Theorem 1 If V is finite-dimensional vector space over a field F and T is a homomorphism of V onto V, prove that T must be one-to-one, and so an isomorphism.
Proof.
Let $n=\operatorname{dim} V$ and v_{1}, \ldots, v_{n} be a basis of V. Since T is onto, $v_{i}=w_{i} T$ for some $w_{i} \in V$ and $i=1, \ldots, n$. To show the linear independence of the w_{i}, consider $\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}=0$ with $\alpha_{1}, \ldots, \alpha_{n}$ in F. It follows that

$$
\begin{aligned}
\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n} & =\alpha_{1}\left(w_{1} T\right)+\cdots+\alpha_{n}\left(w_{n} T\right) \\
& =\left(\alpha_{1} w_{1}\right) T+\cdots+\left(\alpha_{n} w_{n}\right) T \\
& =\left(\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}\right) T \\
& =0 T \\
& =0
\end{aligned}
$$

and hence by the linear independence of v_{1}, \ldots, v_{n} forces $\alpha_{i}=0$ for $i=1, \ldots, n$. Since V is of dimension n, any set of n linearly independent vectors in V forms a basis of V. Therefore w_{1}, \ldots, w_{n} is a basis of V. Now suppose $v T=0$ for some $v \in V$. Thus $v=\lambda_{1} w_{1}+\cdots+\lambda_{n} w_{n}$ with $\lambda_{1}, \ldots, \lambda_{n}$ in F. Moreover

$$
\begin{aligned}
\lambda_{1} v_{1}+\cdots+\lambda_{n} v_{n} & =\lambda_{1}\left(w_{1} T\right)+\cdots+\lambda_{n}\left(w_{n} T\right) \\
& =\left(\lambda_{1} w_{1}\right) T+\cdots+\left(\lambda_{n} w_{n}\right) T \\
& =\left(\lambda_{1} w_{1}+\cdots+\lambda_{n} w_{n}\right) T \\
& =v T \\
& =0
\end{aligned}
$$

and hence by the linear independence of v_{1}, \ldots, v_{n} forces $\lambda_{i}=0$ for $i=1, \ldots, n$. So $v=0$. Since its kernel is (0), T is an isomorphism.

References

[1] I. N. Herstein, Topics in Algebra, John Wiley \& Sons, New York, 1975.

