Theorem 1 If ϕ is a homomorphism of G into \overline{G} with kernel K, then K is a normal subgroup of G. *Proof.*

This is Lemma 2.7.3 in [1].

Theorem 2 Let ϕ be a homomorphism of G onto \overline{G} with kernel K, and let \overline{N} be a normal subgroup of \overline{G} , $N = \{x \in G \mid \phi(x) \in \overline{N}\}$. Then $G/N \approx \overline{G}/\overline{N}$. Equivalently, $G/N \approx (G/K)/(N/K)$. *Proof.*

The first part of the proof can be found in [1]. By theorem 1, *K* is a normal subgroup of *G*. Define the mapping $\psi : G \to G/K$ by $\psi(g) = Kg$. Then ψ is a homomorphism of *G* onto G/K with kernel *K*. Clearly *N* is a subgroup of *G* and $N \supset K$. Since \overline{N} is a normal subgroup of \overline{G} , *N* is a normal subgroup of *G*. It follows that N/K is a normal subgroup of G/K. It remains to be shown that $N = \{x \in G \mid \psi(x) \in N/K\}$. The first inclusion is obvious. To prove the second inclusion, let $x \in G$ such that $\psi(x) \in N/K$. So $Kx \in N/K$ and thus Kx = Kn for some $n \in N$. Since $x \in Kx$ and $Kx \subset Kn$, $x \in Kn$. Hence x = kn for some $k \in K$. To conclude, $x \in N$ because $N \supset K$. To sum it up, ψ is a homomorphism of *G* onto G/K with kernel *K* such that N/K is a normal subgroup of G/K and $N = \{x \in G \mid \psi(x) \in N/K\}$. By the first part of the theorem, $G/N \approx (G/K)/(N/K)$.

References

[1] I. N. Herstein, *Topics in Algebra*, John Wiley & Sons, New York, 1975.