
1

Graphical User Interface (GUI) for visualization of

solutions of initial value problems using Runge-Kutta

methods

Folaranmi Akinola Davidson

davidsonfolaranmi@gmail.com

 https://github.com/F-Akinola/runge-kutta

Abstract In this paper, a successful approach for the visualization of the solutions of initial value

problems using different Runge-Kutta methods by developing a new graphical user interface (GUI), has

been introduced. The main objective of the paper is to apply the tkinter, numpy[1] and matplotlib[2]

modules of the Python programming language in developing a GUI that would enable the user to appreciate

the accuracy of each Runge-Kutta method at different step size/increment. The second purpose of this paper

is to develop a python module that contains functions that can be imported to .py files when the need to

implement Runge-Kutta methods on initial value problems arises. The GUI was used to solve and plot the

solutions of an initial value problem. The variations in the graph patterns illustrate the accuracy of the

output of each method.

Keywords GUI, Runge-Kutta methods

1. Introduction

Euler and Heun methods

In numerical analysis, the Runge-Kutta methods are a family of iterative methods, which includes the well-

known routine called the Euler method, used in temporal discretization for the approximate solution of

ordinary differential equations. These methods were developed by the German mathematicians Carl Runge

and Wilhelm Kutta[3].

Euler’s method is one possible approach for solving differential equations with a given initial value

numerically. Euler’s method assumes the solution is written in the form of a Taylor’s series. For Euler’s

method, we just take the first two terms only.

y(x + h) ≈ 𝑦(𝑥) + ℎ𝑦′(𝑥) (1)

Euler’s method is useful because differential equations appear frequently in physics, chemistry, and

economics, but usually cannot be solved explicitly, requiring their solutions to be approximated. The

problem with Euler’s method is that you have to use a small interval size to get a reasonably accurate result.

The Heun’s method is an improvement over the rather simple Euler’s method. Although the method uses

Euler’s method as a basis, it attempts to compensate for the Euler’s method failure to take the curvature of

the solution curve into account. Heun’s method is one of the simplest of a class of methods called the

predictor-corrector algorithms.

mailto:davidsonfolaranmi@gmail.com
https://github.com/F-Akinola/runge-kutta

2

2. Runge-kutta methods

The table below gives the formulas for calculating values of Kn (n = 1, 2, 3, 4, 5, 6) as well as the new

value y after each iteration for different Runge-Kutta methods. [4]

RK
method

Kn (n = 1 , 2, 3, 4, 5, 6) y1

RK2A k1 = f(x,y)

k2 = f(x + h, y + (h x k1))

y1 = y + ((h / 2) x (k1 + k2))

RK2B k1 = f(x,y)

k2 = f(x + (0.5 x h), y + (0.5 x h x k1))

y1 = y + (h x k2)

RK2C k1 = f(x,y)

k2 = f(x + ((3 / 4) x h), y + ((3 / 4) x h x k1))

y1 = y + ((h / 3) x (k1 + (2 x k2)))

RK3 k1 = f(x,y)

k2 = f(x + (h / 2), y + ((h x k1) / 2))

k3 = f(x + h, y - (h x k1) + (2 x h x k2))

y1 = y + ((h / 6) x (k1 + (4 x k2) +
k3))

RK4 k1 = h x f(x, y)

k2 = h x f(x + (0.5 x h), y + (0.5 x k1))

k3 = h x f(x + (0.5 x h), y + (0.5 x k2))

k4 = h x f(x + h, y + k3)

y1 = y + ((1.0/6.0) x (k1 + (2 x k2) +
(2 x k3) + k4))

RK5
(Butcher’s
fifth-order
Runge-
Kutta
method)

k1 = f(x, y)

k2 = f(x + (h / 4), y + (h x k1 / 4))

k3 = f(x + (h / 4), y + (h x k1 / 8) + (h x k2 / 8))

k4 = f(x + (h / 2), y - (h x k2 / 2) + (h x k3))

k5 = f(x + (3 x h / 4), y + (3 x h x k1 /16) + (9 x h x
k4 / 16))

k6 = f(x + h, y - (3 x h x k1 / 7) + (2 x h x k2 / 7) +
(12 x h x k3 / 7) - (12 x h x k4 / 7) + (8 x h x k5 / 7))

y1 = y + ((h / 90) x ((7 x k1) + (32 x
k3) + (12 x k4) + (32 x k5) + (7 x
k6)))

RKF45
(Runge-
Kutta-
Fehlberg
method)

k1 = f(x,y)

k2 = f(x + (h / 5), y + (h x k1 / 5))

k3 = f(x + (3 x h / 10), y + (3 x h x k1 / 40) + (9 x h
x k2 / 40))

k4 = f(x + (3 x h / 5), y + (3 x h x k1 / 10) - (9 x h x
k2 / 10) + (6 x h x k3 / 5))

k5 = f(x + h, y - (11 x h x k1 /54) + (5 x h x k2 / 2) -
(70 x h x k3 / 27) + (35 x h x k4 / 27))

y1 = y + (h x ((37 x k1 / 378) + (250 x
k3 / 621) + (125 x k4 / 594) + (512 x
k6 / 1771)))

3

k6 = f(x + (7 x h / 8), y + (1631 x h x k1 / 55296) +
(175 x h x k2 / 512) + (575 x h x k3 / 13824) -
(44275 x h x k4 / 110592) + (253 x h x k5 / 4096))

3. rungeKutta module

The rungeKutta module contains functions that helps to compute the solutions of differential

equations using the Runge-Kutta methods. Contained in the module are the second-, third- and

fourth-order methods, as well as Butcher’s fifth order method and Runge-Kutta-Fehlberg method.

The functions in the module can be accessed from another .py file with the command:

import rungeKutta as rk

To utilize this module, the user has to define the differential equation to be passed as an argument

to the functions. The parameters of the functions in this module are the initial values of x and y,

the increment at the end of each iteration i.e. step size, the desired number of iterations and the

user-defined differential equation. For example, to utilize the RK2A method, the syntax is:

rk.RK2A (initial x, initial y, step size, number of iterations, differential function)

Figure 1: Importing and utilizing the rungeKutta module

In Figure 2, the function, f(x,y) is the differential equation with variables x and y passed as the

parameters.

4

4. rkgui.py

Figure 2: The GUI

The rkgui.py file imports the rungeKutta module in the design of a GUI for the visualization of

results obtained using any of the Runge-Kutta schemes. It comprises entry boxes for specifying

the initial values of the function we wish to evaluate, the desired increment per step, the number

of steps, the first derivative of the function of interest and a final entry box for the exact function

for differential equations whose exact solutions can be obtained.

The GUI also includes a set of buttons. These buttons allows users to specify the desired scheme

to evaluate the differential equation typed into the appropriate text box. The plot button passes the

command to the GUI to plot the x and f(x) values but does not show the plot. The show plot button

displays the the plot of f(x) against x. After computing the values of the specified function over

the specified number of iterations, the results are displayed on the scrolled text widget of the GUI.

The GUI utilizes the tkinter module, while the plot utilizes the matplotlib and numpy modules.

5

Figure 3: The GUI with output

5. Case study and Results

The GUI was used to solve and produce the plots of the numerical and exact solutions of the

following initial value problem:

𝑦′ = 𝑒−2𝑥 − 2𝑦 (2)

With y(0) = 0.1 on [0,2] and step size h = 0.2 and h = 0.1.

The exact solution is:

𝑦(𝑥) =
1

10
𝑒−2𝑥 + 𝑥𝑒−2𝑥 (3)

6

Figure 3: After calling the plot function via the plot and the show plot buttons

h = 0.1

Figure 4: Second-order Runge-Kutta method RK2A

7

Figure 5: Second-order Runge-Kutta method RK2B

Figure 6: Second-order Runge-Kutta method RK2C

8

Figure 7: Third-order Runge-Kutta method RK3

Figure 8: Fourth-order Runge-Kutta method RK4

9

Figure 9: Butcher’s fifth-order Runge-Kutta method RK5

Figure 10: Runge-Kutta-Fehlberg method RKF45

10

h = 0.2

Figure 11: Second-order Runge-Kutta method RK2A

Figure 12: Second-order Runge-Kutta method RK2B

11

Figure 13: Second-order Runge-Kutta method RK2C

Figure 14: Third-order Runge-Kutta method RK3

12

Figure 15: Fourth-order Runge-Kutta method RK4

Figure 16: Butcher’s fifth-order Runge-Kutta method RK5

13

Figure 17: Runge-Kutta-Fehlberg method RKF45

6. Conclusions/Discussions

The main objective of the paper is to develop a GUI that would enable the user appreciate the

accuracy of the Runge-Kutta methods. A major issue of the GUI is the need for users to supply the

differential functions in terms of lowercase ‘x’ and lowercase ‘y’. This is partly as a result of the

case-sensitivity of the Python programming language and partly because the source code for this

portion of the GUI wasn’t written in such a way as to make it flexible enough to understand other

symbolic representation besides ‘x’ and ‘y’. Added to this is the requirement that the equations

must be typed using the Python programming language syntax. The GUI was applied to an initial

value problem and the results obtained shows the efficiency, accuracy and reliability of the GUI,

despite its simplicity and the aforementioned issues.

REFERENCES

[1] https://numpy.org

[2] https://matplotlib.org

[3] https://en.m.wikipedia.org/wiki/Runge-Kutta_methods

[4] Lecture 9,http://people.bu.edu/andasari/courses/numericalpython/python.html

https://numpy.org/
https://matplotlib.org/
https://en.m.wikipedia.org/wiki/Runge-Kutta_methods
http://people.bu.edu/andasari/courses/numericalpython/python.html

14

