Restricted Proof of the polynomial boundedness of $\sum_{A \in \operatorname{EdgeCovers}(G)} 2^{-|A|}$

Rikayan Chaki

Claim . $\sum_{A \in \mathbf{A}}-2^{|A|}$ is in $\mathcal{O}(\operatorname{Poly}(|V|,|E|))$ for a graph $G=(V, E)$, where \mathbf{A} is the set of all edge covers of G under the assumption that $|E| \leq 2|V|-2$

Proof. Let $\left(A_{m}\right)=\{S|S \in \mathbf{A} \wedge| S \mid=m\}$.
Thus, we define $T(m)=\sum_{A \in \mathbf{A}_{\mathbf{m}}}-2^{|\mathbf{A}|}$
Lemma 1 : If $\left|\left(A_{n}\right) \mathcal{O}(\operatorname{Poly}(|V|,|E|))\right|=\left|\left(A_{n-1}\right)\right|$. Consider an arbitrary edge cover (C) of size n. We can remove one of its n edges to create (potentially)new edge covers of size $n-1$. So, the lemma follows.

Lemma 2 : $\left|\left(A_{n-1}\right) \mathcal{O}(\operatorname{Poly}(|V|,|E|))\right|=\left|\left(A_{n}\right)\right|$. Consider an arbitrary edge cover (C) of size $n-1$. We can add one of the $m-n+1$ edges not in it to create (potentially) new edge covers of size n. So, the lemma follows.

Now, we consider the following statement $P(k): T(n-1-k)+T(n-1+k) \equiv$ $\mathcal{O}(\operatorname{Poly}(|V|,|E|))$ To prove this statement inductively, we first prove $P(0)$. We note that $T(n-1)$ is in (P) since it is the case which spanning trees(which all have size $|V|-1$.

$$
\begin{align*}
P(0) & : T(|V|-1-0)+T(|V|-1+0) \\
& =2 T(|V|-1) \tag{1}\\
& =\mathcal{O}(\operatorname{Poly}(|V|,|E|))
\end{align*}
$$

Next, we prove $P(k)$ for some arbitrary $k \in \mathbf{N}$ give that $P(m)$ holds $\forall m<k, m \in \mathbf{N}$:

$$
\begin{aligned}
L H S & =T(|V|-1-k)+T(|V|-1+k) \\
& =\sum_{A \in \mathbf{A}_{|\mathbf{V}|-1-\mathbf{k}}}-2^{|\mathbf{A}|}+\sum_{A^{\prime} \in \mathbf{A}_{|\mathbf{V}|-1+\mathbf{k}}^{\prime}}-2^{\left|\mathbf{A}^{\prime}\right|} \\
= & \left|\left(A_{|V|-1-k}\right)\right|(-2)^{|V|-1-k}+\left|\left(A_{|V|-1+k}\right)\right|(-2)^{|V|-1+k} \\
\leq & \mathcal{O}(\operatorname{Poly}(|V|,|E|))\left|\left(A_{|V|-k}\right)\right|(-2)^{|V|-1-k} \\
& +\mathcal{O}(\operatorname{Poly}(|V|,|E|))\left|\left(A_{|V|-2+k}\right)\right|(-2)^{|V|-1+k}
\end{aligned}
$$

(Lemma 1 and 2)

$$
\begin{align*}
& =\mathcal{O}(\operatorname{Poly}(|V|,|E|))\left[\left|\left(A_{|V|-1-(k-1)}\right)\right| \frac{(-2)^{|V|-k}}{2}+\left|\left(A_{|V|-1+(k-1)}\right)\right|(-2)^{|V|-1+k-1} * 2\right] \\
& =\mathcal{O}(\operatorname{Poly}(|V|,|E|)) *\left[\sum_{A \in \mathbf{A}_{|\mathbf{V}|-\mathbf{k}}}-2^{|\mathbf{A}|}+\sum_{A^{\prime} \in \mathbf{A}_{|\mathbf{V}|-\mathbf{2}+\mathbf{k}}^{\prime}}-2^{\left|\mathbf{A}^{\prime}\right|}\right] \\
& =\mathcal{O}(\operatorname{Poly}(|V|,|E|)) *[T(|V|-1-(k-1))+T(|V|-1+(k-1))] \\
& =\mathcal{O}(\operatorname{Poly}(|V|,|E|)) * \mathcal{O}(\operatorname{Poly}(|V|,|E|))(\text { By the Induction Hypothesis }) \\
& =\mathcal{O}(\operatorname{Poly}(|V|,|E|)) \tag{2}
\end{align*}
$$

Hence, from (1) and (2), we have proved inductively that for $k \in \mathbf{N}, P(k)$ holds. (Continued on next page)

Therefore,

$$
\begin{aligned}
\sum_{A \in \mathbf{A}}-2^{|\mathbf{A}|} & =\sum_{m=0}^{|E|} \sum_{A \in \mathbf{A}_{\mathbf{m}}}-2^{|A|} \\
& \leq \sum_{m=0}^{2|V|-2} \sum_{A \in \mathbf{A}_{\mathbf{m}}}-2^{|A|}(\text { By our assumption that }|E|<=2|V|-1) \\
& =\sum_{m=0}^{2|V|-2} T(m) \\
& =-T(|V|-1)+\sum_{m=0}^{|V|-1} T(|V|-1-m)+T(|V|-1+m) \\
& \equiv \frac{\mathcal{O}(\operatorname{Poly}(|V|,|E|))}{2}+\sum_{m=0}^{|V|-1} \mathcal{O}(\operatorname{Poly}(|V|,|E|))(\operatorname{Using} \mathrm{P}(0) \text { and } \mathrm{P}(\mathrm{~m})) \\
& \equiv(0.5+|V|-1) \mid \mathcal{O}(\operatorname{Poly}(|V|,|E|)) \\
& \equiv \mathcal{O}(\operatorname{Poly}(|V|,|E|))
\end{aligned}
$$

