Twin Prime Conjeture

Xuan Zhong Ni, Campbell, CA, USA

(January, 2020)

Abstract

In this article, we use method of a modified sieve of Eratosthenes to prove the twin prime conjecture.

We use p_{i} for all the primes, $2,3,5,7,11,13, \ldots . ., \mathrm{i}=1,2,3, \ldots .$. ,

If a prime pair $\left(p_{m}, p_{m+1}\right)$ is a twin prime, then it can be written as ($6 \mathrm{k}-1,6 \mathrm{k}+1$) for some k .

Theorem;
If $\left(p_{j}, p_{j+1}\right)$ is a twin prime, then there are approximately $\left(\frac{p_{j}^{2}-1}{6}\right) \Pi_{(3 \leq i \leq j)}(1-$ $\left.\frac{2}{p_{i}}\right)$ numbers of twin primes in the range of $\left(p_{j+1}, p_{j+1}^{2}\right)$.
let set $\mathrm{M}=\left\{m ; m=1, \ldots, \frac{p_{j+1}^{2}-1}{6}\right\}$,
set $\mathrm{N}=\{n=6 m+1 ; m \in M\}$,
$\mathrm{P}=\Pi_{3 \leq i \leq j} p_{i}$,
for $d \mid P$ set $M_{d}=\{m \in M ; 6 \mathrm{~m}+1=0, \bmod \mathrm{~d}\}$,
obviously, $\left|M_{d}\right|=\left[\frac{|M|}{d}\right]$,
if $d^{\prime} \mid P$, set $M_{d, d^{\prime}}=\left\{m \in M_{d}, 6 \mathrm{~m}+1=2, \bmod \mathrm{~d}^{\prime}\right\}$,

If $\left(p_{j}, p_{j+1}\right)$ is a twin prime,

By seiving of the Eratosthenes for all the primes $\left(p_{i}, \mathrm{i}=3,4, \ldots, \mathrm{j}\right)$,

The total of remaining numbers n of N which are those numbers in the following set,
$\{n \in N ; n \neq 0 \bmod \mathrm{p} \forall p \mid P$, and $n \neq 2 \bmod \mathrm{p} \forall p \mid P\}$,
and it equals to,

$$
\begin{equation*}
B(N)=\Sigma_{n \in N}\left(\Sigma_{d \mid(n, P)} \mu(d)\right)\left(\Sigma_{d^{\prime} \mid(n-2, P)} \mu\left(d^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

we have,

$$
\begin{equation*}
B(N)=\Sigma_{\left(d\left|P, d^{\prime}\right| P\right)} \mu(d) \mu\left(d^{\prime}\right)\left(\Sigma_{\left(n \in N, d\left|(n, P), d^{\prime}\right|(n-2, P)\right)} 1\right) \tag{2}
\end{equation*}
$$

The summation in the last blank is zero for those $d \mid \mathrm{d}^{\prime}$ or $d^{\prime} \mid d$ when d or d^{\prime} is not equal 1 .

It is easy to prove that,

$$
\begin{equation*}
\left|\left|M_{d, d^{\prime}}\right|-\frac{|M|}{\operatorname{LCM}\left(d, d^{\prime}\right)}\right| \leq 1 \tag{3}
\end{equation*}
$$

we have,

$$
\begin{equation*}
B(N) \approx \Sigma_{\left(d\left|P, d^{\prime}\right| P\right)} \mu(d) \mu\left(d^{\prime}\right) \frac{|M|}{L C M\left(d, d^{\prime}\right)}=|M| \Pi_{(3 \leq i \leq j)}\left(1-\frac{2}{p_{i}}\right), \tag{4}
\end{equation*}
$$

So there are approximately $\left(\frac{p_{j}^{2}-1}{6}\right) \Pi_{(3 \leq i \leq j)}\left(1-\frac{2}{p_{i}}\right)$ twin primes in the range $\left(p_{j+1}, p_{j+1}^{2}\right)$.

This also proves the twin prime conjecture.

