On some formulas of Manuscript Book 1 of Srinivasa Ramanujan: new possible mathematical connections with various parameters of Particle Physics and Cosmology.

Michele Nardelli ${ }^{1}$, Antonio Nardelli

Abstract

In this research thesis, we have analyzed further formulas of Manuscript Book 1 of Srinivasa Ramanujan and described new possible mathematical connections with various parameters of Particle Physics and Cosmology (Cosmological Constant, some parameters of Dark Energy)

[^0]

More science quotes at Today in Science History todayinsci.com https://todayinsci.com/R/Ramanujan Srinivasa/RamanujanSrinivasa-Quotations.htm

Summary

In this research thesis, we have analyzed the possible and new connections between different formulas of Manuscript Book 1 of Srinivasa Ramanujan and some parameters concerning Particle Physics and Cosmology. In the course of the discussion we describe and highlight the connections between some developments of Ramanujan equations and particles type solutions such as the mass of the Higgs boson, and the masses of other baryons and mesons, principally $f_{0}(\mathbf{1 7 1 0})$ scalar meson candidate "glueball". Moreover, solutions of Ramanujan equations, connected with the mass of the π meson 139.57 have been described and highlighted. Furthermore, we have obtained also the values of some black hole entropies, the value of the Cosmological Constant and some parameters of Dark Energy.

All the results of the most important connections are highlighted in blue throughout the drafting of the paper

From:

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN

$\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / 2789)+\tan ^{\wedge}-1\left(9 \mathrm{x} /\left(32 \mathrm{x}^{\wedge} 4+2 \mathrm{x}^{\wedge} 2-1\right)\right)$ $+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(8 / 1081)+\tan ^{\wedge}-1(12 / 10441)+\tan ^{\wedge}-1\left(4 x /\left(128 x^{\wedge} 4+8 x^{\wedge} 2+1\right)\right)$

Input:

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(9 \times \frac{x}{32 x^{4}+2 x^{2}-1}\right)+ \\
& \quad \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{x}{128 x^{4}+8 x^{2}+1}\right)
\end{aligned}
$$

Plots:

Alternate forms:

$\tan ^{-1}\left(\frac{9 x}{32 x^{4}+2 x^{2}-1}\right)+\tan ^{-1}\left(\frac{4 x}{128 x^{4}+8 x^{2}+1}\right)+\frac{\pi}{4}+\frac{1}{2} \tan ^{-1}\left(\frac{129419640}{241859441}\right)$

$$
\begin{aligned}
& \frac{1}{4}\left(4 \tan ^{-1}\left(\frac{9 x}{32 x^{4}+2 x^{2}-1}\right)+\right. \\
& \quad 4 \tan ^{-1}\left(\frac{4 x}{128 x^{4}+8 x^{2}+1}\right)+\pi+4 \tan ^{-1}\left(\frac{9}{53}\right)+4 \tan ^{-1}\left(\frac{18}{599}\right)+ \\
& \left.\quad 4 \tan ^{-1}\left(\frac{4}{137}\right)+4 \tan ^{-1}\left(\frac{27}{2789}\right)+4 \tan ^{-1}\left(\frac{8}{1081}\right)+4 \tan ^{-1}\left(\frac{12}{10441}\right)\right) \\
& \frac{1}{2} i \log \left(1-\frac{9 i x}{32 x^{4}+2 x^{2}-1}\right)-\frac{1}{2} i \log \left(1+\frac{9 i x}{32 x^{4}+2 x^{2}-1}\right)+ \\
& \frac{1}{2} i \log \left(1-\frac{1 x}{128 x^{4}+8 x^{2}+1}\right)-\frac{1}{2} i \log \left(1+\frac{9 i}{128 x^{4}+8 x^{2}+1}\right)+\frac{\pi}{4}- \\
& \frac{1}{2} i \log \left(1+\frac{9 i}{53}\right)+\frac{1}{2} i \log \left(1-\frac{9 i}{53}\right)-\frac{1}{2} i \log \left(1+\frac{18 i}{599}\right)+\frac{1}{2} i \log \left(1-\frac{18 i}{599}\right)- \\
& \frac{1}{2} i \log \left(1+\frac{4 i}{137}\right)+\frac{1}{2} i \log \left(1-\frac{4 i}{137}\right)-\frac{1}{2} i \log \left(1+\frac{27 i}{2789}\right)+\frac{1}{2} i \log \left(1-\frac{27 i}{2789}\right)- \\
& \frac{1}{2} i \log \left(1+\frac{8 i}{1081}\right)+\frac{1}{2} i \log \left(1-\frac{8 i}{1081}\right)-\frac{1}{2} i \log \left(1+\frac{12 i}{10441}\right)+\frac{1}{2} i \log \left(1-\frac{12 i}{10441}\right)
\end{aligned}
$$

Series expansion at $x=-1 / 4-i / 4$:

$$
\begin{aligned}
& \left(\left(-\frac{1}{2} i\left(\log \left(x+\left(\frac{1}{4}+\frac{i}{4}\right)\right)-\log (2)+\log (-14+2 i)\right)+\right.\right. \\
& \tan ^{-1}\left(\frac{45}{37}+\frac{63 i}{37}\right)+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+ \\
& \left.\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\frac{\pi}{4}\right)- \\
& \left.\left(\frac{203}{9490}+\frac{30447 i}{9490}\right)\left(x+\left(\frac{1}{4}+\frac{i}{4}\right)\right)+O\left(\left(x+\left(\frac{1}{4}+\frac{i}{4}\right)\right)^{2}\right)\right)+ \\
& \pi\left[\frac{-\arg ((1-i)((2+2 i) x+i))-\arg \left(\frac{(1+i)\left((32-32 i) x^{3}-16 x^{2}+(6+2 i) x-i\right)}{128 x^{4}+8 x^{2}+1}\right)+\pi}{2 \pi}\right\rfloor- \\
& \frac{1}{2} i \log \left(-\frac{7}{100}-\frac{i}{100}\right)\left\lfloor\frac{\arg \left(-\frac{i\left((64+448 i) x^{4}+32 i x^{3}+(12+20 i) x^{2}-(4-2 i) x+(1+4 i)\right)}{128 x^{4}+8 x^{2}+1}\right)}{2 \pi}\right\rfloor- \\
& \frac{1}{2} i \log (-14+2 i)\left\lfloor\frac{\arg \left(-\frac{i\left((64+448 i) x^{4}+32 i x^{3}+(12+20 i) x^{2}-(4-2 i) x+(1+4 i)\right)}{128 x^{4}+8 x^{2}+1}\right)}{2 \pi}\right\rfloor
\end{aligned}
$$

Series expansion at $x=-1 / 4+i / 4$:

$$
\left.\begin{array}{l}
\left(\left(\frac{1}{2} i\left(\log \left(x+\left(\frac{1}{4}-\frac{i}{4}\right)\right)-\log (2)+\log (-14-2 i)\right)-\right.\right. \\
i \tanh ^{-1}\left(\frac{63}{37}+\frac{45 i}{37}\right)+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+ \\
\left.\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\frac{\pi}{4}\right)- \\
\left.\left(\frac{203}{9490}-\frac{30447 i}{9490}\right)\left(x+\left(\frac{1}{4}-\frac{i}{4}\right)\right)+O\left(\left(x+\left(\frac{1}{4}-\frac{i}{4}\right)\right)^{2}\right)\right)- \\
\pi\left[\frac{-\arg ((1-i)((2+2 i) x+1))-\arg \left(\frac{(1+i)\left((32-32 i) x^{3}+16 i x^{2}-(2+6 i) x+1\right)}{128 x^{4}+8 x^{2}+1}\right)+\pi}{2 \pi}\right]+ \\
{\left[\frac{1}{2} i \log \left(-\frac{7}{100}+\frac{i}{100}\right)\left[\frac{\arg \left(\frac{(448+64 i) x^{4}+32 x^{3}+(20+12 i) x^{2}+(2-4 i) x+(4+i)}{128 x^{4}+8 x^{2}+1}\right)}{2 \pi}\right)+\right.} \\
\frac{1}{2} i \log (-14-2 i)\left[\left.\frac{\arg \left(\frac{(448+64 i) x^{4}+32 x^{3}+(20+12 i) x^{2}+(2-4 i) x+(4+i)}{128 x^{4}+8 x^{2}+1}\right)}{2 \pi} \right\rvert\,\right.
\end{array}\right]+\quad .
$$

Series expansion at $\mathrm{x}=0$:

$$
\begin{array}{r}
\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\right. \\
\left.\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{9}{53}\right)\right)-5 x+\frac{515 x^{3}}{3}-10215 x^{5}+O\left(x^{6}\right)
\end{array}
$$

(Taylor series)

Derivative:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(\frac{9 x}{32 x^{4}+2 x^{2}-1}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 x}{128 x^{4}+8 x^{2}+1}\right)\right)= \\
& -\frac{5\left(196608 x^{10}+16384 x^{8}+3584 x^{6}+1872 x^{4}-10 x^{2}+1\right)}{\left(16 x^{2}+1\right)\left(64 x^{4}+1\right)\left(1024 x^{8}+128 x^{6}-60 x^{4}+77 x^{2}+1\right)}
\end{aligned}
$$

Indefinite integral:

$$
\begin{aligned}
& \int\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(\frac{9 x}{32 x^{4}+2 x^{2}-1}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 x}{128 x^{4}+8 x^{2}+1}\right)\right) d x= \\
& 9 \sum_{\left\{\omega: 3359232 \omega^{4}-648 \omega^{2}+162 \omega-1=0\right\}} \omega \log \left(x^{2}+324 \omega^{2}\right)+\frac{1}{8} \log \left(256 x^{4}+4\right)- \\
& \quad \frac{1}{4} \log \left(16 x^{2}+1\right)+\frac{1}{4} \tan ^{-1}\left(8 x^{2}\right)+x \tan ^{-1}\left(\frac{9 x}{32 x^{4}+2 x^{2}-1}\right)+ \\
& x \tan ^{-1}\left(\frac{4 x}{128 x^{4}+8 x^{2}+1}\right)+\frac{\pi x}{4}+x \tan ^{-1}\left(\frac{9}{53}\right)+x \tan ^{-1}\left(\frac{18}{599}\right)+x \tan ^{-1}\left(\frac{4}{137}\right)+ \\
& x \tan ^{-1}\left(\frac{27}{2789}\right)+x \tan ^{-1}\left(\frac{8}{1081}\right)+x \tan ^{-1}\left(\frac{12}{10441}\right)+\text { constant }
\end{aligned}
$$

(assuming a complex-valued logarithm)

For $\mathrm{x}=0.11$ where 11 is a Lucas number, we obtain:
$\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / 2789)+\tan ^{\wedge}-$
$1\left(9 * 0.11 /\left(32 * 0.11^{\wedge} 4+2 * 0.11^{\wedge} 2-1\right)\right)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(8 / 1081)+\tan ^{\wedge}-$ $1(12 / 10441)+\tan ^{\wedge}-1\left(4^{*} 0.11 /\left(128^{*} 0.11^{\wedge} 4+8^{*} 0.11^{\wedge} 2+1\right)\right)$

Input:

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(9 \times \frac{0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+ \\
& \quad \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Result:

0.611731...
(result in radians)
$0.611731 \ldots$

Alternative representations:

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+ \\
& \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)= \\
& \operatorname{sc}^{-1}\left(\left.\frac{9}{53} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{18}{599} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{8}{1081} \right\rvert\, 0\right)+ \\
& \operatorname{sc}^{-1}\left(\left.\frac{27}{2789} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{12}{10441} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}} \right\rvert\, 0\right)+ \\
& \operatorname{sc}^{-1}\left(\left.\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}} \right\rvert\, 0\right)+\frac{\pi}{4} \\
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+ \\
& \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)= \\
& \tan ^{-1}\left(1, \frac{9}{53}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{18}{599}\right)+\tan ^{-1}\left(1, \frac{8}{1081}\right)+ \\
& \tan ^{-1}\left(1, \frac{27}{2789}\right)+\tan ^{-1}\left(1, \frac{12}{10441}\right)+\tan ^{-1}\left(1, \frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}\right)+ \\
& \tan ^{-1}\left(1, \frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}\right)+\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+ \\
& \quad \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)= \\
& -i \tanh ^{-1}\left(\frac{9 i}{53}\right)-i \tanh ^{-1}\left(\frac{4 i}{137}\right)-i \tanh ^{-1}\left(\frac{18 i}{599}\right)-i \tanh ^{-1}\left(\frac{8 i}{1081}\right)- \\
& \quad i \tanh ^{-1}\left(\frac{27 i}{2789}\right)-i \tanh ^{-1}\left(\frac{12 i}{10441}\right)-i \tanh ^{-1}\left(\frac{0.99 i}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}\right)- \\
& \quad i \tanh ^{-1}\left(\frac{0.44 i}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}\right)+\frac{\pi}{4}
\end{aligned}
$$

And:
$1 /\left(\left(\left(\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / 2789)+\tan ^{\wedge}-\right.\right.\right.$
$1\left(9^{*} 0.11 /\left(32^{*} 0.11^{\wedge} 4+2 * 0.11^{\wedge} 2-1\right)\right)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(8 / 1081)+\tan ^{\wedge}-$ $\left.\left.\left.1(12 / 10441)+\tan ^{\wedge}-1\left(4^{*} 0.11 /\left(128^{*} 0.11^{\wedge} 4+8 * 0.11^{\wedge} 2+1\right)\right)\right)\right)\right)$

Input:

$$
\begin{aligned}
& 1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \quad \tan ^{-1}\left(9 \times \frac{0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\quad \tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)
\end{aligned}
$$

Result:

1.634705870783905012966653037492510789746664359361913165265...
(result in radians)
1.63470587078....

Alternative representations:

$$
\begin{aligned}
& 1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)= \\
& 1 /\left(\operatorname{sc}^{-1}\left(\left.\frac{9}{53} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{18}{599} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{8}{1081} \right\rvert\, 0\right)+\right. \\
& \operatorname{sc}^{-1}\left(\left.\frac{27}{2789} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{12}{10441} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}} \right\rvert\, 0\right)+ \\
& \left.\operatorname{sc}^{-1}\left(\left.\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}} \right\rvert\, 0\right)+\frac{\pi}{4}\right) \\
& 1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)= \\
& 1 /\left(\tan ^{-1}\left(1, \frac{9}{53}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{18}{599}\right)+\tan ^{-1}\left(1, \frac{8}{1081}\right)+\right. \\
& \tan ^{-1}\left(1, \frac{27}{2789}\right)+\tan ^{-1}\left(1, \frac{12}{10441}\right)+\tan ^{-1}\left(1, \frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}\right)+ \\
& \left.\tan ^{-1}\left(1, \frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}\right)+\frac{\pi}{4}\right) \\
& \begin{array}{l}
1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
\tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
\left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)=
\end{array} \\
& 1 /\left(\cot ^{-1}\left(\frac{1}{\frac{9}{53}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{137}}\right)+\cot ^{-1}\left(\frac{1}{\frac{18}{599}}\right)+\cot ^{-1}\left(\frac{1}{\frac{8}{1081}}\right)+\cot ^{-1}\left(\frac{1}{\frac{27}{2789}}\right)+\right. \\
& \left.\cot ^{-1}\left(\frac{1}{\frac{12}{10441}}\right)+\cot ^{-1}\left(\frac{1}{\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}}\right)+\cot ^{-1}\left(\frac{1}{\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}}\right)+\frac{\pi}{4}\right)
\end{aligned}
$$

Note that:
$1 / 10^{\wedge} 52\left[1.634705870783905-(55-(2 \mathrm{Pi}) / 3) / 10^{\wedge} 2\right]$

Input interpretation:

$$
\frac{1}{10^{52}}\left(1.634705870783905-\frac{55-\frac{2 \pi}{3}}{10^{2}}\right)
$$

Result:

$1.105649821807837 \ldots \times 10^{-52}$
$1.10564982 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternative representations:

$\frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}=\frac{1.6347058707839050000-\frac{55-120^{\circ}}{10^{2}}}{10^{52}}$
$\frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}=\frac{1.6347058707839050000-\frac{55+\frac{2}{3} i \log (-1)}{10^{2}}}{10^{52}}$
$\frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}=\frac{1.6347058707839050000-\frac{55-\frac{2}{3} \cos ^{-1}(-1)}{10^{2}}}{10^{52}}$

Series representations:

$$
\begin{aligned}
& \frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}= \\
& 1.0847058707839050000 \times 10^{-52}+2.6666666666666666667 \times 10^{-54} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k} \\
& \frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}= \\
& 1.0713725374505716667 \times 10^{-52}+1.3333333333333333333 \times 10^{-54} \sum_{k=1}^{\infty} \frac{2^{k}}{\binom{2 k}{k}}
\end{aligned}
$$

$$
\frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}=1.0847058707839050000 \times 10^{-52}+
$$

$$
6.6666666666666666667 \times 10^{-55} \sum_{k=0}^{\infty} \frac{2^{-k}(-6+50 k)}{\binom{3 k}{k}}
$$

Integral representations:

$$
\begin{aligned}
& \frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}= \\
& 1.0847058707839050000 \times 10^{-52}+1.3333333333333333333 \times 10^{-54} \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}=1.0847058707839050000 \times 10^{-52}+ \\
& 2.666666666666666667 \times 10^{-54} \int_{0}^{1} \sqrt{1-t^{2}} d t
\end{aligned}
$$

$$
\frac{1.6347058707839050000-\frac{55-\frac{2 \pi}{3}}{10^{2}}}{10^{52}}=
$$

$$
1.0847058707839050000 \times 10^{-52}+1.3333333333333333333 \times 10^{-54} \int_{0}^{\infty} \frac{\sin (t)}{t} d t
$$

$76^{*} 1 /\left[\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / 2789)+\tan ^{\wedge}-\right.$
$1\left(9 * 0.11 /\left(32 * 0.11^{\wedge} 4+2 * 0.11^{\wedge} 2-1\right)\right)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(8 / 1081)+\tan ^{\wedge}-$ $\left.1(12 / 10441)+\tan ^{\wedge}-1\left(4^{*} 0.11 /\left(128^{*} 0.11^{\wedge} 4+8^{*} 0.11^{\wedge} 2+1\right)\right)\right]+1.618$

Where 76 is a Lucas number

Input:

$$
\begin{aligned}
& 76 \times 1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \quad \tan ^{-1}\left(9 \times \frac{0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\quad \tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+1.618
\end{aligned}
$$

Result:

125.856
(result in radians)
125.856... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternative representations:

$$
\begin{aligned}
& 76 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \quad \tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\quad \tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+1.618= \\
& 1.618+76 /\left(\operatorname{sc}^{-1}\left(\left.\frac{9}{53} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{18}{599} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{8}{1081} \right\rvert\, 0\right)+\right. \\
& \quad \operatorname{sc}^{-1}\left(\left.\frac{27}{2789} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{12}{10441} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}} \right\rvert\, 0\right)+ \\
& \left.\quad \operatorname{sc}^{-1}\left(\left.\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}} \right\rvert\, 0\right)+\frac{\pi}{4}\right)
\end{aligned}
$$

$$
76 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right.
$$

$$
\tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+
$$

$$
\left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+1.618=
$$

$$
1.618+76 /\left(\tan ^{-1}\left(1, \frac{9}{53}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{18}{599}\right)+\tan ^{-1}\left(1, \frac{8}{1081}\right)+\right.
$$

$$
\tan ^{-1}\left(1, \frac{27}{2789}\right)+\tan ^{-1}\left(1, \frac{12}{10441}\right)+\tan ^{-1}\left(1, \frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}\right)+
$$

$$
\left.\tan ^{-1}\left(1, \frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}\right)+\frac{\pi}{4}\right)
$$

$$
76 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right.
$$

$$
\tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+
$$

$$
\left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+1.618=
$$

$$
1.618+76 /\left(\cot ^{-1}\left(\frac{1}{\frac{9}{53}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{137}}\right)+\cot ^{-1}\left(\frac{1}{\frac{18}{599}}\right)+\cot ^{-1}\left(\frac{1}{\frac{8}{1081}}\right)+\right.
$$

$$
\cot ^{-1}\left(\frac{1}{\frac{27}{2789}}\right)+\cot ^{-1}\left(\frac{1}{\frac{12}{10441}}\right)+\cot ^{-1}\left(\frac{1}{\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}}\right)+
$$

$$
\left.\cot ^{-1}\left(\frac{1}{\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}}\right)+\frac{\pi}{4}\right)
$$

$$
\begin{aligned}
& 256^{*} 1 /\left[\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / 2789)+\tan ^{\wedge}-\right. \\
& 1\left(9^{*} 0.11 /\left(32^{*} 0.11^{\wedge} 4+2^{*} 0.11^{\wedge} 2-1\right)\right)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(8 / 1081)+\tan ^{\wedge}- \\
& \left.1(12 / 10441)+\tan ^{\wedge}-1\left(4^{*} 0.11 /\left(128^{*} 0.11^{\wedge} 4+8^{*} 0.11^{\wedge} 2+1\right)\right)\right]+47
\end{aligned}
$$

Where $256=64$ * 4 and 47 is a Lucas number

Input:

$$
\begin{aligned}
& 256 \times 1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \tan ^{-1}\left(9 \times \frac{0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\quad \tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+47
\end{aligned}
$$

Result:

465.485
(result in radians)
465.485... result practically equal to Holographic Dark Energy model, where

$$
\chi_{\mathrm{HDE}}^{2}=465.912 .
$$

Alternative representations:

$$
\begin{aligned}
256 /\left(\frac{\pi}{4}\right. & +\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+ \\
& \tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+47= \\
47+256 & /\left(\operatorname{sc}^{-1}\left(\left.\frac{9}{53} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{18}{599} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{8}{1081} \right\rvert\, 0\right)+\right. \\
& \operatorname{sc}^{-1}\left(\left.\frac{27}{2789} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{12}{10441} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}} \right\rvert\, 0\right)+ \\
& \left.\operatorname{sc}^{-1}\left(\left.\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}} \right\rvert\, 0\right)+\frac{\pi}{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 256 /\left(\frac{\pi}{4}+\right. \tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+ \\
& \tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
&\left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+47= \\
& 47+256 /\left(\tan ^{-1}\left(1, \frac{9}{53}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{18}{599}\right)+\tan ^{-1}\left(1, \frac{8}{1081}\right)+\right. \\
& \tan ^{-1}\left(1, \frac{27}{2789}\right)+\tan ^{-1}\left(1, \frac{12}{10441}\right)+\tan ^{-1}\left(1, \frac{1}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}\right)+ \\
&\left.\tan ^{-1}\left(1, \frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}\right)+\frac{\pi}{4}\right) \\
& 256 /\left(\frac{\pi}{4}+\right. \tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+ \\
& \tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
&\left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+47= \\
& 47+256 /\left(\cot ^{-1}\left(\frac{1}{\frac{9}{53}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{137}}\right)+\cot ^{-1}\left(\frac{1}{\frac{18}{599}}\right)+\cot ^{-1}\left(\frac{1}{\frac{8}{1081}}\right)+\right. \\
& \cot ^{-1}\left(\frac{1}{\frac{27}{2789}}\right)+\cot ^{-1}\left(\frac{1}{\frac{12}{10441}}\right)+\cot ^{-1}\left(\frac{1}{\left.\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}\right)+}\right. \\
& \cot ^{-1}\left(\frac{1}{\left.\left.\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}\right)+\frac{\pi}{4}\right)}\right.
\end{aligned}
$$

$11^{*} 1 /\left[\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / 2789)+\tan ^{\wedge}-\right.$
$1\left(9^{*} 0.11 /\left(32^{*} 0.11^{\wedge} 4+2 * 0.11^{\wedge} 2-1\right)\right)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(8 / 1081)+\tan ^{\wedge}-$
$\left.1(12 / 10441)+\tan ^{\wedge}-1\left(4^{*} 0.11 /\left(128^{*} 0.11^{\wedge} 4+8^{*} 0.11^{\wedge} 2+1\right)\right)\right]+0.618$
Where 11 is a Lucas number

Input:

$11 \times 1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right.$

$$
\begin{aligned}
& \tan ^{-1}\left(9 \times \frac{0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+0.618
\end{aligned}
$$

Result:

18.5998...
(result in radians)
18.5998... result very near to the black hole entropy 18.7328

Alternative representations:

$$
\begin{aligned}
& 11 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \quad \tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\quad \tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+0.618= \\
& 0.618+ \\
& 11 /\left(\operatorname{sc}^{-1}\left(\left.\frac{9}{53} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{18}{599} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{8}{1081} \right\rvert\, 0\right)+\right. \\
& \mathrm{sc}^{-1}\left(\left.\frac{27}{2789} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{12}{10441} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}} \right\rvert\, 0\right)+ \\
& \left.\mathrm{sc}^{-1}\left(\left.\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}} \right\rvert\, 0\right)+\frac{\pi}{4}\right)
\end{aligned}
$$

$$
11 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right.
$$

$$
\tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+
$$

$$
\left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+0.618=
$$

$$
0.618+11 /\left(\tan ^{-1}\left(1, \frac{9}{53}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{18}{599}\right)+\tan ^{-1}\left(1, \frac{8}{1081}\right)+\right.
$$

$$
\tan ^{-1}\left(1, \frac{27}{2789}\right)+\tan ^{-1}\left(1, \frac{12}{10441}\right)+\tan ^{-1}\left(1, \frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}\right)+
$$

$$
\left.\tan ^{-1}\left(1, \frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}\right)+\frac{\pi}{4}\right)
$$

$$
\begin{aligned}
& 11 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \quad \tan ^{-1}\left(\frac{9 \times 0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \\
& \left.\quad \tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(\frac{4 \times 0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)+0.618= \\
& 0.618+ \\
& 11 /\left(\cot ^{-1}\left(\frac{1}{\frac{9}{53}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{137}}\right)+\cot ^{-1}\left(\frac{1}{\frac{18}{599}}\right)+\cot ^{-1}\left(\frac{1}{\frac{8}{1081}}\right)+\right. \\
& \\
& \cot ^{-1}\left(\frac{1}{\frac{27}{2789}}\right)+\cot ^{-1}\left(\frac{1}{\frac{12}{10441}}\right)+\cot ^{-1}\left(\frac{1}{\frac{0.99}{-1+2 \times 0.11^{2}+32 \times 0.11^{4}}}\right)+ \\
& \left.\cot ^{-1}\left(\frac{\pi}{\frac{0.44}{1+8 \times 0.11^{2}+128 \times 0.11^{4}}}\right)+\frac{\pi}{4}\right)
\end{aligned}
$$

We have also that:
$1 /\left[\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / \mathrm{x})+\tan ^{\wedge}-\right.$ $1\left(9^{*} 0.11 /\left(32 * 0.11^{\wedge} 4+2 * 0.11^{\wedge} 2-1\right)\right)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(8 / 1081)+\tan ^{\wedge}-$
$\left.1(12 / 10441)+\tan ^{\wedge}-1\left(4 * 0.11 /\left(128^{*} 0.11^{\wedge} 4+8 * 0.11^{\wedge} 2+1\right)\right)\right]=1.63471$

Input interpretation:

$1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{x}\right)+\right.$

$$
\begin{aligned}
& \tan ^{-1}\left(9 \times \frac{0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)=1.63471
\end{aligned}
$$

Result:

$\frac{1}{\tan ^{-1}\left(\frac{27}{x}\right)+0.60205}=1.63471$
Plot:

Alternate forms:

$\frac{1}{\tan ^{-1}\left(\frac{27}{x}\right)+0.60205}=1.63471$
$\frac{1}{\tan ^{-1}\left(\frac{27}{x}\right)+0.60205}=1.63471$
$\frac{1}{0.60205+\frac{1}{2} i\left(\log \left(1-\frac{27 i}{x}\right)-\log \left(1+\frac{27 i}{x}\right)\right)}=1.63471$
$\log (x)$ is the natural logarithm
Alternate form assuming x is positive:
$\tan ^{-1}\left(\frac{27}{x}\right)=0.00967904$

Solution:

$x \approx 2789.45$
$1 /\left(\tan ^{\wedge}-1(27 / \mathrm{x})+0.60205\right)=1.63471$

Input interpretation:

$$
\frac{1}{\tan ^{-1}\left(\frac{27}{x}\right)+0.60205}=1.63471
$$

$\tan ^{-1}(x)$ is the inverse tangent function
Plot:

Alternate forms:
$\frac{1}{\tan ^{-1}\left(\frac{27}{x}\right)+0.60205}=1.63471$
$\frac{1}{\tan ^{-1}\left(\frac{27}{x}\right)+0.60205}=1.63471$
$\frac{1}{0.60205+\frac{1}{2} i\left(\log \left(1-\frac{27 i}{x}\right)-\log \left(1+\frac{27 i}{x}\right)\right)}=1.63471$

Alternate form assuming x is positive:

$\tan ^{-1}\left(\frac{27}{x}\right)=0.0096793$

Solution:

$x=27 \cot \left(\frac{31645689}{3269420000}\right)$
$\cot (x)$ is the cotangent function

From which, adding 24, we obtain:
$x+24=27 \cot (31645689 / 3269420000)$

Input:

$x+24=27 \cot \left(\frac{31645689}{3269420000}\right)$

Plot:

Alternate forms:

$x+24-27 \cot \left(\frac{31645689}{3269420000}\right)=0$
$24+x=\frac{27 \cos \left(\frac{31645689}{3269420000}\right)}{\sin \left(\frac{31645689}{3269420000}\right)}$
$x+24=-\frac{27 i\left(e^{-(31645689 i) / 3269420000}+e^{(31645689 i) / 3269420000}\right)}{e^{-(31645689 i) / 3269420000}-e^{(31645689 i) / 3269420000}}$

Alternate form assuming \mathbf{x} is real:
$x+24=-\frac{27 \sin \left(\frac{31645689}{1634710000}\right)}{\cos \left(\frac{31645689}{1634710000}\right)-1}$

Solution:

$x=3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)$

Thence:

> Input:
> $3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)$

Decimal approximation:

2765.371506824226811637033683431408791071909141949631009922...
$2765.3715068 \ldots$. result practically equal t othe rest mass of charmed Omega baryon 2765.9

Property:

$3\left(-8+9 \cot \left(\frac{31645689}{3269420000}\right)\right)$ is a transcendental number

Alternate forms:

$27 \cot \left(\frac{31645689}{3269420000}\right)-24$
$-24-\frac{27 \sin \left(\frac{31645689}{1634710000}\right)}{\cos \left(\frac{31645689}{1634710000}\right)-1}$
$3\left(-8+\frac{9 \cos \left(\frac{31645689}{3269420000}\right)}{\sin \left(\frac{31645689}{3269420000}\right)}\right)$

Alternative representations:

$3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)=3\left(-8+9 i \operatorname{coth}\left(\frac{31645689 i}{3269420000}\right)\right)$

$$
\begin{aligned}
& 3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)=3\left(-8+\frac{9}{\tan \left(\frac{31645689}{326942000}\right)}\right) \\
& 3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)=3\left(-8-9 i \operatorname{coth}\left(-\frac{31645689 i}{3269420000}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)=-24+2793502310320260000 \\
& \sum_{k=-\infty}^{\infty} \frac{1}{1001449632284721-10689107136400000000 k^{2} \pi^{2}} \\
& 3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)=(-24-27 i)-54 i \sum_{k=1}^{\infty} q^{2 k} \text { for } q=e^{(31645689 i) / 3260420000} \\
& 3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)=-24-27 i \sum_{k=-\infty}^{\infty} e^{(31645689 i k) / 1634710000} \operatorname{sgn}(k)
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)=-24-27 \int_{\frac{\pi}{2}}^{\frac{31645680}{3269420000} \csc ^{2}(t) d t} \\
& 3\left(9 \cot \left(\frac{31645689}{3269420000}\right)-8\right)=-24+\frac{54}{\pi} \int_{0}^{\infty} \frac{-1+t^{1-31645689 /(1634710000 \pi)}}{-1+t^{2}} d t
\end{aligned}
$$

We have also:
$x+(843+199+18)=27 \cot (31645689 / 3269420000)$
where 843,199 and 18 are Lucas numbers

Input:

$x+(843+199+18)=27 \cot \left(\frac{31645689}{3269420000}\right)$

Exact result:

$x+1060=27 \cot \left(\frac{31645689}{3269420000}\right)$
Plot:

Alternate forms:

$x+1060-27 \cot \left(\frac{31645689}{3269420000}\right)=0$
$1060+x=\frac{27 \cos \left(\frac{31645689}{3269420000}\right)}{\sin \left(\frac{31645689}{3269420000}\right)}$
$x+1060=-\frac{27 i\left(e^{-(31645689 i) / 3269420000}+e^{(31645689 i) / 3260420000}\right)}{e^{-(31645689 i) / 3269420000}-e^{(31645689 i) / 3269420000}}$

Alternate form assuming x is real:
$x+1060=-\frac{27 \sin \left(\frac{31645689}{1634710000}\right)}{\cos \left(\frac{31645689}{1634710000}\right)-1}$

Solution:

$x=27 \cot \left(\frac{31645689}{3269420000}\right)-1060$

Thence:

Input:

$-1060+27 \cot \left(\frac{31645689}{3269420000}\right)$

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Property:

$-1060+27 \cot \left(\frac{31645689}{3269420000}\right)$ is a transcendental number

Alternate forms:

```
\(-1060+\frac{27 \cos \left(\frac{31645689}{3269420000}\right)}{\sin \left(\frac{31655689}{3269420000}\right)}\)
\(-1060-\frac{27 \sin \left(\frac{31645689}{1634710000}\right)}{\cos \left(\frac{31645689}{1634710000}\right)-1}\)
\(\csc \left(\frac{31645689}{3269420000}\right)\left(27 \cos \left(\frac{31645689}{3269420000}\right)-1060 \sin \left(\frac{31645689}{3269420000}\right)\right)\)
```


Alternative representations:

$$
\begin{aligned}
& -1060+27 \cot \left(\frac{31645689}{3269420000}\right)=-1060+27 i \operatorname{coth}\left(\frac{31645689 i}{3269420000}\right) \\
& -1060+27 \cot \left(\frac{31645689}{3269420000}\right)=-1060+\frac{27}{\tan \left(\frac{31645689}{326942000}\right)} \\
& -1060+27 \cot \left(\frac{31645689}{3269420000}\right)=-1060-27 i \operatorname{coth}\left(-\frac{31645689 i}{3269420000}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& -1060+27 \cot \left(\frac{31645689}{3269420000}\right)=-1060+2793502310320260000 \\
& \sum_{k=-\infty}^{\infty} \frac{1}{1001449632284721-10689107136400000000 k^{2} \pi^{2}} \\
& -1060+27 \cot \left(\frac{31645689}{3269420000}\right)=(-1060-27 i)-54 i \sum_{k=1}^{\infty} q^{2 k} \\
& \text { for } q=e^{(31645689 i) / 3260420000}
\end{aligned}
$$

$-1060+27 \cot \left(\frac{31645689}{3269420000}\right)=-1060-27 i \sum_{k=-\infty}^{\infty} e^{(31645689 i k) / 1634710000} \operatorname{sgn}(k)$

Integral representations:

$-1060+27 \cot \left(\frac{31645689}{3269420000}\right)=-1060-27 \int_{\frac{\pi}{2}}^{\frac{31645689}{3269420000}} \csc ^{2}(t) d t$
$-1060+27 \cot \left(\frac{31645689}{3269420000}\right)=-1060+\frac{54}{\pi} \int_{0}^{\infty} \frac{-1+t^{1-31645689 /(1634710000 \pi)}}{-1+t^{2}} d t$

We have also:
$1 /\left[\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / 2789)+\tan ^{\wedge}-\right.$
$1\left(9^{*} 0.11 /\left(32 * 0.11^{\wedge} 4+2 * 0.11^{\wedge} 2-1\right)\right)+\tan ^{\wedge}-1(4 / x)+\tan ^{\wedge}-1(8 / 1081)+\tan ^{\wedge}-$
$\left.1(12 / 10441)+\tan ^{\wedge}-1\left(4^{*} 0.11 /\left(128^{*} 0.11^{\wedge} 4+8 * 0.11^{\wedge} 2+1\right)\right)\right]=1.63471$

Input interpretation:

$$
\begin{aligned}
& 1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \quad \tan ^{-1}\left(9 \times \frac{0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{x}\right)+\tan ^{-1}\left(\frac{8}{1081}\right)+ \\
& \left.\quad \tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)=1.63471
\end{aligned}
$$

Result:

$\frac{1}{\tan ^{-1}\left(\frac{4}{x}\right)+0.582542}=1.63471$

Plot:

Alternate forms:
$\frac{1}{\tan ^{-1}\left(\frac{4}{x}\right)+0.582542}=1.63471$
$\frac{1}{0.582542+\frac{1}{2} i\left(\log \left(1-\frac{4 i}{x}\right)-\log \left(1+\frac{4 i}{x}\right)\right)}=1.63471$
$\log (x)$ is the natural logarithm
Alternate form assuming x is positive:
$\tan ^{-1}\left(\frac{4}{x}\right)=0.0291872$

Solution:

$x \approx 137.007$
137.007

This result is practically equal to the inverse of fine-structure constant 137,035
from which:

$$
\frac{1}{\tan ^{-1}\left(\frac{4}{x}\right)+0.582542}=1.63471
$$

Input interpretation:
$\frac{1}{\tan ^{-1}\left(\frac{4}{x}\right)+0.582542}=1.63471$
$\tan ^{-1}(x)$ is the inverse tangent function
Plot:

Alternate forms:

$\frac{1}{\tan ^{-1}\left(\frac{4}{x}\right)+0.582542}=1.63471$
$\frac{1}{0.582542+\frac{1}{2} i\left(\log \left(1-\frac{4 i}{x}\right)-\log \left(1+\frac{4 i}{x}\right)\right)}=1.63471$
$\log (x)$ is the natural logarithm

Alternate form assuming x is positive:

$\tan ^{-1}\left(\frac{4}{x}\right)=0.0291873$

Solution:

$$
x=4 \cot \left(\frac{2385638359}{81735500000}\right)
$$

x -golden ratio $^{\wedge} 2=4 \cot (2385638359 / 81735500000)$

Input:

$x-\phi^{2}=4 \cot \left(\frac{2385638359}{81735500000}\right)$
$\cot (x)$ is the $\operatorname{cotangent~function~}$
ϕ is the golden ratio

Plot:

Alternate forms:

$x-\phi^{2}-4 \cot \left(\frac{2385638359}{81735500000}\right)=0$
$-\phi^{2}+x=\frac{4 \cos \left(\frac{2385638359}{81735500000}\right)}{\sin \left(\frac{2385638359}{81735500000}\right)}$
$x+\frac{1}{2}(-3-\sqrt{5})=4 \cot \left(\frac{2385638359}{81735500000}\right)$

Alternate form assuming \mathbf{x} is real:

$x-\phi^{2}=-\frac{4 \sin \left(\frac{2385638359}{40867750000}\right)}{\cos \left(\frac{2385638359}{40867750000}\right)-1}$

Solution:

$x=\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)$

Input:
 $\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)$

$\cot (x)$ is the cotangent function

Decimal approximation:

139.6250338321904687797161477882513904288303221659113360824...
$139.6250338 \ldots$. result practically equal to the rest mass of Pion meson 139.57 MeV

Property:

$\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)$ is a transcendental number

Alternate forms:

$\frac{3}{2}+\frac{\sqrt{5}}{2}+4 \cot \left(\frac{2385638359}{81735500000}\right)$
$\frac{1}{2}(3+\sqrt{5})+4 \cot \left(\frac{2385638359}{81735500000}\right)$
$\frac{1}{2}\left(3+\sqrt{5}+\frac{8 \cos \left(\frac{2385638359}{81735500000}\right)}{\sin \left(\frac{2385638359}{81735500000}\right)}\right)$

Alternative representations:

$\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)=\frac{1}{2}\left(3+8 i \operatorname{coth}\left(\frac{2385638359 i}{81735500000}\right)+\sqrt{5}\right)$
$\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)=\frac{1}{2}\left(3+\frac{8}{\tan \left(\frac{2385638359}{81735500000}\right)}+\sqrt{5}\right)$
$\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)=\frac{1}{2}\left(3+\sqrt{5}-8 \tan \left(\frac{\pi}{2}+\frac{2385638359}{81735500000}\right)\right)$

Series representations:

$\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)=\frac{3}{2}+\frac{\sqrt{5}}{2}+779965376368178000000$

$\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)=\left(\frac{3}{2}-4 i\right)+\frac{\sqrt{5}}{2}-8 i \sum_{k=1}^{\infty} q^{2 k}$
for $q=e^{(2385638359 i) / 81735500000}$
$\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)=$
$\frac{3}{2}+\frac{\sqrt{5}}{2}-4 i \sum_{k=-\infty}^{\infty} e^{(2385638359 i k) / 40867750000} \operatorname{sgn}(k)$

Integral representations:

$$
\frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)=\frac{3}{2}+\frac{\sqrt{5}}{2}-4 \int_{\frac{\pi}{2}}^{\frac{2385638359}{81735500000}} \csc ^{2}(t) d t
$$

$$
\begin{aligned}
& \frac{1}{2}\left(3+\sqrt{5}+8 \cot \left(\frac{2385638359}{81735500000}\right)\right)= \\
& \frac{3}{2}+\frac{\sqrt{5}}{2}+\frac{8}{\pi} \int_{0}^{\infty} \frac{-1+t^{1-2385638359 /(40867750000 \pi)}}{-1+t^{2}} d t
\end{aligned}
$$

We have also:

$$
\begin{aligned}
& 1 /\left[\mathrm{Pi} / 4+\tan ^{\wedge}-1(9 / 53)+\tan ^{\wedge}-1(18 / 599)+\tan ^{\wedge}-1(27 / 2789)+\tan ^{\wedge}-\right. \\
& 1\left(9^{*} 0.11 /\left(32^{*} 0.11^{\wedge} 4+2^{*} 0.11^{\wedge} 2-1\right)\right)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(8 / \mathrm{x})+\tan ^{\wedge}-1(12 / 10441) \\
& \left.+\tan ^{\wedge}-1\left(4^{*} 0.11 /\left(128^{*} 0.11^{\wedge} 4+8^{*} 0.11^{\wedge} 2+1\right)\right)\right]=1.63471
\end{aligned}
$$

Input interpretation:

$$
\begin{aligned}
& 1 /\left(\frac{\pi}{4}+\tan ^{-1}\left(\frac{9}{53}\right)+\tan ^{-1}\left(\frac{18}{599}\right)+\tan ^{-1}\left(\frac{27}{2789}\right)+\right. \\
& \quad \tan ^{-1}\left(9 \times \frac{0.11}{32 \times 0.11^{4}+2 \times 0.11^{2}-1}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{8}{x}\right)+ \\
& \left.\quad \tan ^{-1}\left(\frac{12}{10441}\right)+\tan ^{-1}\left(4 \times \frac{0.11}{128 \times 0.11^{4}+8 \times 0.11^{2}+1}\right)\right)=1.63471
\end{aligned}
$$

Result:

$$
\frac{1}{\tan ^{-1}\left(\frac{8}{v}\right)+0.60433}=1.63471
$$

Plot:

Alternate forms:
$\frac{1}{\tan ^{-1}\left(\frac{8}{x}\right)+0.60433}=1.63471$
$\frac{1}{0.60433+\frac{1}{2} i\left(\log \left(1-\frac{8 i}{x}\right)-\log \left(1+\frac{8 i}{x}\right)\right)}=1.63471$

Alternate form assuming x is positive:
$\tan ^{-1}\left(\frac{8}{x}\right)=0.00739887$

Solution:

$x \approx 1081.23$

1081.23

From:

$$
\frac{1}{\tan ^{-1}\left(\frac{8}{x}\right)+0.60433}=1.63471
$$

Input interpretation:

$\frac{1}{\tan ^{-1}\left(\frac{8}{x}\right)+0.60433}=1.63471$

Plot:

Alternate forms:

$\frac{1}{\tan ^{-1}\left(\frac{8}{x}\right)+0.60433}=1.63471$
$\frac{1}{0.60433+\frac{1}{2} i\left(\log \left(1-\frac{8 i}{x}\right)-\log \left(1+\frac{8 i}{x}\right)\right)}=1.63471$
$\log (x)$ is the natural logarithm

Alternate form assuming \mathbf{x} is positive:
$\tan ^{-1}\left(\frac{8}{x}\right)=0.0073993$

Solution:

$x=8 \cot \left(\frac{120957057}{16347100000}\right)$

We obtain:
$x+123=8 \cot (120957057 / 16347100000)$
where 123 is a Lucas number

Input:

$x+123=8 \cot \left(\frac{120957057}{16347100000}\right)$

Plot:

Alternate forms:

$x+123-8 \cot \left(\frac{120957057}{16347100000}\right)=0$
$123+x=\frac{8 \cos \left(\frac{120957057}{16347100000}\right)}{\sin \left(\frac{120957057}{16347100000}\right)}$
$x+123=-\frac{8 i\left(e^{-(120957057 i) / 16347100000}+e^{(120957057 i) / 16347100000}\right)}{e^{-(120957057 i) / 16347100000}-e^{(120957057 i) / 16347100000}}$

Alternate form assuming x is real:
$x+123=-\frac{8 \sin \left(\frac{120957057}{8173550000}\right)}{\cos \left(\frac{120957057}{8173550000}\right)-1}$

Solution:

$x=8 \cot \left(\frac{120957057}{16347100000}\right)-123$

Input:

$$
-123+8 \cot \left(\frac{120957057}{16347100000}\right)
$$

Decimal approximation:

958.1639814611252295295671175801459252366435971826491007061...
$958.16398146 \ldots$ result very near to the rest mass of Eta prime meson 957.66

Property:

$-123+8 \cot \left(\frac{120957057}{16347100000}\right)$ is a transcendental number

Alternate forms:

$-123+\frac{8 \cos \left(\frac{120957057}{16347100000}\right)}{\sin \left(\frac{120957057}{16347100000}\right)}$
$-123-\frac{8 \sin \left(\frac{120957057}{8173550000}\right)}{\cos \left(\frac{120957057}{8173550000}\right)-1}$
$\csc \left(\frac{120957057}{16347100000}\right)\left(8 \cos \left(\frac{120957057}{16347100000}\right)-123 \sin \left(\frac{120957057}{16347100000}\right)\right)$

Alternative representations:

$-123+8 \cot \left(\frac{120957057}{16347100000}\right)=-123+8 i \operatorname{coth}\left(\frac{120957057 i}{16347100000}\right)$
$-123+8 \cot \left(\frac{120957057}{16347100000}\right)=-123+\frac{8}{\tan \left(\frac{120957057}{16347100000}\right)}$
$-123+8 \cot \left(\frac{120957057}{16347100000}\right)=-123-8 i \operatorname{coth}\left(-\frac{120957057 i}{16347100000}\right)$

Series representations:

$$
\begin{aligned}
& -123+8 \cot \left(\frac{120957057}{16347100000}\right)=-123+15818376851877600000 \\
& \sum_{k=-\infty}^{\infty} \frac{1}{14630609638101249-267227678410000000000 k^{2} \pi^{2}} \\
& -123+8 \cot \left(\frac{120957057}{16347100000}\right)=(-123-8 i)-16 i \sum_{k=1}^{\infty} q^{2 k} \\
& \text { for } q=e^{(120957057 i) / 16347100000} \\
& -123+8 \cot \left(\frac{120957057}{16347100000}\right)=-123-8 i \sum_{k=-\infty}^{\infty} e^{(120957057 i k) / 8173550000} \operatorname{sgn}(k)
\end{aligned}
$$

Integral representations:

$-123+8 \cot \left(\frac{120957057}{16347100000}\right)=-123-8 \int_{\frac{\pi}{2}}^{\frac{120057057}{16347100000} \csc ^{2}(t) d t}$
$-123+8 \cot \left(\frac{120957057}{16347100000}\right)=-123+\frac{16}{\pi} \int_{0}^{\infty} \frac{-1+t^{1-120957057 /(8173550000 \pi)}}{-1+t^{2}} d t$

Page 14

$\mathrm{Pi} / 2+2 \tan ^{\wedge}-1(1 / 4)+\tan ^{\wedge}-1(2 / 49)+\tan ^{\wedge}-1(3 / 232)+\tan ^{\wedge}-1(4 / 715)$

Input:

$\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)$

Exact Result:

$\frac{\pi}{2}+\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)$
(result in radians)

Decimal approximation:

2.120071996963767474857090963331024507872720014604534384095
(result in radians)
2.1200719969...

Alternate forms:

$\frac{1}{2}\left(\pi+\tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right)$
$\frac{\pi}{2}+\frac{1}{2} \tan ^{-1}\left(\frac{1206876324}{616464443}\right)$
$\frac{1}{2}\left(\pi+2\left(\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)\right)\right)$

Alternative representations:

$$
\begin{aligned}
& \frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)= \\
& \frac{\pi}{2}+2 \operatorname{sc}^{-1}\left(\left.\frac{1}{4} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{2}{49} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{3}{232} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{4}{715} \right\rvert\, 0\right) \\
& \frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)= \\
& \frac{\pi}{2}+2 \tan ^{-1}\left(1, \frac{1}{4}\right)+\tan ^{-1}\left(1, \frac{2}{49}\right)+\tan ^{-1}\left(1, \frac{3}{232}\right)+\tan ^{-1}\left(1, \frac{4}{715}\right) \\
& \frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)= \\
& \frac{\pi}{2}+2 \cot ^{-1}\left(\frac{1}{\frac{1}{4}}\right)+\cot ^{-1}\left(\frac{1}{\frac{2}{49}}\right)+\cot ^{-1}\left(\frac{1}{\frac{3}{232}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{715}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)= \\
& \frac{\pi}{2}+\sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 2^{-1-4 k}}{1+2 k}+\frac{(-1)^{k} 2^{1+2 k} \times 49^{-1-2 k}}{1+2 k}+\right. \\
& \left.\frac{(-1)^{k} 3^{1+2 k} \times 232^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 715^{-1-2 k}}{1+2 k}\right)
\end{aligned}
$$

$$
\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)=
$$

$$
\frac{\pi}{2}-\frac{1}{2} i \log \left(1+\frac{4 i}{715}\right)-\frac{1}{2} i \log \left(1+\frac{3 i}{232}\right)-\frac{1}{2} i \log \left(1+\frac{2 i}{49}\right)-i \log \left(1+\frac{i}{4}\right)+
$$

$$
\frac{5}{2} i \log (2)+\sum_{k=1}^{\infty}-\frac{i 2^{-1-3 k}\left(\left(4+\frac{16 i}{715}\right)^{k}+\left(4+\frac{3 i}{58}\right)^{k}+\left(4+\frac{8 i}{49}\right)^{k}+2(4+i)^{k}\right)}{k}
$$

$$
\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)=
$$

$$
\frac{\pi}{2}+5 \tan ^{-1}\left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{1}{2 k} i\left(\left(-i-z_{0}\right)^{k}-\left(i-z_{0}\right)^{k}\right)
$$

$$
\left(\left(\frac{4}{715}-z_{0}\right)^{k}+\left(\frac{3}{232}-z_{0}\right)^{k}+\left(\frac{2}{49}-z_{0}\right)^{k}+2\left(\frac{1}{4}-z_{0}\right)^{k}\right)\left(-i-z_{0}\right)^{-k}\left(i-z_{0}\right)^{-k}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)= \\
& \frac{\pi}{2}+\int_{0}^{1}\left(\frac{8}{16+t^{2}}+\frac{98}{2401+4 t^{2}}+\frac{696}{53824+9 t^{2}}+\frac{2860}{511225+16 t^{2}}\right) d t
\end{aligned}
$$

$$
\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)=
$$

$$
\begin{aligned}
& \frac{\pi}{2}+\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 2^{-3+4 s} \times 17^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right. \\
& \frac{i 49^{-1+2 s} \times 2405^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
& \frac{3 i 2^{-5+6 s} \times 29^{-1+2 s} \times 53833^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
&\left.\frac{i 715^{-1+2 s} \times 511241^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right) & +\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)= \\
\frac{\pi}{2}+\int_{-i \infty+\gamma}^{i \infty+\gamma}(& -\frac{i 2^{-3+4 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\frac{i\left(\frac{3}{29}\right)^{1-2 s} 2^{-5+6 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-1-2 s} \times 49^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \left.\frac{i 16^{-s} \times 715^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction:

$$
2+\frac{1}{8+\frac{1}{3+\frac{1}{21+\frac{1}{1+\frac{1}{9+\frac{1}{3+\frac{1}{15+\frac{1}{2+\frac{1}{1+\frac{1}{15+\frac{1}{9+\frac{1}{8+\frac{1}{1+\frac{1}{865+\frac{1}{4+\frac{1}{1+\frac{1}{6+\frac{1}{8+\frac{1}{1+\frac{1}{9+\frac{1}{n}}}}}}}}}}}}}}}}}}}}}
$$

$64\left(\left(\left(\mathrm{Pi} / 2+2 \tan ^{\wedge}-1(1 / 4)+\tan ^{\wedge}-1(2 / 49)+\tan ^{\wedge}-1(3 / 232)+\tan ^{\wedge}-1(4 / 715)\right)\right)\right)-11+1 /$ golden ratio

Where 11 is a Lucas number
Input:
$64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}$

Exact Result:

$\frac{1}{\phi}-11+64\left(\frac{\pi}{2}+\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)\right)$
(result in radians)

Decimal approximation:

125.3026417944310132390584084875512066215743901144959634442...
(result in radians)
125.302641794... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$$
\begin{aligned}
& \frac{1}{\phi}-11+32\left(\pi+\tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right) \\
& -11+\frac{2}{1+\sqrt{5}}+64\left(\frac{\pi}{2}+\frac{1}{2} \tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right) \\
& \frac{1}{\phi}-11+32 \pi+64 \tan ^{-1}\left(\frac{4}{715}\right)+64 \tan ^{-1}\left(\frac{3}{232}\right)+64 \tan ^{-1}\left(\frac{2}{49}\right)+128 \tan ^{-1}\left(\frac{1}{4}\right)
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}= \\
& -11+64\left(\frac{\pi}{2}+2 \operatorname{sc}^{-1}\left(\left.\frac{1}{4} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{2}{49} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{3}{232} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{4}{715} \right\rvert\, 0\right)\right)+\frac{1}{\phi} \\
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}= \\
& -11+64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(1, \frac{1}{4}\right)+\tan ^{-1}\left(1, \frac{2}{49}\right)+\tan ^{-1}\left(1, \frac{3}{232}\right)+\tan ^{-1}\left(1, \frac{4}{715}\right)\right)+\frac{1}{\phi} \\
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}= \\
& -11+64\left(\frac{\pi}{2}+2 \cot ^{-1}\left(\frac{1}{\frac{1}{4}}\right)+\cot ^{-1}\left(\frac{1}{\frac{2}{49}}\right)+\cot ^{-1}\left(\frac{1}{\frac{3}{232}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{75}}\right)\right)+\frac{1}{\phi}
\end{aligned}
$$

Series representations:

$$
\begin{gathered}
64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}= \\
-11+\frac{1}{\phi}+32 \pi+\sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 2^{5-4 k}}{1+2 k}+64\left(\frac{(-1)^{k} 2^{1+2 k} \times 49^{-1-2 k}}{1+2 k}+\right.\right. \\
\left.\left.\frac{(-1)^{k} 3^{1+2 k} \times 232^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 715^{-1-2 k}}{1+2 k}\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}= \\
& -11+\frac{1}{\phi}+32 \pi-32 i \log \left(1+\frac{4 i}{715}\right)-32 i \log \left(1+\frac{3 i}{232}\right)- \\
& 32 i \log \left(1+\frac{2 i}{49}\right)-64 i \log \left(1+\frac{i}{4}\right)+160 i \log (2)+ \\
& \sum_{k=1}^{\infty}-\frac{i 2^{5-4 k}\left(2^{1+k}(4+i)^{k}+\left(8+\frac{32 i}{715}\right)^{k}+\left(8+\frac{3 i}{29}\right)^{k}+\left(8+\frac{16 i}{49}\right)^{k}\right)}{k}
\end{aligned}
$$

$$
64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}=
$$

$$
-11+\frac{1}{\phi}+32 \pi+320 \tan ^{-1}\left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{1}{k} 32 i\left(\left(-i-z_{0}\right)^{k}-\left(i-z_{0}\right)^{k}\right)
$$

$$
\left(\left(\frac{4}{715}-z_{0}\right)^{k}+\left(\frac{3}{232}-z_{0}\right)^{k}+\left(\frac{2}{49}-z_{0}\right)^{k}+2\left(\frac{1}{4}-z_{0}\right)^{k}\right)\left(-i-z_{0}\right)^{-k}\left(i-z_{0}\right)^{-k}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}= \\
& \quad-11+\frac{1}{\phi}+32 \pi+\int_{0}^{1} 128\left(\frac{4}{16+t^{2}}+\frac{49}{2401+4 t^{2}}+\frac{348}{53824+9 t^{2}}+\frac{1430}{511225+16 t^{2}}\right) d t
\end{aligned}
$$

$$
64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}=
$$

$$
-11+\frac{2}{1+\sqrt{5}}+32 \pi+\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 2^{3+4 s} \times 17^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right.
$$

$$
\frac{32 i 49^{-1+2 s} \times 2405^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
3 i 2^{1+6 s} \times 29^{-1+2 s} \times 53833^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}
$$

$$
\left.\frac{64 i 715^{-1+2 s} \times 511241^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}\right) d s \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)-11+\frac{1}{\phi}= \\
& -11+\frac{1}{\phi}+32 \pi+ \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 2^{3+4 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\frac{i\left(\frac{3}{29}\right)^{1-2 s} 2^{1+6 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\right. \\
& \\
& \frac{i 2^{5-2 s} \times 49^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \\
& \left.\frac{i 4^{3-2 s} \times 715^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

Continued fraction:

$64\left(\left(\left(\mathrm{Pi} / 2+2 \tan ^{\wedge}-1(1 / 4)+\tan ^{\wedge}-1(2 / 49)+\tan ^{\wedge}-1(3 / 232)+\tan ^{\wedge}-1(4 / 715)\right)\right)\right)+4$
Where 4 is a Lucas number
Input:
$64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4$

Exact Result:

$4+64\left(\frac{\pi}{2}+\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)\right)$
(result in radians)

Decimal approximation:

$139.6846078056811183908538216531855685038540809346902005821 \ldots$
(result in radians)
$139.684607 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$4\left(1+8 \pi+8 \tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right)$
$4+64\left(\frac{\pi}{2}+\frac{1}{2} \tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right)$
$4+32 \pi+64 \tan ^{-1}\left(\frac{4}{715}\right)+64 \tan ^{-1}\left(\frac{3}{232}\right)+64 \tan ^{-1}\left(\frac{2}{49}\right)+128 \tan ^{-1}\left(\frac{1}{4}\right)$

Continued fraction:

Alternative representations:
$64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4=$

$$
4+64\left(\frac{\pi}{2}+2 \operatorname{sc}^{-1}\left(\left.\frac{1}{4} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{2}{49} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{3}{232} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{4}{715} \right\rvert\, 0\right)\right)
$$

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4= \\
& 4+64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(1, \frac{1}{4}\right)+\tan ^{-1}\left(1, \frac{2}{49}\right)+\tan ^{-1}\left(1, \frac{3}{232}\right)+\tan ^{-1}\left(1, \frac{4}{715}\right)\right)
\end{aligned}
$$

$$
64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4=
$$

$$
4+64\left(\frac{\pi}{2}+2 \cot ^{-1}\left(\frac{1}{\frac{1}{4}}\right)+\cot ^{-1}\left(\frac{1}{\frac{2}{49}}\right)+\cot ^{-1}\left(\frac{1}{\frac{3}{232}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{715}}\right)\right)
$$

Series representations:

$$
\begin{array}{r}
64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4= \\
4+32 \pi+\sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 2^{5-4 k}}{1+2 k}+64\left(\frac{(-1)^{k} 2^{1+2 k} \times 49^{-1-2 k}}{1+2 k}+\right.\right. \\
\left.\left.\frac{(-1)^{k} 3^{1+2 k} \times 232^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 715^{-1-2 k}}{1+2 k}\right)\right)
\end{array}
$$

$$
64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4=
$$

$$
4+32 \pi-32 i \log \left(1+\frac{4 i}{715}\right)-32 i \log \left(1+\frac{3 i}{232}\right)-32 i \log \left(1+\frac{2 i}{49}\right)-64 i \log \left(1+\frac{i}{4}\right)+
$$

$$
160 i \log (2)+\sum_{k=1}^{\infty}-\frac{i 2^{5-3 k}\left(\left(4+\frac{16 i}{715}\right)^{k}+\left(4+\frac{3 i}{58}\right)^{k}+\left(4+\frac{8 i}{49}\right)^{k}+2(4+i)^{k}\right)}{k}
$$

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4= \\
& 4+32 \pi+320 \tan ^{-1}\left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{1}{k} 32 i\left(\left(-i-z_{0}\right)^{k}-\left(i-z_{0}\right)^{k}\right) \\
& \quad\left(\left(\frac{4}{715}-z_{0}\right)^{k}+\left(\frac{3}{232}-z_{0}\right)^{k}+\left(\frac{2}{49}-z_{0}\right)^{k}+2\left(\frac{1}{4}-z_{0}\right)^{k}\right)\left(-i-z_{0}\right)^{-k}\left(i-z_{0}\right)^{-k}
\end{aligned}
$$

for $\left(i z_{0} \& \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4= \\
& 4+32 \pi+\int_{0}^{1} 128\left(\frac{4}{16+t^{2}}+\frac{49}{2401+4 t^{2}}+\frac{348}{53824+9 t^{2}}+\frac{1430}{511225+16 t^{2}}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4= \\
& 4+32 \pi+ \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 2^{3+4 s} \times 17^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right. \\
& \frac{32 i 49^{-1+2 s} \times 2405^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{3 i 2^{1+6 s} \times 29^{-1+2 s} \times 53833^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
&\left.\frac{64 i 715^{-1+2 s} \times 511241^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 64\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+4=4+32 \pi+ \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 2^{3+4 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\frac{i\left(\frac{3}{29}\right)^{1-2 s} 2^{1+6 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\right. \\
& \frac{i 2^{5-2 s} \times 49^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
&\left.\frac{i 4^{3-2 s} \times 715^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$1 / 10^{\wedge} 52\left(\left(\left(1 / 2\left(\left(\left(\mathrm{Pi} / 2+2 \tan ^{\wedge}-1(1 / 4)+\tan ^{\wedge}-1(2 / 49)+\tan ^{\wedge}-1(3 / 232)+\tan ^{\wedge}-\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.1(4 / 715))))+4 / 10^{\wedge} 2+55 / 10^{\wedge} 4\right)\right)\right)$
Where 4 is a Lucas number and 55 is a Fibonacci number

Input:

$\frac{1}{10^{52}}\left(\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}\right)$

Exact Result:

$\frac{91}{2000}+\frac{1}{2}\left(\frac{\pi}{2}+\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)\right)$
100
(result in radians)

Decimal approximation:

$1.1055359984818837374285454816655122539363600073022671 \ldots \times 10^{-52}$
(result in radians)
$1.10553599 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternate forms:

$$
91+500 \pi+1000 \tan ^{-1}\left(\frac{37101}{624722}\right)+2000 \cot ^{-1}(4)
$$

2000
$\frac{91}{2000}+\frac{1}{2}\left(\frac{\pi}{2}+\frac{1}{2} \tan ^{-1}\left(\frac{1206876324}{61646443}\right)\right)$

100
$91+500 \pi+1000 \tan ^{-1}\left(\frac{4}{715}\right)+1000 \tan ^{-1}\left(\frac{3}{232}\right)+1000 \tan ^{-1}\left(\frac{2}{49}\right)+2000 \tan ^{-1}\left(\frac{1}{4}\right)$
2000

$$
\cot ^{-1}(x) \text { is the inverse cotangent function }
$$

Continued fraction:

$9045386141864170685714859845338243105426813297851533+\underline{1}$

Alternative representations:

$$
\begin{aligned}
& \frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{\frac{10^{52}}{2}\left(\frac{\pi}{2}+2 \operatorname{sc}^{-1}\left(\left.\frac{1}{4} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{2}{49} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{3}{232} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{4}{715} \right\rvert\, 0\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}} \\
& 10^{52}
\end{aligned}
$$

$$
\frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}=
$$

$$
\frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(1, \frac{1}{4}\right)+\tan ^{-1}\left(1, \frac{2}{49}\right)+\tan ^{-1}\left(1, \frac{3}{232}\right)+\tan ^{-1}\left(1, \frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}
$$

$$
\frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}=
$$

$$
\frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \cot ^{-1}\left(\frac{1}{\frac{1}{4}}\right)+\cot ^{-1}\left(\frac{\frac{1}{\frac{2}{49}}}{4}\right)+\cot ^{-1}\left(\frac{1}{\frac{3}{232}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{715}}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}
$$

Series representations:

$$
\left.\begin{array}{l}
\frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}= \\
\frac{91}{2000}+ \\
\frac{\pi}{400}+ \\
\sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 4^{-27-2 k}}{2220446049250313080847263336181640625(1+2 k)}+\right. \\
\frac{(-1)^{k} 2^{1+2 k} \times 49^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 3^{1+2 k} \times 232^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 715^{-1-2 k}}{1+2 k} \\
200
\end{array}\right) .
$$

$\frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}=$
$2000+$ $\frac{\pi}{400}+$ $\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{-53-2 k} \times 5^{-52-k}\left(1+\frac{\sqrt{\frac{21}{5}}}{2}\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+$

$$
\begin{aligned}
& \left(\frac{\left(-\frac{1}{5}\right)^{k} 4^{1+2 k}\left(49\left(1+\frac{\sqrt{\frac{12021}{5}}}{49}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+\right. \\
& \frac{\left(-\frac{1}{5}\right)^{k} 3^{1+2 k}\left(116\left(1+\frac{\sqrt{\frac{67289}{5}}}{116}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
\end{aligned}
$$

$$
\frac{\left.(-1)^{k} 5^{-1-3 k} \times 8^{1+2 k}\left(143\left(1+\frac{\sqrt[3]{\frac{284021}{5}}}{715}\right)\right)^{-1-2 k} F_{1+2 k}\right)}{1+2 k}
$$

$$
\begin{aligned}
& \frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}= \\
& \frac{91}{2000}+ \\
& \frac{\pi}{400}+ \\
& \frac{\tan ^{-1}\left(z_{0}\right)}{4000}+ \\
& \sum_{k=1}^{\infty}\left(i\left(\left(-i-z_{0}\right)^{k}-\left(i-z_{0}\right)^{k}\right)\left(\left(\frac{4}{715}-z_{0}\right)^{k}+\left(\frac{3}{232}-z_{0}\right)^{k}+\left(\frac{2}{49}-z_{0}\right)^{k}+2\left(\frac{1}{4}-z_{0}\right)^{k}\right)\right. \\
& \left.\left(-i-z_{0}\right)^{-k}\left(i-z_{0}\right)^{-k}\right) / \\
& (400 \\
& k)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}= \\
& \frac{91}{2000}+ \\
& \frac{\pi}{400}+ \\
& \int_{0}^{1}\left(\left(295629283069120+2474267015600 t^{2}+1421487607 t^{4}+83112 t^{6}\right) /\right. \\
& (100 \\
& \left(16+t^{2}\right)\left(2401+4 t^{2}\right) \\
& \left.\left.\left(53824+9 t^{2}\right)\left(511225+16 t^{2}\right)\right)\right) d t
\end{aligned}
$$

$$
\frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}=
$$

$$
\frac{91}{2000}+
$$

$$
\overline{400}+
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i\left(\frac{3}{29}\right)^{1-2 s} 4^{-29+3 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2220446049250313080847263336181640625 \pi \Gamma\left(\frac{3}{2}-s\right)}-\right.
$$

$$
i 16^{-14+s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)
$$

$$
2220446049250313080847263336181640625 \pi \Gamma\left(\frac{3}{2}-s\right)-
$$

$$
\frac{i 4^{-27-s} \times 49^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2220446049250313080847263336181640625 \pi \Gamma\left(\frac{3}{2}-s\right)}-
$$

$$
\left.\frac{i 2^{-53-4 s} \times 5^{-53+2 s} \times 143^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}\right) d s \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{aligned}
& \frac{\frac{1}{2}\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+\frac{4}{10^{2}}+\frac{55}{10^{4}}}{10^{52}}= \\
& 2000+ \\
& \overline{400}+ \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 16^{-14+s} \times 17^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2220446049250313080847263336181640625 \pi^{3 / 2}}-\right. \\
& i 5^{-52-s} \times 49^{-1+2 s} \times 481^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2} \\
& 18014398509481984 \pi^{3 / 2} \\
& \frac{3 i 4^{-29+3 s} \times 29^{-1+2 s} \times 53833^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2220446049250313080847263336181640625 \pi^{3 / 2}}- \\
& \left.\frac{i 5^{-53+2 s} \times 143^{-1+2 s} \times 511241^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{9007199254740992 \pi^{3 / 2}}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$(2 \operatorname{sqrt729})\left(\left(\left(\mathrm{Pi} / 2+2 \tan ^{\wedge}-1(1 / 4)+\tan ^{\wedge}-1(2 / 49)+\tan ^{\wedge}-1(3 / 232)+\tan ^{\wedge}-1(4 / 715)\right)\right)\right)^{\wedge} 5-$
521-47-11-4-golden ratio
Where 521, 47, 11 and 4 are Lucas numbers

Input:

$(2 \sqrt{729})\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)^{5}-$
$521-47-11-4-\phi$
$\tan ^{-1}(x)$ is the inverse tangent function ϕ is the golden ratio

Exact Result:

$-\phi-583+54\left(\frac{\pi}{2}+\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)\right)^{5}$
(result in radians)

Decimal approximation:

$1728.228455049695161341666547831448623410007968195432915537 \ldots$
(result in radians)
1728.228455...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the Gross-

Zagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternate forms:

$-\phi-583+\frac{27}{16}\left(\pi+\tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right)^{5}$
$-583+\frac{1}{2}(-1-\sqrt{5})+54\left(\frac{\pi}{2}+\frac{1}{2} \tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right)^{5}$
$\frac{1}{2}(-1167-\sqrt{5})+54\left(\frac{\pi}{2}+\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)\right)^{5}$

Continued fraction:

$$
1728+\frac{1}{4+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{6+\frac{1}{2+\frac{1}{1+\frac{1}{1+\frac{1}{2+\frac{1}{4+\frac{1}{1+\frac{1}{1+\frac{1}{5+\frac{1}{4+\frac{1}{2+\frac{1}{15+\frac{1}{1+\frac{1}{34+\frac{1}{n}}}}}}}}}}}}}}}}}}} .}
$$

Alternative representations:

$$
\begin{aligned}
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)^{5} 2 \sqrt{729}- \\
& \quad 521-47-11-4-\phi= \\
& \quad-583-\phi+2\left(\frac{\pi}{2}+2 \operatorname{sc}^{-1}\left(\left.\frac{1}{4} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{2}{49} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{3}{232} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{4}{715} \right\rvert\, 0\right)\right)^{5} \sqrt{729} \\
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)^{5} 2 \sqrt{729}- \\
& \quad 521-47-11-4-\phi=-583-\phi+ \\
& \quad 2\left(\frac{\pi}{2}+2 \tan ^{-1}\left(1, \frac{1}{4}\right)+\tan ^{-1}\left(1, \frac{2}{49}\right)+\tan ^{-1}\left(1, \frac{3}{232}\right)+\tan ^{-1}\left(1, \frac{4}{715}\right)\right)^{5} \sqrt{729}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)^{5} 2 \sqrt{729}- \\
& 521-47-11-4-\phi= \\
& -583-\phi+2\left(\frac{\pi}{2}+2 \cot ^{-1}\left(\frac{1}{\frac{1}{4}}\right)+\cot ^{-1}\left(\frac{1}{\frac{2}{49}}\right)+\cot ^{-1}\left(\frac{1}{\frac{3}{232}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{715}}\right)\right)^{5} \sqrt{729}
\end{aligned}
$$

$(64 \mathrm{Pi})^{*}\left(\left(\left(\mathrm{Pi} / 2+2 \tan ^{\wedge}-1(1 / 4)+\tan ^{\wedge}-1(2 / 49)+\tan ^{\wedge}-1(3 / 232)+\tan ^{\wedge}-\right.\right.\right.$
$1(4 / 715))))+55+$ golden ratio
Where 55 is a Fibonacci number

Input:

(64 $\pi)\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right)+55+\phi$

Exact Result:

$\phi+55+64 \pi\left(\frac{\pi}{2}+\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)\right)$
(result in radians)

Decimal approximation:

482.8838010762900122929804629623615176869810865992452313332...
(result in radians)
482.88380107... result very near to Holographic Ricci dark energy model, where

$$
\chi_{\mathrm{RDE}}^{2}=483.130
$$

Alternate forms:

$\phi+55+32 \pi\left(\pi+\tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right)$
$55+\frac{1}{2}(1+\sqrt{5})+64 \pi\left(\frac{\pi}{2}+\frac{1}{2} \tan ^{-1}\left(\frac{1206876324}{616464443}\right)\right)$
$\phi+55+32 \pi^{2}+64 \pi\left(\tan ^{-1}\left(\frac{4}{715}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+2 \tan ^{-1}\left(\frac{1}{4}\right)\right)$

Continued fraction:

Alternative representations:

$$
\begin{aligned}
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi= \\
& \quad 55+\phi+64 \pi\left(\frac{\pi}{2}+2 \operatorname{sc}^{-1}\left(\left.\frac{1}{4} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{2}{49} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{3}{232} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{4}{715} \right\rvert\, 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi= \\
& \quad 55+\phi+64 \pi\left(\frac{\pi}{2}+2 \tan ^{-1}\left(1, \frac{1}{4}\right)+\tan ^{-1}\left(1, \frac{2}{49}\right)+\tan ^{-1}\left(1, \frac{3}{232}\right)+\tan ^{-1}\left(1, \frac{4}{715}\right)\right)
\end{aligned}
$$

$$
\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi=
$$

$$
55+\phi+64 \pi\left(\frac{\pi}{2}+2 \cot ^{-1}\left(\frac{1}{\frac{1}{4}}\right)+\cot ^{-1}\left(\frac{1}{\frac{2}{49}}\right)+\cot ^{-1}\left(\frac{1}{\frac{3}{232}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{715}}\right)\right)
$$

Series representations:

$$
\begin{gathered}
\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi= \\
55+\phi+32 \pi^{2}+\sum_{k=0}^{\infty}\left(\frac{(-1)^{k} 2^{5-4 k} \pi}{1+2 k}+64\left(\frac{(-1)^{k} 2^{1+2 k} \times 49^{-1-2 k}}{1+2 k}+\right.\right. \\
\left.\left.\frac{(-1)^{k} 3^{1+2 k} \times 232^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 715^{-1-2 k}}{1+2 k}\right) \pi\right)
\end{gathered}
$$

$$
\begin{aligned}
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi= \\
& 55+\phi+32 \pi^{2}-32 i \pi \log \left(1+\frac{4 i}{715}\right)-32 i \pi \log \left(1+\frac{3 i}{232}\right)- \\
& 32 i \pi \log \left(1+\frac{2 i}{49}\right)-64 i \pi \log \left(1+\frac{i}{4}\right)+160 i \pi \log (2)+ \\
& \sum_{k=1}^{\infty}-\frac{i 2^{5-4 k}\left(2^{1+k}(4+i)^{k}+\left(8+\frac{32 i}{715}\right)^{k}+\left(8+\frac{3 i}{29}\right)^{k}+\left(8+\frac{16 i}{49}\right)^{k}\right) \pi}{k} \\
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi= \\
& 55+\phi+32 \pi^{2}+320 \pi \tan ^{-1}\left(z_{0}\right)+\sum_{k=1}^{\infty} \frac{1}{k} 32 i \pi\left(\left(-i-z_{0}\right)^{k}-\left(i-z_{0}\right)^{k}\right) \\
& \quad\left(\left(\frac{4}{715}-z_{0}\right)^{k}+\left(\frac{3}{232}-z_{0}\right)^{k}+\left(\frac{2}{49}-z_{0}\right)^{k}+2\left(\frac{1}{4}-z_{0}\right)^{k}\right)\left(-i-z_{0}\right)^{-k}\left(i-z_{0}\right)^{-k}
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi=55+\phi+ \\
& \quad 32 \pi^{2}+\int_{0}^{1} 128 \pi\left(\frac{4}{16+t^{2}}+\frac{49}{2401+4 t^{2}}+\frac{348}{53824+9 t^{2}}+\frac{1430}{511225+16 t^{2}}\right) d t
\end{aligned}
$$

$$
\left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi=
$$

$$
\frac{111}{2}+\frac{\sqrt{5}}{2}+32 \pi^{2}+\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 2^{3+4 s} \times 17^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\sqrt{\pi}}-\right.
$$

$$
\frac{32 i 49^{-1+2 s} \times 2405^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\sqrt{\pi}}-
$$

$$
\frac{3 i 2^{1+6 s} \times 29^{-1+2 s} \times 53833^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\sqrt{\pi}}-
$$

$$
\left.\frac{64 i 715^{-1+2 s} \times 511241^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\sqrt{\pi}}\right) d s \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{aligned}
& \left(\frac{\pi}{2}+2 \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{49}\right)+\tan ^{-1}\left(\frac{3}{232}\right)+\tan ^{-1}\left(\frac{4}{715}\right)\right) 64 \pi+55+\phi= \\
& \frac{111}{2}+\frac{\sqrt{5}}{2}+32 \pi^{2}+ \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 2^{3+4 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}-\frac{i\left(\frac{3}{29}\right)^{1-2 s} 2^{1+6 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right. \\
& \\
& \frac{i 2^{5-2 s} \times 49^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}- \\
& \\
& \left.\quad \frac{i 4^{3-2 s} \times 715^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\Gamma\left(\frac{3}{2}-s\right)}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$\tan ^{\wedge}-1(2 / 11)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(6 / 667)+\tan ^{\wedge}-1(8 / 2081)+2\left(\tan ^{\wedge}-\right.$
$1(1 /(1 * 7)))+\tan ^{\wedge}-1(1 /(2 * 19))+\tan ^{\wedge}-1(1 /(3 * 39))$

Input:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
& \quad \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
& \quad \tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)
\end{aligned}
$$

(result in radians)

Decimal approximation:

$0.540532460988462138862232938477006807739679436496088200084 \ldots$

(result in radians)

$0.5405324 \ldots$

Alternate forms:

$\frac{1}{2} \tan ^{-1}\left(\frac{16146260097}{8606653904}\right)$

$$
\begin{aligned}
& \frac{1}{2} i \log \left(1-\frac{8 i}{2081}\right)-\frac{1}{2} i \log \left(1+\frac{8 i}{2081}\right)+\frac{1}{2} i \log \left(1-\frac{i}{117}\right)- \\
& \quad \frac{1}{2} i \log \left(1+\frac{i}{117}\right)+\frac{1}{2} i \log \left(1-\frac{6 i}{667}\right)-\frac{1}{2} i \log \left(1+\frac{6 i}{667}\right)+ \\
& \frac{1}{2} i \log \left(1-\frac{i}{38}\right)-\frac{1}{2} i \log \left(1+\frac{i}{38}\right)+\frac{1}{2} i \log \left(1-\frac{4 i}{137}\right)-\frac{1}{2} i \log \left(1+\frac{4 i}{137}\right)+ \\
& i \log \left(1-\frac{i}{7}\right)-i \log \left(1+\frac{i}{7}\right)+\frac{1}{2} i \log \left(1-\frac{2 i}{11}\right)-\frac{1}{2} i \log \left(1+\frac{2 i}{11}\right)
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Continued fraction:

Alternative representations:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+ \\
& \tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)=2 \operatorname{sc}^{-1}\left(\left.\frac{1}{7} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{2}{11} \right\rvert\, 0\right)+ \\
& \operatorname{sc}^{-1}\left(\left.\frac{1}{38} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{1}{117} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{6}{667} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{8}{2081} \right\rvert\, 0\right) \\
& \tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
& \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)= \\
& 2 \tan ^{-1}\left(1, \frac{1}{7}\right)+\tan ^{-1}\left(1, \frac{2}{11}\right)+\tan ^{-1}\left(1, \frac{1}{38}\right)+\tan ^{-1}\left(1, \frac{1}{117}\right)+ \\
& \quad \tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{6}{667}\right)+\tan ^{-1}\left(1, \frac{8}{2081}\right) \\
& \tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+ \\
& 2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)=2 \cot ^{-1}\left(\frac{1}{\frac{1}{7}}\right)+\cot ^{-1}\left(\frac{1}{\frac{2}{11}}\right)+ \\
& \cot ^{-1}\left(\frac{1}{\frac{1}{38}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{117}}\right)+\cot ^{-1}\left(\frac{1}{\frac{4}{137}}\right)+\cot ^{-1}\left(\frac{1}{\frac{6}{667}}\right)+\cot ^{-1}\left(\frac{1}{\frac{8}{2081}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
& \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)= \\
& \sum_{k=0}^{\infty}\left(\frac{2(-1)^{k} 7^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 2^{1+2 k} \times 11^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\right. \\
& \left.\quad \frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 6^{1+2 k} \times 667^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
& \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)= \\
& -\frac{1}{2} i \log \left(\frac{1}{256}+\frac{i}{66592}\right)-\frac{1}{2} i \log \left(1+\frac{i}{117}\right)-\frac{1}{2} i \log \left(1+\frac{6 i}{667}\right)- \\
& \frac{1}{2} i \log \left(1+\frac{i}{38}\right)-\frac{1}{2} i \log \left(1+\frac{4 i}{137}\right)-i \log \left(1+\frac{i}{7}\right)- \\
& \frac{1}{2} i \log \left(1+\frac{2 i}{11}\right)+\sum_{k=1}^{\infty}-\frac{1}{k} i 2^{-1-k}\left(\left(1+\frac{8 i}{2081}\right)^{k}+\left(1+\frac{i}{117}\right)^{k}+\right. \\
& \left.\quad\left(1+\frac{6 i}{667}\right)^{k}+\left(1+\frac{i}{38}\right)^{k}+\left(1+\frac{4 i}{137}\right)^{k}+2\left(1+\frac{i}{7}\right)^{k}+\left(1+\frac{2 i}{11}\right)^{k}\right)
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
\tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)= \\
8 \tan ^{-1}\left(z_{0}\right)+ & \sum_{k=1}^{\infty}\left(\frac { 1 } { 2 } i \left(\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{8}{2081}-z_{0}\right)^{k}}{k}+\right.\right. \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{117}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{6}{667}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{38}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{4}{137}-z_{0}\right)^{k}}{k}+ \\
\left.\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2}{11}-z_{0}\right)^{k}}{k}\right)+ \\
\left.i\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{7}-z_{0}\right)^{k}\right) \\
k
\end{array}\right)+1
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
& \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)= \\
& \int_{0}^{1}\left(\frac{14}{49+t^{2}}+\frac{38}{1444+t^{2}}+\frac{117}{13689+t^{2}}+\frac{22}{121+4 t^{2}}+\right. \\
& \left.\quad \frac{548}{18769+16 t^{2}}+\frac{4002}{444889+36 t^{2}}+\frac{16648}{4330561+64 t^{2}}\right) d t
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2}{11}\right)+ \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
& \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}(-\frac{i 2^{-1-s} \times 7^{-1+2 s} \times 25^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{i 11^{-1+2 s} \times 125^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \times 1445^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{i 2^{-2-s} \times 117^{-1+2 s} \times 6845^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{3 i 667^{-1+2 s} \times 18785^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
&\left.\frac{2 i 2081^{-1+2 s} \times 4330625^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}\right) d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{2}{11}\right)+ \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
& \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)= \\
& \int_{-i \infty+\gamma}^{i \infty+\gamma}(-\frac{i\left(\frac{3}{667}\right)^{1-2 s} 2^{-1-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\frac{i 7^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-1-2 s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 117^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{4 \pi \Gamma\left(\frac{3}{2}-s\right)}-\frac{16^{-s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{}- \\
& \frac{i 2^{1-6 s} \times 2081^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)} d s \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\left(\left(\left(\tan \wedge-1(2 / 11)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(6 / 667)+\tan ^{\wedge}-1(8 / 2081)+2\left(\tan ^{\wedge}-\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.\left.1\left(1 /\left(1^{*} 7\right)\right)\right)+\tan ^{\wedge}-1\left(1 /\left(2^{*} 19\right)\right)+\tan ^{\wedge}-1\left(1 /\left(3^{*} 39\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

Input:

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$e^{\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)}$
(result in radians)

Decimal approximation:

1.716920812194674850257720824221583443513212138596577877343
(result in radians)
1.716920812...

Alternate forms:

$e^{1 / 2 \tan ^{-1}(16146260097 / 8606653904)}$
$\left(\frac{8606653904}{18296890625}+\frac{16146260097 i}{18296890625}\right)^{-i / 2}$

Alternative representations:

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(2 \operatorname{sc}^{-1}\left(\left.\frac{1}{7} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{2}{11} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{1}{38} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{1}{117} \right\rvert\, 0\right)+\right. \\
& \left.\quad \operatorname{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+\mathrm{sc}^{-1}\left(\left.\frac{6}{667} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{8}{2081} \right\rvert\, 0\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(2 \tan ^{-1}\left(1, \frac{1}{7}\right)+\tan ^{-1}\left(1, \frac{2}{11}\right)+\tan ^{-1}\left(1, \frac{1}{38}\right)+\tan ^{-1}\left(1, \frac{1}{117}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{6}{667}\right)+\tan ^{-1}\left(1, \frac{8}{2081}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(2 \cot ^{-1}\left(\frac{1}{\frac{1}{7}}\right)+\cot ^{-1}\left(\frac{1}{\frac{2}{11}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{38}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{117}}\right)+\right. \\
& \left.\cot ^{-1}\left(\frac{1}{\frac{4}{137}}\right)+\cot ^{-1}\left(\frac{1}{\frac{6}{667}}\right)+\cot ^{-1}\left(\frac{1}{\frac{8}{2081}}\right)\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(\sum _ { k = 0 } ^ { \infty } \left(\frac{2(-1)^{k} 7^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 2^{1+2 k} \times 11^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\right.\right. \\
& \quad \frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+ \\
& \left.\left.\quad \frac{(-1)^{k} 6^{1+2 k} \times 667^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(8 \tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty}\left(\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{8}{2081}-z_{0}\right)^{k}}{k}+\right.\right. \\
& \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{117}-z_{0}\right)^{k}}{k}+ \\
& \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{6}{667}-z_{0}\right)^{k}}{k}+ \\
& \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{38}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{4}{137}-z_{0}\right)^{k}}{k}+ \\
& \\
& \left.\quad \frac{\left.\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2}{11}-z_{0}\right)^{k}\right)}{k}\right)+ \\
& \left.i \sum_{k=1}^{\infty} \frac{\left.\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{7}-z_{0}\right)^{k}\right)}{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 4^{1+2 k}\left(11\left(1+\frac{\sqrt[3]{\frac{69}{5}}}{11}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+\right. \\
& \frac{\left(-\frac{1}{5}\right)^{k} 2^{2+2 k}\left(7\left(1+\frac{\sqrt{249}}{7}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k}\left(19\left(1+\frac{\sqrt{\frac{1806}{5}}}{19}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k} 2^{1+2 k}\left(117\left(1+\frac{\sqrt{\frac{68449}{5}}}{117}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k} 8^{1+2 k}\left(137\left(1+\frac{\sqrt{\frac{93909}{5}}}{137}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k} 12^{1+2 k}\left(667\left(1+\frac{\sqrt{\frac{2224589}{5}}}{667}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left.\left(-\frac{1}{5}\right)^{k} 16^{1+2 k}\left(2081\left(1+\frac{\sqrt{\frac{21653061}{5}}}{2081}\right)\right)^{-1-2 k} F_{1+2 k}\right)}{1+2 k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(\int _ { 0 } ^ { 1 } \left(\frac{14}{49+t^{2}}+\frac{38}{1444+t^{2}}+\frac{117}{13689+t^{2}}+\frac{22}{121+4 t^{2}}+\right.\right. \\
& \left.\left.\quad \frac{548}{18769+16 t^{2}}+\frac{4002}{444889+36 t^{2}}+\frac{16648}{4330561+64 t^{2}}\right) d t\right)
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)\right.+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+ \\
&\left.\tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(-\frac{i 2^{-1-s} \times 7^{-1+2 s} \times 25^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right.\right. \\
& \frac{i 11^{-1+2 s} \times 125^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \times 1445^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{i 2^{-2-s} \times 117^{-1+2 s} \times 6845^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{i 137^{-1+2 s} \times 18785^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{2 i 667^{-1+2 s} \times 444925^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
&\left.\left.\frac{2 i 2081^{-1+2 s} \times 4330625^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}\right) d s\right) \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{8}{2081}\right)+2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)= \\
& \exp \left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(-\frac{i\left(\frac{3}{667}\right)^{1-2 s} 2^{-1-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\right.\right. \\
& \\
& \quad \frac{i 7^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2 \pi \Gamma\left(\frac{3}{2}-s\right)}-\frac{i 2^{-1-2 s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \quad \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \left.\left.\quad \frac{i 117^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{4 \pi \Gamma\left(\frac{3}{2}-s\right)}-\frac{i 16^{-s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi 2^{1-6 s} \times 2081^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}\right) d s\right) \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$10^{\wedge} 2^{*} \exp \left(\left(\left(\left(\tan ^{\wedge}-1(2 / 11)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(6 / 667)+\tan ^{\wedge}-1(8 / 2081)+2\left(\tan ^{\wedge}-\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.1(1 /(1 * 7)))+\tan ^{\wedge}-1(1 /(2 * 19))+\tan ^{\wedge}-1(1 /(3 * 39))\right)\right)\right)\right)-29-\mathrm{Pi}$
Where 29 is a Lucas number

Input:

$$
\begin{gathered}
10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi
\end{gathered}
$$

Exact Result:

$$
\begin{aligned}
& 100 \exp \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)-29-\pi
\end{aligned}
$$

(result in radians)

Decimal approximation:

139.5504885658776917873094390388788414671240444602826819133
(result in radians)
$139.550488 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$-29-\pi+100 e^{1 / 2 \tan ^{-1}(16146260097 / 8606653904)}$

$$
-29+4 \times 25^{1+(3 i) / 2}\left(\frac{8606653904}{1171001}+\frac{16146260097 i}{1171001}\right)^{-i / 2}-\pi
$$

$$
100 \exp \left(\frac{1}{2} i\left(\log \left(1-\frac{8 i}{2081}\right)-\log \left(1+\frac{8 i}{2081}\right)\right)+\right.
$$

$$
\begin{aligned}
& \frac{1}{2} i\left(\log \left(1-\frac{i}{117}\right)-\log \left(1+\frac{i}{117}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{6 i}{667}\right)-\log \left(1+\frac{6 i}{667}\right)\right)+ \\
& \frac{1}{2} i\left(\log \left(1-\frac{i}{38}\right)-\log \left(1+\frac{i}{38}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{4 i}{137}\right)-\log \left(1+\frac{4 i}{137}\right)\right)+ \\
& \left.i\left(\log \left(1-\frac{i}{7}\right)-\log \left(1+\frac{i}{7}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{2 i}{11}\right)-\log \left(1+\frac{2 i}{11}\right)\right)\right)-29-\pi
\end{aligned}
$$

$\log (x)$ is the natural logarithm

Continued fraction:

$$
-29+4 \times 25^{1+(3 i) / 2}\left(\frac{8606653904}{1171001}+\frac{16146260097 i}{1171001}\right)^{-i / 2}-\pi+\frac{1}{100+\underline{1}}
$$

(using the Hurwitz expansion)

Alternative representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi= \\
& -29-\pi+\exp \left(2 \tan ^{-1}\left(1, \frac{1}{7}\right)+\tan ^{-1}\left(1, \frac{2}{11}\right)+\tan ^{-1}\left(1, \frac{1}{38}\right)+\tan ^{-1}\left(1, \frac{1}{117}\right)+\right. \\
& \left.\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{6}{667}\right)+\tan ^{-1}\left(1, \frac{8}{2081}\right)\right) 10^{2}
\end{aligned}
$$

$$
10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.
$$

$$
\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi=
$$

$$
-29-\pi+\exp \left(i\left(\log \left(1-\frac{i}{7}\right)-\log \left(1+\frac{i}{7}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{2 i}{11}\right)-\log \left(1+\frac{2 i}{11}\right)\right)+\right.
$$

$$
\frac{1}{2} i\left(\log \left(1-\frac{i}{38}\right)-\log \left(1+\frac{i}{38}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{i}{117}\right)-\log \left(1+\frac{i}{117}\right)\right)+
$$

$$
\frac{1}{2} i\left(\log \left(1-\frac{4 i}{137}\right)-\log \left(1+\frac{4 i}{137}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{6 i}{667}\right)-\log \left(1+\frac{6 i}{667}\right)\right)+
$$

$$
\left.\frac{1}{2} i\left(\log \left(1-\frac{8 i}{2081}\right)-\log \left(1+\frac{8 i}{2081}\right)\right)\right) 10^{2}
$$

Series representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi= \\
& -29+100 \exp \left(\sum _ { k = 0 } ^ { \infty } \left(\frac{2(-1)^{k} 7^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 2^{1+2 k} \times 11^{-1-2 k}}{1+2 k}+\right.\right. \\
& \frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+ \\
& \left.\left.\frac{(-1)^{k} 6^{1+2 k} \times 667^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right)\right)-\pi
\end{aligned}
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\right. \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+ \\
&\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi= \\
&-29+100 \exp \left(8 \tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty}\left(\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{8}{2081}-z_{0}\right)^{k}}{k}+\right.\right. \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{117}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{6}{667}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{38}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{4}{137}-z_{0}\right)^{k}}{k}+ \\
&\left.\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2}{11}-z_{0}\right)^{k}}{k}\right)+ \\
&\left.i \sum_{k=1}^{\infty} \frac{\left.\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{7}-z_{0}\right)^{k}\right)-\pi}{k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi= \\
& -29+100 \exp \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 4^{1+2 k}\left(11\left(1+\frac{\sqrt[3]{\frac{69}{5}}}{11}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+\right. \\
& \frac{\left(-\frac{1}{5}\right)^{k} 2^{2+2 k}\left(7\left(1+\frac{\sqrt{\frac{249}{5}}}{7}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k}\left(19\left(1+\frac{\sqrt{\frac{1806}{5}}}{19}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k} 2^{1+2 k}\left(117\left(1+\frac{\sqrt{\frac{68449}{5}}}{117}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k} 8^{1+2 k}\left(137\left(1+\frac{\sqrt{\frac{93909}{5}}}{137}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \left.\left.\frac{\left(-\frac{1}{5}\right)^{k} 12^{1+2 k}\left(6 6 7 \left(1+\frac{\sqrt{2224589}}{5}\right.\right.}{667}\right)\right)^{-1-2 k} F_{1+2 k}+ \\
& \left(-\frac{1}{5}\right)^{k} 16^{1+2 k}\left(2081\left(1+\frac{\sqrt{\frac{21653061}{5}}}{2081}\right)\right)^{-1-2 k} F_{1+2 k}
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi= \\
& -29+100 \exp \left(\int _ { 0 } ^ { 1 } \left(\frac{14}{49+t^{2}}+\frac{38}{1444+t^{2}}+\frac{117}{13689+t^{2}}+\frac{22}{121+4 t^{2}}+\right.\right. \\
& \left.\left.\frac{548}{18769+16 t^{2}}+\frac{4002}{444889+36 t^{2}}+\frac{16648}{4330561+64 t^{2}}\right) d t\right)-\pi
\end{aligned}
$$

$$
10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.
$$

$$
\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi=
$$

$$
-29+100 \exp \left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(-\frac{i 2^{-1-s} \times 7^{-1+2 s} \times 25^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right.\right.
$$

$$
\frac{i 11^{-1+2 s} \times 125^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}-
$$

$$
\frac{i 2^{-3+2 s} \times 19^{-1+2 s} \times 1445^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\frac{i 2^{-2-s} \times 117^{-1+2 s} \times 6845^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\frac{i 137^{-1+2 s} \times 18785^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\left.\begin{array}{c}
\frac{3 i 667^{-1+2 s} \times 444925^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
\frac{2 i 2081^{-1+2 s} \times 4330625^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}
\end{array}\right)
$$

$$
d s)-\pi \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)\right.+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+ \\
&\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-\pi= \\
&-29+100 \exp (\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i\left(\frac{3}{667}\right)^{1-2 s} 2^{-1-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\right. \\
& \frac{i 7^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-1-2 s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 117^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{4 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{1-6 s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \pi \Gamma\left(\frac{3}{2}-s\right)
\end{aligned}
$$

$10^{\wedge} 2^{*} \exp \left(\left(\left(\left(\tan ^{\wedge}-1(2 / 11)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(6 / 667)+\tan ^{\wedge}-1(8 / 2081)+2\left(\tan ^{\wedge}-\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.1\left(1 /\left(1^{*} 7\right)\right)\right)+\tan ^{\wedge}-1(1 /(2 * 19))+\tan ^{\wedge}-1(1 /(3 * 39))\right)\right)\right)\right)-29-5 \mathrm{Pi}$-golden ratio

Where 29 is a Lucas number

Input:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi
\end{aligned}
$$

$\tan ^{-1}(x)$ is the inverse tangent function

Exact Result:

$$
\begin{aligned}
& 100 \exp \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)-\phi-29-5 \pi
\end{aligned}
$$

Decimal approximation:

125.3660839627686239852542786713951918126150576829764957673...
(result in radians)
$125.3660839 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

$-\phi-29-5 \pi+100 e^{1 / 2 \tan ^{-1}(16146260097 / 8606653904)}$

$$
-29+4 \times 25^{1+(3 i) / 2}\left(\frac{8606653904}{1171001}+\frac{16146260097 i}{1171001}\right)^{-i / 2}+\frac{1}{2}(-1-\sqrt{5})-5 \pi
$$

$\frac{1}{2}\left(200 \exp \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\right.\right.$ $\left.\left.\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)-59-\sqrt{5}-10 \pi\right)$

Continued fraction:

$$
-\frac{59}{2}-\frac{\sqrt{5}}{2}+4 \times 25^{1+(3 i) / 2}\left(\frac{8606653904}{1171001}+\frac{16146260097 i}{1171001}\right)^{-i / 2}-5 \pi+\frac{1}{2+\underline{1}}
$$

Alternative representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi= \\
& -29-\phi-5 \pi+\exp \left(2 \tan ^{-1}\left(1, \frac{1}{7}\right)+\tan ^{-1}\left(1, \frac{2}{11}\right)+\tan ^{-1}\left(1, \frac{1}{38}\right)+\right. \\
& \left.\tan ^{-1}\left(1, \frac{1}{117}\right)+\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{6}{667}\right)+\tan ^{-1}\left(1, \frac{8}{2081}\right)\right) 10^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi= \\
& -29-\phi-5 \pi+\exp \left(i\left(\log \left(1-\frac{i}{7}\right)-\log \left(1+\frac{i}{7}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{2 i}{11}\right)-\log \left(1+\frac{2 i}{11}\right)\right)+\right. \\
& \quad \frac{1}{2} i\left(\log \left(1-\frac{i}{38}\right)-\log \left(1+\frac{i}{38}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{i}{117}\right)-\log \left(1+\frac{i}{117}\right)\right)+ \\
& \quad \frac{1}{2} i\left(\log \left(1-\frac{4 i}{137}\right)-\log \left(1+\frac{4 i}{137}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{6 i}{667}\right)-\log \left(1+\frac{6 i}{667}\right)\right)+ \\
& \left.\frac{1}{2} i\left(\log \left(1-\frac{8 i}{2081}\right)-\log \left(1+\frac{8 i}{2081}\right)\right)\right) 10^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi= \\
& -29+100 \exp \left(\sum _ { k = 0 } ^ { \infty } \left(\frac{2(-1)^{k} 7^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 2^{1+2 k} \times 11^{-1-2 k}}{1+2 k}+\right.\right. \\
& \frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+ \\
& \left.\left.\frac{(-1)^{k} 6^{1+2 k} \times 667^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right)\right)-\phi-5 \pi
\end{aligned}
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi=\frac{1}{2} \\
& \left(-59-\sqrt{5}+200 \exp \left(8 \tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty}\left(\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{8}{2081}-z_{0}\right)^{k}}{k}+\right.\right.\right. \\
& \\
& \quad \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{117}-z_{0}\right)^{k}}{k}+ \\
& \\
& \quad \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{6}{667}-z_{0}\right)^{k}}{k}+ \\
& \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{38}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{4}{137}-z_{0}\right)^{k}}{k}+ \\
& \left.i \sum_{k=1}^{\infty} \frac{\left.\left.\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{7}-z_{0}\right)^{k}\right)-10 \pi\right)}{k}\right)+ \\
&
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi= \\
& -29+100 \exp \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 4^{1+2 k}\left(11\left(1+\frac{\sqrt[3]{\frac{69}{5}}}{11}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+\right. \\
& \frac{\left(-\frac{1}{5}\right)^{k} 2^{2+2 k}\left(7\left(1+\frac{\sqrt{\frac{249}{5}}}{7}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k}\left(19\left(1+\frac{\sqrt{\frac{1806}{5}}}{19}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k} 2^{1+2 k}\left(117\left(1+\frac{\sqrt{\frac{68449}{5}}}{117}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \frac{\left(-\frac{1}{5}\right)^{k} 8^{1+2 k}\left(137\left(1+\frac{\sqrt{\frac{93909}{5}}}{137}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+ \\
& \left.\left.\frac{\left(-\frac{1}{5}\right)^{k} 12^{1+2 k}\left(6 6 7 \left(1+\frac{\sqrt{2224589}}{5}\right.\right.}{667}\right)\right)^{-1-2 k} F_{1+2 k}+ \\
& \left.\left.\left.\frac{\left(-\frac{1}{5}\right)^{k} 16^{1+2 k}\left(2 0 8 1 \left(1+\frac{\sqrt{21653061}}{2081}\right.\right.}{}\right)\right)^{-1-2 k} F_{1+2 k}\right)-\phi-5 \pi
\end{aligned}
$$

Integral representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi= \\
& -29+100 \exp \left(\int _ { 0 } ^ { 1 } \left(\frac{14}{49+t^{2}}+\frac{38}{1444+t^{2}}+\frac{117}{13689+t^{2}}+\frac{22}{121+4 t^{2}}+\right.\right. \\
& \left.\left.\quad \frac{548}{18769+16 t^{2}}+\frac{4002}{444889+36 t^{2}}+\frac{16648}{4330561+64 t^{2}}\right) d t\right)-\phi-5 \pi
\end{aligned}
$$

$$
10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.
$$

$$
\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi=
$$

$$
-29+100 \exp \left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(-\frac{i 2^{-1-s} \times 7^{-1+2 s} \times 25^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right.\right.
$$

$$
\frac{i 11^{-1+2 s} \times 125^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}-
$$

$$
\frac{i 2^{-3+2 s} \times 19^{-1+2 s} \times 1445^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
i 2^{-2-s} \times 117^{-1+2 s} \times 6845^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}
$$

$$
\frac{i 137^{-1+2 s} \times 18785^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\frac{3 i 667^{-1+2 s} \times 444925^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}-
$$

$$
\left.\frac{2 i 2081^{-1+2 s} \times 4330625^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}\right)
$$

$$
d s)-\phi-5 \pi \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\left.\left.\left.\begin{array}{rl}
10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)\right. & +\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+ \\
\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)-29-5 \pi-\phi= \\
-29+100 \exp (& \int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i\left(\frac{3}{667}\right)^{1-2 s} 2^{-1-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\right. \\
& \frac{i 7^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-1-2 s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 117^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{4 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 6^{1-s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-2081^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s) \\
& \pi \Gamma\left(\frac{3}{2}-s\right)
\end{array}\right)-\phi s\right) \text { for } 0<\gamma<\frac{1}{2}\right)
$$

$10^{\wedge} 3^{*} \exp \left(\left(\left(\left(\tan \wedge-1(2 / 11)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(6 / 667)+\tan ^{\wedge}-1(8 / 2081)+2\left(\tan ^{\wedge}-\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.1\left(1 /\left(1^{*} 7\right)\right)\right)+\tan ^{\wedge}-1(1 /(2 * 19))+\tan ^{\wedge}-1(1 /(3 * 39))\right)\right)\right)\right)+13$-golden ratio

Where 13 is a Fibonacci number

Input:

$$
\begin{aligned}
& 10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi
\end{aligned}
$$

Exact Result:

$$
\begin{aligned}
& 1000 \exp \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)-\phi+13
\end{aligned}
$$

(result in radians)

Decimal approximation:

1728.302778205924955409516237387217805395491829416772114480...
(result in radians)
1728.302778...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternate forms:

$-\phi+13+1000 e^{1 / 2 \tan ^{-1}(16146260097 / 8606653904)}$

$$
13+8 \times 125^{1+i}\left(\frac{8606653904}{1171001}+\frac{16146260097 i}{1171001}\right)^{-i / 2}+\frac{1}{2}(-1-\sqrt{5})
$$

$$
1000 \exp \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right.
$$

$$
\left.\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)+\frac{25}{2}-\frac{\sqrt{5}}{2}
$$

Continued fraction:

$$
\frac{25}{2}-\frac{\sqrt{5}}{2}+8 \times 125^{1+i}\left(\frac{8606653904}{1171001}+\frac{16146260097 i}{1171001}\right)^{-i / 2}+\frac{1}{100+\frac{1}{\cdots}}
$$

Alternative representations:

$$
\begin{aligned}
& 10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi= \\
& 13-\phi+\exp \left(2 \tan ^{-1}\left(1, \frac{1}{7}\right)+\tan ^{-1}\left(1, \frac{2}{11}\right)+\tan ^{-1}\left(1, \frac{1}{38}\right)+\tan ^{-1}\left(1, \frac{1}{117}\right)+\right. \\
& \left.\quad \tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{6}{667}\right)+\tan ^{-1}\left(1, \frac{8}{2081}\right)\right) 10^{3}
\end{aligned}
$$

$$
\begin{aligned}
& 10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi= \\
& 13-\phi+\exp \left(i\left(\log \left(1-\frac{i}{7}\right)-\log \left(1+\frac{i}{7}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{2 i}{11}\right)-\log \left(1+\frac{2 i}{11}\right)\right)+\right. \\
& \quad \frac{1}{2} i\left(\log \left(1-\frac{i}{38}\right)-\log \left(1+\frac{i}{38}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{i}{117}\right)-\log \left(1+\frac{i}{117}\right)\right)+ \\
& \frac{1}{2} i\left(\log \left(1-\frac{4 i}{137}\right)-\log \left(1+\frac{4 i}{137}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{6 i}{667}\right)-\log \left(1+\frac{6 i}{667}\right)\right)+ \\
& \left.\frac{1}{2} i\left(\log \left(1-\frac{8 i}{2081}\right)-\log \left(1+\frac{8 i}{2081}\right)\right)\right) 10^{3}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi= \\
& 13+1000 \exp \left(\sum _ { k = 0 } ^ { \infty } \left(\frac{2(-1)^{k} 7^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 2^{1+2 k} \times 11^{-1-2 k}}{1+2 k}+\right.\right. \\
& \quad \frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+ \\
& \left.\left.\frac{(-1)^{k} 6^{1+2 k} \times 667^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right)\right)-\phi
\end{aligned}
$$

$$
\begin{aligned}
& 10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi= \\
& \frac{1}{2}\left(25-\sqrt{5}+2000 \exp \left(8 \tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty}\left(\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{8}{2081}-z_{0}\right)^{k}}{k}+\right.\right.\right. \\
& \\
& \quad \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{117}-z_{0}\right)^{k}}{k}+ \\
& \quad \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{6}{667}-z_{0}\right)^{k}}{k}+ \\
& \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{38}-z_{0}\right)^{k}}{k}+ \\
& \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{4}{137}-z_{0}\right)^{k}}{k}+ \\
& \left.i \sum_{k=1}^{\infty} \frac{\left.\left.\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{7}-z_{0}\right)^{k}\right)\right)}{k}\right)+ \\
& \left.\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2}{11}-z_{0}\right)^{k}}{k}\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

$$
\begin{aligned}
& 10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi=
\end{aligned}
$$

$$
13+1000 \exp \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 4^{1+2 k}\left(11\left(1+\frac{\sqrt[3]{\frac{60}{5}}}{11}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+\right.
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 2^{2+2 k}\left(7\left(1+\frac{\sqrt{\frac{249}{5}}}{7}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k}\left(19\left(1+\frac{\sqrt{\frac{1806}{5}}}{19}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 2^{1+2 k}\left(117\left(1+\frac{\sqrt{\frac{68449}{5}}}{117}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 8^{1+2 k}\left(137\left(1+\frac{\sqrt{\frac{93900}{5}}}{137}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\left.\left.\frac{\left(-\frac{1}{5}\right)^{k} 12^{1+2 k}\left(6 6 7 \left(1+\frac{\sqrt{2224589}}{567}\right.\right.}{667}\right)\right)^{-1-2 k} F_{1+2 k}
$$

$$
\left.\left.\left.\frac{\left(-\frac{1}{5}\right)^{k} 16^{1+2 k}\left(2 0 8 1 \left(1+\frac{\sqrt{21653061}}{5}\right.\right.}{2081}\right)\right)^{-1-2 k} F_{1+2 k}\right)
$$

Integral representations:

$$
\begin{aligned}
& 10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi= \\
& 13+1000 \exp \left(\int _ { 0 } ^ { 1 } \left(\frac{14}{49+t^{2}}+\frac{38}{1444+t^{2}}+\frac{117}{13689+t^{2}}+\frac{22}{121+4 t^{2}}+\right.\right. \\
& \left.\left.\frac{548}{18769+16 t^{2}}+\frac{4002}{444889+36 t^{2}}+\frac{16648}{4330561+64 t^{2}}\right) d t\right)-\phi
\end{aligned}
$$

$$
10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.
$$

$$
\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi=
$$

$$
13+1000 \exp \left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(-\frac{i 2^{-1-s} \times 7^{-1+2 s} \times 25^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right.\right.
$$

$$
\frac{i 11^{-1+2 s} \times 125^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}-
$$

$$
\frac{i 2^{-3+2 s} \times 19^{-1+2 s} \times 1445^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\frac{i 2^{-2-s} \times 117^{-1+2 s} \times 6845^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\frac{i 137^{-1+2 s} \times 18785^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\left.\begin{array}{c}
\frac{3 i 667^{-1+2 s} \times 444925^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
\frac{2 i 2081^{-1+2 s} \times 4330625^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}
\end{array}\right)
$$

$$
d s)-\phi \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{aligned}
& 10^{3} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)\right.+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+ \\
&\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+13-\phi= \\
& 13+1000 \exp (\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i\left(\frac{3}{667}\right)^{1-2 s} 2^{-1-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\right. \\
& \frac{i 7^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-1-2 s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 117^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{4 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{1-6 s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \pi \Gamma\left(\frac{3}{2}-s\right)
\end{aligned}
$$

$10^{\wedge} 2^{*} \exp \left(\left(\left(\left(\tan ^{\wedge}-1(2 / 11)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(6 / 667)+\tan ^{\wedge}-1(8 / 2081)+2\left(\tan ^{\wedge}-\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.1(1 /(1 * 7)))+\tan ^{\wedge}-1(1 /(2 * 19))+\tan ^{\wedge}-1(1 /(3 * 39))\right)\right)\right)\right)^{*}$ golden ratio ${ }^{\wedge} 2+34$

Where 34 is a Fibonacci number

Input:

$$
\begin{gathered}
10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34
\end{gathered}
$$

Exact Result:

$$
\begin{aligned}
& 100 \phi^{2} \exp \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)+34
\end{aligned}
$$

(result in radians)

Decimal approximation:

483.4957042317733702423545314294304229921083099774909041348...
(result in radians)
483.49570423... result practically equal to Holographic Ricci dark energy model, where

$$
\chi_{\mathrm{RDE}}^{2}=483.130 .
$$

Alternate forms:

$100 \phi^{2} e^{1 / 2 \tan ^{-1}(16146260097 / 8606653904)}+34$
$34+25^{1+(3 i) / 2}\left(\frac{8606653904}{1171001}+\frac{16146260097 i}{1171001}\right)^{-i / 2}(1+\sqrt{5})^{2}$

$$
\begin{aligned}
& 2\left(5 0 \phi ^ { 2 } \operatorname { e x p } \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right.\right. \\
& \left.\left.\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)+17\right)
\end{aligned}
$$

Continued fraction:

$34+2 \times 25^{1+(3 i) / 2}\left(\frac{8606653904}{1171001}+\frac{16146260097 i}{1171001}\right)^{-i / 2}(3+\sqrt{5})+\frac{1}{99+\underline{1}}$
(using the Hurwitz expansion)

Alternative representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34= \\
& 34+\exp \left(2 \tan ^{-1}\left(1, \frac{1}{7}\right)+\tan ^{-1}\left(1, \frac{2}{11}\right)+\tan ^{-1}\left(1, \frac{1}{38}\right)+\tan ^{-1}\left(1, \frac{1}{117}\right)+\right. \\
& \left.\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{6}{667}\right)+\tan ^{-1}\left(1, \frac{8}{2081}\right)\right) 10^{2} \phi^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34= \\
& 34+\exp \left(i\left(\log \left(1-\frac{i}{7}\right)-\log \left(1+\frac{i}{7}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{2 i}{11}\right)-\log \left(1+\frac{2 i}{11}\right)\right)+\right. \\
& \quad \frac{1}{2} i\left(\log \left(1-\frac{i}{38}\right)-\log \left(1+\frac{i}{38}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{i}{117}\right)-\log \left(1+\frac{i}{117}\right)\right)+ \\
& \\
& \frac{1}{2} i\left(\log \left(1-\frac{4 i}{137}\right)-\log \left(1+\frac{4 i}{137}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{6 i}{667}\right)-\log \left(1+\frac{6 i}{667}\right)\right)+ \\
& \left.\frac{1}{2} i\left(\log \left(1-\frac{8 i}{2081}\right)-\log \left(1+\frac{8 i}{2081}\right)\right)\right) 10^{2} \phi^{2}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34= \\
& 34+100 \exp \left(\sum _ { k = 0 } ^ { \infty } \left(\frac{2(-1)^{k} 7^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 2^{1+2 k} \times 11^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\right.\right. \\
& \frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+ \\
& \left.\left.\frac{(-1)^{k} 6^{1+2 k} \times 667^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right)\right) \phi^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34=
\end{aligned}
$$

$$
34+100 \exp \left(\sum_{k=0}^{\infty} \frac{\left(-\frac{1}{5}\right)^{k} 4^{1+2 k}\left(11\left(1+\frac{\sqrt[3]{\frac{60}{5}}}{11}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+\right.
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 2^{2+2 k}\left(7\left(1+\frac{\sqrt{\frac{249}{5}}}{7}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k}\left(19\left(1+\frac{\sqrt{\frac{1806}{5}}}{19}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 2^{1+2 k}\left(117\left(1+\frac{\sqrt{\frac{68449}{5}}}{117}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 8^{1+2 k}\left(137\left(1+\frac{\sqrt{\frac{93009}{5}}}{137}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\left.\frac{\left(-\frac{1}{5}\right)^{k} 12^{1+2 k}\left(6 6 7 \left(1+\frac{\sqrt{2224589}}{567}\right.\right.}{667}\right)^{-1-2 k} F_{1+2 k}+
$$

$$
\left.\left.\left.\frac{\left(-\frac{1}{5}\right)^{k} 16^{1+2 k}\left(2 0 8 1 \left(1+\frac{\sqrt{21653061}}{5}\right.\right.}{2081}\right)\right)^{-1-2 k} F_{1+2 k}\right)
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34= \\
& 2\left(17+75 \exp \left(8 \tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty} \frac{1}{k}\left(\left(-i-z_{0}\right)^{k}-\left(i-z_{0}\right)^{k}\right)\right.\right. \\
& \left(\left(\frac{8}{2081}-z_{0}\right)^{k}+\left(\frac{1}{117}-z_{0}\right)^{k}+\left(\frac{6}{667}-z_{0}\right)^{k}+\left(\frac{1}{38}-z_{0}\right)^{k}+\right. \\
& \left.\left(\frac{4}{137}-z_{0}\right)^{k}+\left(\frac{2}{11}-z_{0}\right)^{k}\right)\left(-i-z_{0}\right)^{-k}\left(i-z_{0}\right)^{-k}+ \\
& \left.\quad i \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{7}-z_{0}\right)^{k}}{k}\right)+25 \sqrt{5} \exp (\\
& 8 \tan ^{-1}\left(z_{0}\right)+\frac{1}{2} i \sum_{k=1}^{\infty} \frac{1}{k}\left(\left(-i-z_{0}\right)^{k}-\left(i-z_{0}\right)^{k}\right)\left(\left(\frac{8}{2081}-z_{0}\right)^{k}+\left(\frac{1}{117}-z_{0}\right)^{k}+\right. \\
& \left.\left(\frac{6}{667}-z_{0}\right)^{k}+\left(\frac{1}{38}-z_{0}\right)^{k}+\left(\frac{4}{137}-z_{0}\right)^{k}+\left(\frac{2}{11}-z_{0}\right)^{k}\right) \\
& \left.\left.\left(-i-z_{0}\right)^{-k}\left(i-z_{0}\right)^{-k}+i \sum_{k=1}^{\infty} \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{7}-z_{0}\right)^{k}}{k}\right)\right)
\end{aligned}
$$

for $\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34= \\
& 34+100 \exp \left(\int _ { 0 } ^ { 1 } \left(\frac{14}{49+t^{2}}+\frac{38}{1444+t^{2}}+\frac{117}{13689+t^{2}}+\frac{22}{121+4 t^{2}}+\right.\right. \\
& \left.\left.\frac{548}{18769+16 t^{2}}+\frac{4002}{444889+36 t^{2}}+\frac{16648}{4330561+64 t^{2}}\right) d t\right) \phi^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34= \\
& 34+100 \exp \left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(-\frac{i 2^{-1-s} \times 7^{-1+2 s} \times 25^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right.\right. \\
& \frac{i 11^{-1+2 s} \times 125^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \times 1445^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{i 2^{-2-s} \times 117^{-1+2 s} \times 6845^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{i 137^{-1+2 s} \times 18785^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{3 i 667^{-1+2 s} \times 444925^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
& \left.\frac{2 i 2081^{-1+2 s} \times 4330625^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}\right) \\
& d s) \phi^{2} \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& 10^{2} \exp \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \phi^{2}+34= \\
& 34+100 \exp \left(\int_{-i \infty+\gamma}^{i \infty+\gamma}\right)-\frac{i\left(\frac{3}{667}\right)^{1-2 s} 2^{-1-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \quad \frac{i 7^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-1-2 s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \quad \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \quad \frac{i 117^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{4 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \quad \frac{i 16^{-s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \left.\quad \frac{\pi 2^{1-6 s} \times 2081^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi}-s\right)
\end{aligned}
$$

$1 / 10^{\wedge} 52\left(\left(\left(2^{*}\left(\left(\left(\left(\tan ^{\wedge}-1(2 / 11)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(6 / 667)+\tan ^{\wedge}-1(8 / 2081)+2\left(\tan ^{\wedge}-\right.\right.\right.\right.\right.\right.\right.\right.$ $\left.\left.\left.\left.\left.\left.\left.\left.1\left(1 /\left(1^{*} 7\right)\right)\right)+\tan ^{\wedge}-1\left(1 /\left(2^{*} 19\right)\right)+\tan ^{\wedge}-1(1 /(3 * 39))\right)\right)\right)\right)+24 / 10^{\wedge} 3+5 / 10^{\wedge} 4\right)\right)\right)$
where 24 is the number of "modes" corresponding to the physical vibrations of a bosonic string and 5 is a Fibonacci number

Input:

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.\quad 2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)
\end{aligned}
$$

Exact Result:

$$
\begin{aligned}
& \left(\frac{49}{2000}+2\left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right.\right. \\
& \left.\left.\quad \tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)\right) /
\end{aligned}
$$

100
(result in radians)

Decimal approximation:

$1.1055649219769242777244658769540136154793588729921764 \ldots \times 10^{-52}$
(result in radians)
$1.1055649219 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Alternate forms:

$$
\frac{49}{2000}+\tan ^{-1}\left(\frac{16146260097}{8606653904}\right)
$$

100

$$
49+2000 \tan ^{-1}\left(\frac{16146260097}{8606653904}\right)
$$

2000

$$
\begin{aligned}
& \left(49+4000 \tan ^{-1}\left(\frac{8}{2081}\right)+4000 \tan ^{-1}\left(\frac{1}{117}\right)+4000 \tan ^{-1}\left(\frac{6}{667}\right)+\right. \\
& \left.4000 \tan ^{-1}\left(\frac{1}{38}\right)+4000 \tan ^{-1}\left(\frac{4}{137}\right)+8000 \tan ^{-1}\left(\frac{1}{7}\right)+4000 \tan ^{-1}\left(\frac{2}{11}\right)\right) /
\end{aligned}
$$

2000

Continued fraction:

$9045149498881010406892110893350659005159037535263771+\underline{1}$

Alternative representations:

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)= \\
& \frac{1}{10^{52}}\left(2 \left(2 \operatorname{sc}^{-1}\left(\left.\frac{1}{7} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{2}{11} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{1}{38} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{1}{117} \right\rvert\, 0\right)+\right.\right. \\
& \left.\left.\operatorname{sc}^{-1}\left(\left.\frac{4}{137} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{6}{667} \right\rvert\, 0\right)+\operatorname{sc}^{-1}\left(\left.\frac{8}{2081} \right\rvert\, 0\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)= \\
& \frac{1}{10^{52}}\left(2 \left(2 \tan ^{-1}\left(1, \frac{1}{7}\right)+\tan ^{-1}\left(1, \frac{2}{11}\right)+\tan ^{-1}\left(1, \frac{1}{38}\right)+\tan ^{-1}\left(1, \frac{1}{117}\right)+\right.\right. \\
& \left.\left.\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{6}{667}\right)+\tan ^{-1}\left(1, \frac{8}{2081}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right) \\
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)= \\
& \frac{1}{10^{52}}\left(2 \left(2 \cot ^{-1}\left(\frac{1}{\frac{1}{7}}\right)+\cot ^{-1}\left(\frac{1}{\frac{2}{11}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{38}}\right)+\cot ^{-1}\left(\frac{1}{\frac{1}{117}}\right)+\right.\right. \\
& \left.\left.\cot ^{-1}\left(\frac{1}{\frac{4}{137}}\right)+\cot ^{-1}\left(\frac{1}{\frac{6}{667}}\right)+\cot ^{-1}\left(\frac{1}{\frac{8}{2081}}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)=
\end{aligned}
$$

$2000+$

$$
\sum_{k=0}^{\infty}\left[\left((-1)^{k} 7^{-1-2 k}\right)\right]
$$

(2500

$$
\begin{aligned}
& (1+2 k))+\left(\frac{(-1)^{k} 2^{1+2 k} \times 11^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\right. \\
& \frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+ \\
& \left.\frac{(-1)^{k} 6^{1+2 k} \times 667^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right) /
\end{aligned}
$$

5000)

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)=
\end{aligned}
$$

$$
2000+
$$

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{-49+2 k} \times 5^{-52-k}\left(7\left(1+\frac{\sqrt{\frac{249}{5}}}{7}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\left(\frac{\left(-\frac{1}{5}\right)^{k} 4^{1+2 k}\left(11\left(1+\frac{\sqrt[3]{\frac{69}{5}}}{11}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+\right.
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k}\left(19\left(1+\frac{\sqrt{\frac{1806}{5}}}{19}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 2^{1+2 k}\left(117\left(1+\frac{\sqrt{\frac{68449}{5}}}{117}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 8^{1+2 k}\left(137\left(1+\frac{\sqrt{\frac{93000}{5}}}{137}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left(-\frac{1}{5}\right)^{k} 12^{1+2 k}\left(667\left(1+\frac{\sqrt{\frac{2224589}{5}}}{667}\right)\right)^{-1-2 k} F_{1+2 k}}{1+2 k}+
$$

$$
\frac{\left.\left(-\frac{1}{5}\right)^{k} 16^{1+2 k}\left(2081\left(1+\frac{\sqrt{\frac{21653061}{5}}}{2081}\right)\right)^{-1-2 k} F_{1+2 k}\right)}{1+2 k}
$$

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)= \\
& \hline
\end{aligned}
$$

$2000+$ $\frac{\tan ^{-1}\left(z_{0}\right)}{62500}+$ $\sum_{k=1}^{\infty} \left\lvert\,\left(\int i \frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{8}{2081}-z_{0}\right)^{k}}{k}+\right.\right.$

$$
\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{117}-z_{0}\right)^{k}}{k}+
$$

$$
\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{6}{667}-z_{0}\right)^{k}}{k}+
$$

$$
\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{38}-z_{0}\right)^{k}}{k}+
$$

$$
\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{4}{137}-z_{0}\right)^{k}}{k}+
$$

$$
\left.\left.\frac{\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{2}{11}-z_{0}\right)^{k}}{k}\right)\right) /
$$

1000 :

$$
000+\left(i\left(-\left(-i-z_{0}\right)^{-k}+\left(i-z_{0}\right)^{-k}\right)\left(\frac{1}{7}-z_{0}\right)^{k}\right) /
$$

(500:

$\left(i z_{0} \notin \mathbb{R}\right.$ or $\left(\operatorname{not}\left(1 \leq i z_{0}<\infty\right)\right.$ and $\left.\left.\operatorname{not}\left(-\infty<i z_{0} \leq-1\right)\right)\right)$

Integral representations:

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)=
\end{aligned}
$$

$2000+$
$\int_{0}^{1}((2307284220800640760162197714+76943160118093839837812831$
$t^{2}+336989524630351184739785 t^{4}+$
$303008333810709499020 t^{6}+74480820522338960 t^{8}+$ $\left.5197556474816 t^{10}+85530624 t^{12}\right) /$
$(5000$

$$
\left(49+t^{2}\right)\left(1444+t^{2}\right)\left(13689+t^{2}\right)\left(121+4 t^{2}\right)
$$

$$
\left.\left.\left(18769+16 t^{2}\right)\left(444889+36 t^{2}\right)\left(4330561+64 t^{2}\right)\right)\right) d t
$$

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)=
\end{aligned}
$$

$$
2000+
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\frac{i 5^{-52-3 s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{4503599627370496 \pi^{3 / 2}}-\right.
$$

$$
\frac{i 2^{-52-s} \times 7^{-1+2 s} \times 25^{-26-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\frac{i 4^{-27+s} \times 5^{-52-s} \times 19^{-1+2 s} \times 289^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\frac{i 2^{-53-s} \times 5^{-52-s} \times 117^{-1+2 s} \times 1369^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-
$$

$$
\underline{i 5^{-52-s} \times 137^{-1+2 s} \times 3757^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}
$$

$$
2251799813685248 \pi^{3 / 2}
$$

$$
i 625^{-13-s} \times 2081^{-1+2 s} \times 6929^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}-
$$

$$
1125899906842624 \pi^{3 / 2}
$$

$$
\left.\frac{3 i 25^{-26-s} \times 667^{-1+2 s} \times 17797^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{4503599627370496 \pi^{3 / 2}}\right) d s \text { for } 0<\gamma<\frac{1}{2}
$$

$$
\begin{aligned}
& \frac{1}{10^{52}}\left(2 \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)+\frac{24}{10^{3}}+\frac{5}{10^{4}}\right)=
\end{aligned}
$$

$$
2000+
$$

$$
\int_{-i \infty+\gamma}^{i \infty+\gamma}\left(-\left(\left(i 7^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)\right) /\right.\right.
$$

$(1000$: $\left.\left.000000000 \pi \Gamma\left(\frac{3}{2}-s\right)\right)\right)-$

$$
i 4^{-26-s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)
$$

$$
2220446049250313080847263336181640625 \pi \Gamma\left(\frac{3}{2}-s\right)
$$

$$
i 4^{-27+s} \times 19^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)
$$

$$
2220446049250313080847263336181640625 \pi \Gamma\left(\frac{3}{2}-s\right)
$$

$$
\left(i 117^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)\right) /
$$

$$
(200 \text { : }
$$

$$
\left.000000 \pi \Gamma\left(\frac{3}{2}-s\right)\right)-
$$

$$
i 2^{-51-4 s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)
$$

$$
2220446049250313080847263336181640625 \pi \Gamma\left(\frac{3}{2}-s\right)
$$

$$
\frac{i 3^{1-2 s} \times 4^{-26-s} \times 667^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2220446049250313080847263336181640625 \pi \Gamma\left(\frac{3}{2}-s\right)}-
$$

$$
\left.\frac{i 4^{-25-3 s} \times 2081^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2220446049250313080847263336181640625 \pi \Gamma\left(\frac{3}{2}-s\right)}\right)
$$

$$
d s \text { for } 0<\gamma<\frac{1}{2}
$$

$\left[-\ln \left(\left(\left(\left(\tan ^{\wedge}-1(2 / 11)+\tan ^{\wedge}-1(4 / 137)+\tan ^{\wedge}-1(6 / 667)+\tan ^{\wedge}-1(8 / 2081)+2\left(\tan ^{\wedge}-\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.1\left(1 /\left(1^{*} 7\right)\right)\right)+\tan ^{\wedge}-1(1 /(2 * 19))+\tan ^{\wedge}-1(1 /(3 * 39))\right)\right)\right)\right)\right]^{\wedge} 1 / 64$

Input:

$$
\begin{aligned}
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.\quad 2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)
\end{aligned}
$$

Exact Result:

$$
\begin{aligned}
& \left(-\log \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\right.\right. \\
& \left.\left.\quad \tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)\right) \wedge(1 / 64)
\end{aligned}
$$

(result in radians)

Decimal approximation:

$0.992438003923975464849723761948999058532695868417145317586 \ldots$
(result in radians)
$0.9924380039 \ldots$ result very near to the value of the following Rogers-Ramanujan continued fraction:
$\frac{\mathrm{e}^{-\frac{\pi}{\sqrt{5}}}}{\frac{\sqrt{5}}{1+\sqrt[5]{\sqrt{\varphi^{5} \sqrt[4]{5^{3}}}-1}}-\varphi+1}=1-\frac{\mathrm{e}^{-\pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-2 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-3 \pi \sqrt{5}}}{1+\frac{\mathrm{e}^{-4 \pi \sqrt{5}}}{1+\ldots}}}} \approx 0.9991104684$
and to the dilaton value $0.989117352243=\phi$

Alternate forms:

$\sqrt[64]{\log \left(\frac{2}{\tan ^{-1}\left(\frac{16146260007}{860653904}\right)}\right)}$
$\sqrt[64]{-1} e^{-(i \pi) / 32} \sqrt[64]{\log \left(\tan ^{-1}\left(\frac{16146260097}{8606653904}\right)\right)-\log (2)}$

$$
\begin{aligned}
&\left(-\log \left(\frac{1}{2} i\left(\log \left(1-\frac{8 i}{2081}\right)-\log \left(1+\frac{8 i}{2081}\right)\right)+\right.\right. \\
& \frac{1}{2} i\left(\log \left(1-\frac{i}{117}\right)-\log \left(1+\frac{i}{117}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{6 i}{667}\right)-\log \left(1+\frac{6 i}{667}\right)\right)+ \\
& \frac{1}{2} i\left(\log \left(1-\frac{i}{38}\right)-\log \left(1+\frac{i}{38}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{4 i}{137}\right)-\log \left(1+\frac{4 i}{137}\right)\right)+ \\
&\left.\left.i\left(\log \left(1-\frac{i}{7}\right)-\log \left(1+\frac{i}{7}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{2 i}{11}\right)-\log \left(1+\frac{2 i}{11}\right)\right)\right)\right)(1 / 64)
\end{aligned}
$$

Continued fraction:

$\frac{1}{100+\frac{1}{2}}-(-1)^{63 / 64} \sqrt[64]{\log \left(\frac{1}{2} \tan ^{-1}\left(\frac{16146260097}{8606653904}\right)\right)}$
(using the Hurwitz expansion)

All 64th roots of $-\log \left(\tan ^{\wedge}(-1)(8 / 2081)+\tan \wedge(-1)(1 / 117)+\tan ^{\wedge}(-1)(6 / 667)+\right.$ $\left.\boldsymbol{\operatorname { t a n }}^{\wedge}(\mathbf{- 1})(1 / 38)+\tan ^{\wedge}(-1)(4 / 137)+2 \tan ^{\wedge}(-1)(1 / 7)+\tan ^{\wedge}(-1)(2 / 11)\right):$

$$
\begin{aligned}
& e^{0}\left(-\log \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\right.\right. \\
& \left.\left.\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)\right) \wedge(1 / 64) \approx 0.992438 \text { (real, principal root) } \\
& e^{(i \pi) / 32}\left(-\log \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\right.\right. \\
& \left.\left.\quad 2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)\right) \wedge(1 / 64) \approx 0.987659+0.09728 i
\end{aligned}
$$

$$
e^{(i \pi) / 16}\left(-\log \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\right.\right.
$$

$$
\left.\left.2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)\right) \wedge(1 / 64) \approx 0.97337+0.19362 i
$$

$$
e^{(3 i \pi / 32}\left(-\log \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\right.\right.
$$

$$
\left.\left.2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)\right) \wedge(1 / 64) \approx 0.94970+0.28809 i
$$

$$
e^{(i \pi) / 8}\left(-\log \left(\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\right.\right.
$$

$$
\left.\left.2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)\right) \wedge(1 / 64) \approx 0.91689+0.37979 i
$$

Alternative representations:

$$
\begin{aligned}
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)= \\
& \left(-\log \left(2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\right.\right. \\
& \left.\left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)\right)\right) \wedge(1 / 64)
\end{aligned}
$$

$$
\begin{aligned}
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)= \\
& \left(-\log (a) \log _{a}\left(2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\right.\right. \\
& \left.\left.\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)\right)\right) \wedge(1 / 64) \\
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)= \\
& \left(-\log \left(2 \tan ^{-1}\left(1, \frac{1}{7}\right)+\tan ^{-1}\left(1, \frac{2}{11}\right)+\tan ^{-1}\left(1, \frac{1}{38}\right)+\tan ^{-1}\left(1, \frac{1}{117}\right)+\right.\right. \\
& \left.\left.\tan ^{-1}\left(1, \frac{4}{137}\right)+\tan ^{-1}\left(1, \frac{6}{667}\right)+\tan ^{-1}\left(1, \frac{8}{2081}\right)\right)\right) \wedge(1 / 64) \\
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)= \\
& \left(-\log \left(i\left(\log \left(1-\frac{i}{7}\right)-\log \left(1+\frac{i}{7}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{2 i}{11}\right)-\log \left(1+\frac{2 i}{11}\right)\right)+\right.\right. \\
& \frac{1}{2} i\left(\log \left(1-\frac{i}{38}\right)-\log \left(1+\frac{i}{38}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{i}{117}\right)-\log \left(1+\frac{i}{117}\right)\right)+ \\
& \frac{1}{2} i\left(\log \left(1-\frac{4 i}{137}\right)-\log \left(1+\frac{4 i}{137}\right)\right)+\frac{1}{2} i\left(\log \left(1-\frac{6 i}{667}\right)-\log \left(1+\frac{6 i}{667}\right)\right)+ \\
& \left.\left.\frac{1}{2} i\left(\log \left(1-\frac{8 i}{2081}\right)-\log \left(1+\frac{8 i}{2081}\right)\right)\right)\right) \wedge(1 / 64)
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)= \\
& \left(-\log \left(\sum _ { k = 0 } ^ { \infty } \left(\frac{2(-1)^{k} 7^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 2^{1+2 k} \times 11^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\right.\right.\right. \\
& \frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 4^{1+2 k} \times 137^{-1-2 k}}{1+2 k}+ \\
& \left.\left.\left.\frac{(-1)^{k} 6^{1+2 k} \times 667^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 8^{1+2 k} \times 2081^{-1-2 k}}{1+2 k}\right)\right)\right) \wedge(1 / 64)
\end{aligned}
$$

$$
\begin{aligned}
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)= \\
& \left(\sum _ { k = 1 } ^ { \infty } \frac { 1 } { k } (- 1) ^ { k } \left(-1+\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\right.\right. \\
& \left.\left.\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right)\right)\right) \wedge(1 / 64)
\end{aligned}
$$

$$
\left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right.
$$

$$
\left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)=
$$

$$
-\log \left(\sum _ { k = 0 } ^ { \infty } \left(\frac{2(-1)^{k} 7^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 38^{-1-2 k}}{1+2 k}+\frac{(-1)^{k} 117^{-1-2 k}}{1+2 k}+\frac{\left(\frac{11}{2}\right)^{-1-2 k} e^{i k \pi}}{1+2 k}+\right.\right.
$$

$$
\left.\left.\left.\frac{\left(\frac{137}{4}\right)^{-1-2 k} e^{i k \pi}}{1+2 k}+\frac{\left(\frac{667}{6}\right)^{-1-2 k} e^{i k \pi}}{1+2 k}+\frac{\left(\frac{2081}{8}\right)^{-1-2 k} e^{i k \pi}}{1+2 k}\right)\right)\right) \wedge_{(1 / 64)}
$$

Integral representations:

$$
\begin{aligned}
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)= \\
& \left(-\log \left(\int _ { 0 } ^ { 1 } \left(\frac{14}{49+t^{2}}+\frac{38}{1444+t^{2}}+\frac{117}{13689+t^{2}}+\frac{22}{121+4 t^{2}}+\frac{548}{18769+16 t^{2}}+\right.\right.\right. \\
& \left.\left.\left.\frac{4002}{444889+36 t^{2}}+\frac{16648}{4330561+64 t^{2}}\right) d t\right)\right) \wedge(1 / 64)
\end{aligned}
$$

$$
\left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right.
$$

$$
\left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)=
$$

$$
\sqrt[64-\int_{1}^{\tan ^{-1}\left(\frac{8}{2081}\right)+\tan ^{-1}\left(\frac{1}{117}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{1}{38}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+2 \tan ^{-1}\left(\frac{1}{7}\right)+\tan ^{-1}\left(\frac{2}{11}\right) \frac{1}{t} d t}]{d t}
$$

$$
\left.\begin{array}{rl}
\left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\right.\right. & \tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+ \\
\left.\left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right)\right) \wedge(1 / 64)= \\
\left(-\log \left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(-\frac{i 2^{-1-s} \times 7^{-1+2 s} \times 25^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}-\right.\right.\right. \\
& \frac{i 11^{-1+2 s} \times 125^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2 \pi^{3 / 2}}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \times 1445^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{i 2^{-2-s} \times 117^{-1+2 s} \times 6845^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \frac{3 i 667^{-1+2 s} \times 444925^{-s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{\pi^{3 / 2}}- \\
& \left.\frac{2 i 2081^{-1+2 s} \times 4330625^{3 / 2} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)^{2}}{2}\right) \\
d s) & \wedge(1 / 64) \text { for } 0<\gamma<\frac{1}{2}
\end{array}\right)
$$

$$
\begin{aligned}
& \left(-\log \left(\tan ^{-1}\left(\frac{2}{11}\right)+\tan ^{-1}\left(\frac{4}{137}\right)+\tan ^{-1}\left(\frac{6}{667}\right)+\tan ^{-1}\left(\frac{8}{2081}\right)+\right.\right. \\
& \left.2 \tan ^{-1}\left(\frac{1}{1 \times 7}\right)+\tan ^{-1}\left(\frac{1}{2 \times 19}\right)+\tan ^{-1}\left(\frac{1}{3 \times 39}\right)\right) \wedge(1 / 64)= \\
& \left(-\log \left(\int _ { - i \infty + \gamma } ^ { i \infty + \gamma } \left(-\frac{i\left(\frac{3}{667}\right)^{1-2 s} 2^{-1-2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}-\right.\right.\right. \\
& \frac{i 7^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{2 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-1-2 s} \times 11^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 2^{-3+2 s} \times 19^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 117^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{4 \pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \frac{i 16^{-s} \times 137^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}- \\
& \left.\frac{i 2^{1-6 s} \times 2081^{-1+2 s} \Gamma\left(\frac{1}{2}-s\right) \Gamma(1-s) \Gamma(s)}{\pi \Gamma\left(\frac{3}{2}-s\right)}\right) \\
& d s) \text {) }(1 / 64) \text { for } 0<\gamma<\frac{1}{2}
\end{aligned}
$$

page 15

For $\mathrm{n}=2$
$1+2 /(3 \wedge 3-3)+2 /\left(\left((27 * 2+12)^{\wedge} 3-(27 * 2+12)\right)\right)$

Input:

$1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}$

Exact result:

622769

574860

Decimal approximation:

1.083340291549246773127370142295515429843788052743276623873...
1.0833402915...
$\left(\left(\left(1+2 /(3 \wedge 3-3)+2 /\left(\left(\left(27^{*} 2+12\right)^{\wedge} 3-\left(27^{*} 2+12\right)\right)\right)\right)\right)\right)^{\wedge} 6$

Input:

$\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}$

Exact result:

58339394534486733902813020585646881
$\overline{36088808464277296257958249536000000}$

Decimal approximation:

1.616550864854247031512349848056988607488517710022711046131.
1.61655086485...

Alternate form:

58339394534486733902813020585646881
36088808464277296257958249536000000

From which:

Input:

$\frac{1}{10^{35}}\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}$

Exact result:

58339394534486733902813020585646881 /
3608880846427729625795824953600000000000000000000000000000 : 000000000000

Decimal approximation:

$1.6165508648542470315123498480569886074885177100227110 \ldots \times 10^{-35}$
$1.616550864 \ldots * 10^{-35}$ result practically equal to the value of Planck length
$76\left(\left(\left(1+2 /(3 \wedge 3-3)+2 /\left(\left(\left(27^{*} 2+12\right)^{\wedge} 3-\left(27^{*} 2+12\right)\right)\right)\right)\right)\right)^{\wedge} 6+\mathrm{Pi}-1 /$ golden ratio
Where 76 is a Lucas number

Input:

$76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}$
ϕ is the golden ratio

Result:

$-\frac{1}{\phi}+\frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000}+\pi$

Decimal approximation:

125.3814243937626727851966450012449989356042061812953824648...
125.381424... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Property:

$\frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000}-\frac{1}{\phi}+\pi$ is a transcendental number

Alternate forms:

(1112959597213282606185692172319290739$4511101058034662032244781192000000 \sqrt{5}+$ $9022202116069324064489562384000000 \pi$)/ 9022202116069324064489562384000000
$\frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000}-\frac{2}{1+\sqrt{5}}+\pi$
(1112959597213282606185692172319290739-
$4511101058034662032244781192000000 \sqrt{5}) /$ $9022202116069324064489562384000000+\pi$

Alternative representations:

$$
\begin{aligned}
& 76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}= \\
& \pi--\frac{1}{2 \cos \left(216^{\circ}\right)}+76\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{6}
\end{aligned}
$$

$$
\begin{gathered}
76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}= \\
180^{\circ}--\frac{1}{2 \cos \left(216^{\circ}\right)}+76\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{6}
\end{gathered}
$$

$$
\begin{aligned}
& 76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}= \\
& \pi-\frac{1}{2 \cos \left(\frac{\pi}{5}\right)}+76\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{6}
\end{aligned}
$$

Series representations:

$$
\begin{aligned}
& 76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}= \\
& \frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000}-\frac{1}{\phi}+4 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
\end{aligned}
$$

$$
\begin{gathered}
76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}= \\
\frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000} \\
\frac{1}{\phi}+\sum_{k=0}^{\infty}-\frac{4(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}
\end{gathered}
$$

$$
76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}=
$$

$$
\frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000}-
$$

$$
\frac{1}{\phi}+\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
$$

Integral representations:

$$
\begin{aligned}
& 76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}= \\
& \frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000}-\frac{1}{\phi}+4 \int_{0}^{1} \sqrt{1-t^{2}} d t
\end{aligned}
$$

$$
\begin{aligned}
& 76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}= \\
& \frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000}-\frac{1}{\phi}+2 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
\end{aligned}
$$

$$
76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+\pi-\frac{1}{\phi}=
$$

$$
\frac{1108448496155247944153447391127290739}{9022202116069324064489562384000000}-\frac{1}{\phi}+2 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
$$

$76\left(\left(\left(1+2 /\left(3^{\wedge} 3-3\right)+2 /\left(\left(\left(27^{*} 2+12\right)^{\wedge} 3-\left(27^{*} 2+12\right)\right)\right)\right)\right)\right)^{\wedge} 6+18$ - golden ratio
Where 76 and 18 are Lucas numbers

Input:

$76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+18-\phi$

Result:

$\frac{1270848134244495777314259514039290739}{9022202116069324064489562384000000}-\phi$

Decimal approximation:

139.2398317401728795467340016179654960514070367819202766438...
139.23983174... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

(1266337033186461 115282014732847290739 $4511101058034662032244781192000000 \sqrt{5}$)/ 9022202116069324064489562384000000

$$
\begin{aligned}
& (1270848134244495777314259514039290739- \\
& 9022202116069324064489562384000000 \phi) / \\
& 9022202116069324064489562384000000 \\
& \\
& \frac{1266337033186461115282014732847290739}{9022202116069324064489562384000000}-\frac{\sqrt{5}}{2}
\end{aligned}
$$

Alternative representations:

$$
\begin{aligned}
& 76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+18-\phi= \\
& 18+76\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{6}-2 \sin \left(54^{\circ}\right) \\
& 76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+18-\phi= \\
& 18+2 \cos \left(216^{\circ}\right)+76\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{6}
\end{aligned}
$$

$$
76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}+18-\phi=
$$

$$
18+76\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{6}+2 \sin \left(666^{\circ}\right)
$$

$29^{\wedge} 2\left(\left(\left(1+2 /(3 \wedge 3-3)+2 /\left(\left(\left(27^{*} 2+12\right)^{\wedge} 3-\left(27^{*} 2+12\right)\right)\right)\right)\right)\right)^{\wedge} 9+1 /$ golden ratio
Where 29 is a Lucas number

> Input:
> $29^{2}\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{\circ}+\frac{1}{\phi}$

Result:

$\frac{1}{\phi}+\frac{11850559963212762958847185773744275981269680140023216889}{6855810659536682399028070448593386575433216000000000}$

Decimal approximation:

1729.160514479835556494289766430548934726383362208546094708
1729.160514479...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternate forms:

(11847132057882994617647671738519979287981963532023216889 + $3427905329768341199514035224296693287716608000000000 \sqrt{5}) /$ 6855810659536682399028070448593386575433216000000000
(11850559963212762958847185773744275981269680140023216889 ${ }^{+}+$ 6855810659536682399028070448593386575433216000000000)/ (6855810659536682399028070448593386575433216000000000 ф)

$$
\frac{\sqrt{5}}{2}+\frac{11847132057882994617647671738519979287981963532023216889}{6855810659536682399028070448593386575433216000000000}
$$

Alternative representations:

$$
\begin{aligned}
& 29^{2}\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{\circ}+\frac{1}{\phi}= \\
& 29^{2}\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{\circ}+\frac{1}{2 \sin \left(54^{\circ}\right)} \\
& 29^{2}\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{9}+\frac{1}{\phi}= \\
& -\frac{1}{2 \cos \left(216^{\circ}\right)}+29^{2}\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{9}
\end{aligned}
$$

$$
\begin{aligned}
& 29^{2}\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{\circ}+\frac{1}{\phi}= \\
& 29^{2}\left(1+\frac{2}{24}+\frac{2}{-66+66^{3}}\right)^{\circ}+-\frac{1}{2 \sin \left(666^{\circ}\right)}
\end{aligned}
$$

$4 * 76\left(\left(\left(1+2 /(3 \wedge 3-3)+2 /\left(\left((27 * 2+12)^{\wedge} 3-(27 * 2+12)\right)\right)\right)\right)\right)^{\wedge} 6-7$
Where 4, 76 and 7 are Lucas numbers

Input:

$4 \times 76\left(1+\frac{2}{3^{3}-3}+\frac{2}{(27 \times 2+12)^{3}-(27 \times 2+12)}\right)^{6}-7$

Exact result:

1092659642452126627040590656955290739
2255550529017331016122390596000000

Decimal approximation:

484.4314629156910975797543538093245366765093838469041580239...
484.4314629... result very near to Holographic Ricci dark energy model, where
$\chi_{\mathrm{RDE}}^{2}=483.130$.

Alternate form:

1092659642452126627040590656955290739
2255550529017331016122390596000000

For $\mathrm{n}=5$
$5+(5-1)\left(\left(\left(\left(2 /\left(3^{\wedge} 3-3\right)\right)\right)\right)\right)+(5-2)\left(\left(\left(\left(2 /\left(6^{\wedge} 3-6\right)\right)+2 /\left(9^{\wedge} 3-9\right)+2 /\left(12^{\wedge} 3-12\right)\right)\right)\right)+(5-$
$3)^{*}\left(\left(\left(\left(2 /\left(15^{\wedge} 3-15\right)\right)+2 /\left(18^{\wedge} 3-18\right)+2 /\left(39^{\wedge} 3-39\right)\right)\right)\right)$

Input:

$$
\begin{aligned}
& 5+(5-1) \times \frac{2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+ \\
& \quad(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)
\end{aligned}
$$

Exact result:

312854609
58198140

Decimal approximation:

$5.375680545804384813672739369333796578378621722274973048966 \ldots$
5.3756805458...
$29\left(\left(\left(5+(5-1)\left(\left(\left(2 /\left(3^{\wedge} 3-3\right)\right)\right)\right)\right)+(5-2)\left(\left(\left(\left(2 /\left(6^{\wedge} 3-6\right)\right)+2 /\left(9^{\wedge} 3-9\right)+2 /\left(12^{\wedge} 3-12\right)\right)\right)\right)+(5-\right.\right.$ $\left.\left.\left.3)^{*}\left(\left(\left(\left(2 /\left(15^{\wedge} 3-15\right)\right)+2 /\left(18^{\wedge} 3-18\right)+2 /\left(39^{\wedge} 3-39\right)\right)\right)\right)\right)\right)\right)-18+$ golden ratio

Input:

$$
\begin{gathered}
29\left(5+(5-1) \times \frac{2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-18+\phi
\end{gathered}
$$

Result:

$\phi+\frac{8025217141}{58198140}$

Decimal approximation:

$139.5127698170770544447140285450457388907003391257799812821 \ldots$
139.5127698... result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$8054316211+29099070 \sqrt{5}$
58198140
$58198140 \phi+8025217141$
58198140
$\frac{8054316211}{58198140}+\frac{\sqrt{5}}{2}$

Alternative representations:

$$
\begin{aligned}
& 29\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-18+\phi= \\
& -18+29\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)+2 \sin \left(54^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 29\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-18+\phi= \\
& -18-2 \cos \left(216^{\circ}\right)+29\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 29\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-18+\phi= \\
& -18+29\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)-2 \sin \left(666^{\circ}\right)
\end{aligned}
$$

$29\left(\left(\left(5+(5-1)\left(\left(\left(\left(2 /\left(3^{\wedge} 3-3\right)\right)\right)\right)\right)+(5-2)\left(\left(\left(\left(2 /\left(6^{\wedge} 3-6\right)\right)+2 /\left(9^{\wedge} 3-9\right)+2 /\left(12^{\wedge} 3-12\right)\right)\right)\right)+(5-\right.\right.\right.$
$\left.\left.\left.3)^{*}\left(\left(\left(\left(2 /\left(15^{\wedge} 3-15\right)\right)+2 /\left(18^{\wedge} 3-18\right)+2 /\left(39^{\wedge} 3-39\right)\right)\right)\right)\right)\right)\right)$-29-golden ratio
Where 29 is a Lucas number

Input:

$$
\begin{gathered}
29\left(5+(5-1) \times \frac{2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29-\phi
\end{gathered}
$$

Result:

$\frac{7385037601}{58198140}-\phi$

Decimal approximation:

125.2767018395772647483048548763144626552597207661684555579...
125.2767018... result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV

Alternate forms:

7355938531-29099070 $\sqrt{5}$
58198140
$\frac{7385037601-58198140 \phi}{58198140}$

$$
\frac{7355938531}{58198140}-\frac{\sqrt{5}}{2}
$$

Alternative representations:

$$
\begin{aligned}
& 29\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2^{2}}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29-\phi= \\
& -29+29\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)-2 \sin \left(54^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& 29\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2^{3}}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29-\phi= \\
& -29+2 \cos \left(216^{\circ}\right)+29\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 29\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29-\phi= \\
& -29+29\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)+2 \sin \left(666^{\circ}\right)
\end{aligned}
$$

$\left.\left.\left.3)^{*}\left(\left(\left(\left(2 /\left(15^{\wedge} 3-15\right)\right)+2 /\left(18^{\wedge} 3-18\right)+2 /\left(39^{\wedge} 3-39\right)\right)\right)\right)\right)\right)\right)-29+2 \mathrm{Pi}$
Where 47 and 29 are Lucas numbers

Input:

$2 \times 47\left(5+(5-1) \times \frac{2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$

$$
\text { (5-3) } \left.\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29+2 \pi
$$

Result:

$\frac{13860293593}{29099070}+2 \pi$

Decimal approximation:

482.5971566127917589621627874839358841359847806925976782448.
482.5971566... result very near to Holographic Ricci dark energy model, where

$$
\chi_{\mathrm{RDE}}^{2}=483.130
$$

Property:

$\frac{13860293593}{29099070}+2 \pi$ is a transcendental number

Alternate form:

$13860293593+58198140 \pi$

$$
29099070
$$

Alternative representations:

$$
\begin{aligned}
& 2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29+2 \pi= \\
& -29+360^{\circ}+94\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29+2 \pi= \\
& -29-2 i \log (-1)+94\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)
\end{aligned}
$$

$$
2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.
$$

$$
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29+2 \pi=
$$

$$
-29+2 \cos ^{-1}(-1)+94\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right.
$$

$$
\left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)
$$

Series representations:

$2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$

$$
\begin{array}{r}
\left.\quad(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)- \\
29+2 \pi=\frac{13860293593}{29099070}+8 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
\end{array}
$$

$2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$

$$
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29+2 \pi=
$$

$$
\frac{13860293593}{29099070}+\sum_{k=0}^{\infty}-\frac{8(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}
$$

$2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$
$\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-29+2 \pi=$

$$
\frac{13860293593}{29099070}+2 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)
$$

Integral representations:

$2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$

$$
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-
$$

$$
29+2 \pi=\frac{13860293593}{29099070}+8 \int_{0}^{1} \sqrt{1-t^{2}} d t
$$

$2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$

$$
\begin{aligned}
&\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)- \\
& 29+2 \pi=\frac{13860293593}{29099070}+4 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
\end{aligned}
$$

$2 \times 47\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$

$$
\begin{array}{r}
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)- \\
29+2 \pi=\frac{13860293593}{29099070}+4 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{array}
$$

$322\left(\left(\left(5+(5-1)((((2 /(3 \wedge 3-3)))))+(5-2)\left(\left(\left(\left(2 /\left(6^{\wedge} 3-6\right)\right)+2 /\left(9^{\wedge} 3-9\right)+2 /\left(12^{\wedge} 3-12\right)\right)\right)\right)+(5-\right.\right.\right.$
$\left.\left.\left.3) *\left(\left(\left(\left(2 /\left(15^{\wedge} 3-15\right)\right)+2 /\left(18^{\wedge} 3-18\right)+2 /(39 \wedge 3-39)\right)\right)\right)\right)\right)\right)-11+3 \mathrm{Pi}$
Where 322 and 11 are Lucas numbers

Input:

$$
\begin{gathered}
322\left(5+(5-1) \times \frac{2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-11+3 \pi
\end{gathered}
$$

Result:

$\frac{7149928897}{4157010}+3 \pi$

Decimal approximation:

1729.393913709781289718010007075321006890507702770666639230...
1729.3939137...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Property:

$\frac{7149928897}{4157010}+3 \pi$ is a transcendental number

Alternate form:

$7149928897+12471030 \pi$
4157010

Alternative representations:

$$
\begin{aligned}
& 322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-11+3 \pi= \\
& -11+540^{\circ}+322\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& 322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
& \left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-11+3 \pi= \\
& -11-3 i \log (-1)+322\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right. \\
& \left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)
\end{aligned}
$$

$$
322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.
$$

$$
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-11+3 \pi=
$$

$$
-11+3 \cos ^{-1}(-1)+322\left(5+\frac{8}{24}+3\left(\frac{2}{-6+6^{3}}+\frac{2}{-9+9^{3}}+\frac{2}{-12+12^{3}}\right)+\right.
$$

$$
\left.2\left(\frac{2}{-15+15^{3}}+\frac{2}{-18+18^{3}}+\frac{2}{-39+39^{3}}\right)\right)
$$

Series representations:

$$
\begin{gathered}
322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)- \\
11+3 \pi=\frac{7149928897}{4157010}+12 \sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}
\end{gathered}
$$

$322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$
$\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-11+3 \pi=$

$$
\frac{7149928897}{4157010}+\sum_{k=0}^{\infty}-\frac{12(-1)^{k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}
$$

$322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$
$\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-11+3 \pi=$ $\frac{7149928897}{4157010}+3 \sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)$

Integral representations:

$322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right.$

$$
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)-
$$

$$
11+3 \pi=\frac{7149928897}{4157010}+12 \int_{0}^{1} \sqrt{1-t^{2}} d t
$$

$$
\begin{gathered}
322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)- \\
11+3 \pi=\frac{7149928897}{4157010}+6 \int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
\end{gathered}
$$

$$
\begin{gathered}
322\left(5+\frac{(5-1) 2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+\right. \\
\left.(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)\right)- \\
11+3 \pi=\frac{7149928897}{4157010}+6 \int_{0}^{\infty} \frac{1}{1+t^{2}} d t
\end{gathered}
$$

$1 / 10^{\wedge} 52\left(\left(\left(\left(5 /\left(\left((5+(5-1))\left(\left(\left(2 /\left(3^{\wedge} 3-3\right)\right)\right)\right)\right)+(5-2)\left(\left(\left(\left(2 /\left(6^{\wedge} 3-6\right)\right)\right)+2 /\left(9^{\wedge} 3-9\right)+2 /\left(12^{\wedge} 3-\right.\right.\right.\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.12)))+(5-3) *\left(\left(\left(2 /\left(15^{\wedge} 3-15\right)\right)+2 /\left(18^{\wedge} 3-18\right)+2 /\left(39^{\wedge} 3-39\right)\right)\right)\right)\right)\right)\right)+18 / 10^{\wedge} 2-(47-$
2)/10^4)))

Where 18,47 and 2 are Lucas numbers

Input:

$$
\begin{aligned}
& \left(\frac{1}{10^{52}}\right. \\
& \left(\begin{array}{l}
5+(5-1) \times \frac{2}{3^{3}-3}+(5-2)\left(\frac{2}{6^{3}-6}+\frac{2}{9^{3}-9}+\frac{2}{12^{3}-12}\right)+(5-3)\left(\frac{2}{15^{3}-15}+\frac{2}{18^{3}-18}+\frac{2}{39^{3}-39}\right)
\end{array}+\right. \\
& \left.\quad \frac{18}{10^{2}}-\frac{47-2}{10^{4}}\right)
\end{aligned}
$$

Exact result:

691793367759 /
62570921800 :
000

Decimal approximation:

$1.1056147933543788706018392076812907045905147588859718 \ldots \times 10^{-52}$
$1.1056147933 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

$1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6+1 / 7+1 / 8+1 / 9+1 / 10+1 / 11+1 / 12+1 / 13 \ldots$
$1+1 / 2+1 / 3+1 / 4+1 / 5+1 / 6+1 / 7+1 / 8+1 / 9+1 / 10+1 / 11+1 / 12+1 / 13+1 / 14+1 / 15$
Input:
$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}$

Exact result:

$\frac{1195757}{360360}$

Decimal approximation:

3.318228993228993228993228993228993228993228993228993228993...
3.3182289932....

And:
$3+1 / 3+1 / 105+1 / 360+1 / 855$

Input:

$3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}$

Exact result:

3561
$\overline{1064}$

Decimal approximation:

3.346804511278195488721804511278195488721804511278195488721.
3.3468045...
$64 *(3+1 / 3+1 / 105+1 / 360+1 / 855)-76+$ golden ratio
Where 76 is a Lucas number

Input:

$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)-76+\phi$

Result:

$\phi+\frac{18380}{133}$

Decimal approximation:

139.8135227105544061264000755561701493959157979016102741403...
$139.8135227 \ldots$ result practically equal to the rest mass of Pion meson 139.57 MeV

Alternate forms:

$\frac{1}{266}(36893+133 \sqrt{5})$
$\frac{1}{133}(133 \phi+18380)$
$\frac{36893}{266}+\frac{\sqrt{5}}{2}$

Alternative representations:

$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)-76+\phi=$
$-76+64\left(\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)+2 \sin \left(54^{\circ}\right)$
$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)-76+\phi=$ $-76-2 \cos \left(216^{\circ}\right)+64\left(\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)$
$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)-76+\phi=$
$-76+64\left(\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)-2 \sin \left(666^{\circ}\right)$
$64 *(3+1 / 3+1 / 105+1 / 360+1 / 855)-89$
Where 89 is a Fibonacci number

Input:

$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)-89$

Exact result:

$$
\frac{16651}{133}
$$

Decimal approximation:

125.1954887218045112781954887218045112781954887218045112781...
$125.19548872 \ldots$ result very near to the dilaton mass calculated as a type of Higgs boson: 125 GeV for $\mathrm{T}=0$ and to the Higgs boson mass 125.18 GeV
$64 *(3+1 / 3+1 / 105+1 / 360+1 / 855) * 8+13+$ golden ratio
Where 8 and 13 are Fibonacci numbers

Input:

$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right) \times 8+13+\phi$

Result:

$\phi+\frac{229633}{133}$

Decimal approximation:

1728.181943763185985073768496608801728343284218954241853087...
1728.18194376...

This result is very near to the mass of candidate glueball $\mathrm{f}_{0}(1710)$ meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of an elliptic curve. As a consequence, it is sometimes called a Zagier as a pun on the GrossZagier theorem. The number 1728 is one less than the Hardy-Ramanujan number 1729

Alternate forms:

$$
\begin{aligned}
& \frac{1}{266}(459399+133 \sqrt{5}) \\
& \frac{1}{133}(133 \phi+229633) \\
& \frac{459399}{266}+\frac{\sqrt{5}}{2}
\end{aligned}
$$

Alternative representations:

$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right) 8+13+\phi=$
$13+512\left(\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)+2 \sin \left(54^{\circ}\right)$
$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right) 8+13+\phi=$
$13-2 \cos \left(216^{\circ}\right)+512\left(\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)$

$$
\begin{aligned}
& 64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right) 8+13+\phi= \\
& 13+512\left(\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right)-2 \sin \left(666^{\circ}\right)
\end{aligned}
$$

$64 *(3+1 / 3+1 / 105+1 / 360+1 / 855) * 2+55$
Where 2 are 55 are Fibonacci numbers

Input:

$64\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right) \times 2+55$

Exact result:

$\frac{64291}{133}$

Decimal approximation:

483.3909774436090225563909774436090225563909774436090225563..
483.390977... result practically equal to Holographic Ricci dark energy model, where

$$
\chi_{\mathrm{RDE}}^{2}=483.130
$$

$1 / 10^{\wedge} 52\left(\left(\left((3+1 / 3+1 / 105+1 / 360+1 / 855)^{*} 1 / \mathrm{Pi}+4 / 10^{\wedge} 2+3 / 10^{\wedge} 4\right)\right)\right)$
Where 4 and 3 are Lucas numbers

Input:

$\frac{1}{10^{52}}\left(\left(3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}\right) \times \frac{1}{\pi}+\frac{4}{10^{2}}+\frac{3}{10^{4}}\right)$

Result:

$$
\frac{403}{10000}+\frac{3561}{1064 \pi}
$$

$\overline{100}$

Decimal approximation:

$1.1056209630643595689342012807697812842193812001536943 \ldots \times 10^{-52}$
$1.105620963 \ldots * 10^{-52}$ result practically equal to the value of Cosmological Constant $1.1056 * 10^{-52} \mathrm{~m}^{-2}$

Property:

$$
\frac{403}{10000}+\frac{3561}{1064 \pi}
$$

100 is a transcendental number

Alternate forms:

$(4451250+53599 \pi) /((1330000 \pi)$ 100)

$$
4451250+53599 \pi
$$

13300π 403
$\overline{100}+$ 3561
106400π

Alternative representations:

$\frac{\frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{\pi}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}=\frac{\frac{\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{180^{\circ}}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}$
$\frac{\frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{\pi}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}=\frac{-\frac{\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{i \log (-1)}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}$
$\frac{\frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{\pi}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}=\frac{\frac{\frac{10}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{\cos ^{-1}(-1)}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}$

Series representations:

$\frac{\frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{\pi}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}=$ 403
$\overline{100}+$ 3561 /
425600

$$
\left.\sum_{k=0}^{\infty} \frac{(-1)^{k}}{1+2 k}\right)
$$

$\frac{\frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{\pi}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}=$
$\overline{100}+$ $3561 /$
425600

$$
\left.\sum_{k=0}^{\infty} \frac{(-1)^{1+k} 1195^{-1-2 k}\left(5^{1+2 k}-4 \times 239^{1+2 k}\right)}{1+2 k}\right)
$$

$\frac{\frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{\pi}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}=$
$\overline{100}+$ 3561 /

106400

$$
\left.\sum_{k=0}^{\infty}\left(-\frac{1}{4}\right)^{k}\left(\frac{1}{1+2 k}+\frac{2}{1+4 k}+\frac{1}{3+4 k}\right)\right)
$$

Integral representations:

$$
\begin{aligned}
& \frac{\frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}}{\pi}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}= \\
& \frac{400}{3561 /} \\
& (425600 \\
& \left.\int_{0}^{1} \sqrt{1-t^{2}} d t\right) \\
& \frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{10^{52}}= \\
& \frac{100}{102}+ \\
& \left.\frac{3561 / 212800}{\infty} \frac{1}{1+t^{2}} d t\right) \\
& \frac{3+\frac{1}{3}+\frac{1}{105}+\frac{1}{360}+\frac{1}{855}+\frac{4}{10^{2}}+\frac{3}{10^{4}}}{\pi}= \\
& \frac{10^{52}}{100}+ \\
& 3561 / \\
& (212800 \\
& \left.\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t\right)
\end{aligned}
$$

Appendix

From:
Three-dimensional AdS gravity and extremal CFTs at $\mathbf{c}=\mathbf{8 m}$
Spyros D. Avramis, Alex Kehagiasb and Constantina Mattheopoulou
Received: September 7, 2007 -Accepted: October 28, 2007 - Published: November 9, 2007

m	L_{0}	d	S	$S_{B H}$	m	L_{0}	d	S	$S_{B H}$
3	1	196883	12.1904	12.5664	6	1	42987519	17.5764	17.7715
	2	21296876	16.8741	17.7715		2	40448921875	24.4233	25.1327
	3	842609326	20.5520	21.7656		3	8463511703277	29.7668	30.7812
4	$2 / 3$	139503	11.8458	11.8477	7	$2 / 3$	7402775	15.8174	15.6730
	$5 / 3$	69193188	18.0524	18.7328		$5 / 3$	33934039437	24.2477	21.7812
	8/3	6928824200	22.6589	23.6954		8/3	16953652012291	30.4615	31.3460
5	$1 / 3$	20619	9.9340	9.3664	8	1/3	278511	12.5372	11.8477
	4/3	86645620	18.2773	18.7328		4/3	13996384631	23.3621	23.6954
	7/3	24157197490	23.9078	24.7812		7/3	19400406113385	30.5963	31.3460

Table 1: Degeneracies, microscopic entropies and semiclassical entropies for the first few values of m and L_{0}.

Acknowledgments

We would like to thank Prof. George E. Andrews Evan Pugh Professor of Mathematics at Pennsylvania State University for his great availability and kindness towards me

References

MANUSCRIPT BOOK 1 OF SRINIVASA RAMANUJAN

[^0]: ${ }^{1}$ M.Nardelli have studied by Dipartimento di Scienze della Terra Università degli Studi di Napoli Federico II, Largo S. Marcellino, 10-80138 Napoli, Dipartimento di Matematica ed Applicazioni "R. Caccioppoli" Università degli Studi di Napoli "Federico II" - Polo delle Scienze e delle Tecnologie Monte S. Angelo, Via Cintia (Fuorigrotta), 80126 Napoli, Italy

