Goldbach Conjeture

Xuan Zhong Ni, Campbell, CA, USA

(January, 2020)

Abstract

In this article, we use method of a modified sieve of Eratosthenes to prove the Goldbach conjecture.

We use p_{i} for all the primes, $2,3,5,7,11,13, \ldots . ., \mathrm{i}=1,2,3, \ldots$. ,
Let $p_{j}<\sqrt{ } N$, and $p_{j+1}>\sqrt{ } N$,
N is a large even integer.

Let set $\mathrm{M}=\{n \in(1, \mathrm{~N})$; and n odd number $\}$
$\mathrm{P}=\Pi_{2 \leq i \leq j} p_{i}$,
for $d \mid P$ set $M_{d}=\{\mathrm{m} ; m d \in M\}$,
obviously, $\left|M_{d}\right|=\left[\frac{|M|}{d}\right]$,
if $d^{\prime} \mid P$, set $M_{d, d^{\prime}}=\left\{m \in M_{d}, \mathrm{~N}-\mathrm{md}=0, \bmod \mathrm{~d}^{\prime}\right\}$,

By seiving of the Eratosthenes for all the primes $\left(p_{i}, \mathrm{i}=2,3, \ldots, \mathrm{j}\right)$,
The total of remaining numbers n of M which are those numbers in the following set,
$\{n \in M ; n \neq 0 \bmod \mathrm{p} \forall p \mid P$, and $N-n \neq 0 \bmod \mathrm{p} \forall p \mid P\}$,
and it equals to,

$$
\begin{equation*}
B(M)=\Sigma_{n \in M}\left(\Sigma_{d \mid(n, P)} \mu(d)\right)\left(\Sigma_{d^{\prime} \mid(N-n, P)} \mu\left(d^{\prime}\right)\right) \tag{1}
\end{equation*}
$$

we have,

$$
\begin{equation*}
B(M)=\Sigma_{\left(d\left|P, d^{\prime}\right| P\right)} \mu(d) \mu\left(d^{\prime}\right)\left(\Sigma_{\left(n \in M, d\left|(n, P), d^{\prime}\right|(N-n, P)\right)} 1\right) \tag{2}
\end{equation*}
$$

The summation in the last blank is zero for those $d \mid d^{\prime}$ or $d^{\prime} \mid d$ when d or d^{\prime} is not equal 1 .

It is easy to prove that,

$$
\begin{equation*}
\left|\left|M_{d, d^{\prime}}\right|-\frac{|M|}{\operatorname{LCM}\left(d, d^{\prime}\right)}\right| \leq 1 \tag{3}
\end{equation*}
$$

we have,

$$
\begin{equation*}
B(M) \approx \Sigma_{\left(d\left|P, d^{\prime}\right| P\right)} \mu(d) \mu\left(d^{\prime}\right) \frac{|M|}{L C M\left(d, d^{\prime}\right)}=|M| \Pi_{(2 \leq i \leq j)}\left(1-\frac{2}{p_{i}}\right) \tag{4}
\end{equation*}
$$

So there are approximately $\left(\frac{N-1}{2}\right) \Pi_{(2 \leq i \leq j)}\left(1-\frac{2}{p_{i}}\right)$ such primes in the range (1, N).

This number is larger than 3 . There is at least one n which is not 1 or $\mathrm{N}-1$, and obviously it is a prime number.

Also $\mathrm{N}-\mathrm{n}$ is a prime number too.

This proves the Goldbach conjecture.

