\left(\left(\exp \left(\left.i \pi\left[\frac{\arg \left(-x-\frac{1}{\left.8\left(\frac{\cos (\pi)}{1+(\pi \sqrt{3}) / 2}-\frac{2 \cos (2 \pi)}{\left.-1+e^{(\pi \sqrt{3}) / 2}\right)}\right)+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}\right)}\right.}{2 \pi}\right) \right\rvert\, \sqrt{x}\right.\right.\right.$

100
for ($x \in \mathbb{R}$ and $x<0$)

$$
\frac{-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{\left.-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{\left.e^{(\pi \sqrt{3}}\right) / 2}+1\right.}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}} e^{10^{52}}}{3}=
$$

$100+$

$$
\left.\sum_{k=0}^{\infty} \frac{\left.(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(-\frac{1}{8\left(\frac{\cos (\pi)}{\left.1+e^{(\pi \sqrt{3}}\right) / 2}-\frac{2 \cos (2 \pi)}{-1+e(\pi \sqrt{3}) / 2}\right)+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}-z_{0}\right)^{k} z_{0}^{-k}\right)}{k!}\right)
$$

100

$$
\frac{-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}+1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}} \frac{1 e^{52}}{3}}{}=
$$

$100+$

100

Half-argument formula:

$$
\begin{aligned}
&-\frac{3}{10^{4}}+\sqrt[55]{\sqrt{-\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{e^{(\pi \sqrt{3}) / 2}-1}-\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}}= \\
&-\frac{1 e^{52}-1}{10000}+\sqrt[55]{\frac{3}{-\frac{8 \cos (\pi)}{1+e^{(\pi \sqrt{3}) / 2}-\frac{16 \cos (2 \pi)}{(\pi \sqrt{3}) / 2}+\frac{1}{-1+\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}}}= \\
& \sqrt{\frac{2}{2}}
\end{aligned}
$$

$\overline{100}$

Multiple-argument formulas:

$$
\begin{aligned}
& \frac{-\frac{3}{10^{4}}+\sqrt{\sqrt[55]{\sqrt{\frac{1}{\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{1.6911}{\frac{\pi \sqrt{3}}{2}}+8\left(\frac{\cos \left(\frac{2 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}+\frac{2 \cos \left(\frac{4 \pi}{2}\right)}{(\pi \sqrt{3}) / 2}\right)}}}} \underset{1 e^{52}}{e^{52}}}{}= \\
& \left(-\frac{3}{10000}+\exp \left(i \pi\left(-\frac{1}{2 \pi+\arg (-1)+\arg \left(\frac{1}{\frac{8 \cos (\pi)}{1+e^{(\pi \sqrt{3}) / 2}-\frac{16 \cos (2 \pi)}{(\pi \sqrt{3}) / 2}+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}}\right)}\right)_{2 \pi}\right)\right) \\
& \left.\sqrt{-1} \sqrt{\frac{1}{\frac{8 \cos (\pi)}{1+e^{(\pi \sqrt{3})} / 2}-\frac{16 \cos (2 \pi)}{-1+e}(\pi \sqrt{3}) / 2}+\frac{1}{\sin ^{2}\left(\frac{\pi}{2}\right)}+\frac{3.3822}{\pi \sqrt{3}}}\right) \wedge(1 / 55) /
\end{aligned}
$$

100

100

$1 / 2 * \ln \left(1+(2 /(8+1))^{\wedge} 2\right)^{*}\left(1+(2 /(8+2))^{\wedge} 2\right)^{*}\left(1+(2 /(8+3))^{\wedge} 2\right)$
Input:
$\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)$

Exact result:

$\frac{65}{121} \log \left(\frac{85}{81}\right)$

Decimal approximation:

0.025893691059190494235581365467758166727683791831505831798
$0.025893691 \ldots$

Property:

$\frac{65}{121} \log \left(\frac{85}{81}\right)$ is a transcendental number

Alternate forms:

$\frac{65 \log (85)}{121}-\frac{260 \log (3)}{121}$
$-\frac{65}{121}(4 \log (3)-\log (5)-\log (17))$
$-\frac{260 \log (3)}{121}+\frac{65 \log (5)}{121}+\frac{65 \log (17)}{121}$

Alternative representations:

$\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)=$

$$
\frac{1}{2} \log _{e}\left(1+\left(\frac{2}{9}\right)^{2}\right)\left(1+\left(\frac{2}{10}\right)^{2}\right)\left(1+\left(\frac{2}{11}\right)^{2}\right)
$$

$\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)=$
$\frac{1}{2} \log (a) \log _{a}\left(1+\left(\frac{2}{9}\right)^{2}\right)\left(1+\left(\frac{2}{10}\right)^{2}\right)\left(1+\left(\frac{2}{11}\right)^{2}\right)$
$\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)=-\frac{1}{2} \operatorname{Li}_{1}\left(-\left(\frac{2}{9}\right)^{2}\right)\left(1+\left(\frac{2}{10}\right)^{2}\right)\left(1+\left(\frac{2}{11}\right)^{2}\right)$

Series representations:

$\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)=-\frac{65}{121} \sum_{k=1}^{\infty} \frac{\left(-\frac{4}{81}\right)^{k}}{k}$

$$
\begin{aligned}
& \frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)= \\
& \frac{130}{121} i \pi\left[\frac{\arg \left(\frac{85}{81}-x\right)}{2 \pi}\right]+\frac{65 \log (x)}{121}-\frac{65}{121} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{85}{81}-x\right)^{k} x^{-k}}{k} \text { for } x<0 \\
& \frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)=\frac{65}{121}\left[\frac{\arg \left(\frac{85}{81}-z_{0}\right)}{2 \pi}\right] \log \left(\frac{1}{z_{0}}\right)+ \\
& \frac{65 \log \left(z_{0}\right)}{121}+\frac{65}{121}\left[\frac{\arg \left(\frac{85}{81}-z_{0}\right)}{2 \pi} \left\lvert\, \log \left(z_{0}\right)-\frac{65}{121} \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{85}{81}-z_{0}\right)^{k} z_{0}^{-k}}{k}\right.\right.
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)=\frac{65}{121} \int_{1}^{\frac{85}{81}} \frac{1}{t} d t \\
& \frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)= \\
& \quad-\frac{65 i}{242 \pi} \int_{-i \infty+\gamma}^{i \infty \infty+\gamma} \frac{\left(\frac{81}{4}\right)^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

From which
$1 / 10^{\wedge} 52\left(\left(\left(1 / 2 * \ln \left(1+(2 /(8+1))^{\wedge} 2\right)^{*}\left(1+(2 /(8+2))^{\wedge} 2\right)^{*}\left(1+(2 /(8+3))^{\wedge} 2\right)+1+8 / 10^{\wedge} 2-\right.\right.\right.$ $\left.\left.2 / 10^{\wedge} 4\right)\right)$)
where 8 and 2 are Fibonacci numbers, we obtain:

Input:

$$
\frac{1}{10^{52}}\left(\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)+1+\frac{8}{10^{2}}-\frac{2}{10^{4}}\right)
$$

Exact result:

$\frac{\frac{5399}{5000}+\frac{65}{121} \log \left(\frac{85}{81}\right)}{1000}$

Decimal approximation:

$1.1056936910591904942355813654677581667276837918315058 \ldots \times 10^{-52}$
$1.105693691 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Property:

$$
\frac{5399}{5000}+\frac{65}{121} \log \left(\frac{85}{81}\right)
$$

100 is a transcendental number

Alternate forms:

$653279+325000 \log \left(\frac{85}{81}\right)$

605000

$\frac{5399}{5000}+$
$13 \log \left(\frac{85}{81}\right)$

242000

$\frac{5399}{5000} 13 \log (3)$
$\frac{13}{605000}+$
$13 \log (85)$

242000

Alternative representations:

$$
\begin{aligned}
& \frac{\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)+1+\frac{8}{10^{2}}-\frac{2}{10^{4}}}{10^{52}}= \\
& \frac{1+\frac{8}{10^{2}}-\frac{2}{10^{4}}+\frac{1}{2} \log _{e}\left(1+\left(\frac{2}{9}\right)^{2}\right)\left(1+\left(\frac{2}{10}\right)^{2}\right)\left(1+\left(\frac{2}{11}\right)^{2}\right)}{10^{52}} \\
& \frac{\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)+1+\frac{8}{10^{2}}-\frac{2}{10^{4}}}{10^{52}}= \\
& \frac{1+\frac{8}{10^{2}}-\frac{2}{10^{4}}+\frac{1}{2} \log (a) \log _{a}\left(1+\left(\frac{2}{9}\right)^{2}\right)\left(1+\left(\frac{2}{10}\right)^{2}\right)\left(1+\left(\frac{2}{11}\right)^{2}\right)}{10^{52}} \\
& \frac{\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)+1+\frac{8}{10^{2}}-\frac{2}{10^{4}}}{10^{52}}= \\
& \frac{1+\frac{8}{10^{2}}-\frac{2}{10^{4}}-\frac{1}{2} \mathrm{Li}\left(\left(-\left(\frac{2}{9}\right)^{2}\right)\left(1+\left(\frac{2}{10}\right)^{2}\right)\left(1+\left(\frac{2}{11}\right)^{2}\right)\right.}{10^{52}}
\end{aligned}
$$

Series representations:

$\frac{\frac{\frac{1}{2}}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)+1+\frac{8}{10^{2}}-\frac{2}{10^{4}}}{10^{52}}=$
$5000-$ $13 \sum_{k=1}^{\infty} \frac{\left(-\frac{4}{81}\right)^{k}}{k}$
242000
$\frac{\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)+1+\frac{8}{10^{2}}-\frac{2}{10^{4}}}{10^{52}}=$
$5000+$

$$
13 \sum_{j=1}^{\infty} \operatorname{Res}_{s=-j} \frac{\left(\frac{81}{4}\right)^{s} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)}
$$

242000

$$
\frac{\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)+1+\frac{8}{10^{2}}-\frac{2}{10^{4}}}{10^{52}}=
$$

$$
\frac{5399}{5000}+
$$

$$
\frac{13\left[\frac{\arg \left(\frac{85}{81}-z_{0}\right)}{2 \pi}\right\rfloor \log \left(\frac{1}{z_{0}}\right)}{242000}+
$$

$242000+$
$13\left[\frac{\arg \left(\frac{85}{81}-z_{0}\right)}{2 \pi}\right] \log \left(z_{0}\right)$

242000

$$
13 \sum_{k=1}^{\infty} \frac{(-1)^{k}\left(\frac{85}{81}-z_{0}\right)^{k} z_{0}^{-k}}{k}
$$

242000

Integral representations:

$5000+$ 13
242000 $\int_{1}^{\frac{85}{81}} \frac{1}{t} d t$

$$
\begin{aligned}
& \frac{\frac{1}{2} \log \left(1+\left(\frac{2}{8+1}\right)^{2}\right)\left(1+\left(\frac{2}{8+2}\right)^{2}\right)\left(1+\left(\frac{2}{8+3}\right)^{2}\right)+1+\frac{8}{10^{2}}-\frac{2}{10^{4}}}{10^{52}}= \\
& \quad \frac{5399}{5000} \\
& \quad \frac{13 i}{484000 \pi} \\
& \quad \int_{-i \infty+\gamma}^{i \infty \infty+\gamma} \frac{\left(\frac{81}{4}\right)^{5} \Gamma(-s)^{2} \Gamma(1+s)}{\Gamma(1-s)} d s \text { for }-1<\gamma<0
\end{aligned}
$$

We know that:

$$
\begin{aligned}
90^{\circ} \frac{2 \pi}{360} & =\frac{1}{2} \pi \\
180^{\circ} \frac{2 \pi}{360} & =\pi \\
270^{\circ} \frac{2 \pi}{360} & =\frac{3}{2} \pi \\
360^{\circ} \frac{2 \pi}{360} & =2 \pi
\end{aligned}
$$

https://www.okpedia.it/goniometria

From:

Manuscript Book Of Srinivasa Ramanujan Volume 2

Page 243

For $m^{2}=-7$
$49 /(-7)^{*} 1 / 2^{*}\left(\left(\left(1+\operatorname{sqrt}\left(\mathrm{Pi}^{\wedge} 2\right)+\operatorname{sqrt}((1-\mathrm{Pi})(1-\mathrm{Pi}))\right)\right)\right)$

Input:

$-\frac{49}{7} \times \frac{1}{2}\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)$

Exact result:

-7π
Decimal approximation:
-21.9911485751285526692385036829565201893801857956257407468...
$-21.99114857512 \ldots$

Property:

-7π is a transcendental number

Alternative representations:
$\frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=\frac{49\left(1+\pi+\sqrt{(1-\pi)^{2}}\right)}{2(-7)}$
$\frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=\frac{49\left(1+\sqrt{(1-\pi)^{2}}+\sqrt{-i \pi} \sqrt{i \pi}\right)}{2(-7)}$

$$
\frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=\frac{49\left(1+\pi e^{i \pi\lfloor(\pi-2 \arg (\pi))(2 \pi)\rfloor}+\sqrt{(1-\pi)^{2}}\right)}{2(-7)}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=-28 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=\sum_{k=0}^{\infty} \frac{28(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k} \\
& \frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=-7 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
\end{aligned}
$$

Integral representations:

$\frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=-28 \int_{0}^{1} \sqrt{1-t^{2}} d t$

$$
\frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=-14 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
$$

$$
\frac{\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right) 49}{2(-7)}=-14 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
$$

For $\alpha=\beta=\pi$, we obtain:
$\left(\left(\left(16 * \mathrm{Pi}^{\wedge} 2(1-\mathrm{Pi})^{\wedge} 2\right)\right)\right)^{\wedge} 1 / 8$

Input:

$$
\sqrt[8]{16 \pi^{2}(1-\pi)^{2}}
$$

Exact result:

$\sqrt{2} \sqrt[4]{(\pi-1) \pi}$

Decimal approximation:

2.277648400609462900728043690603711421700547440566646602817...
2.277648400609...

Property:

$\sqrt{2} \sqrt[4]{(-1+\pi) \pi}$ is a transcendental number

All 8th roots of $\mathbf{1 6}(\mathbf{1}-\boldsymbol{\pi})^{\wedge} \mathbf{2} \boldsymbol{\pi}^{\wedge} \mathbf{2}$:
$\sqrt{2} \sqrt[4]{(\pi-1) \pi} e^{0} \approx 2.2776$ (real, principal root)
$\sqrt{2} \sqrt[4]{(\pi-1) \pi} e^{(i \pi) / 4} \approx 1.6105+1.6105 i$
$\sqrt{2} \sqrt[4]{(\pi-1) \pi} e^{(i \pi) / 2} \approx 2.2776 i$
$\sqrt{2} \sqrt[4]{(\pi-1) \pi} e^{(3 i \pi) / 4} \approx-1.6105+1.6105 i$
$\sqrt{2} \sqrt[4]{(\pi-1) \pi} e^{i \pi} \approx-2.2776$ (real root)

Alternative representations:

$\sqrt[8]{16 \pi^{2}(1-\pi)^{2}}=\sqrt[8]{16\left(1-180^{\circ}\right)^{2}\left(180^{\circ}\right)^{2}}$
$\sqrt[8]{16 \pi^{2}(1-\pi)^{2}}=\sqrt[8]{96(1-\pi)^{2} \zeta(2)}$
$\sqrt[8]{16 \pi^{2}(1-\pi)^{2}}=\sqrt[8]{16\left(1-\cos ^{-1}(-1)\right)^{2} \cos ^{-1}(-1)^{2}}$

Integral representation:

$(1+z)^{a}=\frac{\int_{-i \infty \infty+\gamma}^{i \infty+\gamma} \frac{\Gamma(s) \Gamma(-a-s)}{z^{s}} d s}{(2 \pi i) \Gamma(-a)}$ for $(0<\gamma<-\operatorname{Re}(a)$ and $|\arg (z)|<\pi)$

Dividing the two expression and performing the following calculations, we obtain:
$\left[-\left(\left(\left(49 /(-7) * 1 / 2 *\left(\left(\left(1+\operatorname{sqrt}\left(\mathrm{Pi}^{\wedge} 2\right)+\operatorname{sqrt}((1-\mathrm{Pi})(1-\mathrm{Pi}))\right)\right)\right)\right)\right)\right) /\left(\left(\left(16^{*} \mathrm{Pi}^{\wedge} 2(1-\mathrm{Pi})(1-\right.\right.\right.\right.$
$\left.\mathrm{Pi}))))^{\wedge} 1 / 8\right]^{\wedge} 3-89-34+5$
Where 89, 34 and 5 are Fibonacci numbers

Input:

$\left(-\frac{-\frac{49}{7} \times \frac{1}{2}\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5$

Exact result:

$$
\frac{343 \pi^{9 / 4}}{2 \sqrt{2}(\pi-1)^{3 / 4}}-118
$$

Decimal approximation:

782.0853411478890059488380442188482632311787178417382048014...
$782.085341147889 \ldots$ result practically equal to the rest mass of Omega meson 782.65 MeV

Alternate forms:

$\frac{343 \sqrt{2} \pi^{9 / 4}-472(\pi-1)^{3 / 4}}{4(\pi-1)^{3 / 4}}$
$-\frac{236 \sqrt{2}(\pi-1)^{3 / 4}-343 \pi^{9 / 4}}{2 \sqrt{2}(\pi-1)^{3 / 4}}$

Alternative representations:

$\left(-\frac{49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}(-7 \times 2)}\right)^{3}-89-34+5=-118+\left(-\frac{49\left(1+\pi+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{3}$
$\left(-\frac{49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)(-7 \times 2)}}\right)^{3}-89-34+5=$
$\left.-118+\left(-\frac{49\left(1+\sqrt{(1-\pi)^{2}}+\sqrt{-i \pi} \sqrt{i \pi}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)\right)^{3}$

$$
\begin{aligned}
& \left(-\frac{49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)(-7 \times 2)}}\right)^{3}-89-34+5= \\
& -118+\left(-\frac{49\left(1+\pi e^{i \pi[(\pi-2 \mathrm{arg}(\pi))(2 \pi)]}+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{3}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(-\frac{49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}(-7 \times 2)}\right)^{3}-89-34+5= \\
& -118+\frac{343\left(1+\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}\left(((-2+\pi) \pi)^{-k} \sqrt{(-2+\pi) \pi}+\left(-1+\pi^{2}\right)^{-k} \sqrt{-1+\pi^{2}}\right)\right)^{3}}{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}
\end{aligned}
$$

$$
\left(-\frac{49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}(-7 \times 2)}\right)^{3}-89-34+5=
$$

$$
-118+\frac{343\left(1+\sum_{k=0}^{\infty} \frac{(-1)^{k}((1-2+\pi) \pi)^{-k}\left(-1+\pi^{2}\right)^{-k}\left(-\frac{1}{2}\right)_{k}\left(\left(-1+\pi^{2} \psi^{k} \sqrt{(-2+\pi) \pi}+((-2+\pi))^{k} \sqrt{-1+\pi^{2}}\right)\right.}{k!}\right)^{3}}{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}
$$

$$
\left(-\frac{49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}(-7 \times 2)}\right)^{3}-89-34+5=
$$

$$
-118+\frac{343\left(1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\left(\pi^{2}-z_{0}\right)^{k}+\left(1-2 \pi+\pi^{2}-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!}\right)^{3}}{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$
$1 /(2 \mathrm{Pi})\left(\left(\left(\left[-\left(\left(\left(49 /(-7) * 1 / 2 *\left(\left(\left(1+\operatorname{sqrt}\left(\mathrm{Pi}^{\wedge} 2\right)+\operatorname{sqrt}((1-\mathrm{Pi})(1-\mathrm{Pi}))\right)\right)\right)\right)\right)\right) /\left(\left(\left(16 * \mathrm{Pi}^{\wedge} 2(1-\mathrm{Pi})(1-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathrm{Pi}))))^{\wedge} 1 / 8\right]^{\wedge} 3-89-34+5\right)\right)\right)+13+\mathrm{e}-1 /$ golden ratio

Input:

$$
\frac{1}{2 \pi}\left(\left(-\frac{-\frac{49}{7} \times \frac{1}{2}\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5\right)+13+e-\frac{1}{\phi}
$$

Exact result:

$$
-\frac{1}{\phi}+13+e+\frac{\frac{343 \pi^{9 / 4}}{2 \sqrt{2}(\pi-1)^{3 / 4}}-118}{2 \pi}
$$

Decimal approximation:

139.5729958031069747239769456056204244889606424477608132509...
139.572995803... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$13-\frac{2}{1+\sqrt{5}}+e-\frac{59}{\pi}+\frac{343 \pi^{5 / 4}}{4 \sqrt{2}(\pi-1)^{3 / 4}}$
$\frac{1}{2}(27-\sqrt{5})+e+\frac{\frac{343 \pi^{9 / 4}}{2 \sqrt{2}(\pi-1)^{3 / 4}}-118}{2 \pi}$
$\frac{4 \sqrt{2} e(\pi-1)^{3 / 4} \pi \phi+\left(343 \pi^{9 / 4}+4 \sqrt{2}(\pi-1)^{3 / 4}(13 \pi-59)\right) \phi-4 \sqrt{2}(\pi-1)^{3 / 4} \pi}{4 \sqrt{2}(\pi-1)^{3 / 4} \pi \phi}$

Alternative representations:

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}+13+e-\frac{1}{\phi}= \\
& 13+e-\frac{1}{\phi}+\frac{-118+\left(-\frac{49\left(1+\pi+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{3}}{2 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}+13+e-\frac{1}{\phi}= \\
& 13+e-\frac{1}{\phi}+\frac{-118+\left(-\frac{49\left(1+\sqrt{(1-\pi)^{2}}+\sqrt{-i \pi} \sqrt{i \pi}\right)}{2(-7)^{8} \sqrt{16(1-\pi)^{2} \pi^{2}}}\right)^{3}}{2 \pi} \\
& \frac{\left(-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)\right.}{\left.(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}\right)^{3}-89-34+5} \\
& 2 \pi \\
& \left.13+e-\frac{1}{\phi}+\frac{-118+\left(-\frac{49\left(1+\pi e^{i \pi}[(\pi-2 \arg (\pi))(2 \pi)\rfloor\right.}{2}+\sqrt{(1-\pi)^{2}}\right)}{2(-7)^{8} \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{2 \pi}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}+13+e-\frac{1}{\phi}= \\
& \left.13+e-\frac{1}{\phi}+\frac{\left.-118+\frac{343\left(1+\sum_{k=0}^{\infty}\left(\left(-1+(1-\pi)^{2}\right)^{-k}\left(\frac{1}{2}\right) \sqrt{-1+(1-\pi)^{2}}+\left(-1+\pi^{2}\right)^{-k}\left(\frac{1}{2}\right) \sqrt{-1+\pi^{2}}\right)\right)^{3}}{k}\right)}{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}\right) 2 \pi \quad \\
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}+13+e-\frac{1}{\phi}=13+e-\frac{1}{\phi}+ \\
& \frac{-118+\frac{343\left(1+\sum_{k=0}^{\infty} \frac{(-1)^{k}((-2+\pi) \pi)^{-k}\left(-1+\pi^{2}\right)^{-k}\left(-\frac{1}{2}\right)_{k}\left(\left(-1+\pi^{2}\right)^{k} \sqrt{(-2+\pi) \pi}+((-2+\pi) \pi)^{k} \sqrt{-1+\pi^{2}}\right)}{k!}\right)^{3}}{2 \pi}}{2 \pi \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}+13+e-\frac{1}{\phi}= \\
& 13+e-\frac{1}{\phi}+\frac{-118+\frac{343\left(1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\left(\pi^{2}-z_{0}\right)^{k}+\left(1-2 \pi+\pi^{2}-z_{0}\right)^{k}\right) z_{0}^{k}}{k!}\right)^{3}}{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}}{2 \pi} \\
& \text { for } \operatorname{not}\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$1 /(2 \mathrm{Pi})\left(\left(\left(\left[-\left(\left(\left(49 /(-7)^{*} 1 / 2 *\left(\left(\left(1+\operatorname{sqrt}\left(\mathrm{Pi}^{\wedge} 2\right)+\operatorname{sqrt}((1-\mathrm{Pi})(1-\mathrm{Pi}))\right)\right)\right)\right)\right)\right) /\left(\left(\left(16 * \mathrm{Pi}^{\wedge} 2(1-\mathrm{Pi})(1-\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\mathrm{Pi}))))^{\wedge} 1 / 8\right]^{\wedge} 3-89-34+5\right)\right)\right)-1+\mathrm{e}-1 /$ golden ratio

Input:

$\frac{1}{2 \pi}\left(\left(-\frac{-\frac{49}{7} \times \frac{1}{2}\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5\right)-1+e-\frac{1}{\phi}$

Exact result:

$-\frac{1}{\phi}-1+e+\frac{\frac{343 \pi^{9 / 4}}{2 \sqrt{2}(\pi-1)^{3 / 4}}-118}{2 \pi}$

Decimal approximation:

125.5729958031069747239769456056204244889606424477608132509...
125.5729958... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$-1-\frac{2}{1+\sqrt{5}}+e-\frac{59}{\pi}+\frac{343 \pi^{5 / 4}}{4 \sqrt{2}(\pi-1)^{3 / 4}}$
$\frac{1}{2}(-1-\sqrt{5})+e+\frac{\frac{343 \pi^{9 / 4}}{2 \sqrt{2}(\pi-1)^{3 / 4}}-118}{2 \pi}$

$$
\frac{4 \sqrt{2} e(\pi-1)^{3 / 4} \pi \phi-\left(4 \sqrt{2}(\pi-1)^{3 / 4}(59+\pi)-343 \pi^{9 / 4}\right) \phi-4 \sqrt{2}(\pi-1)^{3 / 4} \pi}{4 \sqrt{2}(\pi-1)^{3 / 4} \pi \phi}
$$

Alternative representations:

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}-1+e-\frac{1}{\phi}= \\
& -1+e-\frac{1}{\phi}+\frac{-118+\left(-\frac{49\left(1+\pi+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{3}}{2 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}-1+e-\frac{1}{\phi}= \\
& -1+e-\frac{1}{\phi}+\frac{-118+\left(-\frac{49\left(1+\sqrt{(1-\pi)^{2}}+\sqrt{-i \pi} \sqrt{i \pi}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)}{2 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right.}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}-1+e-\frac{1}{\phi}= \\
& -1+e-\frac{1}{\phi}+\frac{-118+\left(-\frac{49\left(1+\pi e^{i \pi\lfloor(\pi-2 \arg (\pi)) /(2 \pi)\rfloor}+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{3}}{2 \pi}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}-1+e-\frac{1}{\phi}= \\
& -1+e-\frac{1}{\phi}+\frac{-118+\frac{343\left(1+\sum_{k=0}^{\infty}\left(\left(-1+(1-\pi)^{2}\right)^{-k}\binom{\frac{1}{2}}{k} \sqrt{-1+(1-\pi)^{2}}+\left(-1+\pi^{2}\right)^{-k}\binom{\frac{1}{2}}{k} \sqrt{-1+\pi^{2}}\right)\right)^{3}}{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}}{2 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-89-34+5}{2 \pi}-1+e-\frac{1}{\phi}=-1+e-\frac{1}{\phi}+ \\
& -118+\frac{343\left(1+\sum_{k=0}^{\infty} \frac{\left.(-1)^{k}((-2+\pi) \pi)^{-k}\left(-1+\pi^{2}\right)^{-k}\left(-\frac{1}{2}\right)_{k}\left(\left(-1+\pi^{2}\right)^{k} \sqrt{(-2+\pi) \pi}+((-2+\pi) \pi)^{k} \sqrt{-1+\pi^{2}}\right)\right)^{3}}{k!}\right)^{3}}{\left(\frac{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}{2 \pi}\right.} \\
& \frac{\left(-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)\right)^{3}}{\left.(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}\right)^{2 \pi}-89-34+5} \\
& -1+e-\frac{1}{\phi}= \\
& -1+e-\frac{1}{\phi}+\frac{343\left(1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\left(\pi^{2}-z_{0}\right)^{k}+\left(1-2 \pi+\pi^{2}-z_{0}\right)^{k}\right) z_{0}^{-k}}{k!}\right)^{3}}{-118+\frac{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}{2 \pi}} \\
& \text { for not }\left(\left(z_{0} \in \mathbb{R} \text { and }-\infty<z_{0} \leq 0\right)\right)
\end{aligned}
$$

$13\left(\left(\left(1 /(2 \mathrm{Pi})\left(\left(\left(\left[-\left(\left(\left(49 /(-7) * 1 / 2^{*}\left(\left(\left(1+\operatorname{sqrt}\left(\mathrm{Pi}^{\wedge} 2\right)+\operatorname{sqrt}((1-\mathrm{Pi})(1-\mathrm{Pi}))\right)\right)\right)\right)\right)\right) /\left(\left(\left(16^{*} \mathrm{Pi}^{\wedge} 2(1-\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\mathrm{Pi})(1-\mathrm{Pi}))))^{\wedge} 1 / 8\right]^{\wedge} 3-144+21+5-1 /$ golden ratio $\left.\left.)\right)\right)+\mathrm{e}+($ golden ratio $\left.\left.\left.)\right)\right)\right)+55$

Input:

$13\left(\frac{1}{2 \pi}\left(\left(-\frac{-\frac{49}{7} \times \frac{1}{2}\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-144+21+5-\frac{1}{\phi}\right)+e+\phi\right)+55$

Exact result:

$13\left(\phi+\frac{-\frac{1}{\phi}-118+\frac{343 \pi^{9 / 4}}{2 \sqrt{2}(\pi-1)^{3 / 4}}}{2 \pi}+e\right)+55$

Decimal approximation:

1728.239108011879431707467816330181092809074824365641145309...
1728.239108011...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number $\underline{1729}$

Alternate forms:

$13\left(\phi-\frac{\frac{1}{\phi}+118-\frac{343 \pi^{9 / 4}}{2 \sqrt{2}(\pi-1)^{3 / 4}}}{2 \pi}+e\right)+55$
$13 \phi-\frac{13}{2 \pi \phi}+55+13 e-\frac{767}{\pi}+\frac{4459 \pi^{5 / 4}}{4 \sqrt{2}(\pi-1)^{3 / 4}}$
$\frac{123}{2}+\frac{13 \sqrt{5}}{2}+13 e-\frac{767}{\pi}-\frac{13}{(1+\sqrt{5}) \pi}+\frac{4459 \pi^{5 / 4}}{4 \sqrt{2}(\pi-1)^{3 / 4}}$

Alternative representations:

$$
13\left(\frac{\left(\frac{-\left(40\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-144+21+5-\frac{1}{\phi}}{2 \pi}+e+\phi\right)+55=
$$

$$
55+13\left(e+\phi+\frac{-118-\frac{1}{\phi}+\left(-\frac{49\left(1+\pi+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{3}}{2 \pi}\right)
$$

$$
\left.\begin{array}{l}
13\left(\frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-144+21+5-\frac{1}{\phi}}{2 \pi}+e+\phi\right)+55= \\
55+13\left(e+\phi+\frac{-118-\frac{1}{\phi}+\left(-\frac{49\left(1+\sqrt{(1-\pi)^{2}}+\sqrt{-i \pi} \sqrt{i \pi}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)}{2 \pi}\right) \\
\\
\\
\end{array}\right)
$$

$$
13\left(\frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-144+21+5-\frac{1}{\phi}}{2 \pi}+e+\phi\right)+55=
$$

$$
55+13\left(e+\phi+\frac{-118-\frac{1}{\phi}+\left(-\frac{49\left(1+\pi e^{i \pi\lfloor(\pi-2 \arg (\pi)) /(2 \pi)\rfloor}+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{3}}{2 \pi}\right)
$$

Series representations:

$$
\begin{aligned}
& 13\left(\begin{array}{l}
\left.\frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-144+21+5-\frac{1}{\phi}}{2 \pi}+e+\phi\right)+55=55+ \\
13\left(e+\phi+\frac{\left.\left.\left.-118-\frac{1}{\phi}+\frac{343\left(1+\sum_{k=0}^{\infty}\left(\left(-1+(1-\pi)^{2}\right)^{-k}\binom{\frac{1}{2}}{k} \sqrt{-1+(1-\pi)^{2}}+\left(-1+\pi^{2}\right)^{-k}\left(\frac{1}{2}\right.\right.\right.}{k} k\right) \sqrt{-1+\pi^{2}}\right)\right)^{3}}{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}\right. \\
2 \pi
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 13\left(\frac{\left(\frac{\left(-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right.\right.}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-144+21+5-\frac{1}{\phi}}{2 \pi}+e+\phi\right)+55= \\
& 55+13\left(e+\phi+\frac{1}{2 \pi}\left(-118-\frac{1}{\phi}+\left(3 4 3 \left(1+\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k}((-2+\pi) \pi)^{-k}\left(-1+\pi^{2}\right)^{-k}\left(-\frac{1}{2}\right)_{k}\right.\right.\right.\right. \\
& \left(\left(-1+\pi^{2}\right)^{k} \sqrt{(-2+\pi) \pi}+((-2+\pi) \pi)^{k}\right. \\
& \left.\left.\left.\left.\left.\sqrt{-1+\pi^{2}}\right)\right)^{3}\right) /\left(16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}\right)\right)\right)
\end{aligned}
$$

$$
13\left(\frac{\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{3}-144+21+5-\frac{1}{\phi}}{2 \pi}+e+\phi\right)+55=
$$

$$
55+13\left(e+\phi+\frac{-118-\frac{1}{\phi}+\frac{343\left(1+\sqrt{z_{0}} \sum_{k=0}^{\infty} \frac{(-1)^{k}\left(-\frac{1}{2}\right)_{k}\left(\left(\pi^{2}-z_{0}\right)^{k}+\left(1-2 \pi+\pi^{2}-z_{0}\right)^{k}\right)_{0}-k}{k!}\right)^{3}}{16 \sqrt{2}\left((1-\pi)^{2} \pi^{2}\right)^{3 / 8}}}{2 \pi}\right)
$$

for $\operatorname{not}\left(\left(z_{0} \in \mathbb{R}\right.\right.$ and $\left.\left.-\infty<z_{0} \leq 0\right)\right)$

Or:
$1 / 4\left[-\left(\left(\left(49 /(-7) * 1 / 2^{*}\left(\left(\left(1+\operatorname{sqrt}\left(\operatorname{Pi}^{\wedge} 2\right)+\operatorname{sqrt}((1-\mathrm{Pi})(1-\mathrm{Pi}))\right)\right)\right)\right)\right)\right) /\left(\left(\left(16^{*} \mathrm{Pi}^{\wedge} 2(1-\mathrm{Pi})(1-\right.\right.\right.\right.$ $\left.\mathrm{Pi}))))^{\wedge} 1 / 8\right]^{\wedge}(\mathrm{e})+7$

Input:

$\frac{1}{4}\left(-\frac{-\frac{49}{7} \times \frac{1}{2}\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7$

Exact result:

$7+2^{-2-e / 2} \times 7^{e}(\pi-1)^{-e / 4} \pi^{(3 e) / 4}$

Decimal approximation:

125.7951101253192006536986789539332219905510284092274586534...
$125.795110125 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate form:

$2^{-2-e / 2}(\pi-1)^{-e / 4}\left(7 \times 2^{2+e / 2}(\pi-1)^{e / 4}+7^{e} \pi^{(3 e) / 4}\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7=7+\frac{1}{4}\left(-\frac{49\left(1+\pi+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{e} \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7= \\
& 7+\frac{1}{4}\left(-\frac{49\left(1+\sqrt{(1-\pi)^{2}}+\sqrt{-i \pi} \sqrt{i \pi}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{e} \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7= \\
& 7+\frac{1}{4}\left(-\frac{49\left(1+\pi e^{i \pi[(\pi-2 \arg (\pi)(2 \pi)]}+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7= \\
& \frac{1}{4}\left(-1+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{-e / 4}\left(14^{e}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{(3 e) / 4}+28\left(-1+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{e / 4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7=2^{-2-1 / 2 \times \sum_{k=0}^{\infty} 1 / k!}(-1+\pi)^{-1 / 4} \sum_{k=0}^{\infty}{ }^{1 / k!} \\
& \left(7 \times 2^{2+1 / 2 \sum_{k=0}^{\infty} 1 / k!}(-1+\pi)^{1 / 4} \sum_{k=0}^{\infty} 1 / k!+7^{\sum_{k=0}^{\infty} 1 / k!} \pi^{3 / 4} \times \sum_{k=0}^{\infty} 1 / k!\right) \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7=2^{-2-1 /\left(2 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right)_{(-1+\pi)}{ }^{-1 /\left(4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right)}} \begin{array}{l}
\left(7 \times 2^{2+1 /\left(2 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right) 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}} \sqrt{-1+\pi}+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \sqrt{7} \pi^{3 /\left(4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right)}\right)
\end{array}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7=\frac{1}{4}\left(-1+4 \int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{-e / 4} \\
& \left(14^{e}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{(3 e) / 4}+28\left(-1+4 \int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{e / 4}\right) \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7=\frac{1}{4}\left(-1+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{-e / 4} \\
& \quad\left(2^{e / 4} \times 7^{e}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{(3 e) / 4}+28\left(-1+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{e / 4}\right) \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+7=\frac{1}{4}\left(-1+2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{-e / 4} \\
& \quad\left(2^{e / 4} \times 7^{e}\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{(3 e) / 4}+28\left(-1+2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{e / 4}\right)
\end{aligned}
$$

And:
$1 / 4\left[-\left(\left(\left(49 /(-7) * 1 / 2 *\left(\left(\left(1+\operatorname{sqrt}\left(\operatorname{Pi}^{\wedge} 2\right)+\operatorname{sqrt}((1-\mathrm{Pi})(1-\mathrm{Pi}))\right)\right)\right)\right)\right)\right) /\left(\left(\left(16^{*} \mathrm{Pi}^{\wedge} 2(1-\mathrm{Pi})(1-\right.\right.\right.\right.$ $\left.\mathrm{Pi}))))^{\wedge} 1 / 8\right]^{\wedge}(\mathrm{e})+21$

Input:

$$
\frac{1}{4}\left(-\frac{-\frac{49}{7} \times \frac{1}{2}\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)}{\sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21
$$

Exact result:

$21+2^{-2-e / 2} \times 7^{e}(\pi-1)^{-e / 4} \pi^{(3 e) / 4}$

Decimal approximation:

139.7951101253192006536986789539332219905510284092274586534...
$139.795110125 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate form:

$2^{-2-e / 2}(\pi-1)^{-e / 4}\left(21 \times 2^{2+e / 2}(\pi-1)^{e / 4}+7^{e} \pi^{(3 e) / 4}\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21=21+\frac{1}{4}\left(-\frac{49\left(1+\pi+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{e} \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21= \\
& 21+\frac{1}{4}\left(-\frac{49\left(1+\sqrt{(1-\pi)^{2}}+\sqrt{-i \pi} \sqrt{i \pi}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)^{e} \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21= \\
& 21+\frac{1}{4}\left(-\frac{49\left(1+\pi e^{i \pi l(\pi-2 \arg (\pi))(2 \pi)]}+\sqrt{(1-\pi)^{2}}\right)}{2(-7) \sqrt[8]{16(1-\pi)^{2} \pi^{2}}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21= \\
& \frac{1}{4}\left(-1+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{-e / 4}\left(14^{e}\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{(3 e) / 4}+84\left(-1+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)^{e / 4}\right) \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21=2^{-2-1 / 2 \times \sum_{k=0}^{\infty} 1 / k!}(-1+\pi)^{-1 / 4 \times \sum_{k=0}^{\infty} 1 / k!} \\
& \left(21 \times 2^{2+1 / 2 \times \sum_{k=0}^{\infty} 1 / k!}(-1+\pi)^{1 / 4} \times \sum_{k=0}^{\infty} 1 / k!+7^{\sum_{k=0}^{\infty} 1 / k!} \pi^{3 / 4} \sum_{k=0}^{\infty} 1 / k!\right) \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21= \\
& 2^{-2-1 /\left(2 \sum_{k=0}^{\infty} \frac{\left(-1 k^{k}\right.}{k!}\right)_{(-1+\pi)}^{-1 /\left(4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right)}} \\
& \left(21 \times 2^{2+1 /\left(2 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right) 4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}} \sqrt{-1+\pi}+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!} \sqrt{7} \pi^{3 /\left(4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!}\right)}\right)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21=\frac{1}{4}\left(-1+4 \int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{-e / 4} \\
& \quad\left(14^{e}\left(\int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{(3 e) / 4}+84\left(-1+4 \int_{0}^{1} \sqrt{1-t^{2}} d t\right)^{e / 4}\right) \\
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)+21=\frac{1}{4}\left(-1+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{-e / 4} \\
& \quad\left(2^{e / 4} \times 7^{e}\left(\int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{(3 e / 4}+84\left(-1+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t\right)^{e / 4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4}\left(\frac{-\left(49\left(1+\sqrt{\pi^{2}}+\sqrt{(1-\pi)(1-\pi)}\right)\right)}{(-7 \times 2) \sqrt[8]{16 \pi^{2}(1-\pi)(1-\pi)}}\right)^{e}+21=\frac{1}{4}\left(-1+2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{-e / 4} \\
& \quad\left(2^{e / 4} \times 7^{e}\left(\int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{(3 e) / 4}+84\left(-1+2 \int_{0}^{\infty} \frac{\sin (t)}{t} d t\right)^{e / 4}\right)
\end{aligned}
$$

Acknowledgments

I would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

References

Manuscript Book Of Srinivasa Ramanujan Volume 1

Manuscript Book Of Srinivasa Ramanujan Volume 2

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

[^1]: Summary

