Theorem 1 If V is finite-dimensional vector space over a field F and T is a homomorphism of V onto V, prove that T must be one-to-one, and so an isomorphism.

Proof.

Let $n = \dim V$ and v_1, \ldots, v_n be a basis of V. Since T is *onto*, $v_i = w_i T$ for some $w_i \in V$ and $i = 1, \ldots, n$. To show the linear independence of the w_i , consider $\alpha_1 w_1 + \cdots + \alpha_n w_n = 0$ with $\alpha_1, \ldots, \alpha_n$ in F. It follows that

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \alpha_1 (w_1 T) + \dots + \alpha_n (w_n T)$$
$$= (\alpha_1 w_1) T + \dots + (\alpha_n w_n) T$$
$$= (\alpha_1 w_1 + \dots + \alpha_n w_n) T$$
$$= 0 T$$
$$= 0$$

and hence by the linear independence of v_1, \ldots, v_n forces $\alpha_i = 0$ for $i = 1, \ldots, n$. Since V is of dimension n, any set of n linearly independent vectors in V forms a basis of V. Therefore w_1, \ldots, w_n is a basis of V. Now suppose vT = 0 for some $v \in V$. Thus $v = \lambda_1 w_1 + \cdots + \lambda_n w_n$ with $\lambda_1, \ldots, \lambda_n$ in F. Moreover

$$\lambda_1 v_1 + \dots + \lambda_n v_n = \lambda_1 (w_1 T) + \dots + \lambda_n (w_n T)$$

= $(\lambda_1 w_1) T + \dots + (\lambda_n w_n) T$
= $(\lambda_1 w_1 + \dots + \lambda_n w_n) T$
= vT
= 0

and hence by the linear independence of v_1, \ldots, v_n forces $\lambda_i = 0$ for $i = 1, \ldots, n$. So v = 0. Since its kernel is (0), T is an isomorphism.

References

[1] I. N. Herstein, Topics in Algebra, John Wiley & Sons, New York, 1975.